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Abstract 
Drug-induced cardiotoxicity is one of the main causes of heart failure (HF), a worldwide major and growing public health issue. Extensive research 
on cardiomyocytes has shown that two crucial features of the mechanisms involved in HF are the disruption of striated sarcomeric organization 
and myofibril deterioration. However, most studies that worked on extracting these sarcomere features have only focused on animal models 
rather than the more representative human pluripotent stem cells (hPSCs). Currently, there are limited established image analysis systems to 
specifically assess and quantify the sarcomeric organization of hPSC-derived cardiomyocytes (hPSC-CMs). Here, we report a fully automated 
and robust image analysis pipeline to detect z-lines and myofibrils from hPSC-CMs with a high-throughput live-imaging setup. Phenotype 
measurements were further quantified to evaluate the cardiotoxic effect of the anticancer drug Doxorubicin. Our findings show that this 
pipeline is able to capture z-lines and myofibrils. The pipeline filters out disrupted sarcomere structures and irrelevant noisy signals, which 
allows us to perform automated high-throughput imaging for accurate quantification of cardiomyocyte injury.
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Introduction
Heart failure (HF) is a major and growing public health prob-
lem worldwide, with high morbidity, mortality, and costs 
(Roger et al., 2012). A prime cause of HF is drug-induced car-
diotoxicity and this is routinely evaluated during drug devel-
opment and therapeutic applications (Sachinidis, 2020). 
Furthermore, the cardiotoxic side effect of anticancer treat-
ments is one of the leading causes of mortality in cancer survi-
vors (Schwach et al., 2020). However, investigations of the 
underlying mechanisms of HF caused by these drugs are ham-
pered by the lack of predictive in vitro and in vivo models for 
human (Sachinidis, 2020).

Thus, there is an urgent need for human in vitro systems that 
can better predict drug-induced cardiotoxicity early in the 
drug development process (Cao et al., 2020).

In recent years, human pluripotent stem cells (hPSCs) are in-
creasingly being used for disease modeling to elucidate patho-
logical mechanisms of multifactorial and monogenic diseases 
at the cellular level (Doss & Sachinidis, 2019). In addition 
to this, hPSC-CMs are able to represent significant genetic var-
iants of the population which is necessary for the detection of 
cardiotoxicity in the early drug development process, because 
toxic side effects do not show up in every patient (Fakunle & 
Loring, 2012; Rouhani et al., 2014; Tofoli et al., 2016).

Examining the effects of anticancer drugs, especially an-
thracyclines, in CMs in vitro has demonstrated several types 
of cardiac injury. One important mechanism of cardiomyo-
cyte injury is characterized by the disruption of the striated 
organization of sarcomeres, the smallest contractile units of 
CMs’ muscle fibers (Sawyer et al., 2010). In addition, cardi-
otoxicity is also manifested as myofibril deterioration 
(Burridge et al., 2016). Therefore, sarcomeric organization 
is a crucial feature indicating cardiotoxicity in CMs. 
Doxorubicin is a highly effective anticancer drug prescribed 
for the treatment of a variety of cancer types. However, the 
long-term clinical use of Doxorubicin is limited, because of 
its cumulative dose-dependent cardiotoxicity and HF 
(Singal & Iliskovic, 1998).

Analysis of sarcomeric organization requires accurately ex-
tracting z-lines and myofibrils from an image. Z-line is the seg-
ment separating and linking two neighboring sarcomeres. 
However, even for experienced researchers, it is a challenging 
task to manually trace these structures in different treatment 
conditions. Furthermore, this process is labor-intensive, low 
throughput and there is a high interobserver variability. 
Therefore, image analysis techniques have become a key tool 
to extract sarcomere features such as Z-lines (marking the bor-
ders of sarcomeres) from images. Khadangi et al. (2019), 
for example, used contrast stretching and a Sobel operator 
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to segment Z-lines from serial block-face scanning electron 
microscopy images. To the same end, Morris et al. applied im-
age analysis to segment sarcomere structures stained with 
alpha-Actinin, a protein localized at the z-lines, from fluores-
cent images. They first use a coherence anisotropic diffusion 
filter, contrast enhancement, and a top-hat filter for prepro-
cessing. Subsequently, adaptive thresholding was used to seg-
ment the sarcomere structure stained with α-Actinin, a protein 
localized at the Z-lines, from fluorescent images. The 
α-Actinin skeleton and orientation were further extracted 
and cleaned so as to detect continuous z-lines in their applica-
tion (Morris et al., 2020). Much less research has been per-
formed on the automated identification of myofibrils; 
however, recently Varga et al. (2020) have shown that this is 
possible for highly ordered myofibrils. Most of the recently 
published work, however, is restricted to animal models, 
such as Sprague-Dawley rats.

In our cardiotoxicity study, we use a stable transgenic 
hPSC fluorescent reporter line that we have recently devel-
oped, which expresses a fusion protein of α-Actinin and 
fluorescent mRubyII in combination with expression of green 
fluorescent protein (GFP) at the genomic locus of the cardiac 
transcription factor NKX2.5 (Ribeiro et al., 2020). This 
α-Actinin/NKX2.5 double reporter line (DRRAGN) allows 
live imaging of sarcomeric organization specifically in 
CMs. Compared with adult CMs derived from animal mod-
els, hPSC-CMs are relatively immature. Consequently, the 
sarcomere structure in hPSC-CMs is not always well- 
organized, which increases the difficulty of sarcomere detec-
tion. This specialized cell line is used to study the cardiotoxic 
effects of the anticancer drugs, such as Doxorubicin.

Here, we report on a fully automated and robust image ana-
lysis pipeline, designed for analyzing drug-induced cardiotox-
icity by detecting z-lines and myofibrils from hPSC-CM 
images with a high-throughput live-imaging setup as shown 
in Figure 1. Our validation study confirms that this pipeline 
is able to capture z-lines and myofibrils. Distracting signals 
can be filtered out such as disrupted sarcomere structures 
and Doxorubicin signals from the nucleus. In addition, the 
phenotype measurements derived from z-lines and myofibrils 
are capable of depicting cardiotoxicity in a wide range of se-
verity levels.

Materials and Methods
Preparation of the Cells
Double Reporter mRubyII-ACTN2 and GFP-NKX2.5 (DRRAGN) 
hPSCs were differentiated to hPSC-CMs using growth factor- 
based differentiation as described previously (Ribeiro et al., 
2020) for live imaging. Around Day 14 of differentiation, cells 
were dissociated using TrypLe (ThermoFisher) and were 
FACS (fluorescence-activated cell sorting) sorted for 
α-ActininmRybyII/w-NKX2.5eGFP/w using the SH800S Cell 
Sorter (Sony Biotechnology). Double positive CMs were seeded 
into CellCarrier-96 well special optics plates (PerkinElmer), 
coated with vitronectin (ThermoFisher) at a density of 50,000 
cells per well. The hPSC-CMs were maintained in a humidified 
incubator at 37°C and 5% CO2 and were refreshed with 
CM-TDI medium twice a week (Birket et al., 2015). 10–12 
days after seeding the hPSC-CMs were treated with dimethyl-
sulfoxide (DMSO 4.23 mM) as control or with 1 μm of the 

Fig. 1. Sample images acquired from EVOS live imaging microscope with a 40× objective. (a) Sample image in the control condition (DMSO). (b) Sample 
image with 1 µm Doxorubicin treatment on Day 1. (c) Sample image with 1 µm Doxorubicin treatment on Day 5. (d–f) Binary mask representing 
segmented z-lines from (a–c). (g–i) Result of myofibril tracing based on the binary mask (d–f). Contrast enhancement was applied to the sample images 
(a–c) using Enhance Contrast with Saturated pixels: 0.5% in ImageJ.
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anticancer drug Doxorubicin for 5 days. Doxorubicin was only 
added on Day 0.

For immunofluorescent staining of alpha-Actinin, GM25256 
human-induced pluripotent stem cells (hiPSCs) were differenti-
ated to CMs using growth factor-based differentiation. CMs 
were seeded into CellCarrier-96 well special optics plates 
(PerkinElmer), coated with vitronectin (ThermoFisher) at a 
density of 50,000 cells per well. The hiPSC-CMs were main-
tained in a humidified incubator at 37°C and 5% CO2 and 
were refreshed with CM-TDI medium three times a week 
(Birket et al., 2015). Fourteen days after seeding the 
hiPSC-CMs were treated with dimethylsulfoxide (DMSO 
4.23 mM) as control or with 0.1 or 1 μm of the anticancer 
drug Doxorubicin. Doxorubicin was only added on Day 0 
and, subsequently, cells were refreshed with CM-TDI medium. 
Cells were fixed on Day 5.

Adult mouse CMs were isolated from the wild-type (WT) 
model (Schuldt et al., 2021). Cells were seeded into a 
24-well plate with glass bottom and fixated afterward.

Fixation and Staining
Cells were fixated in 4% paraformaldehyde (PFA) for 20 min 
and washed with phosphate-buffered saline (PBS) for three 
times.

An antibody against α-Actinin was used to identify sarco-
meres. HiPSC-CMs and adult mouse CMs were stained for 
alpha-Actinin using mouse anti-human alpha-Actinin 
(A7811, Sigma-Aldrich) and goat anti-mouse Alexa Fluor™ 
647 (A21235, Fisher Scientific).

Cells were permeabilized using 0.1% Triton X100 in PBS 
for 8 min. After washing cells in PBS for three times, cells 
were incubated with the primary antibody in PBS, 2% Fetal 
Bovine Serum (FBS), and 5% goat serum at 4°C overnight. 
After washing with PBS for three times, cells were incubated 
with the secondary antibody in PBS, 2% FBS, and 5% goat se-
rum at room temperature for 1.5 h. Cells were washed with 
PBS again for three times before DAPI (4′,6-diamidino-2-phe-
nylindole) staining.

Screening
Images of hPSC-CMs were acquired using the high-throughput 
automated EVOS FL Auto 2 (ThermoFisher) microscope 
equipped with a 40x Super-apochromat Olympus objective 
(NA 0.95) (ThermoFisher, AMEP4754). The red channel 
(α-Actinin) for live imaging was acquired using a 531/20 exci-
tation filter with an exposure time of 0.16 s plus 1x gain and a 
593/40 emission filter (ThermoFisher, AMEP4652). The 
whole monolayer cell culture was scanned by automatically 
acquiring 55 images per well every 24 h for 5 days. During 
the 5 days, cells were maintained at 37°C and 5% CO2 on 
the EVOS FL Auto 2 with the EVOS Onstage incubator 
(ThermoFisher).

For CMs stained with α-Actinin, we used Cy5 auto- 
configured light cube with an exposure time of 0.018 s plus 
1x gain to capture fluorescent α-Actinin signal. Each well in 
the 96-well plate was scanned automatically for 59 images. 
The adult mouse CMs were sparsely seeded in the 24-well 
plate. Therefore, we captured the images manually.

Z-line segmentation
The high-throughput live-imaging setup can generate hun-
dreds of thousands of images per day. Therefore, the automat-
ic image analysis pipeline needs to be efficient enough to 
analyze the large-scale volumes at a fast pace and to be robust 
enough to handle the variation of fluorescent signals. As 
shown in Figure 1, not all the red channel signals represent 
z-lines. Apart from α-Actinin-positive z-lines, we also ob-
served out-of-focus blurry signals, in the control situation. 
Once treated with Doxorubicin, sarcomere disassembly be-
gins, as can be seen by a loss in striations and an increase in 
a more diffuse, higher intensity fluorescence throughout the 
cytoplasm (Fan et al., 2015), as shown in Figure 1. In the 
cell nuclei of Figure 1b, an increasing signal of accumulated 
Doxorubicin could also be observed (Chaikomon et al., 
2018), which was expected since it is known that 
Doxorubicin emits red fluorescence (Doxorubicin is also 
known as the “red devil” for its color and toxic effects). In or-
der to specifically identify α-Actinin-positive z-lines, and dis-
tinguish it from blurry, diffuse, and higher intensity fluoresce 
signals, we performed various image analysis steps.

Unfortunately, traditional edge detection or adaptive 
thresholding methods are not able to address these problems. 
In this paper, we try to solve this challenging segmentation 
problem using a 2D-FFT operator with a customized bandpass 
filter (Heideman et al., 1985). It has been previously described 
that the sarcomere length of hPSC-CMs is around 1.6–1.8 μm, 
while the sarcomere length of more matured human adult 
CMs is about 2.2 μm (Karbassi et al., 2020; Knight et al., 
2021; Tsan et al., 2021). The sarcomere length of our CMs 
is measured around 1.73 ± 0.015 μm at full relaxation and 
1.54 ± 0.014 μm at maximum contraction (Ribeiro et al., 
2020). This prior knowledge can be converted to the fre-
quency domain, which enables us to define the upper and low-
er limit for a bandpass filter. In our application, we select 
1.6 μm as the average sarcomere length with a 0.4 μm distance 
to the upper or lower bound. Therefore, we set the upper 
bound of the sarcomere length to 2 μm and the lower bound 
to 1.2 μm. The conversion from the spatial domain to the fre-
quency domain is realized using equation (1) (Efford, 2000):

Frequency =
N

R∗SL
, (1) 

where N is the closest power of two with respect to the 
max(width, height) of the image; R is the pixel-to-micrometer 
ratio; and SL is the sarcomere length in the spatial domain. In 
our case, as illustrated in Figure 2, the max(width, height) of 
the image is the image width with 1,328 pixels and the next 
closest power of two is 2,048 pixels. The pixel-to-micrometer 
ratio is 5.6 pixels/μm. Consequently, we set the upper bound/ 
radius in the frequency domain to 300 pixels and the lower 
bound/radius to 180 pixels w.r.t. the origin. These boundaries 
are sufficient to resolve the required detail for the sarcomeres.

The whole pipeline of the automatic z-line segmentation is 
shown in Figure 3. First, two image preprocessing steps were 
performed; namely, background subtraction (ImageJ, 
Subtract Background, 50 for α-Actinin channel) and contrast 
enhancement (ImageJ, Enhance Contrast, Saturated pixels: 
0.3% for α-Actinin channel), which reduces the influence of 
the background and, at the same time, improves the fore-
ground signal; cf. Figure 3b. Since the signal in the original im-
ages of the control condition is relatively weak, enhancing the 
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contrast makes the intensity range better normalized and eas-
ier for thresholding. In addition, background subtraction re-
moves low frequency signals such as out-of-focus blurriness 
and, in our case, enhances the details such as sarcomere 
structures. Preprocessing makes images more uniformly com-
parable. Second, a 2D-FFT is applied and a customized band-
pass filter is used in the frequency domain to filter out low and 
high frequency signals so as to only include the range 
of frequencies that is representative to the range of sarcomere 
lengths (1.2–2 μm) as shown in Figures 3c and 3d. 
Subsequently, the bandpass filter is smoothed three times 
with a 3 × 3 percentile filter. Third, the inverse 2D-FFT is 

applied to retrieve the fluorescent signal that is in the pre- 
defined frequency range. Finally, an empirically derived 
threshold (threshold = 21 for 8-bit image) is used to filter out 
trivial signals and to acquire the binary mask representing 
the sarcomere structure as depicted in Figure 3f. Due to the 
variation of the conditions, hypotheses of adaptive threshold-
ing methods are not always met which would make the results 
inconsistent. Therefore, a hard thresholding works better in 
our situation. The optimum threshold was derived by applying 
different thresholds to 100 images with varied conditions. 
After that, hard thresholding was considered representative. 
In this manner, we properly removed diffuse and higher inten-
sity fluorescent signals and preserved the signals that represent 
z-lines. Even when the z-lines are largely disrupted as shown in 
Figure 1c, our method is still able to filter out highly expressed 
but irrelevant signals from the image.

Myofibril Identification
Another crucial characteristic of drug-induced cardiotoxicity 
is myofibril deterioration (Burridge et al., 2016). However, 
hPSC-CMs are known to display an immature myofibril align-
ment compared with native CMs (Sacchetto et al., 2020). In 
order to identify myofibrils from the images, a rule-based myo-
fibril tracing method was designed (Fig. 4). Examples of myo-
fibrils identified using this technique are shown in Figures 1g
to 1i.

To link z-lines that are part of the same myofibril, a rule- 
based method was developed. Its flowchart is shown in 
Figure 4g. These rules are based on the following assumptions 
that are derived from general characteristics of sarcomeres and 
myofibrils. 

1. Sarcomeres are demarcated by two z-lines at the lateral 
borders.

2. Sarcomeres have a narrow range of possible lengths (for 
our CMs between 1.2 and 2 μm), which translates to a 
minimum and maximum distance between two z-lines 
of a sarcomere.

3. Two z-lines that demarcate the lateral borders of the 
sarcomere are parallel to each other.

4. Myofibrils are relatively straight. It is unlikely for them to 
have sharp curves.

Fig. 2. Diagram of conversion from spatial domain to frequency domain.

Fig. 3. Pipeline of automatic z-line segmentation. (a) Original image. 
(b) Result after preprocessing. (c) 2D-FFT result. (d) 2D-FFT with a 
customized bandpass filter. (e) Result of inverse 2D-FFT. (f) Binary mask 
after the thresholding.
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5. z-lines are perpendicular to the length of the sarcomere 
and, therefore, perpendicular to the section of the myofib-
ril that they are part of.

Before localizing the myofibrils, the binary z-line mask is 
preprocessed to disconnect overlapping z-lines as shown in 
Figures 4a and 4b, annotated as step 2 in Figure 4g. To this 
end, an opening operation is performed with a 3 × 3 cross- 
shaped structuring element. Subsequently, z-line features 
that are necessary for tracing are calculated at step 3 in 
Figure 4g. For all the objects in the preprocessed mask, the 
centroid coordinates are determined using the first moment in-
tegral of z-lines. Additionally, skeleton lines are generated and 
their orientations are derived from the slope of a least-squares 
line estimation (Zhang & Suen, 1984), as shown in Figure 4c. 
For round z-lines the orientation cannot accurately be esti-
mated, instead these z-lines are assigned to the label “round” 
when their skeleton line is smaller than 0.71 μm, i.e., 4 pixels. 
This threshold was derived by applying different thresholds to 
a variety of z-lines and inspecting which threshold best distin-
guished between round and flat z-lines.

We observed that fibril tracing is more difficult in crowded 
regions, with multiple parallel myofibrils. Therefore, z-lines in 
crowded regions were identified at step 12 in Figure 4g by 
using a convolution operation with a uniform circular kernel 
(radius = 15.5 to represent 1.5 sarcomere length) on the binary 
centroid mask. The kernel will include three to four objects 
when it covers precisely one myofibril. To find the threshold 
that best describes crowded regions, successive thresholds 
were evaluated on images with varied conditions. Based on 
this, in regions where the sum of the object centroids in the 
kernel was higher than 7, the central element was assigned 
to the crowded region as shown in Figure 4d. Afterward, 
these regions are dilated with a circular structuring element 
(radius = 15.5) to include nearby z-lines.

For the rule-based connection method, the previously de-
scribed criteria are evaluated for the identification of myofi-
brils. The first assumption follows that each z-line can be 
connected to a maximum of 2 other z-lines at step 7 in 

Figure 4g. The second rule for connection is that the 
Euclidean distance between the z-lines has to be between 
1.25 and 2.32 μm, i.e., 7 and 13 pixels, respectively, at step 
8 in Figure 4g. Based on the third assumption, the orientation 
of the z-lines is compared at step 10 in Figure 4g. A maximum 
difference of 30° was used as a threshold, because visual in-
spection of multiple angles showed that this resulted in the 
highest number of reasonable connections. The last criterion 
assesses the curve of the resulting fibril at step 11 in 
Figure 4g. Two z-lines are only connected if the angle between 
the two resulting sarcomeres is larger than 135°. To determine 
this threshold, multiple angels were evaluated and at angles 
below 135° the resulting myofibril was considered to be too 
curved. In cases where multiple suitable connections are 
found, the z-line that results in the straightest fibril is selected.

For z-lines in the crowded regions, an additional criterion is 
applied at step 13 in Figure 4g. The orientation of the fibril has 
to be roughly perpendicular to the z-line orientation. For this 
criterion, a range from 45° to 135° is used as the possible rela-
tive orientations. When multiple connections are found that 
fulfill all criteria, the sarcomeres that are the most perpendicu-
lar to the z-line orientation are chosen.

After applying these connection criteria to all the objects in 
the binary mask as shown in Figure 4e, an additional step is 
performed to connect any adjacent fibril endpoints. These end-
points are connected if the distance in between them is 2.5 μm, 
i.e., 14 pixels, or less and if the resulting fibril angles are larger 
than 120° and the sum of both angles is smaller than 360°. The 
final myofibril tracing result is shown in Figure 4f.

The myofibril tracing method was implemented in python 
using the image processing packages OpenCV and scikit- 
image (Gary, 2008; Van Der Walt et al., 2014). Moreover, a 
multiprocessing package was used to speed up the computing 
time.

Performance Evaluation
In order to evaluate the performance of the z-line segmenta-
tion, a quantitative assessment was conducted by comparing 

Fig. 4. Pipeline of automatic myofibril identification. (a) Cropped binary mask representing segmented sarcomere structure. (b) Result after 
preprocessing. (c) Object features; centroid and skeleton line. (d) Crowded regions. (e) Result of myofibril tracing. (f) Result after endpoint connection. 
Individual myofibrils are labeled. (g) Flowchart of the rule-based myofibril identification. All the parameters mentioned in the flowchart can be tuned.
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the results between the automated pipeline and the manual an-
notation. z-lines are highly dense signals in the image, especial-
ly in the control condition. Therefore, we cropped 10 images 
(256 × 256 pixels), with varied treatment conditions from 
the original image dataset. Two scientists with knowledge of 
our cardiotoxicity study were asked to independently segment 
the sarcomere structures from the images. Subsequently, we 
used the F-score (Du & Dua, 2010) to assess the accuracy of 
our segmentation method. The F-score is based on a calcula-
tion that takes into account both recall and precision. Recall 
(also known as sensitivity) is the proportion of real positive re-
sults that are correctly predicted positive. Precision (also 
known as specificity) denotes the proportion of predicted posi-
tive results that are real positives (Powers, 2011). The F-score 
is then calculated as follows:

F-score = 2
recall precision

recall + precision
. (2) 

We computed the F-score for our z-line segmentation method 
using the two manually segmented results. In addition, we 
compared the performance of our method to the 
zlineDetection method proposed by Morris et al. (2020). We 
used “Recommend Settings” to set the parameters in the soft-
ware. The F-score of zlineDetection method is calculated 
based on the manual segmentation results as well.

In addition, we observed that variation exists between the 
sets of manual segmentation results. Because sarcomere struc-
tures are very small, researchers have different opinions on the 
size of the area that is covered by the α-Actinin signal. 
However, the annotated locations of sarcomere structures 
(z-lines) are consistent between the two researchers. 
Therefore, based on our observation and in order to overcome 
the variation between the manual segmentation results, we 
further applied a Union operator to combine the knowledge 
from the two manual annotations. The precision is calculated 
based on the following equation:

Precision =
TP

Auto ROIs
, (3) 

where TP is the number of true positive ROIs. In the binary 
mask derived from automatic segmentation, a labeled ROI is 
a true positive ROI as long as this ROI is fully or partially an-
notated in the binary mask from manual segmentation. 
Auto ROIs is defined as the number of all the labeled ROIs 
in the binary mask from automatic segmentation.

The recall is calculated as follows:

Recall =
TP

Manual ROIs
, (4) 

where Manual ROIs is defined as the number of all the labeled 
ROIs in the binary mask from manual segmentation. The same 
equations are applied to calculate the performance of the 
zlineDetection method developed by Morris et al. Only, in-
stead of the segmentation result, the centerline is the final re-
sult of the zlineDetection method. Extra steps were taken to 
detect the local orientation of actinin and to eliminate off- 
target α-Actinin staining after segmentation to derive the final 
centerline. In order to fairly evaluate the performance of the 
zlineDetection method, we converted their final result: center-
line as the binary mask to calculate the F1 score. In our per-
formance measurement, only the location of all the z-lines is 
taken into account. Therefore, the F1 scores are comparable 

between our method and the zlineDetection method.
To evaluate the myofibril tracing algorithm the recall, preci-

sion, and F-score were calculated based on 36 cropped images 
(300 × 300 pixels) that we manually traced. The evaluation 
was performed on the sarcomere as well as the myofibril level. 
On the sarcomere level, a true positive is a sarcomere (de-
scribed as a combination of two z-lines) that is present in the 
annotated version and the method’s prediction. On the myo-
fibril level, a true positive is an annotated fibril of which 
50% or more is covered by one predicted fibril, similarly to 
the evaluation approach commonly used in cell tracking 
(Akram et al., 2016).

Results
Performance Evaluation

Performance Evaluation of Sarcomere Segmentation
To quantify the performance of the z-line segmentation meth-
ods, two researchers were asked to manually segment around 
3075 ROIs representing z-lines from 10 randomly selected 

Fig. 5. Sample original images and results of manual segmentation, 
automated segmentation using our method and zlineDetection.
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images of our sample set with varied treatment conditions as 
shown in Figure 5. The automatic segmentation results, as 
well as the extracted centerlines from our method and the 
zlineDetection method, are shown in Figure 5. Researchers 
were able to accurately identify sarcomere structures when 
the cells are in the control condition (Fig. 5: Sample 1 and 
Sample 3). In contrast, it was more difficult for the researchers 
to precisely identify the ROIs in the treated condition (Fig. 5: 
Sample 2 and Sample 4) where the sarcomere structures were 
either disrupted or obscured by the increasingly accumulated 
Doxorubicin signal in the nucleus (Chaikomon et al., 2018). 
Due to the fact that Doxorubicin emits red fluorescence which 
is quite similar to the α-Actinin signal, identification of sarco-
mere structures is more challenging for both manual and auto-
matic methods.

The results of the F-score analysis of all sarcomere segmen-
tation methods are summarized in Table 1. When comparing 
the manual segmentation to automated methods separately, 
our method reaches a higher precision (72.09%, 57.53%), re-
call (80%, 100%), and F1 score (74.64%, 72.15%). A lower 
precision score in Manual_2 compared to Manual_1 is caused 
by the lower number of sarcomeres that were selected by the 
second researcher. In return, the recall score is much higher 
in Manual_2 compared with Manual_1. When using the 
union of the two sets of manual segmentations as a baseline, 
our method has a higher precision score (73.89%) and recall 
score (89.33%), than the zlineDetection method (64.39%, 
61.99%, resp.). The relatively low precision and recall scores 

of the zlineDetection method are mainly caused by the 
α-Actinin signal of disrupted sarcomere structures and 
Doxorubicin signal in the nucleus, which obscures the 
α-Actinin signal of sarcomere structures from the image. 
Consequently, the F-score of our method (80.18%) is much 
higher than the zlineDetection method (61.51%). The higher 
performance of our method is caused by the customized band-
pass filter which successfully filters out the α-Actinin signal of 
disrupted sarcomere structures and Doxorubicin signal in the 
nucleus. Our method is especially designed to apply on human 
CMs which uses large, high-resolution images as input (1,328 
× 1,048 per image). Our method is able to segment the sarco-
mere structure per image in ∼1 s (PC with i7 processor and 
8 GB RAM) which is especially suitable for a high-throughput 
setup.

Performance Evaluation of Myofibril Identification
To evaluate the myofibril tracing approach, the performance 
was analyzed qualitatively and quantitatively. For the qualita-
tive evaluation, the results of the manual and automated tra-
cing are shown on representative example images from the 
control and Doxorubicin conditions in Figure 6. It is apparent 
from this figure that the majority of the myofibrils are correctly 
traced. Instances of incorrectly identified connections are 
shown in red. In some cases, these are myofibrils that are iden-
tified where there should not be any myofibrils. However, 
more often it is the case that myofibrils are extended in the 
wrong direction or are longer than they should be. Instances 
of myofibrils that are annotated but are missing in the auto-
mated result are shown in blue. It is very rare that whole my-
ofibrils are not identified, but quite often the ends of myofibrils 
are not traced completely.

Because myofibrils are made up of individual sarcomeres, 
the tracing results were evaluated on the sarcomere level and 
the fibril level as shown in Table 2. Quantitative analysis 
of the tracing algorithm shows that the F-scores of the sarco-
mere and fibril evaluation are 77% and 76.5%, respectively. 
On the sarcomere level, the recall (79.94%) is higher than 
the precision (74.59%). On the fibril level, this difference is 
less pronounced. These results indicate that the rule-based 

Table 1. F-score analysis for the automated and manual segmentation results.

Manual_1 Manual_2 Manual_1 ∪ Manual_2

3,075 samples Precision Recall F-Score Precision Recall F-Score Precision Recall F-Score

zlineDetection Mean 0.6291 0.5833 0.5360 0.5067 0.9500 0.6097 0.6439 0.6199 0.6151
SEM 0.0813 0.0752 0.0403 0.0810 0.0527 0.0660 0.0820 0.0386 0.0594

Our method Mean 0.7209 0.8000 0.7464 0.5753 1.0 0.7215 0.7389 0.8933 0.8018
SEM 0.0311 0.0861 0.0542 0.0454 0.0 0.0382 0.0323 0.0301 0.0209

Columns: Manual_1 and Manual_2 compare the manual segmentation to automated methods separately. 
Columns: Manual_1 ∪ Manual_2 compares the union of the two manual segmentations to automated methods. 
The bold values are the mean values of Precision, Recall and F-Score of the automated and manual segmentation methods.

Fig. 6. Manual and automated myofibril tracing results. z-lines is the 
preprocessed binary mask on which the automated tracing was 
performed. The ground-truth myofibrils, including true positive and false 
negative myofibrils, are labeled based on the identification by the 
automatic approach. For the automatic tracing, the true positive and false 
positive myofibrils are shown.

Table 2. F-score analysis of the automated and manual myofibril tracing 
results.

Precision Recall F-score

Sarcomere Mean 0.7459 0.7994 0.77
SEM 0.0281 0.0289 0.0277

Fibril Mean 0.7637 0.7724 0.765
SEM 0.0308 0.0326 0.0304
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method gives reasonable results compared with manual 
tracing.

Case Study of Doxorubicin Exposure through Time
In order to show the ability of our image analysis pipeline to 
detect cardiotoxic effects, we collected and compared images 
of hPSC-CMs from the control condition (DMSO) and of 
Day 1, Day 3, and Day 5 of Doxorubicin exposure. In total, 
2,134 images were collected for the three experimental repli-
cates. Two sample images are shown in Figures 1a and 1c. 
We observed that, compared with the control condition, the 
treated condition shows big differences in terms of the area 
covered with z-lines and the average signal intensity in the re-
gion of interest (ROI). Therefore, after segmentation, we 
quantified the area fraction (%Area), mean intensity (Mean 
of the Signal Intensity), and texture as expressed by the 
smoothness. Smoothness describes the variance of intensity 
in the ROI (Gonzalez & Woods, 2018). We use it to differen-
tiate homogeneous sarcomere texture in the control condition 
and diffuse texture in the treated condition. We averaged the 
measurements of all pictures in a well for comparison as 
shown in Figure 7. The area fraction stands for the percentage 
of pixels detected as z-lines in the original image. The mean 
signal intensity value is the average intensity value within the 
ROIs. The texture parameter smoothness is calculated as fol-
lows:

Smoothness = 1 −
1

(1 + σ2)
, (5) 

where σ is the standard deviation of the intensity values within 
the ROIs.

As we can see from Figure 7, the area fraction of z-lines is 
drastically reduced on Day 1 (3.33%) compared with the con-
trol condition (5.65%). The decreasing trend lasts till Day 5 
(1.08%). The mean signal intensity slightly increases on Days 
1 and 3, with 96.24 and 97.40, respectively, but significantly 
increases on Day 5 (115.93) compared with the control condi-
tion (95.30). In addition, the smoothness is also significantly 
reduced on Day 5 (0.9896) compared with the control condi-
tion (0.9957). This indicates that Doxorubicin treatment leads 
to a higher variation in intensity value in the ROIs. The in-
creased signal in the cytoplasm, as shown by the mean intensity 
value and the smoothness, is another indication of sarcomere 
disassembly. These results demonstrate that the disruption of 
z-lines starts on Day 1 and is strongly manifested on Day 5.

In order to describe the impact of Doxorubicin on myofi-
brils, for each image the number of myofibrils, the average 
myofibril length and width, the percentage of assigned z-lines, 
and the randomness of the myofibril orientations were meas-
ured. The myofibril length was derived from the myofibril 
line going through all the successive centroids of z-lines. The 
length of this line was calculated using function arclength in 
OpenCV library (Gary, 2008) and converted to μm. To ap-
proximate the myofibril width, the maxima in the distance 
map derived from the binary mask (distance of z-line pixels 
to the line representing the myofibril) multiplied by two was 
used. The percentage of assigned z-lines is the number of 
z-lines that are part of myofibrils divided by the total number 
of z-lines in the segmented mask. To describe the uniformity of 

Fig. 7. Phenotypic measurement results of the z-lines of the control condition and on three separate days of 1 µm Doxorubicin treatment. (a) Results of 
the area fraction (%Area). (b) Results of the mean signal intensity. (c) Results of the smoothness. Mann and Whitney U-test was performed. p-value 
annotation legend: **1.00 × 10−03 < p <=1.00 × 10−02; ***1.00 × 10−04 < p <=1.00 × 10−03; ****p <= 1.00 × 10−04.
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the organization, the orientation of each myofibril was catego-
rized into one of four directions: horizontal, vertical, diagonal 
right, and diagonal left. To decrease the potential bias caused 
by shorter fragments, the histogram of the orientations was 
normalized using the length of the myofibrils. The resulting 
weighted histogram was compared to a discrete uniform dis-
tribution, representing the case of a random distribution. 
The difference between the two distributions was quantified 
using the p-value from the chi-squared test. Lastly, we aver-
aged the measurements of all pictures in a well for comparison. 
For the orientation of myofibrils, we counted the number of 
images in a well that have organized orientation. It is realized 
by counting images with the p-value smaller than 0.05.

As shown in Figure 8, the number of myofibrils is rapidly re-
duced; from 428 in the control condition to 261 in the treated 
condition on Day 1. It keeps reducing after Day 1 until it 
reaches 69 on Day 5. The average length of myofibrils reduces 

gradually through time: 9.85 μm in the control condition, 
8.91 μm on Day 1, 7.07 μm on Day 3, and 6.25 μm on Day 
5. An abrupt decrease is observed in the average width of my-
ofibrils on Day 1 which is 0.95 μm compared with 1.05 μm in 
the control condition. After Day 1, the width continues de-
creasing, with an average width of 0.81 μm on Day 3 and 
0.82 μm on Day 5. The percentage of assigned z-lines also de-
creases over time. It is 74.52% in control condition, 68.49% 
on Day 1, 51.78% on Day 3, and 44.99% on Day 5. It indi-
cates that z-line organization decreases. The orientation of 
myofibrils is highly disrupted on Day 3 and Day 5 (23.90% 
and 10.65%, respectively) compared with the control condi-
tion where the percentage equals 72.42%. These results indi-
cate a clear structural effect of Doxorubicin exposure over 
time.

An additional case study is provided in Supplementary 
material to investigate the generalization of our pipeline by 

Fig. 8. Phenotypic measurement results of myofibrils from the control condition and on three separate days of 1 µm Doxorubicin treatment. (a) Number 
of myofibrils. (b) Average myofibril length. (c) Average myofibril width. (d) Percentage of assigned z-lines. (e) Percentage of images with organized 
orientation of myofibrils per well. Mann and Whitney U-test was performed. p-value annotation legend: **1.00 × 10−03 < p <= 1.00 × 10−02; ***1.00 × 
10−04 < p <= 1.00 × 10−03; ****p <= 1.00 × 10−04.
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testing on a widely accepted traditional method with 
α-Actinin-stained sarcomeres.

Discussion and Conclusion
In this paper, we describe a fully automated image analysis 
pipeline, that is able to reliably identify z-lines and myofibrils 
even with interference from other signals. By applying a 
2D-FFT with a customized bandpass filter, we are able to de-
tect/classify sarcomere structures from varied conditions of 
immature hPSC-CMs and even adult mouse CMs. In addition, 
the rule-based myofibril identification method shows the cap-
acity of finding myofibrils. A clear effect of Doxorubicin ex-
posure is shown using these methods. It drastically reduced 
the computation time (∼1 s per image) which is particularly 
suitable in processing image datasets captured from high- 
throughput imaging setups.

According to performance evaluations, our method demon-
strates a superior capability of handling wide-ranging fluores-
cent signals between experiments and is able to capture 
z-lines and myofibrils for studying cardiotoxicity. We have 
been able to quantify multiple phenotype measurements de-
scribing z-lines and myofibrils, which clearly indicate disruption 
of sarcomere structures in the cardiotoxicity study. The present 
study raises the possibility that evaluations of the quality of stri-
ated CMs can be performed by our phenotype analysis. 
Similarly, to manual extraction of sarcomeric z-lines from im-
ages and providing metrics that encapsulate different aspects 
of the z-line architecture, our method is able to quantify morph-
ology, texture, and orientation features of sarcomere structures.

Our image analysis pipeline enables automated testing the 
cardiotoxicity of drugs which is required for all drugs before 
entering clinical trials and ultimately the market. Moreover, 
hPSC-based assays are recommended by the Food and Drug 
Administration (FDA) for performing these tests (Colatsky 
et al., 2016). Our method has shown to be particularly effi-
cient in the processing of large images of hPSC-CMs and can 
be combined with our previous findings on evaluating cardio-
toxicity based on phenotypic changes in hPSC-CMs (Cao 
et al., 2020). High-throughput analysis of phenotypical read-
outs can be combined with other high-throughput assays using 
functional and biochemical parameters, such as cardiomyo-
cyte contractility, electrophysiology, calcium signaling, and 
mitochondrial activity (van Meer et al., 2016), which together 
will provide detailed information on drug responses and clin-
ically relevant cardiac disease phenotypes in vitro. Moreover, 
the use of hPSC-CMs facilitates studying patient-to-patient 
variations, which is of utmost importance for patient stratifi-
cation, repurposing of drugs. In addition, this image analysis 
pipeline can further facilitate the progress of personalized 
medicine by helping to predict for which patients’ therapies 
will be safe (Schwach et al., 2020). In summary, our image 
analysis pipeline provides a fully automated and accurate 
method for the evaluation of the sarcomere structure during 
drug-induced cardiotoxicity in hPSC-CMs and is a valuable 
tool for studying cardiac disease in vitro.

For future work, we intend to verity the translatability of 
our analysis platform to a “real-world” scenario (i.e., cardio-
myocytes). We have shown the possibility of using our sarco-
mere detection method to analyze adult mouse CMs. In the 
future, we will adjust our analysis platform to analyze primary 
CMs. For example, our finding of changes in the first day of 
Doxorubicin exposure in hPSC-CMs can be readily translated 

to rodent primary CMs, which have been previously cultured 
in a short time frame. Our follow-up step is to explore deep 
learning models, especially Deep Convolutional Neural 
Networks (DCNNs) for object detection such as U-Net 
(Ronneberger et al., 2015), Mask-RCNN (He et al., 2018), 
and YOLOv4 (Bochkovskiy et al., 2020). These are popular 
methods for object detection with a fast-processing speed 
(≤1 s per image) and are therefore well suited for a high- 
throughput setup. We intend to evaluate the performance of 
these models for the segmentation of the z-lines and its further 
improvement in myofibril identification. A limitation of our tra-
cing approach is that the connections of each z-disk are only 
considered once. Finding the most optimal connections by ex-
ploring the application of deep learning techniques could there-
fore further improve the myofibril identification. Our validated 
automated segmentation method can be used to automatically 
annotate the training data, after further curation steps are con-
sidered. In addition, sarcomere and myofibril disruption in 3D 
space will be further explored and included in our existing pipe-
line. In the future, we hope we can include deep learning models 
in our standardized pipeline to analyze sarcomere and myofibril 
both in 2D and 3D spaces. Our pipeline will be applied to evalu-
ate the cardiotoxicity effect of other drugs. Moreover, our re-
search will assess distributed computing so as to balance the 
computational load between graphics processing unit (GPU) 
and central processing unit (CPU).

Supplementary material
To view supplementary material for this article, please visit 
https://doi.org/10.1093/micmic/ozac016.
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