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ABSTRACT 
Background and purpose 
Existing methods for quality assurance of the radiotherapy auto-segmentations focus on 
the correlation between the average model entropy and the Dice Similarity Coefficient 
(DSC) only. We identified a metric directly derived from the output of the network and 
correlated it with clinically relevant metrics for contour accuracy. 

Materials and Methods 
Magnetic Resonance Imaging auto-segmentations were available for the gross tumor 
volume for cervical cancer brachytherapy (106 segmentations) and for the clinical target 
volume for rectal cancer external-beam radiotherapy (77 segmentations). The nnU-Net’s 
output before binarization was taken as a score map. We defined a metric as the mean 
of the voxels in the score map above a threshold (λ). Comparisons were made with the 
mean and standard deviation over the score map and with the mean over the entropy map. 
The DSC, the 95th Hausdorff distance, the mean surface distance (MSD) and the surface 
DSC were computed for segmentation quality. Correlations between the studied metrics 
and model quality were assessed with the Pearson correlation coefficient (r). The area under 
the curve (AUC) was determined for detecting segmentations that require reviewing. 

Results 
For both tasks, our metric (λ=0.30) correlated more strongly with the segmentation quality 
than the mean over the entropy map (for surface DSC, r>0.65 vs. r<0.60). The AUC was 
above 0.84 for detecting MSD values above 2 mm. 

Conclusions 
Our metric correlated strongly with clinically relevant segmentation metrics and detected 
segmentations that required reviewing, indicating its potential for automatic quality 
assurance of radiotherapy target auto-segmentations. 



63

5

A network score-based metric to optimize the quality assurance of automatic radiotherapy target segmentations  

INTRODUCTION 
Target segmentation is a crucial part of the radiotherapy (RT) workflow. In clinical 
practice, this step is typically done manually by radiation oncologists, which is time 
consuming and suffers from inter- and intra- observer variability. In particular in online 
adaptive treatment settings, the time pressure is high because both the patient and the 
staff involved in the RT treatment are waiting while the segmentations are performed. 
With the aim of saving time in the clinic, automatic segmentation algorithms based on 
convolutional neural networks have been investigated for gross tumor volumes (GTVs) 
in a variety of tumor sites, such as brain [89,90], head and neck [42,65,80], rectum [48] 
and cervix [82,91]; and clinical target volumes (CTVs) such as cervical cancer CTV [92] 
and prostate cancer CTV [93,94].

Although segmentation algorithms are reaching a reasonable performance [27,31,95], 
they still produce faulty segmentations in some cases. To identify whether automatically 
generated segmentations are acceptable for clinical use, it is necessary for a clinician to 
verify them. This limits the time gains of automatic segmentation methods. Therefore, 
there is a need to recognize automatically in which cases the automatic segmentations 
need correction. In the context of RT, automatic quality assurance (QA) of the automatic 
segmentations is a topic of interest nowadays, as showcased in recent reviews [96,97]. 

Deep learning networks for auto-segmentation typically predict a score that correlates 
with the probability that a voxel belongs to the structure to be segmented. Only at the 
last step, voxel scores are thresholded into a binary segmentation mask. These score maps 
are often converted into uncertainty maps by applying the entropy operator [32,33,98]. 
It has been shown qualitatively that incorrect areas of the automatic segmentations cover 
areas of high network entropy [36,37,99]. Once an entropy map is computed, the mean 
over all the voxels [32,33,98] is often used as a metric for QA of auto-segmentations. 
Alternatively, a common approach for QA of auto-segmentations consists of developing 
machine learning models that directly predict segmentation quality [100,101]. 

Up to now, the QA metrics are typically correlated only with the Dice Similarity 
Coefficient (DSC) [32–34,36,102]. Although DSC is a common metric of segmentation 
performance, it presents several drawbacks. By construction, it is volume-dependent since 
it overestimates the performance for large structures. Additionally, it has been shown to 
correlate poorly with clinically relevant endpoints in RT planning, such as dose/volume 
metrics [103] and the expected editing time [104]. Distance-based metrics, such as the 
95th Hausdorff distance (95th HD), the mean surface distance (MSD) and the surface 
DSC, suffer less from these drawbacks and are recommended to be reported together 
with the DSC [104,105].  
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We hypothesize that the commonly used entropy operator may overshadow relevant 
information that is contained in the score maps. The aim of this study was to identify a 
quality metric that can be generated directly from the output of the network, and which 
correlates with clinically relevant distance-based metrics. We additionally assessed the 
capability of the proposed metric to identify automatic segmentations that would need 
review. 

MATERIALS AND METHODS 
Data 
Two cohorts were retrospectively collected and used in this study. One cohort consisted 
of a total of 195 histologically proven cervical cancer patients treated in our institution 
between August 2012 and December 2021. Further details on patient characteristics and 
their treatment are described in Table S1. The institutional review board approved the 
study (IRBd20276). Informed consent was waived considering the retrospective design 
of the study. 

A total of 524 separate MRI images of the patients with the brachytherapy applicator in 
place were included in this work. These images were acquired using a 1.5T (104 scans) 
or 3T (442 scans) Philips MRI scanner. Axial T2-weighted (T2w) turbo spin-echo images 
were used (TR =[3500-13300 ms], TE = [100-120 ms]) with a pixel spacing of 0.39 mm x 
0.39 mm (442 scans) or 0.63 mm x 0.63 mm (104 scans) and a slice thickness of 3 mm. 
The GTV, as segmented for treatment planning by a radiation oncologist on each available 
MRI, was available as ground truth. 

The other cohort used in this study consisted of a total of 30 patients with intermediate 
risk or locally advanced rectal cancer treated in our institution. Further details on patient 
characteristics are described in Table S2. All patients in the study were enrolled in the 
Momentum prospective registration study (NCT04075305) and gave written informed 
consent for the retrospective use of their data.  

For this cohort, a total of 483 EBRT images were considered. All the fractions were carried 
out on the Unity MR-Linac (Elekta AB, Stockholm). Axial T2-weighted (T2w) turbo 
spin-echo images were used (TR=1300 ms, TE=128 ms) with a pixel spacing of 0.57 mm 
x 0.57 mm (349 images) or 0.87 mm x 0.87 mm (134 images) and a slice thickness of 
1.20 mm (155 images), 1.8 mm (134 images) or 2.4 mm (194 images). In our institution, 
the radiation therapists (RTTs) have been trained and certified to segment the CTV for 
the MRI-guided online adaptive RT workflow of the rectal cancer treatment. Therefore, 
the CTV used as ground truth was segmented by a RTT on each available MRI for clinical 
practice. The CTV segmentations were also verified by a radiation oncologist with over 
10 years of experience. 
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Segmentation framework and training scheme. 
In previous studies, we used the nnU-Net framework [76] to segment the cervical cancer 
GTV [91] and the rectal cancer mesorectum CTV [106]. In the current work, we used 
a 5-fold cross validation scheme to retrain the networks and assess the robustness of the 
quality metrics to changes in the training set composition. The training sets were the same 
as those described in previous articles [91,106], with 156 patients (418 images) for the 
cervical cancer cohort and 25 patients (406 images) for the rectal cancer cohort. For both 
cohorts, the 3D variant of the nnU-Net was used.

Score map definition. 
The score map was defined as the voxelwise softmax scores of the last layer of the network 
of the target segmentation channel before binarization (as depicted in Figure 1). This 
strategy was chosen because it can be applied to any trained network without requiring 
changes to the architecture or training procedure. 

Input image

Score map Output segmentation

(with the clinical contour)(without the clinical contour)

Score-based metrics Segmentation metrics

>0.5

Figure 1. Workflow of the study design. 

The score maps were created for the test sets described in previous studies [91,106], which 
included 39 patients (106 images) for the cervical cancer cohort and five patients (77 
images) for the rectal cancer cohort. We further subdivided these sets at the scan level into 
a validation set for parameter optimization and a final test set for evaluating the quality 
metrics. For the cervical cancer GTV segmentation task, the final validation and test sets 
each included 53 images. The analyses were done for 52 out of the 53 cases of the test set. 
The remaining case corresponded to a patient who had her uterus removed which resulted 
in a variation in anatomy unseen by the trained network. The final validation and test sets 
for the rectal cancer CTV segmentation task included 39 and 38 images, respectively. Note 
that the term “score maps” is referred to as “attention maps” in our previous work [91].

Score-based metrics. 
We defined a metric (High Score or HiS metric) as the mean of the score map values that 
were higher than a threshold λ. By thresholding the score map and retaining only the 
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high score voxels, we aimed to remove information that is unimportant for the flagging 
of potentially incorrect segmentations, as very low values on the score map are expected 
both in correct and incorrect segmentations. 

The mean and the standard deviation (STD) were computed over the non-zero values of 
the score map to represent the overall score and its variability, respectively. Additionally, 
the mean over the entropy map was computed for direct comparison with other studies 
[32–34,98]. 

For each value of λ, the difference in correlation with respect to the performance of the 
mean over all values of the score map (i.e. λ=0) was determined. The optimal value of λ 
was determined empirically as the value at which the HiS correlated best with the MSD 
in the validation set, in the range (0,0.45) with steps of 0.05. The MSD was chosen to 
determine the optimal threshold because it is a distance-based metric and therefore more 
suitable for RT applications (unlike the DSC), it evaluates the whole contour (unlike the 
95th HD, which focuses on the gross errors) and it has no hyperparameters (unlike the 
surface DSC). 

Statistics 
The correlation between the metrics and the segmentation performance was assessed 
with the Pearson correlation coefficient (r) and with the Spearman correlation coefficient. 
To check the assumption of linearity for Pearson, residual plots were computed. To study 
the robustness of each metric to the training set composition, the correlations were 
computed separately for the score maps resulting from each of the five training folds. 
The mean and the standard deviation of the r were computed over all folds.  

To assess the capability of the metrics to distinguish between segmentations that 
require reviewing and those that can be left unchecked, the area under the curve (AUC) 
was determined for detecting segmentations that exceeded a specified MSD or 95th 
HD threshold. The code and additional training details are available in: github.com/
RoqueRouteiral/his_qa. 
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RESULTS 
For both segmentation tasks and for the four segmentation metrics, the largest improvement 
of the proposed HiS metric with respect to the mean (Δr) occurred for λ<0.10, as depicted 
in Figure 2. Moreover, for λ>0.10, Δr remained fairly stable. For the case of the MSD, the 
largest correlations were found for λ=0.35 and λ=0.25 for the cervical and rectal cancer 
target segmentation tasks, respectively. We took the average between these two values, 
λ=0.30, in the subsequent analyses. The computed residual plots (Figure S1) show that the 
points were randomly scattered around the horizontal axis, confirming the assumption of 
linearity between the performance metrics and the HiS. 

Figure 2. Difference in Pearson correlation coefficient (Δr) with the segmentation metrics between 
the HiS metric and the mean over the score map as a function of the parameter λ. The bold line is the 
average Δr among the five folds. The dashed lines represent the Δr for each of the five folds. 

Table 1 shows the correlation between the studied metrics and the segmentation quality 
metrics for the test sets of both cohorts. For the segmentations of the cervical cancer GTV, 
the HiS achieved a mean r of 0.79 with DSC, -0.60 with 95th HD, -0.66 with MSD and 
0.67 with surface DSC. For the segmentations of the rectal cancer CTV, the HiS yielded 
a mean r of 0.76 with DSC, -0.53 with 95th HD, -0.74 with MSD and 0.62 with surface 
DSC. For both tasks, the HiS correlated more strongly with the segmentation quality 
metrics than the rest of the score-based metrics. The only exception was the STD in the 
case of the cervical cancer task, which correlated as strongly as the HiS and the surface 
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DSC. The HiS also correlated more strongly with all the segmentation metrics for both 
tasks with the Spearman correlation coefficient (Table S3). 

Table 1. Pearson correlation coefficients (mean ± standard deviation among folds) between the metrics 
and the segmentation performance metrics. Bold letters indicate the highest correlation among the 
different metrics. 

DSC 95th HD MSD Surface DSC
Cervical cancer cohort

Mean 0.72 ± 0.10 -0.53 ± 0.16 -0.57 ± 0.13 0.60 ± 0.1
STD 0.68 ± 0.06 -0.53 ± 0.14 -0.64 ± 0.13 0.70 ± 0.1
Mean (over entropy map) 0.43 ± 0.14 -0.38 ± 0.09 -0.43 ± 0.11 0.43 ± 0.15
HiS (λ = 0.30) 0.79 ± 0.05 -0.60 ± 0.13 -0.66 ± 0.10 0.67 ± 0.06

Rectal cancer cohort
Mean 0.60 ± 0.03 -0.42 ± 0.10 -0.61 ± 0.06 0.50 ± 0.08
STD -0.32 ± 0.11 0.22 ± 0.18 0.35 ± 0.15 -0.27 ± 0.17
Mean (over entropy map) -0.74 ± 0.06 0.47 ± 0.08 0.69 ± 0.07 -0.58 ± 0.09
HiS (λ = 0.30) 0.76 ± 0.08 -0.53 ± 0.07 -0.73 ± 0.09 0.62 ± 0.10

As an illustration, Figure 3 shows the scatter plots between the HiS metric and the 
segmentation metrics obtained in one of the five folds of the trained auto-segmentation 
networks. Note that the range of HiS values is task-dependent and the values are therefore 
not directly comparable between the two tasks. Figure 4 illustrates the segmentations 
and score maps with one example from each auto-segmentation task. For the cervical 
cancer case (Figure 4, left), the HiS metric was relatively high for this cohort (HiS=0.76). 
Indeed, the segmentation performance was high (MSD=0.78 mm), with the main error 
at the location of the applicator channel. For the rectal cancer example (Figure 4, right), 
the HiS value was relatively low for this cohort (HiS=0.89). This case corresponded to a 
target that was oversegmented by the network, resulting in poor performance (MSD=3.6 
mm), as expected. 
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Figure 3. Scatter plots between the segmentation metrics and the HiS metric for the cervical cancer 
cohort (top) and the rectal cancer cohort (bottom). The translucent band corresponds to the 95 % 
confidence interval for the estimated regression, computed via bootstrap. 

Figure 4.  Examples of the segmentations and the correspondent score maps for a cervical cancer case 
(left, HiS = 0.76) and a rectal cancer case (right, HiS = 0.89).  The input images for the segmentation 
framework, the ground truth segmentation (green) and the automatic segmentation (pink) are de-
picted on the top row. The corresponding score maps are depicted on the bottom row. The blue line 
encompasses the voxels for which the score values are higher than λ = 0.3.
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The capability of the studied metrics to detect segmentations that require reviewing is 
illustrated in Figure 5, which shows the AUC for detecting segmentations that exceed 
varying MSD and 95th HD threshold values. The proposed HiS metric achieved higher 
AUC values than the other baselines metrics for most MSD and 95th HD values, for both 
auto-segmentation tasks. In particular, for the cervical cancer cohort, the AUC varied 
between 0.82 and 0.94 for detecting cases for MSD values above 1 mm. For the rectal 
cancer cohort, the AUC varied between 0.84 and 0.99 for detecting cases with an MSD 
above 2 mm. 

Cervical cancer cohort

Rectal cancer cohort

Figure 5. AUC for detecting segmentations exceeding a specified MSD (left) or 95th HD (right). 

For each task, the AUC was reported between the minimum and maximum values of 
the obtained MSD and 95th HD over all folds, because the sensitivity and specificity are 
only defined in these ranges. For the cervical cancer task, these ranges were 0.4 mm to 7.0 
mm for the MSD and 2.6 mm to 22.5 mm for the 95th HD. For the rectal cancer task, 
the ranges were 1.2 to 3.0 mm for the MSD and 4.8 mm to 17.8 mm for the 95th HD. 
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DISCUSSION 
In this work we proposed a simple metric based on the network output for automatic 
QA of auto-segmentations of RT target volumes. This metric averages all score values 
above a threshold of 0.3. We showed that it correlated strongly with the segmentation 
performance metrics for two different auto-segmentation tasks. The correlations were 
strong not only for the DSC but also for the more clinically relevant distance-based 
metrics. Our proposed metric outperformed the often used mean value of the entire 
entropy map in the distinction between segmentations that require reviewing and those 
that can be used without an extra manual check. 

The strongest correlations between the proposed metric and the segmentation performance 
occurred for λ values above 0.1, suggesting that the lowest score values are not very 
representative of the segmentation performance. Furthermore, it was observed that the 
choice of λ was not critical for values above 0.2. 

Despite the high correlations between the proposed metric and the segmentation quality, 
similar HiS values corresponded to a large range of values on the segmentation quality 
metrics, suggesting that the HiS might not always be an accurate surrogate of the 
segmentation performance. Other works have shown similar behavior in their correlation 
plots [33,100]. The aim of this metric, however, is to flag cases that need reviewing, not to 
predict the segmentation performance. This was demonstrated with the high AUC values 
achieved by the metric. 

Previous studies have qualitatively related the uncertain areas with the segmentation 
errors [36,99]. Metrics that show qualitatively where the local edits should be performed 
could aid clinicians during editing and should therefore be investigated in future work. 
We speculate that the proposed metric could also be used to select the voxels that are more 
likely wrong in the segmentation. From our results, we can infer that voxels from the score 
map that are below the λ=0.10 threshold did not contribute to the correlation with the 
segmentation performance. This suggests that those voxels are not relevant for a potential 
correction. Clinicians could then use this information as an aid to edit the segmentation.

Pearson’s correlation coefficient has been used in previous works to study the correlation 
between the segmentation performance and QA metrics [34,102]. Its application assumes 
linearity between the two variables. Furthermore, outliers can skew its evaluation. 
To confirm the validity of our results, we computed the Spearman correlation coefficient, 
which does not assume linearity and is more robust to outliers. The HiS metric still 
correlated more strongly than the other score-based metrics.

The STD showed strong correlations with the MSD, but only for the cervical cancer GTV 
segmentation task. For rectal cancer, the correlation was much lower and importantly 
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also changed sign. A similar behavior was observed for the mean over the entropy map, 
commonly used in literature. This metric showed strong correlations for the rectal cancer 
segmentation task, but for the cervical cancer GTV the correlations were poor for the 
segmentation metrics and also changed sign. Therefore, these metrics appear to be less 
robust for QA. Tumors (like the cervical cancer GTV) are more heterogeneous in size, 
shape and texture than anatomical structures (like the rectal cancer CTV, or mesorectum). 
Uncertainties in tumor auto-segmentation networks are likely more prominent than those 
of auto-segmentation networks of anatomical structures. This may explain the difference 
in behavior of the metrics across the two tasks. Previous works have mostly focused 
on segmentation tasks with arguably lower uncertainty, such as the segmentation of 
anatomical structures [36,100] or the segmentation of brain tumors [32,33]. 

Although most studies propose using the average of the entire entropy map, other works 
[32,102] have trained models to automatically predict the DSC coefficient directly from 
the entropy maps, thereby incorporating the metric definition into the learning task. 
Learning-based metrics can be more generic than the pre-specified average, but they are 
also less interpretable and therefore might be less desirable for QA purposes. 

Recent literature has focused on other methods for computing the score maps, such as 
Monte Carlo dropout [32,33,107], which averages the scores resulting from multiple 
instances of the network. We expect our metric to also be applicable to Monte Carlo 
dropout estimates. However, using the softmax layer outputs eliminates the need for 
specific architectural or training scheme modifications. Furthermore, it does not require 
running inference multiple times which could hinder the clinical implementation of the 
method.

In clinical settings, the clinician could be provided with both the automatic segmentation 
and its associated HiS score that would serve as a quality metric. Prior to clinical 
implementation, a pilot study could be set up to assess the time savings achieved by using 
this tool in a clinical setting. The trade-off between the amount of cases that would not 
need to be reviewed manually and the missed faulty cases that would require reviewing, 
should also be assessed. 

In conclusion, we identified a simple metric derived directly from the output of the 
segmentation network that correlated strongly with commonly used segmentation metrics, 
not only for the case of DSC but also for the more clinically relevant distance-based 
metrics. The proposed metric was able to flag segmentations that would require review. 
It is also easy to compute, as it does not require any architecture or training scheme 
modifications. The proposed metric has potential as a tool for QA of automatic target 
segmentations. 
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SUPPLEMENTAL MATERIAL
Table S1. Patient characteristics in the cervical cancer cohort. 

  Training Evaluation Total
Total 156 39 195
Age (years)    

Mean 53 56 53
Standard deviation 15 17 15

FIGO stage    
FIGO I 18 (11.5 %) 6 (15.4 %) 24 (12.3 %)
FIGO II 92 (59.0 %) 22 (56.4 %) 114 (58.6 %)
FIGO III 29 (18.6 %) 8 (20.5 %) 37 (19.0 %)
FIGO IV 12 (7.7 %) 3 (7.7 %) 15 (7.7 %)
Unknown 5  0 5 (2.6 %)

Histopathological type    
Squamous cell carcinoma 128 (82.0 %) 33 (84.6 %) 161 (82.6 %)
Adenocarcinoma 22 (14.10 %) 4 (10.3 %) 26 (13.3 %)
Adeno-squamous cell carcinoma 2 (1.3 %) 1 (2.6 %) 3 (1.5%)
Non specified/unknown 4 (2.6 %)  1 (2.5 %) 5 (2.6 %)

External beam radiotherapy scheme
(prior to brachytherapy and combined with cisplatin 
(40 mg/m2 weekly)

   

23 x 2 Gy 124 (79.5 %) 32 (82.0 %) 156 (80 %)
25 × 1.8 Gy 32 (20.5 %) 7 (18.0 %) 39 (20 %)



74

Chapter 5 

Table S2. Patient characteristics in the rectal cancer cohort. 

  Training Evaluation Total
Total 25 5 30
Sex    

Male 15 (60 %) 5 (100%) 20 (66 %)
Female 10 (40 %) 0 10 (34 %)

Age (years)    
Mean 59  61 59
Standard deviation 11 16 12

T stage
T2 8 (32 %) 0 8 (26.7 %)
T3 16 (64 %) 5 (20 %) 21 (70 %)
T4 1 (4 %) 0 1 (3.3 %)

N stage
N0 14 (56 %) 1 (20 %) 15 (50 %)
N1 9 (36 %) 2 (40 %) 11 (36.7 %)
N2 2 (0.08 %) 2 (40 %) 4 (13.3 %)

External beam radiotherapy scheme    
5 x 5 Gy 20 (80 %) 2 (40 %) 22 (73.3 %)
25 x 2 Gy 5 (20 %) 3 (60 %) 8 (26.7 %)

Table S3. Spearman correlation coefficients (mean ± standard deviation among folds) between the 
metrics and the segmentation performance metrics. Bold letters show the highest correlation among 
the different metrics. 

DSC 95th HD MSD Surface DSC
Cervical cancer cohort

Mean 0.73 ± 0.09 -0.59 ± 0.09 -0.62 ± 0.09 0.61 ± 0.09 
STD 0.52 ± 0.10 -0.48 ± 0.04 -0.49 ± 0.07 0.51 ± 0.07
Mean (over entropy map) 0.30 ± 0.13 -0.29 ± 0.10 -0.31 ± 0.11 0.30 ± 0.11
HiS (λ = 0.30) 0.80 ± 0.04 -0.64 ± 0.04 -0.67 ± 0.04 0.65 ± 0.06

Rectal cancer cohort
Mean 0.41 ± 0.11 -0.25 ± 0.16 -0.38 ± 0.16 0.34 ± 0.08
STD -0.26 ± 0.16 0.17 ± 0.21 0.27 ± 0.23 -0.22 ± 0.19
Mean (over entropy map) -0.47 ± 0.09 0.22 ± 0.04 0.37 ± 0.08 -0.35 ± 0.07
HiS (λ = 0.30) 0.51 ± 0.07 -0.30 ± 0.06 -0.43 ± 0.06 0.40 ± 0.05
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Supplemental Figures 

Supplemental Figure 1. Residual plots of the HIS metric with the segmentation performance. The 
results are shown for one of the folds.  


