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ABSTRACT 
Background and purpose 
Segmentation of oropharyngeal squamous cell carcinoma (OPSCC) is needed for 
radiotherapy planning. We aimed to segment the primary tumor for OPSCC on MRI 
using convolutional neural networks (CNNs). We investigated the effect of multiple MRI 
sequences as input and we proposed a semi-automatic approach for tumor segmentation 
that is expected to save time in the clinic. 

Materials and methods 
We included 171 OPSCC patients retrospectively from 2010 until 2015. For all patients the 
following MRI sequences were available: T1-weighted, T2-weighted and 3D T1-weighted 
after gadolinium injection. We trained a 3D UNet using the entire images and images 
with reduced context, considering only information within clipboxes around the tumor. 
We compared the performance using different combinations of MRI sequences as input. 
Finally, a semi-automatic approach by two human observers defining clipboxes around 
the tumor was tested. Segmentation performance was measured with Sørensen–Dice 
coefficient (Dice), 95th Hausdorff distance (HD) and Mean Surface Distance (MSD). 

Results 
The 3D UNet trained with full context and all sequences as input yielded a median Dice 
of 0.55, HD of 8.7 mm and MSD of 2.7 mm. Combining all MRI sequences was better 
than using single sequences. The semi-automatic approach with all sequences as input 
yielded significantly better performance (p<0.001): a median Dice of 0.74, HD of 4.6 
mm and MSD of 1.2 mm. 

Conclusions 
Reducing the amount of context around the tumor and combining multiple MRI 
sequences improves the segmentation performance. A semi-automatic approach is accurate 
and clinically feasible. 
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INTRODUCTION 
Worldwide, there are more than 679,000 new cases of head and neck cancer (HNC) 
per year and 380,000 of those cases result in death [44]. Radiotherapy (RT) is indicated 
for 74% of head and neck cancer patients, and up to 100% in some subsites [41]. Tumor 
delineation is needed for RT planning. In clinical practice, tumor contouring is done 
manually, which is time consuming and suffers from interobserver variability. Thus, 
accurate automatic segmentation is desirable.

Convolutional neural networks (CNNs) are considered the current state of the art for 
computer vision techniques, such as automatic segmentation. Specifically for tumor 
segmentation, promising results have been obtained for various tumor sites such as brain 
[45], lung [46], liver [47] and rectum [48]. 

For HNC, previous literature [49,50] focused on the segmentation of other RT-related 
target volumes rather than the primary tumor and without special focus on any particular 
HNC subsite, such as nasopharyngeal or oropharyngeal cancer. However, anatomy and 
imaging characteristics of tumors and their surrounding tissue vary greatly across subsites. 
Nasopharyngeal tumors are bounded by the surrounding anatomy and thus they present 
with lower spatial variability. Men et al [51] proposed an automatic segmentation method 
for nasopharyngeal primary tumors. To the best of our knowledge, no studies have been 
published on automatic segmentation of primary tumors in oropharyngeal squamous cell 
cancer (OPSCC). Tumors in this category are quite variable in shape, size and location 
compared to other subsites in head and neck cancer and their delineation suffers from 
high interobserver variability [11]. 

The modalities of choice in other works for HNC automatic segmentation are PET and/or 
CT [49,50]. PET presents low spatial resolution and only shows the metabolically active 
part of the tumor while CT has low soft tissue contrast. MRI is now becoming a modality 
of interest in RT and provides improved soft tissue contrast compared to other modalities, 
being better suitable for oropharyngeal tumor segmentation. In line with this, previous 
works have suggested that the use of MRI for head and neck cancer delineation provides 
unique information compared to PET/CT or CT [52].

We investigated the effect on segmentation performance of different MRI sequences 
and its combination as inputs to the model. We hypothesized that by decreasing the 
amount of context around the tumor, thereby simplifying the task, the performance of 
the segmentation model would improve. Hence, we proposed a semi-automatic approach 
in which a clipbox around the tumor is used to crop the input image. We demonstrated 
its clinical applicability by having two observers (including one radiation oncologist) 
manually selecting the clipbox. The aim of this study was to develop a CNN model for 
segmenting OPSCC on MRI images. 
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MATERIALS AND METHODS 
Data 
A cohort of 171 patients treated at our institute between January 2010 and December 
2015 was used for this project. Mean patient age was 60 (Standard deviation ± 7 years) 
and 62% of the patients were male. Further details on tumor stage and HPV status can 
be found in the Supplemental Material (table S.1). All patients had histologically proven 
primary OPSCC and pre-treatment MRI, acquired for primary staging. The institutional 
review board approved the study (IRBd18047). Informed consent was waived considering 
the retrospective design. Any identifiable information was removed. 

All MRI scans were acquired on 1.5T (n=79) or 3.0T (n=92) MRI scanners (Achieva, 
Philips Medical System, Best, The Netherlands). The imaging protocol included: 2D 
T1-weighted fast spin-echo (T1w), 2D T2-weighted fast spin-echo with fat suppression 
(T2w) and 3D T1-weighted high-resolution isotropic volume excitation after gadolinium 
injection with fat suppression (T1gd). Further details on the MRI protocols are given in 
the Supplemental Material (table S.2). The primary tumors were manually contoured in 
3D Slicer (version 4.8.0, https://www.slicer.org/) by one observer with 1 year of experience 
(P.B.). Afterwards, they were reviewed and adjusted, if needed, by a radiologist with 7 
years of experience (B.J.). All tumor volumes were delineated on the T1gd but observers 
were allowed to consult the other sequences.

For the experimental set-up, we split the data set in three subsets: training set (n=131), 
validation set (n=20) and test set (n=20). The test set was not used for training or hyper-
parameter tuning. We stratified the three subsets for tumor volume, subsite, and aspect 
ratio since these features are likely relevant for segmentation. Subsites were defined as 
tonsillar tissue, soft palate, base of tongue and posterior wall. Aspect ratio was defined as 
the ratio between the shortest and the longest axis of the tumor. All images were resampled 
to a voxel size of 0.8 mm x 0.8 mm x 0.8 mm. 

Model architecture 
The UNet architecture was chosen as the basis for our experiments because of the 
promising results on segmentation of medical structures [47,53–56]. Given the 3D nature 
of the images, we chose a 3D UNet as the architecture in this work [53,57]. We used 
Dice as loss function [58], the Adam optimizer [59] and early stopping. Dropout and data 
augmentation were used for regularization. Further details on the training procedure can 
be found in the Supplemental Material (Tables S.3. and S.4.).
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Fully automatic approach 
We trained the 3D UNet using the full 3D scans. We studied the effect of incorporating 
multiple MRI sequences into the training by introducing the available MRI sequences 
as input channels. Five networks were trained for the following MRI sequences and 
combinations thereof: T1w, where the tumor is hypo-intense but homogeneous; T2w, 
where the tumor is hyper-intense; T1gd, since the tumor presents with clearer boundaries; 
combining T1gd and T2w, and combining all sequences together (T1gd, T2w and T1w), 
to explore all the available information. 

Semi-automatic approach 
We proposed a semi-automatic approach in which we trained the networks with only the 
information within a clipbox around the tumor instead of with the full image as input. 

During training, the clipbox was computed from the tumor delineations. First, the 
bounding box was calculated (i.e. the minimal box around the tumor). Then, random 
shifts of up to 25 mm were applied to all of the six directions to make clipboxes of different 
sizes and allow off-centered positioning of the tumors. We considered that shifts of more 
than 25 mm would represent unrealistic errors during clipbox selection. Examples of 
inputs possibly seen by the network are shown in Figure 1. 

To study the clinical feasibility of this semi-automatic approach, two human observers were 
asked to manually select a clipbox around the tumor for each test set patient. The clipboxes 
were selected using 3D Slicer on the T1gd with access to the other sequences. The first 
observer (P.B.) had delineated the tumors two years earlier. The second observer was a 
radiation oncologist with 16 years of experience (A.A.) and had no information about 
the tumor delineations. To mitigate the risk of the observers defining too small clipboxes, 
cropping the tumor, the clipboxes were dilated 5 mm so as to ensure that they encompass 
the tumors. We consider it unlikely that a human observer would crop the tumor by more 
than 5 mm. 
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Figure 1. Original MRI image with the manual segmentation (green) of the oropharyngeal tumor. 
The blue boxes are the bounding boxes of the tumor. The rest of the boxes are used as inputs to the 
network during training. 

Experiments 
For the fully automatic approach, the performance of the networks trained with different 
sequences (T1w, T2w, T1gd, T1gd/T2w, and all sequences combined) was compared for 
the patients on the separate test set. 

Because of memory constraints, scans were resized to a lower resolution by a factor of 
~2.5 to 1.9 mm x 1.9 mm x 1.9 mm. Thus, even the smallest tumors were seen by the 
network. As a control experiment, to assess the impact of the resulting loss of resolution, 
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we additionally trained a 2D UNet with full resolution axial slices. We checked for 
significant differences in performance of both approaches. 

For the semi-automatic approach, one network was trained with all the sequences as input. 
The results with the clipboxes of the two observers were compared to the fully automatic 
approach experiment when combining all sequences as input (baseline). 

To evaluate the robustness of the semi-automatic approach to off-centered tumors inside 
the clipboxes, we presented the trained model with increasingly shifted versions of the 
clipboxes, starting from the bounding box. The artificially induced shifts were applied 
in the 6 possible directions of the clipbox and expressed as two metrics: the centroid 
displacement and the relative difference in clipbox diagonal length before and after the 
shifts. 

Statistics 
To confirm that the three subsets were balanced in subsite, volume and aspect ratio, we 
used a Kruskal-Wallis test for continuous variables (volume and aspect ratio) and a chi-
square test for independence for the categorical data (subsite). 

Automatic contours were compared against the delineations from the human experts 
using common segmentation metrics: Sørensen–Dice coefficient (Dice), 95th Hausdorff 
Distance (HD) and Mean surface distance (MSD), implemented using the Python package 
from DeepMind (https://github.com/deepmind/surface-distance). Differences among 
experiments were assessed by the Wilcoxon signed-ranked test. P-values below 0.05 were 
considered statistically significant. Statistical analyses were performed with the SciPy 
package (version 1.1.0) and Python 3.6. Other relevant libraries can be found in the 
Supplemental Material (Table S.5.). The code is publicly available and can be found in: 
https://github.com/RoqueRouteiral/oroph_segmentation.git

RESULTS 
Summary of tumor characteristics 
Tumor characteristics (location, volume and aspect ratio) of our cohort are described in 
Table S.6. No significant differences were found in the distributions of subsite, volume 
and aspect ratio between the training, validation and test sets. 

Fully automatic approach 
As shown in Figure 2,  combining all MR sequences resulted in the best performance, 
with a median Dice of 0.55 (range 0-0.78), median 95th HD of 8.7 mm (range 2.8-84.8 
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mm) and median MSD of 2.7 mm (range 1.0-26.8 mm), and the least variability among 
patients. The control experiment showed that by training a 2D UNet with full resolution 
scans the results were not significantly better than when using its 3D counterpart (Table 
S.7). 

Figure 2. Segmentation performance in terms of Dice, 95th HD and MSD for the 3D. The different 
boxes show different MRI sequences as input: T1w(T1 weighted), T2w (T2 weighted), T1gd (T1 3D 
after gadolinium injection), T1gd and T2w (T1 3D after gadolinium injection and T2 weighted) and 
combining all sequences (All). The box includes points within the interquartile range (IQR) while 
the whiskers show points within 1.5 times the IQR. 

Semi-automatic approach 
In figure 3, it is observed that the semi-automatic approach using the boxes of the first 
observer achieved a median Dice score of 0.74 (range 0.32-0.80), HD of 4.6 mm (range 
2.2 mm – 10.5 mm) and MSD of 1.2 mm (range 0.6 mm- 2.9 mm). For the second 
observer, the network achieved a median Dice score of 0.67 (range 0.28 – 0.87), HD of 
7.2 mm (range of 3.0 mm – 19.9 mm) and MSD of 1.7 mm (range of 0.9 mm – 4.9 mm). 

The semi-automatic approach significantly outperformed the fully automatic approach 
in all of the metrics for the first observer (p<0.001) and in Dice and MSD for the second 
observer (p<0.01). These results were expressed for 19 out of the 20 patients in the test 
set (also for the fully automatic approach - equivalent to “All’ in figure 2), as one of the 
observers did not detect one of the tumors when asked to draw the clipbox. 

The average time to draw the boxes was of 7.5 minutes per patient for the first observer 
and 2.8 minutes for the second observer. 
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Figure 3. Segmentation performance of the semi-automatic approach with boxes drawn by two 
human observers. We compare the semi-automatic results (Ob 1 and Ob 2) to the fully automatic 
approach (baseline, Full). The box includes points within the interquartile range (IQR) while the 
whiskers show points within 1.5 times the IQR. Significance is represented as one star (*) for p<0.01 
and two stars(**) for p<0.001. 

Robustness to shifts 
Figure 4 shows the segmentation performance of the network trained for the semi-
automatic approach as a function of the artificially induced shifts applied to the tumor 
within the clipbox. For centroid displacements below 20 mm and diagonal length 
differences of between 25 mm and 60 mm the Dice was consistently greater than 0.70, 
the HD was lower than 6.5 mm and the MSD was lower than 1.7 mm. 

Figure 4. Robustness analysis. Segmentation performance in terms of median Dice, 95th HD and 
MSD for the semi-automatic approach as a function of the tumor centroid displacement and the 
clipbox diagonal length difference. The grey areas correspond to undetermined values due to the 
geometric constraints (i.e. no combination of shifts can achieve those values of centroid displacement 
and diagonal length difference). 
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Qualitative results 
Figures 5a and 5b show examples in which the shape of the semi-automatic approach 
output and ground truth segmentation agreed while the fully automatic approach 
oversegmented (a) or undersegmented (b) the tumor. Figure 5c shows a case where the 
segmentation by the network trained with the fully automatic approach showed a similar 
shape to the ground truth segmentation but there were additional false positive volumes 
on the image. 

Figure 5. Comparison of the oropharyngeal segmentations in three different patients (a, b, c) trained 
with the fully automatic approach (red), with the semi-automatic approach (blue) and the manual 
delineation (green). The yellow boxes are the boxes drawn by the observer. 

DISCUSSION 
It was shown that using multiple MRI sequences yielded better results compared to using 
a single sequence as input. We also showed that decreasing the amount of context given 
to the CNN improved the segmentation performance. Finally, we proposed a functional 
semi-automatic approach that outperformed the fully automatic baseline and that was 
robust to clipbox selection errors, suggesting its potential clinical applicability. 

Our network resulted in worse performance in terms of Dice compared to other tumor 
sites as reported by Sahiner et al [60], where the authors provide a comparison of CNN 
segmentations for different tumor/lesions (Dices: 0.51-0.92). However, lower performance 
for oropharyngeal tumor segmentation is consistent with what is known about the inter-
observer variability for this subsite: Blinde et al [11] have shown differences in volume 
of up to 10 times among observers when segmenting OPSCC on MR, indicating the 
complexity of this task even for human observers. In this study, the mean Dice between 
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our observers was 0.8. However, this number is an overestimation of the interobserver 
variability, considering that one of the observers corrected the other’s delineation.

No significant differences were found between training the network with full context 
in 3D compared to its 2D counterpart. This shows that reducing the resolution due to 
memory constrains in the 3D case is not critical for the segmentation performance when 
the full image is used as input. 

When restricting the context, the network outperformed significantly the full context 
approach for all metrics. This means that local textural differences between tumor and 
immediate surrounding tissues are sufficient for delineation. 

Using clipboxes drawn by human observers demonstrates the feasibility of a semi-
automatic approach for OPSCC primary tumor segmentation. Additionally, these boxes 
were drawn by two independent observers with different backgrounds and levels of 
expertise, suggesting that the method is not highly sensitive to the observer. This is 
supported by the results of our robustness analysis, which showed that when training 
with shifted versions of the clipbox, the networks were fairly robust to these shifts. More 
concretely, the network was robust centroid displacements below 20 mm and diagonal 
length differences of between 25 mm and 60 mm, which we consider a fair estimate of 
the maximum error an observer can make when selecting the clipbox. 

A fully manual segmentation can take from 30 minutes to almost 2 hours (depending 
on the shape and size of the tumor), The average time between our two observers for the 
semi-automatic approach can take an average of 5 minutes (average of our two observers). 
Although after the proposed semi-automatic approach, some manual adaptations may be 
needed by a radiation oncologists to make the contours clinically acceptable, the overall 
process is expected to be less labor-intensive. Additionally, in the clinic it would be possible 
to use software designed to draw the clipboxes faster. Consequently, a functional semi-
automatic system is not only feasible in terms of segmentation performance but also 
relevant for speeding up the radiotherapy workflow. 

There are limitations in this study. First, given the high interobserver variability of OPSCC 
delineation, we are likely training the network with imperfect ground truths. However, we 
palliated the possible errors on the delineations by having the second observer correcting 
the first observer’s delineation. Secondly, we used a standard 3D UNet in our studies. 
Despite the extensive literature on deep learning architecture modifications, investigating 
the best architecture for this task is outside of our scope. Thirdly, our results would need 
validation with an independent cohort in a multi-center study. Furthermore, the scan 
protocols were not standardized in our dataset. Arguably, that makes the network robust 
to such differences (e.g. TR/TE), given that the network has learnt from a diverse dataset. 
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Finally, our work can still be improved by adding other MRI sequences into the training 
(such as DWI) or by fully automatizing our semi-automatic approach, but we leave that 
as future work. 

There is an increasing interest in the literature about differences on the tumors depending 
on their HPV status. According to Bos et al. [61], HPV positive tumors present on 
MRI post contrast with rounder shapes, lower maximum intensity values, and texture 
homogeneity. One strength of our work is that we include both HPV positive and HPV 
negative tumors in the training set, making the networks able to segment both subtypes 
of OPSCC. To check that the network is not biased to the HPV status, we compared the 
performance of the network stratified per HPV status and found non-significant results. 
We also did not find any relationship between performance and size.

In conclusion, this is the first study of primary tumor segmentation in the OPSCC site on 
MRI images with CNNs to the best of our knowledge. We trained a standard 3D UNet 
architecture using full MRI images as input. We showed that combining MRI sequences 
is beneficial for OPSCC segmentation with CNNs. Additionally, the CNN trained 
with reduced context around the tumor outperformed the fully automatic baseline and 
approaches that of other tumor sites reported in the literature. Hence, our proposed semi-
automatic approach can save time in the clinic while achieving competitive performance 
and being robust to the choice of observer and manual clipbox selection errors. 
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SUPPLEMENTAL MATERIAL

Table S.1. Tumor stage and HPV status. 

N patients (percentage in %)
Tumor staging

T1 27 (15.79)
T2 64 (37.43)
T3 42 (24.56)
T4 38 (22.22)

N-stage
N0 34 (19.88)
N1 26 (15.20)
N2 107 (62.57)
N3 4 (2.33)

Subsite
Tonsillar tissue 96 (56.14)
Soft palate 16 (9.36)
Base of tongue 55 (32.16)
Posterior wall 4 (2.34)

HPV status
Positive 73 (42.69)
Negative 76 (44.44)
Unknown 22 (12.87)

Table S.2. Overview of MRI sequences. The MRI sequences are 2D T1 weighted (T1w), 2D T2 
weighted with fat suppression (T2w) and 3D T1 weighted after gadolinium injection with fat sup-
pression (T1gd). 

TR (ms) TE (ms) Pixel size (mm) Slice thickness (mm)
T1w 180-892 2.3-10 0.417- 0.9375 3-5
T2w 1963-6880 20-90 0.417- 0.9 3-5
T1gd 4.3-10 1.7-4.6 0.197- 0.976 0.8-1
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Training details 

Table S.3. 3D UNets – For full, reduced context and semi-automatic approach. 

Hyper-parameter / set-up
Optimizer Adam
Loss function Dice
Initial learning rate 0.001
Learning rate scheduler Multiply by 0.5 if validation loss does not decrease in 

ten epochs by an amount of 0.001
Batch size 1*

(*Batch normalization with running mean and 
variance during inference time, because of stability 
issues during training with batch size of 1)

Dropout 0.2 in bottleneck convolutions
Data augmentation (only full context) Horizontal flip (in coronal view) with a chance of 0.5 

in every epoch.
Random elastic deformation Using elasticdeform 
library (https://github.com/gvtulder/elasticdeform)
Random rotations between -10 and 10 degrees in 
every epoch.

Table S.4. Control experiment with 2D UNet. Hyper-parameter / set up. 

Hyper-parameter / set-up
Optimizer Adam
Loss function Dice
Initial learning rate 0.001
Learning rate scheduler Multiply by 0.5 if validation loss does not decrease 

in ten epochs by an amount of 0.001
Batch size 16
Dropout 0.2 in bottleneck convolutions
Data augmentation Horizontal flip (in coronal view) with probability of 

0.5 in every epoch.

Random elastic deformation using the elasticdeform 
library (https://github.com/gvtulder/elasticdeform)

Random rotations between -10 and 10 degrees in 
every epoch.

Given the differences in histograms of the axial 
slices, the images were preprocessed by whitening 
and normalization. All zero slices were removed 
from the 2D dataset



29

2

Oropharyngeal primary tumor segmentation on MRI 

Table S.5. Library versions. 

Library/Application Version
Python 3.6.5
Pytorch 0.4.1
Cuda 9.2

Table S.6. Overview of tumor characteristics per data set. 

Training set Validation set Testing set p-value
Patients (n) 131 20 20
Subsite 0.700
   Tonsillar tissue 76 (58%) 10 (50%) 10 (50%)

Soft palate 10 (8%) 3 (15%) 3 (15%)
Base of tongue 41 (31%) 7 (35%) 7 (35%)
Posterior wall 4 (3%) 0 (0%) 0 (0%)

Volume (cm3) 0.553
   
   

Median 6.93 7.33 6.87
Range [0.27,67.2] [0.51, 41.7] [0.46, 17.17]

Aspect ratio (%) 0.589
   
   

Median 52.22 53.87 54.77
Range [17.68 , 90] [41.47, 64.36] [47.63, 84.25]

Table S.7. Control experiment with 2D UNet. Median values of the segmentation metrics for the 
control experiment done with 2D UNet and full resolution axial slides as input. P values refer to 
the comparison with the 3D network trained with full context and with all sequences. P value for 
significance after Bonferroni correction: p<0.0041. The MRI sequences are 2D T1 weighted (T1w), 
2D T2 weighted with fat suppression (T2w) and 3D T1 weighted after gadolinium injection with 
fat suppression (T1gd). 

Full context 2D Dice (p-value) HD [mm] (p-value) MSD [mm] (p-value)
T1gd 0.51 (0.08) 25.48 (0.07) 3.53 (0.19)
T2w 0.45 (0.04) 22.54 (0.005) 3.92 (0.025)
All 0.62 (0.49) 7.93 (0.55) 2.13 (0.16)


