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In this thesis, we explored the topic of automated segmentation of tumors on MRI 
images. Deep learning (DL) techniques are already employed clinically in radiotherapy 
(RT) departments for organ-at-risk segmentation. However, tumor segmentation so far 
remains limited to a research setting. Furthermore, most existing studies about automatic 
segmentation of tumors use CT or FDG-PET images as the primary modality, even 
though MRI is often preferred to visualize cancer tissue in several tumor sites. We aimed 
to implement DL techniques to deliver clinically acceptable tumor segmentations in MRI 
cohorts. Two different MRI cohorts acquired in a clinical setting were used throughout 
this thesis: a cohort of oropharyngeal primary tumors in multiparametric diagnostic MRIs 
(in chapters 2 and 3) and a cohort of cervical cancer gross tumor volume in MRI images 
of brachytherapy treatment (in chapters 4 and 5). 

INTRODUCING MULTIPLE MRI SEQUENCES AS 
INPUT FOR SEGMENTATION 
When physicians manually segment tumors, they often rely on information from various 
sources, such as different imaging modalities or MRI sequences. Each of these images 
can provide distinct insights of the anatomy of the patient. The physicians can define the 
boundaries of the tumor by combining these different insights in their minds. Therefore, 
we also expect DL methods to benefit from combining different images as input. 

In chapter 2, we investigated the effect on the segmentation performance of using different 
anatomical MRI sequences as input for the task of oropharyngeal cancer segmentation. 
The investigated MRI sequences were T1-weighted (T1w), T2-weighted (T2w) and T1 
weighted after gadolinium injection (T1gd). We compared the segmentation performance 
of the networks trained with each of those sequences as input and with all the sequences 
together. Indeed, the network trained with all the available sequences outperformed the 
networks trained with one sequence only. This suggests that DL segmentation techniques 
also benefit from combining several input images. 

Similar conclusions have been reached in other studies. Wahid et al. [42] investigated 
the use of both anatomical MRI sequences (T1w and T2w) and quantitative MRI 
sequences (ADC, Ktrans, and Ve) for automatic segmentation of the oropharyngeal 
tumor in an MRI-only workflow. Their study demonstrated that the best segmentations 
were achieved when combining both anatomical sequences. Ren et al. [80] explored 
the optimal combination of imaging modalities (MRI, CT, and PET) to improve the 
automatic segmentations. The model that incorporated the information from all the 
imaging modalities outperformed the rest of segmentation models. Thus, these works 
further support the claim that DL segmentation techniques benefit from being trained 
with multiple input images.
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In all of the aforementioned studies, the quality of the automatic segmentations was 
assessed by comparing them to ground truth segmentations made by physicians. These 
ground truth segmentations were carried out on a single reference image. Although other 
images are consulted, the final voxel-level decision is based on just this reference image. 
This reference image may differ across different studies. For instance, in our work the 
ground truth segmentations were made in the T1gd sequence. In the study of Wahid et 
al [42], the ground truth segmentations were made in the T2w sequence. This can create 
differences in the ground truth segmentations. Given that the ground truth is used for 
training and evaluation of the network, it may also make the comparison between studies 
more challenging.

An alternative approach to compute the ground truth segmentations without the bias of 
a reference image is desirable. The presence of tumor at a pixel level could be confirmed 
with histopathology data, considered the gold standard in cancer diagnostics. However, 
obtaining this type of data is a complex process. It involves the surgical removal of the 
tumor tissue, subsequent staining, and precise registration with the 3D radiological images. 
Hence, histopathological validation is limited in the most tumor auto-segmentation 
studies, as acknowledged by Jager et al. [108]. 

In some tumor sites, the physicians also use the information from physical examinations to 
manually segment the tumor. This is the case for the two tumor sites studied throughout 
this thesis (i.e. the head and neck cancer and the cervical cancer), for which the tumor is 
reachable by the physicians. This information is not taken into account by the DL methods 
described in this section, which only rely on imaging data. The physicians in charge of the 
treatment might need to edit the automatic segmentation after the physical examination 
of the patient to include this information. 

IMPROVING THE SEGMENTATIONS BY 
INCORPORATING PRIOR KNOWLEDGE 
A common promise in the machine learning field is that underperforming methods 
would improve their performance by being trained on more data. As already stated in 
the introduction, inclusion of new data is challenging in the field of medicine. In the 
context of automatic segmentation of medical structures Fang et al. [109] observed that the 
performance improved logarithmically with the dataset size. They showed quantitatively 
that for the structures that were more dependent on the size of the dataset (i.e. the optical 
nerves, in their work) an improvement of 0.04 on the Dice Similarity Coefficient (DSC) 
was achieved with a training set 10 times larger. This suggests that even by collecting 
more data, performance gains may be rather modest. Therefore, a different approach to 
improve the segmentation performance is preferable. 
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In chapters 2 and 3, we hypothesized that the segmentation performance would improve by 
reducing the amount of context present in the image given as input. The rationale behind 
it is that by reducing the context around the tumor, the network does not need to spend 
any resources in localizing the tumor in the whole image. This simplifies the segmentation 
task, leaving more resources for the network to accurately segment the tumor. Our results 
confirmed that indeed, reducing the context led to improved performance. 

Other strategies of simplifying the segmentation task have been investigated to improve the 
automatic segmentations in medical imaging. One approach is to use shape or anatomical 
constraints during training, thereby regularizing the solution space to only anatomically 
reasonable segmentations. This has been shown to result in more accurate segmentations 
than when training the segmentation network from scratch [110,111]. 

Another approach is to combine the segmentation task together with other relevant tasks, 
such as registration. In the context of adaptive image-guided radiotherapy for prostate 
cancer, S. Elmahdy et al. [112] framed the registration and segmentation as a joint problem 
within a multi-task learning setting. This yielded improved segmentation performance 
compared to the single-task setting. 

Self-supervised learning (SSL) has been often posed as a promising strategy to improve the 
performance of machine learning techniques, particularly in low-data regimes [113,114]. 
SSL generally consists of leveraging information from unlabeled data during a pretraining 
phase. This approach reduces the need for extensive datasets for subsequent trainings. 
The work by Chaitanya et al [115]. serves as an example of the application of SSL to the 
field of automatic segmentation of medical images. In their study, they demonstrated 
improved segmentation performance for the networks trained with SSL compared to the 
networks initialized from scratch for three different medical segmentation tasks.

Leveraging the anatomical information of an individual patient by utilizing previous 
images and contours of that same patient can also improve the segmentations. This 
approach is sometimes referred to as “patient-specific fine-tuning” and is especially 
promising in scenarios that require segmentations for the same patient across different 
time points, such as the different fractions in RT. Li et al. [116] proposed such an approach 
for online contouring for MR-guided adaptive radiotherapy. Their results demonstrated 
improved segmentation performance compared to the network trained without patient-
specific fine-tuning. Their segmentations were also more accurate than the segmentations 
generated by existing deformable registration algorithms commonly employed in clinical 
settings. 

Though employing fairly different methodologies, these techniques share a common 
thread with the work presented in chapters 2 and 3: the integration of clinically relevant 
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prior knowledge during the training of segmentation networks is a promising strategy to 
improve the quality of the resulting automatic segmentations. 

EVALUATION OF AUTOMATIC SEGMENTATIONS: 
WHAT IS A GOOD (AUTOMATIC) SEGMENTATION? 
Determining the quality of the automatics segmentations was done in two ways throughout 
this thesis. In chapters 2 and 3, we geometrically compared the automatic segmentations 
to the manual segmentations made by expert radiologists. The aim of the radiologists was 
to accurately draw the extent of the tumor visible in the available imaging modalities. 
Therefore, a geometric comparison between the manual and automatic segmentations 
was adequate. This comparison was assessed with commonly used metrics: DSC, 95th 
Hausdorff distance (95th HD) and the mean surface distance (MSD). 

In chapters 4 and 5, the manual segmentations used as ground truth for training and 
evaluation were performed by radiation oncologists. These segmentations were used in 
clinical practice to derive a treatment plan. A dosimetric evaluation was in this case 
also pertinent to evaluate the quality of the automatic segmentations. More specifically, 
we determined dose-volume parameters D90 and D98 for the automatic and expert 
delineations using the clinical dose distribution. Dosimetric evaluation of the automatic 
segmentation is important, because an error in the segmentation may have a different 
clinical impact depending on the dose that will be given to that point. This effect cannot 
be represented with geometric evaluation metrics, given that they do not take into account 
the dose distribution delivered to the patient. 

In chapter 4, the segmentation performance of automatic segmentation of tumors in the 
cervix was further stratified in subgroups based on the tumor volume and the FIGO 
stage. Tumors with different FIGO stage or volume may appear differently on the MRI. 
Specifically, tumors with FIGO stage I will be limited to the cervix, while tumors with 
FIGO stage II and higher may extend to other anatomical structures, such as the vagina or 
the pelvic wall. The segmentation network potentially needs to look at different anatomical 
areas in the image to segment tumors depending on these clinical parameters. Therefore, 
differences in segmentation performance between the different subgroups of patients can 
arise. Another potential reason for performance differences is that some of these subgroups 
were under-represented in the training set. Regardless of the source of these differences, 
analyzing the segmentation performance separately for FIGO and volume can reveal a 
bias of the trained network towards certain subgroups of patients. Physicians could take 
this information into account to only use the segmentation network in the subgroups it 
performs best. 
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We used different evaluation metrics compared to other auto-segmentation works in 
literature. Firstly, it is not uncommon to find articles that report the DSC only. However, 
the DSC is volume-dependent by construction. Therefore, larger and more rounded 
structures typically result in higher values than smaller or more eccentric structures. 
This is particularly critical for structures with variable sizes, such as the tumors. Therefore 
we opted to always provide distance-based metrics together with the DSC. Secondly, the 
normalized surface distance (NSD) and the added path length (APL) are two quality 
metrics that are used in other works but not in this thesis. Although interesting metrics, 
they present shortcomings. The NSD is defined with a certain degree of tolerance, making 
them dependent on this hyper-parameter. The APL is not normalized or expressed with 
known units, making it less interpretable.  Arguably, the distance-based metrics used in 
this work (95th HD, MSD and the surface DSC), also present shortcomings. The 95th 
HD primarily reflects the most significant error in the segmentation, often ignoring other 
relevant errors. MSD considers the entire contour but averages all errors together, which 
can lead to bias in the results, especially when gross errors are present. The surface DSC 
also depends on a tolerance parameter. To provide a more comprehensive assessment of 
contour quality, we recommend reporting a combination of these metrics.

Specifically for RT purposes, some geometric metrics may be more relevant than others. 
DSC has been shown not to correlate strongly with editing time [104] nor with dose/
volume parameters [103]. In contrast, distance-based metrics, such as the 95th HD, the 
MSD, the surface DSC and the APL, have been shown to correlate more strongly with 
the editing time. Furthermore, a certain degree of geometric variability is expected in the 
manual tumor delineations due to interobserver variability. These geometric differences 
are taken into account by treatment margins for some tumor areas. If the error of the 
automatic segmentations is within the interobserver variability, the tumor segmentation 
might be clinically valid. Given that the treatment margins are defined as a certain distance 
around the tumor delineation, distance based metrics may also be more appropriate for 
this type of assessment.

Other works [42,117–119] have used the Turing test (or “Imitation game”) to assess the 
quality of the automatic segmentations. The rationale behind it is that if a human observer 
cannot distinguish whether the contour was automatically generated or not, the contour 
closely resembles a manually created contour. Therefore, it is likely clinically acceptable. 
However, the source of the contour (automatic or human) does not necessarily indicate 
that the contour is clinically acceptable. Gooding et al. [117] proposed to complement 
the Turing test with additional questions that directly refer to clinical acceptability of the 
contour. These questions related to whether the observer would perform changes to the 
contour or how large those changes would be. In any case, these tests are strongly tied to 
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the expertise and environment of the observer. Consequently, we would recommend using 
them in complement with other evaluation techniques.

Overall, there are many approaches to evaluate the quality of a contour, each of them 
with their own advantages and limitations. Our recommendations would be two-fold: 
1) to consider the clinical end goal of the contour, and use the evaluation framework 
that more closely assesses if that contour is acceptable, and 2) to combine the different 
evaluation metrics to describe the quality of the contour. 

OPTIMIZING FOR THE RELEVANT LOSS 
FUNCTION 
The loss function is a crucial part of the training of any neural network, including 
segmentation networks. Because of its importance, a multitude of different loss functions 
have been proposed in literature [30,70]. Ma et al. [30] grouped the available loss functions 
in three main categories: overlap-based loss functions, such as the DSC loss; distribution-
based loss functions, such as the cross entropy loss or the focal loss; and boundary-
based loss functions, such as the Hausdorff distance loss. Despite the large amount of 
loss functions available, the DSC loss is still selected in most works. A comprehensive 
evaluation of which loss function renders best segmentation performance for each specific 
task is rarely investigated. 

In chapter 3 of this thesis, we trained the segmentation networks with different loss 
functions for the task of oropharyngeal cancer segmentation. The investigated loss 
functions were two overlap-based loss functions (DSC loss and Generalized DSC loss) 
and two distribution-based loss function (Focal Tversky loss and Unified Focal loss). 
No significant differences in DSC, 95th HD or MSD were found when training any of the 
loss functions. This suggests that the DSC loss was sufficient for our specific task. Similar 
conclusions were reached by Ma et al [30]. In their work, they compared 20 different loss 
functions on four different segmentation tasks. The showed that loss functions derived 
from the DSC were overall performing best.

All the loss functions compared in both our work and the work by Ma et al. reflect 
geometric differences between the automatic segmentation and the ground truth. This 
means that the segmentation networks are optimized during training to resemble the 
shape of the manual segmentations as closely as possible. However, the desired automatic 
segmentations for RT purposes are not necessarily those with the exact same shape than 
the manually acquired segmentations. In reality, the desired segmentations are those 
that reach the same dosimetric impact as the manual segmentations. Consequently, an 
interesting future line of research is to build loss functions that consider the dosimetric 
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impact in its definition. Further in the future, the loss function could even consider the 
RT patient outcomes in their definition, such as tumor control and toxicity. 

QUALITY ASSURANCE OF AUTOMATIC 
SEGMENTATION OF TARGETS 
Current automatic segmentation techniques do not render good quality segmentations 
for tumors in all the cases. This hinders their use in clinical practice, because physicians 
would still need to check, and potentially correct, the automatic segmentations. 
A possible solution is the implementation of quality assurance (QA) algorithms for the 
automatic segmentations. These QA algorithms could help the physicians by flagging the 
segmentations that would require review. 

In chapter 5, we identified a metric that could be used for QA of the automatic 
segmentations. The proposed quality metric showed good capability to distinguish 
between cases that would require review as compared to adequate automatic segmentations 
that could be used without further check. Furthermore, the proposed metric correlated 
strongly with the DSC but also with clinically relevant distance-based metrics. These 
results indicate the potential of the metric as a QA tool. 

Our work differed from the current literature of QA for automatic segmentations in two 
ways. Firstly, most works only correlate QA metrics to the DSC [32–34,102]. As discussed 
in previous sections, DSC does not fully describe the quality of the contour. Therefore, we 
considered it important to correlate our metric to distance-based metrics as well. Secondly, 
our metric can be derived directly from the output of the segmentation network. Instead, 
other works often extract their QA metrics from uncertainty maps [32,33,98], computed 
by applying the entropy operator on the output of the network. However, the entropy 
operator is not injective and can therefore destroy relevant information of the score maps.

Even if we can detect the segmentations that would require review, physicians would still 
need to spend time in the correction. A potential solution would consist on signaling the 
areas where the automatic segmentation is likely wrong. This information would assist 
the physicians in adjusting the contour in a semi-automatic manner. Even further in the 
future, the QA approaches could provide insights on how each potential editing would 
affect the final RT treatment outcome. With this relevant clinical information at hand, 
physicians could then make the final decision regarding the contour adjustments. 
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CLINICAL IMPLEMENTATION OF TUMOR AUTO-
SEGMENTATION. 
Ultimately, the aim is to implement automatic segmentation techniques for the tumors in 
clinical practice, as it is already the case for the OARs. As stated in the previous section, 
these techniques do not render acceptable segmentations in all the cases yet. Any errors 
in the tumor segmentation can have a large impact in the outcome of the patient, because 
tumors receive the highest radiation dose during the RT treatment. The responsibility of 
accepting the tumor segmentations lies with the radiation oncologists. However, they will 
not accept a segmentation unless they are certain of its quality. 

The studies presented in this thesis can approach us towards clinical implementation in 
two ways. In chapters 2, 3 and 4, we focused on improving the quality of the automatic 
segmentations. By continuing to improve the auto-segmentations, we could eventually 
provide segmentations that radiation oncologists find acceptable in all cases. Furthermore, 
in chapter 5, we proposed a metric that can be used for QA purposes. With this tool in 
hand, the radiation oncologist could potentially distinguish which segmentations are 
clinically acceptable without the need of checking each auto-segmentation. However, 
further efforts are likely still needed to reach the clinical implementation of these 
techniques. 

Vinod et al. [120] reviewed different applications to reduce the interobserver variability 
in target and OARs contouring. They observed that providing radiation oncologists with 
an automatic segmentation as a starting point that can be subsequently edited is an 
effective method to reduce contouring variability. One example of this was shown by 
Ferreira Silvério et al. [106] where they automatically segmented the mesorectum (CTV 
in MRI-guided rectal cancer treatment) and then asked an expert to manually correct the 
automatic segmentations. These corrections were not only comparable in terms of quality 
to the current clinical standard but also completed faster than the delineations made from 
scratch. Therefore, the clinical implementation of automatic segmentation techniques 
could already provide clinical value as an aid to the radiation oncologist to edit in a semi-
automatic setting. Arguably, such an evaluation framework is a necessary step towards the 
clinical implementation of auto-segmentation tools. This approach can provide clinically 
acceptable segmentations more quickly than the current clinical approaches, while also 
increasing the trust in the auto-segmentations. 
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CONCLUSIONS 
In this thesis, we explored the topic of automatic segmentation of tumors on MRI. 
Deep learning methods are already employed in clinical settings to segment anatomical 
structures. However, automatic segmentation of tumors remains in a research capacity, 
showcasing the complexity of the problem. A promising approach to improve the quality 
of the segmentations consists of utilizing prior information to guide the training of 
the segmentation network. Two examples have been demonstrated in this thesis: the 
reduction of context around the tumor and the incorporation of different MRI sequences. 
Furthermore, clinical relevant information should be considered both during the training 
and evaluation of these methods. During training, this can be achieved by defining 
clinically relevant loss functions. During the evaluation, this is possible by defining 
clear clinical end points. Besides potential improvements in the quality of the automatic 
segmentations, automatic QA can also play a crucial role in advancing towards clinical 
applicability. QA methods are not only important for safety reasons but also to increase 
the trust of clinicians in these techniques. Finally, a currently viable strategy involves an 
interactive approach in which a candidate auto-segmentation is provided as a starting 
point. This could presently reduce the time spent by the clinical staff in the segmentations, 
thereby enhancing the efficiency of the RT workflow. 
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