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Chapter 5

A Feature Weighted Tracking Method for
3D Neutrophils in Time-lapse Microscopy

This chapter is based on the following publication:
C, Li., W, WC. Yiu., W, Hu., L, Cao., F, J. Verbeek., A Feature Weighted Tracking Method

for 3D Neutrophils in Time-lapse Microscopy. 2022 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM). 2022, pp. 2196-2202.
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Abstract:

Neutrophils are one of the crucial immune cells. It plays a key role in the immune system
defending the invasion of harmful particles, such as viruses and bacteria. The analysis
of the dynamic process of neutrophil migration helps biologists to understand underlying
mechanisms of neutrophils in response to wounding. However, accurate neutrophil tracking
is still a challenging task in 3D space due to the complexity of cell morphology and behavior.
In this study, we improved the quality of raw data by denoising and linear interpolation. A
3D U-Net was trained and used to detect the location of each cell in the time-lapse sequence.
Subsequently, a feature weighted 3D tracking method was proposed. The experimental
results show that our method performs well compared to the existing tracking algorithm. Our

pipeline is also much more reproducible than other state-of-arts.



5.1 Introduction 95

5.1 Introduction

The migration of leukocytes is a process of identifying the acute inflammation which could
harm organisms. The function of leukocytes is to fight against the invading pathogens so as to
protect organisms. Neutrophils are the first cells to rapidly respond to the site of inflammation
and act as the first line of defense [121]. Research on the migration of neutrophils in living
organism (in vivo) helps biologists to understand biological mechanisms better. For this
kind of research, zebrafish larva is a popular model for studying cell functions due to their
small size and transparency characteristics for screening and imaging [156]. In recent years,
the microscopy techniques have greatly advanced in the field of biology and medicine.
Multi-functional microscopy allows scientists to visualize the dynamic process of living cells
in spatial and temporal resolution, both in brightfield and fluorescence modes [157][158].
Despite these advanced conditions, the accurate measurements of neutrophils’ migration are
still challenging, not only in 2D + T (x,y,f) space but also in 3D + T (x,y,z,¢) space.

In general, cell tracking tasks are divided into two steps: cell segmentation to locate the
position of each cell, and cell tracking to associate the trajectory based on cell similarities
[124][127][159][160][161].

Segmentation algorithms have gone through a long developed process from threshold
segmentation (e.g. Otsu [132]), watershed-based segmentation [152][141], to the deep learn-
ing segmentation methods (e.g. U-Net [134][162]). 3D U-Net is the popular segmentation
model in the biomedical field. 3D U-Net segmentation model was first proposed in [163]. It
was proved to achieve a good performance on kidney embryo segmentation. Although it is a
deep learning model, it only requires small amount of annotated data for training. 3D U-Net
reduces laborsome annotation work. However, unlike an individual kidney embryo, cells are
often collided with each other. The watershed method was successfully used to help separate
the touched cardiac cells in zebrafish as a post-processing [164].

Once the segmentation is performed, the next step is to associate the cell tracks frame
by frame based on the similarities. Rule-based methods are studied the most in recent
years[165][166]. A graph-based tracking algorithm was proposed in [165] which utilizes
relative cell location information to associate the cell tracks. It achieved comparable per-
formance to state-of-art methods in Cell Tracking Challenge 2019 and 2020. Rule-based
methods are easier to tailor the features for specific datasets. Deep learning tracking meth-
ods extract features automatically. [164] proposed a deep learning-based software pipeline
named 3DeeCellTracker for tracking. The datasets they used are cardiac cells in zebrafish
and neurons in worm’ brain. The characteristics of these datasets are that the cells move in
the same pattern which can be simulated using random affine transformations. A simulated
dataset was created by random affine transformations and used to train the deep learning
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model. For neutrophils, the cell movement is much more complex and irregular. It is difficult
to find a pattern in it. In [157], a 3D cell association learning network was designed and
used for neutrophils tracking problem. It achieved a significant performance and solved
the cell collision problem well. However, the deep learning models require a huge number
of annotated data for training. The ground truth data were annotated by labeling each cell
position and associating the cells over time manually. It is time-consuming and for other
researchers, it is difficult to reproduce the process.

In our study, a 3D U-Net segmentation model and a rule-based tracking method were
proposed that tailored to our captured neutrophil dataset. At first, the image pre-processing,
containing enhancement, denoising, and smoothing, were used to improve the image quality.
In this dataset, the size of 3D raw data is (512, 512, 8). Eight layers were scanned on Z-axis
which makes the 3D data too thin to observe the movement on Z-axis. We did the linear
interpolation to enlarge the dimension to (512, 512, 29). Secondly, a 3D U-Net segmentation
model was trained and a watershed algorithm was applied to locate the positions of cells.
Thirdly, we designed the features, incorporating cell distance, cell direction, and average
cell movement. The final similarity scores calculated by weighting those features were used
to improve the cell tracking. Subsequently, the Hungarian algorithm was used to associate
the cell tracks at the end!. The results show that our feature-based method outperformed
the graph-based method in [165]. In addition, Hungarian linkage performed better than a
straightforward linkage method in [127].

5.2 Data Collection and Pre-processing

5.2.1 Data Capturing

The time-lapse dataset of neutrophil was captured by the experts. All the experiments were
done with zebrafish and followed the international guidelines specified by the EU Animal
Protection Directive 2010/63/EU. All the zebrafish were 3 days post fertilization (dpf) and
the tail wounding was conducted with the protocol provided in [121]. The wounded tail
area of specific samples was imaged using a Leica TCS SP8 confocal microscope (Leica
Microsystems) with a 10x objective (N.A. 0.40). Neutrophils, localized within an area of
200 um from the wounding edge toward the body trunk, shown in Fig. 5.1, were counted as
recruited cells. Under the microscopy, the zebrafish tails were scanned from top to bottom.
An 8-layer 3D stack at each time point was captured. The size of each stacked image is 512
x 512 x 8. The layer interval is 5S~6um, along with the thickness of tail is 35~42um. For

Uhttps://surfdrive.surf.nl/files/index.php/s/IQ 1 wEMn41A7bB7x/download
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each sample, a 2-hour time-lapse sequence was captured, the time interval is one minute,
along with the 120 frames for each sequence. Then we obtained the time-lapse 3D data with
the size of (512, 512, 8, 120), which corresponded to the axis (X, y, z, t). Each time-lapse
sequence contains almost 10 to 40 cells. We captured 9 time-lapse sequences in total.

Fig. 5.1 The area of neutrophils recruited. The red line is the wounding edge in zebrafish tail.
The red dashed box shows the area where neutrophils were counted as recruited neutrophils.

5.2.2 Data Pre-processing and Linear Interpolation

During the procedure of data capturing, there could be noises on the background that reduce
the quality of images. Insufficient image brightness makes the cells in a lower intensity
and not clearly visible as well. Therefore, several methods were applied to improve image
quality. At first, we enhanced the image contrast to highlight the cell. However, noises at the
background were enhanced as well. Thus, a median filter was used to denoise. Subsequently,
we chose a Gaussian blur to smooth the cell surface. Fig. 5.2 shows the procedure of image
pre-processing.

The 8 layers on Z-axis result in a very thin 3D bounding box. It is very difficult to observe
the cell movement along the Z-axis. Due to the experimental design, the expert had to scan
3 channels (one brightfield channel, and two fluorescence channels) within one minute of
the time interval. There was not enough time to scan more layers on the Z-axis. In order to
observe the Z-axis movement of cells more clearly, we used linear interpolation twice [167]

to increase the layers on the Z-axis from 8 to 15 for the first time, then to 29 for the second
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(@) (c) (d)

Fig. 5.2 Image preprocessing. (a) A region of raw data. (b) Image contrast enhancement. (c)
Image denoising with median filter. (d) Image smooth with Gaussian blur.

time. Each interpolated layer was calculated as the average intensity of each two adjacent
layers. We did not interpolate more times because the more layers the data have, the bigger
the memory size, which is a burden for computing. We have kept a balance between data

quality and data size.

5.3 3D U-Net Segmentation

The segmentation is a step to locate the position of each cell before tracking procedure. The
3D U-Net structure [164] was used in our study. Like the standard U-Net, it has a contracting
path and an expansive path, which is a symmetric U-shaped structure. 3D U-Net is powerful
for training a segmentation model with very little annotated images [163]. To prepare the
annotated data, an open-source tool named Segmentor [168] was used for its efficiency and
user-friendly interface. We annotated two 3D images with size of 512x512x8, one for
training and the other one for validation of the model. The same two interpolated 3D images
with size of 512x512x29 was annotated as well. We trained two segmentation models for
different size images on a dedicated server equipped with two NVidia GeForce GTX 2070
with 8 GB GPUs using Linux Ubuntu operating system. In order to reduce the memory
usage during training, we divided the large images (512x512x8, 512x512x29) into small
ones (160x160x8, 160x160x16) as the input to train the models and then combine the
sub-images together to form a whole images [164]. The dividing process help to enlarge the
number of training images. Data augmentation was used to increase the training data as well.
The output of the segmentation model is the probability of whether each voxel belongs to
the cell region or not. The watershed segmentation in [164] was applied to separate each
individual cell. It was used twice in the x-y plane and z-dimension, respectively, due to the

data have differed resolution in X-Y axis and Z-axis.
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5.4 Feature Weighted Tracking

Feature weighted algorithm contains several representative features generated from the
properties of cell movements. They are: cell distance, cell direction, average cell movement
distance. The similarity scores of each pair of cells on every two adjacent frames were
calculated by weighted of those features. Based on the similarity scores, the Hungarian
algorithm [148] was used to associate the related cells frame by frame.

5.4.1 Cell Distance

Cell distance D is defined as the distance from the center point (x;;, yi, zis) of a cell i on
the frame ¢ to the center point (x;, 1, yjr+1, Zjs+1) of a candidate cell j on frame 7 + 1. The
distance is calculated based on Euclidean distance in (5.1).

D= \/<xi,t =X+ 1)2+ i = Yjur1)? + @ir — 2js11)? (5.1

The distance score was normalized by (5.2). A threshold 7" was given. It represents the
maximum distance that the cell could move between two frames. If the distance is larger

than 7', the distance score is 0.

Distance Score = max (0,(T —D)/T) (5.2)

5.4.2 Cell Movement Direction

The direction of cell movement is an important factor that affects its next destination. Fig.
5.3 is a ground truth sample which shows a clue that the cell movement tends to stick to

similar direction in a collision-split event.

Fig. 5.3 Two cells that are moving from different directions, collide and then split according
to their trend. Only one layer in Z-axis is shown.

The directional variation is more reliable when several prior frames are referenced. It

can produce a sufficient direction variation of the cell movement. The number of the former
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frames to be included is a hyperparameter which can be tuned. To calculate the direction
variation, we first have to calculate the directional vector. Suppose there is a cell A on frame
t, Fig. 5.4 displays how the directional vector is calculated by five frames before frame ¢ in a
3D space with the coordinate of the Z-axis is zero.

\‘\\ (frame t)

1 2 3 - 5 6 7

Fig. 5.4 Directional vector calculation from the last five frames of a cell track.

The start location of the cell on frame # — 5 will be set to (0,0,0) in 3D space. The relative
movement for each frame after is calculated and added. In this case, the relative coordinates
of the previous five frames are (1,2,0)—(1,1,0)—(2,1,0)—(1,0,0)—(2,-1,0). The result of
the directional vector is (7,3,0) computed by adding all the five relative vectors.

Next, the vectors from cell A to the surrounding candidate cells on frame 7 + 1 were
calculated. The angle difference between the directional vector a and each candidate vector
b 1s calculated using the dot product equation in (5.3). An inverse cosine is applied on both
sides to derive the degree & in (5.4).

a-b=la| x|b| xcosa (5.3)

o = arccos (a-b / (|a| x|b|)) (5.4)

The candidate cell that has a smaller degree to the directional vector will receive a higher
score. The score will range between 0 (180°) to 1 (0°) in (5.5).

Degree Score = (cosa+1) x 0.5 (5.5)
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5.4.3 Average Cell Movement Distance

Average cell movement distance is also an important factor to distinguish inactive and active
cells. Cells that are inactive tend to linger around the proximate region, while cells that are
more active tend to travel at a similar distance over each frame. Fig. 5.5 is a cell movement

track extracted from a ground truth example which illustrates this scenario.

i it

Fig. 5.5 Two cell tracks with different movement rates collide in frame 3 and splitted right
after. The cell on the right remained inactive throughout the frames.

The cell track labeled with yellow arrows has a distant moving distance, whereas the
cell track circled with light blue lingered in the nearby region. It can be seen that both cells
maintained a similar movement distance over the 4 frames. The average movement is derived

from (5.6). D; is the distance of each pair of cells. n is the frame in which the cell moves.

1 n
Average Movement = — Z D; (5.6)
iz
The score is normalized to unity with (5.7). T is the same setting in (5.2).

Average Movement Score = Average Movement /T (5.7)

5.4.4 Similarity Scores

The similarity scores are defined as the sum of all weighted feature scores in (5.8). The
Jfeature_scores is [Distance Score, Degree Score, Average Movement Score]. The influence
of each feature can be adjusted through a 3 by 1 weight matrix. The weight matrix consists
of 3 positive rational numbers, e.g., weight = [0.4, 0.3, 0.3].

n

Similarity Score = Zweight(i) X feature_scores(i) (5.8)
i=1
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5.4.5 Hungarian Association

We derived all 119 of the similarity score matrices between each adjacent frame over the
120-frame time-lapse sequence. The scores in matrices were used as input for the Hungarian
algorithm for constructing the cell associations. Hungarian is one of the linear programming
algorithms that can be used to solve a profit maximization assignment problem [148] [169].
Fig. 5.6 (a) shows one example of similarity matrix between frame ¢ and frame 7+ 1.
The number of rows and columns represents the cell numbers on frame ¢ and frame 7 + 1,
respectively. The Hungarian algorithm requires a square matrix and returns an optimal path
over the matrix. Hence, a dummy row with zero values was added as shown in Fig. 5.6 (b).
If the number of rows is more than the number of columns, a dummy column is added.

The values in the matrix represent the similarity between all combinations of cell can-
didates on two adjacent frames. Therefore, we should maximize the sum of profits of all
candidates using the Hungarian algorithm. In Fig. 5.6 (c), the nodes on the best path were
underlined. The maximum sum of profit in the matrix is 0.9+0.7+0.8+0.7+0=3.1. The index
pairs of each optimal position were returned as a list, such as [(0,0), (1,2), (2,1), (3,3), (4,4)].
Similarly, a new index list was obtained between frame 7 + 1 and frame ¢ + 2. The cell tracks
were formed by linking matched cell index frame by frame.

In addition, the candidate cells on frame ¢ 4 1 that are associated by a dummy cell node
on frame ¢ are regarded as newly appeared cells. The candidates on frame ¢ that are associated

with dummy candidates on frame 7 4 1 are regarded as disappeared cells.

Frame t + | Framet+ 1 Frame t + 1
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
0} 059 0 0 0 0 0} 09 0 0 0 0 0109 0 0 0 0
é 110 0.1 | 0.7 0 0 Té I ) 0.1 | 0.7 0 0 é 110 0.1 | 0.7 0 0
E 21 0 08 | 02 0 0 E 21 0 08 | 02 0 0 'E 21 0 | 08 | 02 0 0
31 0 0 0 0.7 | 0.1 310 0 0 0.7 | 0.1 31 0 0 0 0.7 | 0.1
41 0 0 0 0 0 41 0 0 0 0 0

(@) (b) (©

Fig. 5.6 The process of the Hungarian algorithm. (a) Raw matrix. (b) A dummy row was
added. (c) The optimal path between two frames was found.

In this way, 119 index lists were obtained from these matrices. The final cell trajectories
were associated based on the index lists.
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5.5 Experimental Results

In order to evaluate the performance of our proposed method, the annotated ground truth and

evaluation criteria are required.

5.5.1 Ground Truth Annotation

It is challenging and time-consuming to annotate cell trajectories in 3D + T space. In this
study, the annotation was done in a combination way. At first, the 3D data were projected in
2D space. In a 2D time-lapse sequence, we recorded the cell center coordinates of the tracks
over the cell movement. This procedure was done using ’Manual Tracking’ plugin in ImageJ
[69][170]. The next step is to map the 2D cell center coordinates on each track to the 3D + T
sequence. Then the center point on the Z-axis of each cell was located and added manually.
We annotated 20 ground truth trajectories over the raw dataset with different sizes of (512,
512, 8, 120) and (512, 512, 29, 120), respectively.

5.5.2 Evaluation Criteria

Four measures to evaluate how well a tracker identified objects, proposed by [154], were
selected. They are:

Falsely Identified Tracker (FIT): a measure of the degree to which the ground truth
objects (GT) are tracked by the incorrectly predicted tracks (€).

Falsely Identified Object (F10): a measure of how often the predicted tracks (€) is tracking
a different cell than the GT it was matched to.

Track purity (TP): a measure of the degree to which the predicted tracks (€) follow GT. It
is the ratio of frames that € correctly identifies GT to the total number of frames € exists.

Object purity (OP): is a measure of the degree to which the GT are followed by predicted
tracks (€). It is the ratio of frames that GT is correctly identified by € to the total number of
frames GT exists.

The average length of tracks was computed as well.

Average Track Length: the ratio of the total length of all predicted tracks to the number
of predicted tracks.

5.5.3 Results

We did the experiments on both datasets with different sizes: (512, 512, 8, 120) and (512,
512, 29, 120). A graph-based tracking method proposed in [165] was compared. In [165], a
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feature vector, consisting of cell volume, the total number of cell neighbors, and the average
distance from all other cells, were obtained. Subsequently, the similarity between each pair
of cells was calculated based on the feature vector.

In our algorithm, the parameters were configured as follows. The threshold T in (5.2)(5.7)
was set to 35. It means if the distance between two cells is more than 35 pixels, they would
not be considered the same cell. Thus, the Distance Score equals to 0. It was decided by
observing the possible maximum movement distance. Once Distance Score equals 0, the
other two scores were set to 0 as well. To compute cell movement direction, the number of
prior frames was set to 6. To compute the average cell movement distance, the number of
consecutive frames was set to 6. To calculate the similarity scores, the weight was set to
[Distance Score, Degree Score, Average Movement Score]=[0.4, 0.3, 0.3]. All parameters
were selected by tuning manually.

Based on the features we extracted, a Hungarian algorithm was applied to associate
the cells frame by frame. In addition, a straightforward associated method in [127] was
compared. The cell pairs with a high score in the matrix were linked, and the relation over
frames was not taken into account. If there is a score in conflict between cells (e.g. two same
scores in a row or a column), this method only chooses the first cell as the candidate cell
rather than an optimal choice.

The performance comparison on the raw dataset with size of (512, 512, 8, 120) is shown
in Fig. 5.7. In order to quantify the values clearly, Table 5.1 shows the mean values which
correspond to Fig. 5.7. From Table 5.1, our algorithm reaches 0.145 of FI0, 0.845 of TP,
0.386 of OP and 20.238 of Average Track Length, respectively. It performs better than [165].
Only FIT is lower. Compared to [127], our algorithm also increased the performance by
0.050, 0.056, 0.039, and 3.654 of FIO, TP, OP, and Average Track Length, respectively.

Table 5.1 The Mean Value of Each Evaluation for Two Methods Comparison on the raw
dataset with size of (512, 512, 8, 120).

Average Time
Algorithms FIT FIO TP orp Track
Length )
Algorithm in ref [165] 0.015 0.273 0.798 0.344 19.620 614.49
Algorithm inref [127] 0.025 0.195 0.789 0.347 16.584 389.39
Our algorithm 0.045 0.145 0.845 0.386 20.238 358.96

Fig. 5.8 shows the performance of the three methods on the interpolated dataset. From
the corresponded Table 5.2, we derived that both the false rates of our method are lower
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than [165]. FIT and FIO were decreased to 0.023 and 0.241, respectively. Furthermore,
both purity rates (7P and OP) are higher than [165], along with 0.013, 0.071 were improved.
Although [127] achieved the lowest false rate of 0.005 for FIT and 0.228 for FIO, our
algorithm yielded a higher performance with TP, OP and average track length.

Table 5.2 The Mean Value of Each Evaluation for Two Methods Comparison on the interpo-
lated dataset with size of (512, 512, 29, 120).

Average Time
Algorithms FIT FIO TP or Track
Length )
Algorithm inref [165] 0.046 0.326 0.767 0.393 22490 2531.67
Algorithm inref [127] 0.005 0.228 0.783 0.360 19.131 642.85
Our algorithm 0.023 0.241 0.780 0.464 26.633 619.64

The Average Track Length of the interpolated dataset is not only 4.143 longer than [165]
but is also 6.395 longer than the result derived from the raw dataset. The reason is that the
interpolation improves the representation of each 3D cell. Therefore, fewer cells were missed
by segmentation procedure.

The computing costs of the two datasets were shown in Table 5.1 and 5.2. Our algorithm
has lower computing time compared with a graph-based method in [165]. With the increase
in the data size, graph-based method is much more computationally expensive while our
feature-based algorithm works more efficient. The Hungarian method has a comparable
computing costs compared with the simple linkage strategy in [127].

The experiments show that our method improved the performance of tracking on our
neutrophil datasets compared to the available tracking algorithm in [165] and the simplistic

associated method in [127].

5.6 Conclusions

This paper aims to develop a method to track neutrophils in 3D + T space accurately, so as
to help biology experts to understand its movement behavior better. We started from data
capturing and improved the low-quality raw data using image enhancement, denoising, and
smoothing methods. A linear interpolation method was applied to increase the dimension
along Z-axis to increase the sampling resolution. 3D U-Net segmentation models were
trained and, together with a watershed algorithm, the cells’ locations were detected in 3D
space. A novel feature weighted tracking method was developed which is tailored to the
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specific characteristics of our neutrophil dataset. The cell distance, cell movement direction,
and average cell movement distance were three features selected according to the analysis of
neutrophils’ movement behavior. Based on these features, weighted similarity score matrices
were generated and the Hungarian algorithm was used to associate cells frame by frame. The
experimental results proved that our method outperformed the available state-of-art algorithm.
The rule-based tracking method was selected because deep learning models require large
ground truth data to fit in. Annotation in 3D + T space is still a challenge and there is not
a user-friendly way to help labelling yet. Deep learning tracking models were proved to
outperform the rule-based methods in state-of-arts [157][164]. However, it is difficult for
other researchers to reproduce the algorithm if their work is not open-source. At present,
the rule-based tracking methods are much more straightforward to follow. In the future, we
would focus on improving annotation methods in 3D + T space as well as implementing
tracking tasks with deep learning models.
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