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TUMOR SEGMENTATION IN RADIOTHERAPY 
Cancer is the second leading cause of death worldwide, accountable for nearly 10 million 
deaths in 2020 [1]. Radiotherapy (RT) is one of the main modalities of cancer treatment, 
being indicated as part of the treatment for approximately half of the patients [2–4]. 
RT consists of the use of high doses of ionizing radiation to damage the DNA of the 
cancer cells, leading to their death. Simultaneously, it is intended that the least amount of 
radiation possible is given to the surrounding healthy tissue. Therefore, precise localization 
of the tumor and of the surrounding organs is critical for the RT treatment planning. 

To visualize a patient's anatomy, an image of the patient is acquired using common 
imaging modalities such as computed tomography (CT), magnetic resonance (MRI), 
or positron emission tomography (PET).  On these images, the pixels corresponding to 
the relevant structures are identified and labeled. This process is known as segmentation, 
delineation or contouring. The structures to segment are the target of the RT treatment 
and the organs to spare (known as organs at risk - OARs).  Once these segmentations are 
made, the dose intended to each region of the patient anatomy can be calculated. Given 
that the segmentation step is one of the first steps of the RT workflow, it can influence 
the quality of the entire treatment [5].

The primary target of the RT treatment is typically the visible extent of the tumor on the 
image of the patient, known as gross tumor volume or GTV. In addition, to address any 
hidden microscopic disease that is not visible on the imaging, an extra margin is defined, 
known as clinical target volume or CTV. Furthermore, a safety margin is often defined 
to account for any geometrical uncertainties that may arise from the whole treatment 
pipeline, the planning target volume or PTV. In certain tumor sites, such as cervix or 
rectum, the CTV is defined following anatomical structures rather than as a margin 
around the tumor. Arguably, both the tumor or targets that are not defined as anatomical 
structures can be considered harder to segment than those anatomical structures, because 
their locations, shapes and sizes tend to be more variable. 

In the current clinical practice, the segmentation of the tumor is carried out manually by 
physicians, which presents two issues. The first issue is that manual segmentation of the 
tumors is a time-consuming process, often regarded as one of the most time-intensive 
steps in the RT workflow [6] or even referred to as a bottleneck of the entire pipeline [7]. 
This is partly due to the complexity of the tumor segmentation process: it involves the 
physician scrolling through the 3D image of the patient and annotating the points that 
correspond to the tumor in a slice-by-slice manner. Additionally, physicians often integrate 
information from various sources, including clinical reports, other images, and clinical 
examinations of the patient. 
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Nowadays, it is aimed to deliver the RT treatment more accurately by considering 
anatomical changes that happen between RT planning and delivery or even during 
the course of the treatment [8], thereby potentially improving local control and reduce 
treatment-related toxicities. This approach is referred to as ‘adaptive RT’ or ART and 
it can be carried out in two ways: offline or online. Online ART (OART) specifically 
addresses changes that occur on the day of treatment [9]. A key step of OART is the daily 
(re-)segmentation of the relevant structures for the treatment plan, a process in which 
both the patient and the entire treatment staff are waiting while these segmentations are 
performed. Given the increased interest in OART, the clinical burden of segmentation is 
expected to increase even more in the coming years.

The second issue with manual segmentation of the tumors is that it depends on the 
observer. Inter-observer variability has been reported in a myriad of tumor sites, such as 
head and neck [10,11], esophagus [12], lung [13,14], rectum [15], or cervix [16]. Potential 
sources of this variability include, but are not limited to, the lack of clear boundaries of the 
tumor, the lack of standardized delineation guidelines or differences in experience among 
different observers. These deviations on the segmentations of the targets can affect the RT 
outcome in terms of RT-related toxicity, overall survival and local recurrence of cancer [17]. 

DEEP LEARNING FOR AUTOMATIC 
SEGMENTATION OF TUMORS IN RADIOTHERAPY 
Deep learning techniques, specifically convolutional neural networks (CNNs), are 
currently considered state of the art in computer vision tasks, including segmentation. 
Therefore, CNNs have been the preferred method in the recent years for automatically 
segmenting the structures required for RT treatment, namely the targets and the OARs. 
For the case of OARs, CNNs have already been shown to outperform previous methods 
of automatic segmentation for several anatomical sites [15–18]. Furthermore, they are 
already incorporated in the software released by several companies [22–24]. 

For the case of the targets, commercial solutions are only available to segment the CTV 
in a few cases, when it is defined as an anatomical structure, like the prostate, the head 
and neck lymph nodes or the vessels of the pelvis [24,25]. Automatic segmentation of the 
tumors is, however, still uncommon and their clinical adoption is non-existent. Promising 
results have been reported [26,27], often achieving arguably high performance (Dice 
Scores between 0.73-0.94), but the segmentations resulting from these methods still can 
be unacceptable in some of the cases. Given that the tumors receive the highest dose 
of radiation during treatment, errors in their automatic segmentation could result in 
unacceptable treatment plans for clinical practice [17].
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Typically, the set up for automatic segmentation of tumors is done in a fully supervised 
manner [26,28]. During a training phase, the CNN is shown images of different patients 
(i.e. input images) and asked to provide a segmentation of the tumor. In each training 
iteration, the proposed automatic segmentation is compared to the manual segmentation 
made by the doctors, and the error is quantified. The function that quantifies this error 
is known as loss or error function. This error function is used to modify the parameters 
of the CNN, until the proposed segmentations are similar to the manual segmentations. 
Important lines of research in the field of automatic segmentation of medical structures 
focus on finding the best input images to the network to achieve the most accurate 
segmentations [29] and determining the optimal loss functions to train the CNNs [30] . 

Another line of research related to the automatic segmentation of tumors is the automation 
of the quality assurance of the automatic segmentations. Because these segmentations 
are not yet perfect [26,28,31], they still need to be checked by physicians, which hinders 
the promise of automatic segmentations for time saving. Recently, several works have 
focused on developing uncertainty maps, that show where the CNN is uncertain about its 
predictions [32–35]. These uncertainty maps have been shown to correlate with the areas 
where the network failed [36,37], and could thereby be used to flag the segmentations 
that would require a check. 

AUTOMATIC SEGMENTATION OF TUMORS ON MRI 
Due to its superior soft tissue contrast to other image modalities, MRI is a desirable image 
modality for RT treatment planning purposes. Moreover, each MRI sequence enables 
visualization of different tissue types, even with the possibility of imaging biological and 
functional processes through quantitative MRI techniques. This level of versatility renders 
MRI a valuable imaging modality and distinguishes it from other imaging techniques like 
CT. Furthermore, the acquisition of MRI does not involve the exposure of the patient 
to ionizing energy, as opposed to CT or PET. In recent years, systems that combine a 
MRI scanner and a RT linear accelerator for RT treatment delivery have been made 
commercially available [38], such as the Elekta Unity (Elekta AB, Stockholm, Sweden) 
MR-Linac system or the ViewRay MRIdian system (Viewray Inc., Oakwood, OH). Thus, 
there is an increased interest in MRI-only pipelines for RT treatment planning.

Partly due to its relative novelty in the field of RT as main imaging modality, the research 
on automatic segmentation of tumors on MRI is even less spread than on CT or PET-CT 
[26,28]. The lack of large MRI-based datasets, which are needed to train the data-hungry 
deep learning methods, can also explain the scarcity of literature on the topic. One notable 
exception is the case of brain tumors, where MRI is the dominant image modality [39]. 
Two tumor sites that showcase the potential of MRI as main imaging modality for 
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automatic tumor segmentation are the oropharyngeal cancer, due to the high prevalence 
of soft tissue in the area; and the cervical cancer, for which MRI-guided radiotherapy is 
the standard treatment option [40].

One of the main treatment modalities for oropharyngeal cancers is RT, being indicated in 
more than 70% of the patients [41]. A challenge in RT for this tumor site is the proximity 
of many OARs, which makes the accurate segmentation of the tumor all the more critical 
to avoid potential damage to those organs. Furthermore, high interobserver variability 
has been reported for this tumor site, reaching differences in the volumes delineated by 
the different observers of up to a factor of 10 [11]. Automatic segmentation of the tumors 
is therefore a desirable solution for this tumor site [42], not only to decrease the clinical 
burden when treating this tumor but also to provide more consistent segmentations among 
different physicians or even hospitals.

Locally advanced cervical cancer is typically treated with a combination of external beam 
radiotherapy (EBRT), concomitant chemotherapy, and 3 to 4 fractions of brachytherapy 
(BT) [43]. BT consists of the placement of radioactive sources directly into or next to the 
tumor. For the case of cervical cancer, this is achieved with an applicator which is inserted 
into the patient before the BT treatment. Afterwards, the MRI images are acquired, and 
the patient must remain immobilized in bed while the necessary structures (such as target 
volumes and organs at risk) are manually segmented, and a treatment plan is devised. This 
is highly uncomfortable for the patient and logistically complex, which makes automatic 
segmentation even more critical than for other RT treatment modalities.

AIM AND THESIS OUTLINE 
Despite the versatility of MRI in visualizing anatomical structures and tumor tissue, there 
is a lack of research on automatic segmentation of tumors on MRI. Current deep learning 
methods still fail to produce accurate tumor segmentations in certain cases, particularly 
on MRI. Physicians would still need to manually review and potentially correct the 
automatic segmentations, which limits the promised time-savings and clinical applicability 
of these methods. Given the complexity of the task, we hypothesized that training a 
CNN with a considerably large dataset would achieve clinically acceptable automatic 
segmentations. However, in the medical field, gathering extensive datasets is challenging 
due to the expensive and logistically complex data acquisition process, as well as the need 
for highly skilled professionals to manually label the data. The goal of this thesis was 
to develop automatic segmentation techniques for tumors in MRI images that deliver 
clinically acceptable segmentations using clinical MRI datasets. Additionally, we aimed 
to automate the quality assurance of the automatic segmentations, thereby maintaining 
the time-saving benefits even in cases where the network fails. The different automatic 
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segmentation methods were applied in two different tasks: the automatic segmentation of 
the oropharyngeal primary tumor in multiparametric diagnostic MRI images (chapters 2 
and 3) and the automatic segmentation of the cervical cancer gross tumor volume (GTV) 
in the MRI images of the BT treatment images (chapters 4 and 5). 

In the oropharyngeal cancer segmentation task, we investigated three different strategies to 
introduce prior information in the neural network training design. Firstly, we studied the 
effect of using different anatomical MRI sequences as input to the network (Chapter 2), 
similarly to how radiologists use the different sequences to delineate the tumor themselves. 
Secondly, we investigated the use of different loss functions (Chapter 3). Finally, we 
studied the effect of reducing the context around the tumor, first by proposing a semi-
automatic approach in which human observers approximately located the tumor and a 
CNN segmented the tumor (Chapter 2) and then fully automatizing it into a two-stage 
approach, that split the task in detection and segmentation (Chapter 3). 

In the cervical cancer segmentation task, we validated the quality of the segmentations 
obtained with a state-of-the-art segmentation framework not only geometrically but also 
with dose-volume parameters and investigated whether there were differences for clinically 
relevant parameters, such as volume or tumor stage (Chapter 4). Furthermore, even though 
the proposed method performed adequately on average, the network still failed in some 
cases. We identified a metric to predict the quality of the automatic segmentations (Chapter 
5). Such a metric can potentially flag segmentations that would require a manual check 
and could therefore help with the clinical implementation of the automatic segmentation 
methods. 
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ABSTRACT 
Background and purpose 
Segmentation of oropharyngeal squamous cell carcinoma (OPSCC) is needed for 
radiotherapy planning. We aimed to segment the primary tumor for OPSCC on MRI 
using convolutional neural networks (CNNs). We investigated the effect of multiple MRI 
sequences as input and we proposed a semi-automatic approach for tumor segmentation 
that is expected to save time in the clinic. 

Materials and methods 
We included 171 OPSCC patients retrospectively from 2010 until 2015. For all patients the 
following MRI sequences were available: T1-weighted, T2-weighted and 3D T1-weighted 
after gadolinium injection. We trained a 3D UNet using the entire images and images 
with reduced context, considering only information within clipboxes around the tumor. 
We compared the performance using different combinations of MRI sequences as input. 
Finally, a semi-automatic approach by two human observers defining clipboxes around 
the tumor was tested. Segmentation performance was measured with Sørensen–Dice 
coefficient (Dice), 95th Hausdorff distance (HD) and Mean Surface Distance (MSD). 

Results 
The 3D UNet trained with full context and all sequences as input yielded a median Dice 
of 0.55, HD of 8.7 mm and MSD of 2.7 mm. Combining all MRI sequences was better 
than using single sequences. The semi-automatic approach with all sequences as input 
yielded significantly better performance (p<0.001): a median Dice of 0.74, HD of 4.6 
mm and MSD of 1.2 mm. 

Conclusions 
Reducing the amount of context around the tumor and combining multiple MRI 
sequences improves the segmentation performance. A semi-automatic approach is accurate 
and clinically feasible. 
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INTRODUCTION 
Worldwide, there are more than 679,000 new cases of head and neck cancer (HNC) 
per year and 380,000 of those cases result in death [44]. Radiotherapy (RT) is indicated 
for 74% of head and neck cancer patients, and up to 100% in some subsites [41]. Tumor 
delineation is needed for RT planning. In clinical practice, tumor contouring is done 
manually, which is time consuming and suffers from interobserver variability. Thus, 
accurate automatic segmentation is desirable.

Convolutional neural networks (CNNs) are considered the current state of the art for 
computer vision techniques, such as automatic segmentation. Specifically for tumor 
segmentation, promising results have been obtained for various tumor sites such as brain 
[45], lung [46], liver [47] and rectum [48]. 

For HNC, previous literature [49,50] focused on the segmentation of other RT-related 
target volumes rather than the primary tumor and without special focus on any particular 
HNC subsite, such as nasopharyngeal or oropharyngeal cancer. However, anatomy and 
imaging characteristics of tumors and their surrounding tissue vary greatly across subsites. 
Nasopharyngeal tumors are bounded by the surrounding anatomy and thus they present 
with lower spatial variability. Men et al [51] proposed an automatic segmentation method 
for nasopharyngeal primary tumors. To the best of our knowledge, no studies have been 
published on automatic segmentation of primary tumors in oropharyngeal squamous cell 
cancer (OPSCC). Tumors in this category are quite variable in shape, size and location 
compared to other subsites in head and neck cancer and their delineation suffers from 
high interobserver variability [11]. 

The modalities of choice in other works for HNC automatic segmentation are PET and/or 
CT [49,50]. PET presents low spatial resolution and only shows the metabolically active 
part of the tumor while CT has low soft tissue contrast. MRI is now becoming a modality 
of interest in RT and provides improved soft tissue contrast compared to other modalities, 
being better suitable for oropharyngeal tumor segmentation. In line with this, previous 
works have suggested that the use of MRI for head and neck cancer delineation provides 
unique information compared to PET/CT or CT [52].

We investigated the effect on segmentation performance of different MRI sequences 
and its combination as inputs to the model. We hypothesized that by decreasing the 
amount of context around the tumor, thereby simplifying the task, the performance of 
the segmentation model would improve. Hence, we proposed a semi-automatic approach 
in which a clipbox around the tumor is used to crop the input image. We demonstrated 
its clinical applicability by having two observers (including one radiation oncologist) 
manually selecting the clipbox. The aim of this study was to develop a CNN model for 
segmenting OPSCC on MRI images. 
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MATERIALS AND METHODS 
Data 
A cohort of 171 patients treated at our institute between January 2010 and December 
2015 was used for this project. Mean patient age was 60 (Standard deviation ± 7 years) 
and 62% of the patients were male. Further details on tumor stage and HPV status can 
be found in the Supplemental Material (table S.1). All patients had histologically proven 
primary OPSCC and pre-treatment MRI, acquired for primary staging. The institutional 
review board approved the study (IRBd18047). Informed consent was waived considering 
the retrospective design. Any identifiable information was removed. 

All MRI scans were acquired on 1.5T (n=79) or 3.0T (n=92) MRI scanners (Achieva, 
Philips Medical System, Best, The Netherlands). The imaging protocol included: 2D 
T1-weighted fast spin-echo (T1w), 2D T2-weighted fast spin-echo with fat suppression 
(T2w) and 3D T1-weighted high-resolution isotropic volume excitation after gadolinium 
injection with fat suppression (T1gd). Further details on the MRI protocols are given in 
the Supplemental Material (table S.2). The primary tumors were manually contoured in 
3D Slicer (version 4.8.0, https://www.slicer.org/) by one observer with 1 year of experience 
(P.B.). Afterwards, they were reviewed and adjusted, if needed, by a radiologist with 7 
years of experience (B.J.). All tumor volumes were delineated on the T1gd but observers 
were allowed to consult the other sequences.

For the experimental set-up, we split the data set in three subsets: training set (n=131), 
validation set (n=20) and test set (n=20). The test set was not used for training or hyper-
parameter tuning. We stratified the three subsets for tumor volume, subsite, and aspect 
ratio since these features are likely relevant for segmentation. Subsites were defined as 
tonsillar tissue, soft palate, base of tongue and posterior wall. Aspect ratio was defined as 
the ratio between the shortest and the longest axis of the tumor. All images were resampled 
to a voxel size of 0.8 mm x 0.8 mm x 0.8 mm. 

Model architecture 
The UNet architecture was chosen as the basis for our experiments because of the 
promising results on segmentation of medical structures [47,53–56]. Given the 3D nature 
of the images, we chose a 3D UNet as the architecture in this work [53,57]. We used 
Dice as loss function [58], the Adam optimizer [59] and early stopping. Dropout and data 
augmentation were used for regularization. Further details on the training procedure can 
be found in the Supplemental Material (Tables S.3. and S.4.).
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Fully automatic approach 
We trained the 3D UNet using the full 3D scans. We studied the effect of incorporating 
multiple MRI sequences into the training by introducing the available MRI sequences 
as input channels. Five networks were trained for the following MRI sequences and 
combinations thereof: T1w, where the tumor is hypo-intense but homogeneous; T2w, 
where the tumor is hyper-intense; T1gd, since the tumor presents with clearer boundaries; 
combining T1gd and T2w, and combining all sequences together (T1gd, T2w and T1w), 
to explore all the available information. 

Semi-automatic approach 
We proposed a semi-automatic approach in which we trained the networks with only the 
information within a clipbox around the tumor instead of with the full image as input. 

During training, the clipbox was computed from the tumor delineations. First, the 
bounding box was calculated (i.e. the minimal box around the tumor). Then, random 
shifts of up to 25 mm were applied to all of the six directions to make clipboxes of different 
sizes and allow off-centered positioning of the tumors. We considered that shifts of more 
than 25 mm would represent unrealistic errors during clipbox selection. Examples of 
inputs possibly seen by the network are shown in Figure 1. 

To study the clinical feasibility of this semi-automatic approach, two human observers were 
asked to manually select a clipbox around the tumor for each test set patient. The clipboxes 
were selected using 3D Slicer on the T1gd with access to the other sequences. The first 
observer (P.B.) had delineated the tumors two years earlier. The second observer was a 
radiation oncologist with 16 years of experience (A.A.) and had no information about 
the tumor delineations. To mitigate the risk of the observers defining too small clipboxes, 
cropping the tumor, the clipboxes were dilated 5 mm so as to ensure that they encompass 
the tumors. We consider it unlikely that a human observer would crop the tumor by more 
than 5 mm. 



20

Chapter 2 

Figure 1. Original MRI image with the manual segmentation (green) of the oropharyngeal tumor. 
The blue boxes are the bounding boxes of the tumor. The rest of the boxes are used as inputs to the 
network during training. 

Experiments 
For the fully automatic approach, the performance of the networks trained with different 
sequences (T1w, T2w, T1gd, T1gd/T2w, and all sequences combined) was compared for 
the patients on the separate test set. 

Because of memory constraints, scans were resized to a lower resolution by a factor of 
~2.5 to 1.9 mm x 1.9 mm x 1.9 mm. Thus, even the smallest tumors were seen by the 
network. As a control experiment, to assess the impact of the resulting loss of resolution, 
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we additionally trained a 2D UNet with full resolution axial slices. We checked for 
significant differences in performance of both approaches. 

For the semi-automatic approach, one network was trained with all the sequences as input. 
The results with the clipboxes of the two observers were compared to the fully automatic 
approach experiment when combining all sequences as input (baseline). 

To evaluate the robustness of the semi-automatic approach to off-centered tumors inside 
the clipboxes, we presented the trained model with increasingly shifted versions of the 
clipboxes, starting from the bounding box. The artificially induced shifts were applied 
in the 6 possible directions of the clipbox and expressed as two metrics: the centroid 
displacement and the relative difference in clipbox diagonal length before and after the 
shifts. 

Statistics 
To confirm that the three subsets were balanced in subsite, volume and aspect ratio, we 
used a Kruskal-Wallis test for continuous variables (volume and aspect ratio) and a chi-
square test for independence for the categorical data (subsite). 

Automatic contours were compared against the delineations from the human experts 
using common segmentation metrics: Sørensen–Dice coefficient (Dice), 95th Hausdorff 
Distance (HD) and Mean surface distance (MSD), implemented using the Python package 
from DeepMind (https://github.com/deepmind/surface-distance). Differences among 
experiments were assessed by the Wilcoxon signed-ranked test. P-values below 0.05 were 
considered statistically significant. Statistical analyses were performed with the SciPy 
package (version 1.1.0) and Python 3.6. Other relevant libraries can be found in the 
Supplemental Material (Table S.5.). The code is publicly available and can be found in: 
https://github.com/RoqueRouteiral/oroph_segmentation.git

RESULTS 
Summary of tumor characteristics 
Tumor characteristics (location, volume and aspect ratio) of our cohort are described in 
Table S.6. No significant differences were found in the distributions of subsite, volume 
and aspect ratio between the training, validation and test sets. 

Fully automatic approach 
As shown in Figure 2,  combining all MR sequences resulted in the best performance, 
with a median Dice of 0.55 (range 0-0.78), median 95th HD of 8.7 mm (range 2.8-84.8 
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mm) and median MSD of 2.7 mm (range 1.0-26.8 mm), and the least variability among 
patients. The control experiment showed that by training a 2D UNet with full resolution 
scans the results were not significantly better than when using its 3D counterpart (Table 
S.7). 

Figure 2. Segmentation performance in terms of Dice, 95th HD and MSD for the 3D. The different 
boxes show different MRI sequences as input: T1w(T1 weighted), T2w (T2 weighted), T1gd (T1 3D 
after gadolinium injection), T1gd and T2w (T1 3D after gadolinium injection and T2 weighted) and 
combining all sequences (All). The box includes points within the interquartile range (IQR) while 
the whiskers show points within 1.5 times the IQR. 

Semi-automatic approach 
In figure 3, it is observed that the semi-automatic approach using the boxes of the first 
observer achieved a median Dice score of 0.74 (range 0.32-0.80), HD of 4.6 mm (range 
2.2 mm – 10.5 mm) and MSD of 1.2 mm (range 0.6 mm- 2.9 mm). For the second 
observer, the network achieved a median Dice score of 0.67 (range 0.28 – 0.87), HD of 
7.2 mm (range of 3.0 mm – 19.9 mm) and MSD of 1.7 mm (range of 0.9 mm – 4.9 mm). 

The semi-automatic approach significantly outperformed the fully automatic approach 
in all of the metrics for the first observer (p<0.001) and in Dice and MSD for the second 
observer (p<0.01). These results were expressed for 19 out of the 20 patients in the test 
set (also for the fully automatic approach - equivalent to “All’ in figure 2), as one of the 
observers did not detect one of the tumors when asked to draw the clipbox. 

The average time to draw the boxes was of 7.5 minutes per patient for the first observer 
and 2.8 minutes for the second observer. 
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Figure 3. Segmentation performance of the semi-automatic approach with boxes drawn by two 
human observers. We compare the semi-automatic results (Ob 1 and Ob 2) to the fully automatic 
approach (baseline, Full). The box includes points within the interquartile range (IQR) while the 
whiskers show points within 1.5 times the IQR. Significance is represented as one star (*) for p<0.01 
and two stars(**) for p<0.001. 

Robustness to shifts 
Figure 4 shows the segmentation performance of the network trained for the semi-
automatic approach as a function of the artificially induced shifts applied to the tumor 
within the clipbox. For centroid displacements below 20 mm and diagonal length 
differences of between 25 mm and 60 mm the Dice was consistently greater than 0.70, 
the HD was lower than 6.5 mm and the MSD was lower than 1.7 mm. 

Figure 4. Robustness analysis. Segmentation performance in terms of median Dice, 95th HD and 
MSD for the semi-automatic approach as a function of the tumor centroid displacement and the 
clipbox diagonal length difference. The grey areas correspond to undetermined values due to the 
geometric constraints (i.e. no combination of shifts can achieve those values of centroid displacement 
and diagonal length difference). 
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Qualitative results 
Figures 5a and 5b show examples in which the shape of the semi-automatic approach 
output and ground truth segmentation agreed while the fully automatic approach 
oversegmented (a) or undersegmented (b) the tumor. Figure 5c shows a case where the 
segmentation by the network trained with the fully automatic approach showed a similar 
shape to the ground truth segmentation but there were additional false positive volumes 
on the image. 

Figure 5. Comparison of the oropharyngeal segmentations in three different patients (a, b, c) trained 
with the fully automatic approach (red), with the semi-automatic approach (blue) and the manual 
delineation (green). The yellow boxes are the boxes drawn by the observer. 

DISCUSSION 
It was shown that using multiple MRI sequences yielded better results compared to using 
a single sequence as input. We also showed that decreasing the amount of context given 
to the CNN improved the segmentation performance. Finally, we proposed a functional 
semi-automatic approach that outperformed the fully automatic baseline and that was 
robust to clipbox selection errors, suggesting its potential clinical applicability. 

Our network resulted in worse performance in terms of Dice compared to other tumor 
sites as reported by Sahiner et al [60], where the authors provide a comparison of CNN 
segmentations for different tumor/lesions (Dices: 0.51-0.92). However, lower performance 
for oropharyngeal tumor segmentation is consistent with what is known about the inter-
observer variability for this subsite: Blinde et al [11] have shown differences in volume 
of up to 10 times among observers when segmenting OPSCC on MR, indicating the 
complexity of this task even for human observers. In this study, the mean Dice between 
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our observers was 0.8. However, this number is an overestimation of the interobserver 
variability, considering that one of the observers corrected the other’s delineation.

No significant differences were found between training the network with full context 
in 3D compared to its 2D counterpart. This shows that reducing the resolution due to 
memory constrains in the 3D case is not critical for the segmentation performance when 
the full image is used as input. 

When restricting the context, the network outperformed significantly the full context 
approach for all metrics. This means that local textural differences between tumor and 
immediate surrounding tissues are sufficient for delineation. 

Using clipboxes drawn by human observers demonstrates the feasibility of a semi-
automatic approach for OPSCC primary tumor segmentation. Additionally, these boxes 
were drawn by two independent observers with different backgrounds and levels of 
expertise, suggesting that the method is not highly sensitive to the observer. This is 
supported by the results of our robustness analysis, which showed that when training 
with shifted versions of the clipbox, the networks were fairly robust to these shifts. More 
concretely, the network was robust centroid displacements below 20 mm and diagonal 
length differences of between 25 mm and 60 mm, which we consider a fair estimate of 
the maximum error an observer can make when selecting the clipbox. 

A fully manual segmentation can take from 30 minutes to almost 2 hours (depending 
on the shape and size of the tumor), The average time between our two observers for the 
semi-automatic approach can take an average of 5 minutes (average of our two observers). 
Although after the proposed semi-automatic approach, some manual adaptations may be 
needed by a radiation oncologists to make the contours clinically acceptable, the overall 
process is expected to be less labor-intensive. Additionally, in the clinic it would be possible 
to use software designed to draw the clipboxes faster. Consequently, a functional semi-
automatic system is not only feasible in terms of segmentation performance but also 
relevant for speeding up the radiotherapy workflow. 

There are limitations in this study. First, given the high interobserver variability of OPSCC 
delineation, we are likely training the network with imperfect ground truths. However, we 
palliated the possible errors on the delineations by having the second observer correcting 
the first observer’s delineation. Secondly, we used a standard 3D UNet in our studies. 
Despite the extensive literature on deep learning architecture modifications, investigating 
the best architecture for this task is outside of our scope. Thirdly, our results would need 
validation with an independent cohort in a multi-center study. Furthermore, the scan 
protocols were not standardized in our dataset. Arguably, that makes the network robust 
to such differences (e.g. TR/TE), given that the network has learnt from a diverse dataset. 
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Finally, our work can still be improved by adding other MRI sequences into the training 
(such as DWI) or by fully automatizing our semi-automatic approach, but we leave that 
as future work. 

There is an increasing interest in the literature about differences on the tumors depending 
on their HPV status. According to Bos et al. [61], HPV positive tumors present on 
MRI post contrast with rounder shapes, lower maximum intensity values, and texture 
homogeneity. One strength of our work is that we include both HPV positive and HPV 
negative tumors in the training set, making the networks able to segment both subtypes 
of OPSCC. To check that the network is not biased to the HPV status, we compared the 
performance of the network stratified per HPV status and found non-significant results. 
We also did not find any relationship between performance and size.

In conclusion, this is the first study of primary tumor segmentation in the OPSCC site on 
MRI images with CNNs to the best of our knowledge. We trained a standard 3D UNet 
architecture using full MRI images as input. We showed that combining MRI sequences 
is beneficial for OPSCC segmentation with CNNs. Additionally, the CNN trained 
with reduced context around the tumor outperformed the fully automatic baseline and 
approaches that of other tumor sites reported in the literature. Hence, our proposed semi-
automatic approach can save time in the clinic while achieving competitive performance 
and being robust to the choice of observer and manual clipbox selection errors. 
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SUPPLEMENTAL MATERIAL

Table S.1. Tumor stage and HPV status. 

N patients (percentage in %)
Tumor staging

T1 27 (15.79)
T2 64 (37.43)
T3 42 (24.56)
T4 38 (22.22)

N-stage
N0 34 (19.88)
N1 26 (15.20)
N2 107 (62.57)
N3 4 (2.33)

Subsite
Tonsillar tissue 96 (56.14)
Soft palate 16 (9.36)
Base of tongue 55 (32.16)
Posterior wall 4 (2.34)

HPV status
Positive 73 (42.69)
Negative 76 (44.44)
Unknown 22 (12.87)

Table S.2. Overview of MRI sequences. The MRI sequences are 2D T1 weighted (T1w), 2D T2 
weighted with fat suppression (T2w) and 3D T1 weighted after gadolinium injection with fat sup-
pression (T1gd). 

TR (ms) TE (ms) Pixel size (mm) Slice thickness (mm)
T1w 180-892 2.3-10 0.417- 0.9375 3-5
T2w 1963-6880 20-90 0.417- 0.9 3-5
T1gd 4.3-10 1.7-4.6 0.197- 0.976 0.8-1
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Training details 

Table S.3. 3D UNets – For full, reduced context and semi-automatic approach. 

Hyper-parameter / set-up
Optimizer Adam
Loss function Dice
Initial learning rate 0.001
Learning rate scheduler Multiply by 0.5 if validation loss does not decrease in 

ten epochs by an amount of 0.001
Batch size 1*

(*Batch normalization with running mean and 
variance during inference time, because of stability 
issues during training with batch size of 1)

Dropout 0.2 in bottleneck convolutions
Data augmentation (only full context) Horizontal flip (in coronal view) with a chance of 0.5 

in every epoch.
Random elastic deformation Using elasticdeform 
library (https://github.com/gvtulder/elasticdeform)
Random rotations between -10 and 10 degrees in 
every epoch.

Table S.4. Control experiment with 2D UNet. Hyper-parameter / set up. 

Hyper-parameter / set-up
Optimizer Adam
Loss function Dice
Initial learning rate 0.001
Learning rate scheduler Multiply by 0.5 if validation loss does not decrease 

in ten epochs by an amount of 0.001
Batch size 16
Dropout 0.2 in bottleneck convolutions
Data augmentation Horizontal flip (in coronal view) with probability of 

0.5 in every epoch.

Random elastic deformation using the elasticdeform 
library (https://github.com/gvtulder/elasticdeform)

Random rotations between -10 and 10 degrees in 
every epoch.

Given the differences in histograms of the axial 
slices, the images were preprocessed by whitening 
and normalization. All zero slices were removed 
from the 2D dataset
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Table S.5. Library versions. 

Library/Application Version
Python 3.6.5
Pytorch 0.4.1
Cuda 9.2

Table S.6. Overview of tumor characteristics per data set. 

Training set Validation set Testing set p-value
Patients (n) 131 20 20
Subsite 0.700
   Tonsillar tissue 76 (58%) 10 (50%) 10 (50%)

Soft palate 10 (8%) 3 (15%) 3 (15%)
Base of tongue 41 (31%) 7 (35%) 7 (35%)
Posterior wall 4 (3%) 0 (0%) 0 (0%)

Volume (cm3) 0.553
   
   

Median 6.93 7.33 6.87
Range [0.27,67.2] [0.51, 41.7] [0.46, 17.17]

Aspect ratio (%) 0.589
   
   

Median 52.22 53.87 54.77
Range [17.68 , 90] [41.47, 64.36] [47.63, 84.25]

Table S.7. Control experiment with 2D UNet. Median values of the segmentation metrics for the 
control experiment done with 2D UNet and full resolution axial slides as input. P values refer to 
the comparison with the 3D network trained with full context and with all sequences. P value for 
significance after Bonferroni correction: p<0.0041. The MRI sequences are 2D T1 weighted (T1w), 
2D T2 weighted with fat suppression (T2w) and 3D T1 weighted after gadolinium injection with 
fat suppression (T1gd). 

Full context 2D Dice (p-value) HD [mm] (p-value) MSD [mm] (p-value)
T1gd 0.51 (0.08) 25.48 (0.07) 3.53 (0.19)
T2w 0.45 (0.04) 22.54 (0.005) 3.92 (0.025)
All 0.62 (0.49) 7.93 (0.55) 2.13 (0.16)
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ABSTRACT 
Background and purpose 
Contouring of the oropharyngeal primary tumor is currently done manually which is 
time-consuming. Autocontouring techniques based on deep learning methods are a 
desirable alternative, but these methods can render suboptimal results when the structure 
to segment is considerably smaller than the rest of the image. The purpose of this work was 
to investigate different strategies to tackle the class imbalance problem in this tumor site. 

Materials and methods 
A cohort of 230 oropharyngeal cancer patients treated between 2010 and 2018 was 
retrospectively collected. The following magnetic resonance imaging (MRI) sequences 
were available: T1-weighted, T2-weighted, 3D T1-weighted after gadolinium injection. 
Two strategies to tackle the class imbalance problem were studied: training with different 
loss functions (namely: Dice loss, Generalized Dice loss, Focal Tversky loss and Unified 
Focal loss) and implementing a two-stage approach (i.e. splitting the task in detection and 
segmentation). Segmentation performance was measured with Sørensen–Dice coefficient 
(Dice), 95th Hausdorff distance (HD) and Mean Surface Distance (MSD). 

Results 
The network trained with the Generalized Dice Loss yielded a median Dice of 0.54, 
median 95th HD of 10.6 mm and median MSD of 2.4 mm but no significant differences 
were observed among the different loss functions (p-value > 0.7). The two-stage approach 
resulted in a median Dice of 0.64, median HD of 8.7 mm and median MSD of 2.1 mm, 
significantly outperforming the end-to-end 3D U-Net (p-value < 0.05). 

Conclusions 
No significant differences were observed when training with different loss functions. 
The two-stage approach outperformed the end-to-end 3D U-Net. 
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INTRODUCTION 
Radiotherapy is one of the common treatment options for head and neck cancer patients 
[4,41]. One key step of the radiotherapy workflow is tumor contouring. While contouring 
of organs at risk is increasingly being automated in clinical practice, tumor contouring is 
still done manually. This is time consuming and suffers from high interobserver variability 
[11]. 

Deep learning methods, particularly Convolutional Neural Networks (CNNs), are the 
current state of the art for automatic segmentation of medical images. Several review papers 
have been published on deep learning applied to radiotherapy and automatic segmentation 
is often discussed as one of the main applications [31,60,62,63]. For the particular case of 
head and neck cancer, various works have focused on the automatic segmentation of organs 
at risk with deep learning [64], some of them achieving clinically acceptable performance 
and being commercially available [18]. For the case of tumor contouring, the literature is 
more scarce and those algorithms are still not implemented in the clinic.   

In our previous work [65], we segmented the oropharyngeal primary tumor on magnetic 
resonance imaging (MRI) and showed that combining multiple anatomical MRI sequences 
improved the segmentation performance compared to single-sequence. We also proposed 
a semi-automatic approach that improved the segmentation performance by splitting the 
segmentation task in manual detection and segmentation. To the best of our knowledge, 
there is only one other work where the authors segmented the oropharyngeal primary 
tumor on MRI [42]. The authors studied the impact of combining different anatomical 
(T1 weighted and T2 weighted) and quantitative images (ADC, Ktrans and ve) as input 
channels to a CNN and showed that combining anatomical sequences significantly 
improved the performance. 

A known issue in the field of deep learning for medical image segmentation is class 
imbalance, meaning that the structure to be segmented is present in a smaller amount 
of voxels compared to the rest of the image. Class imbalance can result in suboptimal 
solutions because the network is exposed to proportionally less relevant information during 
the training process. Several works in the field of medical image segmentation have focused 
on this problem, either by modifying the input data to the network [66,67] or by defining 
different loss functions [68–70]. This problem is even more critical in the case of tumor 
segmentation, given that tumors tend to be smaller than other structures and they are 
heterogeneous in their location, shape and size. This is also the case for the oropharyngeal 
primary tumor. 

Several loss functions have been designed with the aim of tackling class imbalance, such 
as the Generalized Dice loss [58],the Focal loss [68], the (focal) Tversky loss [69,71] and 
the Unified Focal loss [70]. Although the choice of the loss function can be critical for 
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the training of a CNN, comprehensive loss function comparisons for specific tumor sites 
or anatomies are not commonly performed. Ma et al. [30] showed that the influence in 
performance of the loss function varies greatly depending on the segmentation task. To the 
best of our knowledge, this has not been studied yet in the particular case of oropharyngeal 
cancer segmentation.

Other works have implemented two-stage approaches (i.e. detection and segmentation) 
that resulted in more accurate segmentations than their one-stage counterparts [72–74]. 
By locating the tumor first, the context around the tumor is reduced. Consequently, 
two-stage approaches are a possible way of tackling class imbalance. The semi-automatic 
approach from our previous work [65] consisted of having human observers outlining a box 
around the tumor to provide a first approximation of the tumor location and consequently 
ease the segmentation task. However, the semi-automatic approach still needed manual 
intervention. The implementation of a two-stage approach will also allow us to fully 
automate the semi-automatic approach proposed in our previous work [65]. 

The aim of this study was to investigate two different strategies for tackling the class 
imbalance problem for oropharyngeal primary tumor segmentation: training with different 
loss functions and implementing a fully automatic two-stage approach. 

MATERIALS AND METHODS 
Data 
A cohort of 230 patients treated at our institute between January 2010 and May 2018 
was used for this project. The mean age of the patients was 61 years (standard deviation 
± 7 years) and 66 % of the patients were male. Further details on tumor stage and 
HPV status can be found in the Supplemental Material (table S.1). All patients had 
histologically proven primary oropharyngeal squamous cell carcinoma and received a pre-
treatment MRI for primary staging. The institutional review board approved the study 
(IRBd18047). Informed consent was waived by the institutional review board considering 
the retrospective design. The cohort was extended from our previous work [65]. A total 
of 59 new patients were included. 

The scans were acquired on 1.5T (n=108) or 3.0T (n=122) MRI scanners (Philips Medical 
System, Best, The Netherlands). The imaging protocol included: 2D T1-weighted fast 
spin-echo, 2D T2-weighted fast spin-echo with fat suppression, 3D T1-weighted high-
resolution isotropic volume excitation after gadolinium injection with fat suppression 
Further details on the MRI protocols are given in the Supplemental Material (table S.2). 
The primary tumors were manually contoured in 3D Slicer (version 4.8.0, https://www.
slicer.org/) by one observer with 1 year of experience (P.B. or H.H.). Afterwards, they 
were reviewed and adjusted, if needed, by a radiologist with 7 years of experience (B.J.). 
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All tumor volumes were delineated on the T1gd but the observers were allowed to consult 
the other sequences. 

For the experimental set-up, the data set was split in three subsets: a training set (n=190), 
a validation set (n=20) and a test set (n=20). The test set was not used for training or 
hyper-parameter tuning. We stratified the three subsets for tumor volume, subsite, and 
aspect ratio since these features are likely relevant for segmentation. Subsites were defined 
as tonsillar tissue, soft palate, base of tongue and posterior wall. The aspect ratio was 
defined as the ratio between the shortest and the longest axis of the tumor. All images 
were resampled to a voxel size of 0.8 mm x 0.8 mm x 0.8 mm. 

Baseline model architecture 
The 3D U-Net architecture [53,57] was used as the basis for our experiments. The Adam 
optimizer [59] and early stopping were used for training. Dropout and data augmentation 
were used for regularization. Further details on the training procedure can be found in table 
S.4. and in the code which is publicly available in: https://github.com/RoqueRouteiral/ 
oroph_segm_ts.

Training with different loss functions. 
We trained the 3D U-Net with four different loss functions: Dice loss [75], Generalized 
Dice loss[58], Focal Tversky loss [71] and Unified Focal loss [70]. For the particular case 
of the Unified Focal loss, Yeung et al. [70] showed that the choice of the γ hyperparameter 
can affect the performance. Consequently, we trained four networks with the Unified Focal 
loss for different values of its hyperparameter γ (γ = [0.2, 0.4, 0.6, 0.8]). We compared the 
segmentation performance of all the networks among each other. 

Two-stage approach 
In our previous work, we demonstrated that the segmentation of the oropharyngeal 
primary tumor was more accurate when the input image was manually cropped with a 
clipbox around the tumor before being fed to a segmentation network. 

In this work, we fully automated this two-stage approach (figure 1). The first stage 
consisted of roughly detecting the tumor by automatically selecting a clipbox around it. 
In the second stage, this clipbox was used to crop the image which was then used as input 
to a segmentation network. The loss function chosen for both stages was the Generalized 
Dice loss function. The loss was backpropagated through each network separately. 
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Figure 1. Overview of the two-stage approach. 

For the detection stage, a 3D U-Net was trained using the bounding box of the tumor 
as ground truth. At inference time, the output of the detection was computed as the 
bounding box of the output. 

For the segmentation stage, the same architecture as in our previous work was used [65]. 
This segmentation network was trained with only the information contained inside the 
clipboxes. In every training iteration, the clipboxes were randomly shifted by an amount of 
up to 25 mm in different directions to make the network robust to possible displacements 
in the detection. At inference time the input images were cropped by the clipboxes defined 
by the detection network. Similarly to our previous work, the clipboxes were dilated by 
5 mm. 

Statistics 
To confirm that the three subsets were balanced in subsite, volume and aspect ratio, a 
Kruskal-Wallis test was used for continuous variables (volume and aspect ratio) and a 
chi-square test for independence for the categorical data (subsite). 

Predicted segmentations and the segmentations from the human observers were compared 
for the patients on the unseen test set. Common segmentation metrics were used: Sørensen–
Dice coefficient (Dice), 95th Hausdorff Distance (HD) and Mean surface distance (MSD). 
The metrics were implemented using the Python package from DeepMind (https://github.
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com/deepmind/surface-distance). For the two-stage approach, the detection was evaluated 
by measuring the absolute mean shift in all 6 directions between the tumor bounding box 
and the detected clipbox for the patients on the unseen test set. The average shift of the 
boxes for the observers from our previous work was used for comparison [65]. Differences 
among the loss function experiments were assessed by the Friedman test whereas the two-
stage approach experiments were assessed by the Wilcoxon signed-ranked test. P-values 
below 0.05 were considered statistically significant. 

All networks were retrained four times. Reported results are the mean of the results of the 
four versions of each network. We opted for this approach over N-fold cross-validation to 
account for the random initialization of the network while ensuring proper stratification 
in the three sets for all the folds. 

RESULTS 
Summary of tumor characteristics 
Table S.3 shows the tumor characteristics (location, volume and aspect ratio) of our cohort. 
No significant differences were found in the distributions of subsite, volume and aspect 
ratio between the training, validation and test sets. 

Training with different loss functions 
When comparing the performance of the networks trained with different loss functions no 
significant differences were found (p-value > 0.25 for the three metrics). Lower variance 
in the MSD and Dice can be observed for the network trained with the Generalized Dice 
loss (figure 2). The network achieved a median Dice of 0.54, median 95th HD of 10.6 mm 
and median MSD of 2.4 mm. Non-significant differences were observed when training 
the network with different γ values for the Unified Focal loss (Figure S.1). 
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Figure 2. Segmentation performance of the 3D U-Net trained with different loss functions: Dice Loss 
(DL), Generalized Dice Loss (GDL), Tversky Loss (TVL) and Unified Focal Loss (UFL). 

Two-stage approach 
The mean shift for the detection network was of 8.9 mm (Table 1) and no significant 
differences were found when comparing to the detection of observer 2 from our previous 
work (p-value = 0.40). Significant differences were found when comparing the detection 
of this work to the detection of the observer 1 from out previous work (p-value<0.001). 
When separating the mean shift per direction, we observed a mean shift of 10.0 mm in 
the cranial-caudal direction, 8.4 mm in the medial-lateral direction and 7.7 mm in the 
dorsal-ventral direction. 

Table 1. Detection and segmentation performance of the two-stage approach and comparison to 
results of the previous work [65]. 

Detection Segmentation
Avg. shift (mm) – 
[SD]

Dice HD (mm) MSD (mm)

This work
3D end-to-end UNet -- 0.54 10.6 2.4
Two-stage approach 8.7 [8.2] 0.64 8.7 2.1

Previous work
Semi-automatic 
approach (Obs. 1)

3.0 [3.9] 0.74 4.6 1.2

Semi-automatic 
approach (Obs. 2)

8.9 [6.9] 0.67 7.2 1.7
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The segmentation results of the two-stage approach were significantly better for Dice 
(p-value = 0.03) and MSD (p-value = 0.02) than the results of the end-to-end 3D UNet 
(Table 1). The fully automated two-stage approach yielded a median Dice of 0.64, median 
HD of 8.7 mm and median MSD of 2.1 mm. One patient was missed in the detection 
of the two-stage approach for one of the folds, and thus removed from that fold for the 
analysis. 

Qualitative results 
Examples of segmentations obtained by the end-to-end 3D U-Net, the two-stage approach 
and ground truth segmentation are shown in Figure 3. The end-to-end 3D U-Net 
approach oversegmented (Figure 3a-c) the tumor, where the two-stage approach showed 
better segmentation comparison to the ground truth. Figure 3b shows cases where the 
segmentation end-to-end 3D U-Net rendered additional false positive structures on the 
image. 

Figure 3. Comparison of the oropharyngeal segmentations in three different patients (a, b, c) trained 
with the end-to-end 3D U-Net (red), with the two-stage approach (blue) and the manual delineation 
(green). The yellow boxes are drawn by detection network from the two-stage approach. All the images 
correspond to the 3D T1gd sequence. 

DISCUSSION 
This work investigated two different strategies to tackle the class imbalance problem for 
the task of oropharyngeal primary tumor segmentation: training with the different loss 
functions and implementing a two-stage approach. Additionally, the proposed two-stage 
approach fully automated the semi-automatic approach described in our previous work 
[65].
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When training the networks with different loss functions, no significant improvements were 
observed in the segmentation metrics. Hyperparameter tuning for the γ hyperparameter 
of the Unified Focal loss did not yield significantly better results either. This result is 
consistent with the work of Ma et al. [30], where they concluded that Dice-related losses 
are often optimal for medical image segmentation tasks. Additionally, it is also in line 
with the conclusions described by Isensee et al. and their proposed “no new Net” (nnU-
Net) [76]. They showed that a tailored-to-task method configuration is more relevant than 
specific setup choices when designing a segmentation deep learning pipeline.

The two-stage approach achieved significantly better results compared to the conventional 
end-to-end approach. The high complexity of the task may make the end-to-end training 
of the network suboptimal, while focusing on two simpler tasks can render better results. 
In our previous work [10], a semi-automatic approach in which an observer selected a 
clipbox around the tumor was implemented. When comparing the current detection 
results to the semi-automatic approach of our previous work, we noted that one of the 
observers (Obs. 1) selected a tighter box (although all the tumors were included inside 
the clipboxes) compared to that of our two-stage approach which resulted in significantly 
different detection performance. However, we did not observe significant differences with 
the detection performance of the semi-automatic approach for the other observer (Obs. 
2), showing that a fully automatic two-stage approach can be a feasible alternative to a 
semi-automatic approach. Also, the time spent on delineating in the clinical practice is 
aimed to be as low as possible. We reported in our previous work that the time spent on 
drawing the boxes was lower for observer 2 than for observer 1, making the delineations of 
observer 2 a more realistic representation of what is expected in the clinic. In the present 
work, the whole pipeline is automated, which can save time in the clinic. That said, further 
efforts in improving the detection are of interest to improve the segmentation performance 
of the two-stage approach. 

The literature on automatic segmentation for the oropharyngeal tumor on MRI is scarce 
and its aims are heterogeneous. Besides our previous work [65], only Wahid et al. [42] 
have focused on the segmentation of this tumor site on MRI. Their work focused on 
studying the value of multiparametric MRI on the segmentation performance, both for 
qualitative and quantitative imaging.  Other works focused on the automatic segmentation 
on multiparametric MRI of the head and neck cancer in general, rather than on the 
particular subset of oropharyngeal cancer: Bielak et al. [77] used diffusion weighted 
imaging while Schouten et al.[78] proposed a multiview CNN architecture. To the best of 
our knowledge, only our work is focused on tackling the class imbalance problem for head 
and neck cancer segmentation on MRI, and particularly for the oropharyngeal subsite.

In 2020, the first head and neck tumor segmentation challenge, known as HECKTOR 
challenge, was launched [79]. The main subsite of the challenge was the oropharyngeal 
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tumor and the winner of the challenge achieved a mean Dice of 0.76, but the image 
modalities used were PET/CT. Additionally, Ren et al. [80] compared the use of PET/
CT/MRI as different input image combinations for the automatic segmentation of head 
and neck GTV and observed that, when including PET, the segmentation performance 
improved. Considering all the above, it is possible that PET is a useful modality for the 
task of head and neck tumor segmentation. However, the differences in resolution between 
imaging modalities may be reflected in the detail of the manual ground truth delineations 
used for training and evaluation. Potentially, this can also explain the difference in 
performance of the MRI-based task. That said, we argue that the strategies to tackle class 
imbalance in this work can be useful in the development of autocontouring tools for the 
case of oropharyngeal cancer.

This study has limitations. Firstly, there is a high interobserver variability on this tumor 
subsite, especially in case of tonsillar fossa and base of tongue tumor which are rich in 
lymphatic tissue, so it is possible that the ground truth delineations used in this work are 
partially biased. However, one observer corrected the other’s delineation, reducing this 
observer variation. Secondly, validation of our results is still needed with an independent 
cohort in a multi-center study. Thirdly, the performance could also be improved by 
making different decisions on the training setup, such as using larger batch sizes or non 
downsampled data, but other strategies to mitigate memory limitations would be needed. 
Finally, there is a certain variability in the scan protocols. However, variability in the 
training set can be desirable as it makes the network robust to protocol differences. 

In conclusion, the loss functions designed to tackle class imbalance performed comparably 
among each other. The approach of splitting the problem into localization and segmentation 
outperformed the end-to-end network, proving an effective strategy to mitigate the class 
imbalance problem in oropharyngeal cancer segmentation. 
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SUPPLEMENTAL MATERIAL 

Table S.1. Tumor stage and HPV status. 

N patients (percentage in %)
Tumor staging

T1 38 (16.52)
T2 85 (36.96)
T3 52 (22.61)
T4 55 (23.91)

N-stage
N0 44 (19.13)
N1 33 (14.35)
N2 149 (64.78)
N3 4 (1.74)

Subsite
Tonsillar tissue 121 (52.61)
Soft palate 21 (9.13)
Base of tongue 80 (34.78)
Posterior wall 8 (3.48)

HPV status
Positive 106 (46.09)
Negative 101 (43.91)
Unknown 23 (10.0)

Table S.2. Overview of MRI sequences. The MRI sequences are 2D T1 weighted (T1w), 2D T2 
weighted with fat suppression (T2w), 3D T1 weighted after gadolinium injection with fat suppression 
(T1gd). 

TR (ms) TE (ms) Pixel size (mm) Slice thickness (mm)
T1w [180 – 890] [2 - 10] [0.4 – 0.9] [3.0 – 5.0]
T2w [2500 – 16000] [20 – 90] [0.4 – 0.9] [3.0 – 5.0]
T1gd [4 – 10] [2 – 5] [0.2– 1.0] [0.8 – 2.0]
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Table S.3. Overview of tumor characteristics per data set. *p-value was calculated using chi-square 
test. ** p-value was calculated using Kruskal-Wallis test  

Training set Validation set Testing set p-value
Patients (n) 190 20 20
Subsite 0.757*
   Tonsillar tissue 93 (53.2 %) 10 (50.0 %) 10 (50.0 %)

Soft palate 14 (7.90 %) 3 (15.0 %) 3 (15.0 %)
Base of tongue 63 (34.7 %) 7 (35.0%) 7 (35.0 %)
Posterior wall 7 (4.20 %) 0 (0 %) 0 (0 %)

Volume (cm3) 0.465**
   
   

Median  7.54 7.40 6.88
Range [0.23,71.54] [0.51, 41.6] [0.46, 17.20]

Aspect ratio (%) 0.350**
   
   

Median 52.17 53.54  55.61
Range [ 16.21, 90.67] [41.53, 64.35] [47.47, 84.28]
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Table S.4. Training details of the networks of the paper. 

Hyper-parameter / set-up
Optimizer Adam
Loss function Dice Loss / Unified Focal Loss/ Generalized Dice 

Loss/ Focal Tversky Loss
Initial learning rate 0.001
Learning rate scheduler Multiply by 0.5 if validation loss does not decrease 

in ten epochs by an amount of 0.001
Batch size 1*

(*Batch normalization with running mean and 
variance during inference time, because of stability 
issues during training with batch size of 1)

Dropout 0.2 in bottleneck convolutions
Data augmentation (only full context) Horizontal flip (in coronal view) with a chance of 

0.5 in every epoch.
Random elastic deformation Using elasticdeform 
library (https://github.com/gvtulder/elasticdeform)
Random rotations between -10 and 10 degrees in 
every epoch.
Downsampled by a factor of 2.5

Shifts (only second stage of two-stage approach) For second stage of the training of the two stage 
approach, random shifts of the tumor within the 
box of up to 25 mm.

Figure S.1. Segmentation performance of the network trained with Unified Focal Loss for different 
values of γ. 
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ABSTRACT 
Background and purpose 
Segmentation of the Gross Tumor Volume (GTV) is a crucial step in the brachytherapy 
(BT) treatment planning workflow. Currently, radiation oncologists segment the GTV 
manually, which is time-consuming. The time pressure is particularly critical for BT 
because during the segmentation process the patient waits immobilized in bed with the 
applicator in place. Automatic segmentation algorithms can potentially reduce both 
the clinical workload and the patient burden. Although deep learning based automatic 
segmentation algorithms have been extensively developed for organs at risk, automatic 
segmentation of the targets is less common. The aim of this study was to automatically 
segment the cervical cancer GTV on BT MRI images using a state-of-the-art automatic 
segmentation framework and assess its performance. 

Materials and Methods 
A cohort of 195 cervical cancer patients treated between August 2012 and December 
2021 was retrospectively collected. A total of 524 separate BT fractions were included and 
the axial T2-weighted (T2w) MRI sequence was used for this project. The 3D nnU-Net 
was used as the automatic segmentation framework. The automatic segmentations were 
compared with the manual segmentations used for clinical practice with Sørensen–Dice 
coefficient (Dice), 95th Hausdorff distance (95th HD) and mean surface distance (MSD). 
The dosimetric impact was defined as the difference in D98 (ΔD98) and D90 (ΔD90) 
between the manual segmentations and the automatic segmentations, evaluated using the 
clinical dose distribution. The performance of the network was also compared separately 
depending on FIGO stage and on GTV volume. 

Results 
The network achieved a median Dice of 0.73 (interquartile range (IQR) = 0.50 - 0.80), 
median 95th HD of 6.8 mm (IQR = 4.2 – 12.5 mm) and median MSD of 1.4 mm (IQR 
= 0.90 - 2.8 mm). The median ΔD90 and ΔD98 were 0.18 Gy (IQR = -1.38 – 1.19 Gy) 
and 0.20 Gy (IQR =-1.10 – 0.95 Gy) respectively. No significant differences in geometric or 
dosimetric performance were observed between tumors with different FIGO stages, however 
significantly improved Dice and dosimetric performance was found for larger tumors. 

Conclusions 
The nnU-Net framework achieved state-of-the-art performance in the segmentation of the 
cervical cancer GTV on BT MRI images. Reasonable median performance was achieved 
geometrically and dosimetrically but with high variability among patients. 
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INTRODUCTION 
For locally advanced cervical cancer the standard of care consists of external beam 
radiotherapy (EBRT), followed by 3 to 4 fractions of brachytherapy (BT) and concomitant 
chemotherapy [43]. A key step in both EBRT and BT treatment planning is the 
segmentation of organs at risk and target volumes. This is mostly performed manually, 
which is time consuming and suffers from the inherent bias of the observer. To circumvent 
these issues, automatic segmentation is being widely investigated in the field of radiotherapy 
[31,60,63]For the case of BT, the need for automatic segmentation is even more critical 
due to the time constraints of the workflow. At each fraction of BT treatment, the 
applicator is inserted surgically in the patient, after which the MRI images are acquired. 
The patient then needs to wait, immobilized in bed, while the needed structures (namely 
organs at risk and target volumes) are manually delineated and a treatment plan is made. 
The Gynecological (GYN) GEC-ESTRO working group defines the target volumes of 
interest for BT treatment planning for this cervical cancer as the Gross Tumor Volume 
(GTV), the high risk Clinical Target Volume (HR-CTV) and the intermediate risk 
Clinical Target Volume (IR-CTV) [81] and they are currently segmented by radiation 
oncologists. Automatic image segmentation methods are expected to reduce the clinical 
workload as well as patient burden.

Automatic segmentation of the targets volumes is still uncommon and it is mostly limited 
to positron emission tomography (PET) and/or computed tomography (CT) and rarely 
to magnetic resonance imaging (MRI) [9]. For the particular case of cervical cancer on 
BT images, automatic segmentation of the organs at risk has been widely investigated 
[20,26,82–84] but literature on the automatic segmentation of the targets, and especially 
the GTV, is more scarce [82–84]. Zhang et al. [84] and Wong et al. [83] developed 
automatic segmentation tools that segmented the HR-CTV (on CT and MRI images, 
respectively) but to the best of our knowledge, only Yoganathan et al. [82] have studied the 
automatic segmentation of the gross tumor volume (GTV) on BT MRI images. While they 
demonstrated that automatic segmentation of the GTV is possible in principle, the cohort 
was rather small with only 39 patients, resulting in a relatively weak performance with 
Sørensen–Dice coefficients (Dice) between 0.57 to 0.62. Furthermore, the segmentation 
architectures used in their project were based on the ResNet50 architecture[85], which is 
no longer considered state of the art.

A current state-of-the-art framework for the automatic segmentation of medical structures 
is the nnU-Net (‘no-new-U-Net’) [76]. The nnU-Net is a deep learning-based framework 
which automatically configures the parameters needed for training. It has been shown to 
outperform other approaches on 23 public datasets used on segmentation competitions. 
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The aim of this study was to assess the quality of the automatic segmentations of the 
cervical cancer GTV on BT MRI images. We used two methods to determine to what 
extent the automatic segmentations corresponded to the clinical segmentations performed 
by an expert radiation oncologist. First, the geometrical correspondence of the automatic 
and expert delineation was determined using Dice Similarity Coefficient (Dice), 95th 
Hausdorff Distance (95th HD) and mean surface distance (MSD). Then, to find if 
the observed geometrical differences between the delineations would have dosimetric 
consequences, we determined dose-volume parameters D90 and D98 for the automatic 
and expert delineations using the clinical dose distribution. 

MATERIALS AND METHODS 
Data 
A cohort of 195 histologically proven cervical cancer patients treated in our institution 
between August 2012 and December 2021 was retrospectively collected. The average 
age was 53 (standard deviation of 15 years) and tumor stage ranged from IB to IV 
according to the International Federation of Gynecology and Obstetrics (FIGO) staging 
[86]. The treatment consisted of external beam radiotherapy (156 patients with 23 x 2 
Gy and 39 patients with 25 × 1.8 Gy) followed by BT (3 x 7 Gy) and combined with 
chemotherapy (cisplatin 40 mg/m2, weekly). The institutional review board approved the 
study (IRBd20276). Informed consent was waived considering the retrospective design.

A total of 524 separate BT fractions were included in this work. For each BT fraction, 
MRI images of the patient with applicator in place were acquired using a 1.5T (104 scans) 
or 3T (442 scans) Philips Medical Systems MRI scanner. Axial T2-weighted (T2w) turbo 
spin-echo images were used (TR =[3500-13300 ms], TE = [100 - 120 ms]) with a pixel 
spacing of 0.39 mm x 0.39 mm (442 scans) or 0.63 mm x 0.63 mm (104 scans) and a 
slice thickness of 3 mm. The GTV, as segmented for treatment planning by a radiation 
oncologist on each available MRI, was available as ground truth. 

The data set was split into three subsets at the patient level: training set (117 patients, 314 
images), validation set (39 patients, 104 images) and test set (39 patients, 106 images). 
The three subsets were stratified according to FIGO stage [86], because it is a relevant 
clinical parameter used to describe gynecological tumors.

Network architecture and training procedure 
The nnU-Net framework was used in this work. This framework automatically configures 
the parameters needed for preprocessing, network architecture and training for each 
specific task. The loss function was a combination of the Dice loss [75] and cross entropy 
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loss. We used the stochastic gradient descent (SGD) optimizer with learning rate scheduler 
and early stopping based on the validation loss as criterion to choose the best model. 
Dropout, data augmentation and weight decay were used as regularization techniques. 
Further details on the training procedure can be found in the Additional file 1 (available 
online: https://static-content.springer.com/esm/art%3A10.1186%2Fs13014-023-02283-8/
MediaObjects/13014_2023_2283_MOESM1_ESM.docx) .

Experiment overview 
The automatic segmentations were compared to the manual segmentations of the GTV that 
were performed by a radiation oncologist for treatment planning for the patients on the 
separate test set. The automatic segmentations were compared to the manual segmentations 
using common segmentation metrics: Dice, 95th HD and MSD, which were implemented 
using the Python package by DeepMind (https://github.com/deepmind/surface-distance). 
The segmentation results were additionally compared among patients with different FIGO 
stage and GTV volume. For the volume analysis, the patients of the test set were allocated 
to four volume ranges containing the same number of images in each bin.

Attention maps were computed for four different examples to highlight which parts of 
the input image were relevant for the network to decide on a segmentation. The attention 
maps were then qualitatively compared to the binary segmentations to investigate if the 
over-/under-segmentations of the network were on specific areas, therefore highlighting 
anatomically challenging regions. The attention maps were defined as the activations of 
the last layer of the nnU-net (i.e. before binarizing). 

To assess if the differences between the automatic segmentations and manual segmentations 
would result in differences in dose-volume parameters, we calculated the D98 and the 
D90 for both segmentations on the clinical dose distribution used for the treatment. These 
dose parameters were chosen in accordance with the Embrace II guidelines [1]. The values 
for the manual segmentations represent the actual treatment parameters for the patients. 
The dosimetric impact of using automatically segmented structures was defined as the 
difference between these parameters compared to the clinical values (ΔD90 and ΔD98). 
The dosimetric impact was also reported as a relative measure by dividing the absolute 
difference on the dose parameters by the dose parameter on the manual segmentation 
(ΔD90rel and ΔD98rel). The dosimetric results were also compared for patients with 
different FIGO stage and GTV volume. 

Statistics 
The chi-square test for independence was used to confirm that the training, validation and 
test sets were balanced in terms of FIGO stage. The Kruskal-Wallis H test was used to 
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assess differences among patients of different FIGO stage and GTV volume. If significant 
differences were found, Dunn’s test with Bonferroni correction was used for the post-hoc 
analysis. A p-value of 0.05 was considered statistically significant. The SciPy Python 
package (version 1.5.4) and Python 3.9 were used for the statistical analysis. 

RESULTS 
Patients’ characteristics of our cohort are described in Table 1. No significant differences 
were found in the distributions of FIGO stage or volume among the training, validation 
and test sets. The results are shown for 105 out of the 106 cases of the test set. The remaining 
case corresponded to a patient that had her uterus removed which resulted in a deviating 
anatomy unseen by the trained network. 

Table 1. Patients’ characteristics in the training, validation and test sets. 

Training Validation Test
Total 117 39 39
Age (years)

Mean 53 52 56
Standard deviation 14 15 17

FIGO stage
FIGO I 12 (10.2 %) 6 (15.4 %) 6 (15.4 %)
FIGO II 70 (59.8 %) 22 (56.4 %) 22 (56.4 %)
FIGO III 21 (18.0 %) 8 (20.5 %) 8 (20.5 %)
FIGO IV 9 (7.7 %) 3 (7.7 %) 3 (7.7 %)
Unknown 5 (4.3 %) 0 0

Volume at first BT fraction
Less than 2.8 cc 22 (18.8 %) 8 (12.8 %) 5 ( 20.5 %)
between 2.8 and 4.3 cc 7 (6.0 %) 7 (17.9 %) 7 (17.9 %)
between 4.3 and 12.1 cc 53 (42.3 %) 12 (30.8 %) 13 (33.3 %)
More than 12.1 cc 35 (29.9 %) 12 (30.8 %) 14 (35.9 %)

Histopathological type
Squamous cell carcinoma 97 (82.9 %) 31 (79.5 %) 33 (84.6 %)
Adenocarcinoma 16 (13.7 %) 6 (15.4 %) 4 (10.3 %)
Adeno-squamous cell 
carcinoma

(0.9 %) 1 (2.6 %) 1 (2.6 %)

Non specified/unknown 3 (2.5  %) 1 (2.5 %) 1 (2.5 %)
External beam radiotherapy scheme

23 x 2 Gy 95 (81.2 %) 29 (74.4 %) 32 (82.0%)
25 × 1.8 Gy 22 (18.8 %) 10 (25.6 %) 7 (18.0 %)
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The network achieved a median Dice of 0.73 (interquartile range (IQR) = 0.50 - 0.80), 
median 95th HD of 6.8 mm (IQR = 4.2 mm - 12.5 mm) and median MSD of 1.4 mm 
(IQR = 0.9 mm - 2.8 mm). When stratifying for FIGO stage (Figure 1 - top) no significant 
differences were found among the different subgroups. When comparing for GTV volume 
(Figure 1 - bottom) significant differences were found for the case of Dice (p-value < 0.001) 
but not for the distance-based metrics. 

Figure 1. Geometric comparison by FIGO stage (top) and by volume (bottom). Segmentation per-
formance in terms of Dice, 95th HD and MSD and stratified by FIGO stage (I-IV) and volume. 
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Four examples of automatic segmentations are shown in Figure 2 (a,c,e,g) with the 
corresponding attention maps (Figure 2-b,d,f,h). Even though the network under-/over-
segmented the GTV for the last three cases (Figure 2-c,e,g), the error was in the area 
surrounding the applicator which is an area that is irradiated anyway. In the case 2c, the 
applicator was segmented by the network but not by the clinician while in the cases 2e 
and 2f, the clinicians segmented the applicator but the network did not. Furthermore, the 
attention map highlighted the undersegmented area of the last case (Figure 2h), meaning 
that the network looked at that area when deciding the segmentation. 

The median D90 and D98 received by the manually segmented GTV were 12.5 Gy (IQR 
= 11.1 – 15.5 Gy) and 10.6 Gy (IQR = 9.4 – 13.1 Gy), respectively, in line with Embrace 
guidelines and the GYN GEC-ESTRO recommendations [87]. The resulting ΔD90 and 
ΔD98 were 0.18 Gy (IQR = -1.38 – 1.19 Gy) and 0.20 Gy (IQR = -1.10 – 0.95 Gy), 
respectively. The median ΔD90rel and ΔD98rel relative differences were 9.6 % (IQR = 4.2 
- 19.28%) and 8.8 % (IQR = 0.15 - 92.5 %), respectively. When stratifying for FIGO stage  
(Figure 3 - top), no significant differences were observed among the different subgroups 
per FIGO stage. When comparing the results for GTV volume (Figure 3 - bottom), a 
significantly reduced ΔD90 and ΔD98 (p-value < 0.01) was found between the smaller 
tumors (0.3 - 2.8 cc) and the largest tumors (12.1 – 52.9 cc).
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Figure 2. Qualitative results and attention maps. (Left) Examples of the automatic contours (pink) 
and the manual clinical contour (green) on four different patients. (Right) The corresponding attention 
maps for the same patients. The examples are sorted by decreasing Dice. 
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Figure 3. Dosimetric comparison by FIGO stage (top) and by volume (bottom). Dosimetric impact 
in terms of ΔD90 and ΔD98 stratified by FIGO stage (I-IV) and volume.

DISCUSSION 
In this study we investigated the performance of a state-of-the-art automatic framework 
to segment the cervical cancer GTV on brachytherapy MR images. We used a cohort of 
patients that for their treatment were segmented manually by a radiation oncologist and 
compared these manual segmentations to the automatic segmentations. The comparison 
was performed geometrically and the impact of differences between automatic and manual 
delineations on dose-volume parameters of the clinical dose distribution was evaluated. 



57

4

Deep learning for segmentation of the cervical cancer 

We achieved improved geometric performance when compared to previously published 
literature and automatic segmentations yielded a ΔD90 and ΔD98 of less than 0.25 Gy. 
No significant differences in geometric and dosimetric performance were observed when 
comparing for FIGO stage. When comparing per volume, decreased performance was 
observed for smaller tumors both for the Dice coefficient and dosimetrically. 

To the best of our knowledge, only Yoganathan et al. [82] studied the automatic 
segmentation of cervical cancer GTV on brachytherapy images. In their work, they 
implemented and compared four different CNNs for the segmentation of the targets and 
organs at risk. The geometric performance of our model was considerably higher than what 
the authors obtained with the models trained with the axial T2w sequence (Dice: 0.56, 
95th HD 9.7 mm). Their models were based on the ResNet and Inception architectures, 
while we use the nnU-Net, currently the state-of-the-art architecture for medical image 
segmentation. Additionally, we used a larger cohort. 

We observed that the median relative ΔD90rel and ΔD98rel were lower than 10%. 
Hellebust et al. [88] showed that the relative ΔD90 between different observers was 9.4% 
for the GTV, meaning that the average difference dosimetric difference between observers 
is comparable to using the automatic segmentation tool. However, in some of the cases the 
dosimetric difference was large. These large differences in dosimetric performance can be 
partially explained by the marked steepness of the brachytherapy dose distributions, which 
results in that small geometric errors can lead to large differences in dose parameters. 

When comparing the results per FIGO stage, no significant differences were found between 
the different FIGO stages for neither the geometric nor the dosimetric comparisons. 
A priori, we would have expected the performance to be different between tumors of 
different FIGO stages because FIGO stage is an important clinical parameter to describe 
gynecological tumors. One possible reason is that the FIGO stage is defined at the time 
of diagnosis and consequently does not take into account the regression of the tumor 
during the external beam radiotherapy treatment, potentially reducing the differences 
between FIGO stages. On the other hand, when stratifying per GTV volume, significant 
differences were found for the Dice and for the dosimetric comparisons. For the Dice, the 
explanation can be rather trivial, because the Dice is defined as the overlap between the 
two structures and it therefore favors the bigger structures. However, for the dosimetric 
impact, larger tumors had lower ΔD90 and ΔD98, and less variability, which suggests 
that smaller tumors may require more accurate automatic segmentation methods than 
larger tumors. 

This work has the following limitations. Firstly, even though our cohort includes a large 
amount of patients, patients from only one center were included and fewer patients 
were included for FIGO I and IV. A multi-center validation study is therefore desirable. 
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Secondly, the GTV segmentations used for training and evaluation were manually 
segmented for clinical practice with the treatment plan in mind, meaning that although 
the segmentations were clinically acceptable, they may contain geometric errors. These 
geometric errors could potentially lead the network to reproduce these errors and 
therefore partially bias our geometric analysis. However, we presented the results in terms 
of dosimetric impact as well and showed that the dosimetric impact of the automatic 
segmentations is comparable to that derived from the interobserver variability. Finally, the 
scope of this work was limited to the GTV automatic segmentation while the HR-CTV 
and the IR-CTV are also needed for treatment planning. The definition of those structures 
is intrinsically related to the information of the image before external been radiotherapy 
(5 weeks before BT) and not only to the information present in the BT image. Therefore 
in this work we focused solely on the structure that can be found in the BT image. 

In this study we evaluated a state-of-the-art framework for the automatic segmentation 
of the cervical cancer GTV. The quality of the automatic segmentations improved with 
respect to previously published works. The automatic segmentations yielded similar dose-
volume parameters as the manual segmentations used clinically and differences were 
comparable to the interobserver variability reported in literature. 



59

4

Deep learning for segmentation of the cervical cancer 



  



Chapter 5 
A network score-based metric to optimize the 
quality assurance of automatic radiotherapy 
target segmentations 

Rodríguez Outeiral R, Ferreira Silvério N, González PJ, Schaake EE, Janssen T, van der 
Heide UA, Simões R. 

Phys Imaging Radiat Oncol. 28. (2023) 



62

Chapter 5 

ABSTRACT 
Background and purpose 
Existing methods for quality assurance of the radiotherapy auto-segmentations focus on 
the correlation between the average model entropy and the Dice Similarity Coefficient 
(DSC) only. We identified a metric directly derived from the output of the network and 
correlated it with clinically relevant metrics for contour accuracy. 

Materials and Methods 
Magnetic Resonance Imaging auto-segmentations were available for the gross tumor 
volume for cervical cancer brachytherapy (106 segmentations) and for the clinical target 
volume for rectal cancer external-beam radiotherapy (77 segmentations). The nnU-Net’s 
output before binarization was taken as a score map. We defined a metric as the mean 
of the voxels in the score map above a threshold (λ). Comparisons were made with the 
mean and standard deviation over the score map and with the mean over the entropy map. 
The DSC, the 95th Hausdorff distance, the mean surface distance (MSD) and the surface 
DSC were computed for segmentation quality. Correlations between the studied metrics 
and model quality were assessed with the Pearson correlation coefficient (r). The area under 
the curve (AUC) was determined for detecting segmentations that require reviewing. 

Results 
For both tasks, our metric (λ=0.30) correlated more strongly with the segmentation quality 
than the mean over the entropy map (for surface DSC, r>0.65 vs. r<0.60). The AUC was 
above 0.84 for detecting MSD values above 2 mm. 

Conclusions 
Our metric correlated strongly with clinically relevant segmentation metrics and detected 
segmentations that required reviewing, indicating its potential for automatic quality 
assurance of radiotherapy target auto-segmentations. 
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INTRODUCTION 
Target segmentation is a crucial part of the radiotherapy (RT) workflow. In clinical 
practice, this step is typically done manually by radiation oncologists, which is time 
consuming and suffers from inter- and intra- observer variability. In particular in online 
adaptive treatment settings, the time pressure is high because both the patient and the 
staff involved in the RT treatment are waiting while the segmentations are performed. 
With the aim of saving time in the clinic, automatic segmentation algorithms based on 
convolutional neural networks have been investigated for gross tumor volumes (GTVs) 
in a variety of tumor sites, such as brain [89,90], head and neck [42,65,80], rectum [48] 
and cervix [82,91]; and clinical target volumes (CTVs) such as cervical cancer CTV [92] 
and prostate cancer CTV [93,94].

Although segmentation algorithms are reaching a reasonable performance [27,31,95], 
they still produce faulty segmentations in some cases. To identify whether automatically 
generated segmentations are acceptable for clinical use, it is necessary for a clinician to 
verify them. This limits the time gains of automatic segmentation methods. Therefore, 
there is a need to recognize automatically in which cases the automatic segmentations 
need correction. In the context of RT, automatic quality assurance (QA) of the automatic 
segmentations is a topic of interest nowadays, as showcased in recent reviews [96,97]. 

Deep learning networks for auto-segmentation typically predict a score that correlates 
with the probability that a voxel belongs to the structure to be segmented. Only at the 
last step, voxel scores are thresholded into a binary segmentation mask. These score maps 
are often converted into uncertainty maps by applying the entropy operator [32,33,98]. 
It has been shown qualitatively that incorrect areas of the automatic segmentations cover 
areas of high network entropy [36,37,99]. Once an entropy map is computed, the mean 
over all the voxels [32,33,98] is often used as a metric for QA of auto-segmentations. 
Alternatively, a common approach for QA of auto-segmentations consists of developing 
machine learning models that directly predict segmentation quality [100,101]. 

Up to now, the QA metrics are typically correlated only with the Dice Similarity 
Coefficient (DSC) [32–34,36,102]. Although DSC is a common metric of segmentation 
performance, it presents several drawbacks. By construction, it is volume-dependent since 
it overestimates the performance for large structures. Additionally, it has been shown to 
correlate poorly with clinically relevant endpoints in RT planning, such as dose/volume 
metrics [103] and the expected editing time [104]. Distance-based metrics, such as the 
95th Hausdorff distance (95th HD), the mean surface distance (MSD) and the surface 
DSC, suffer less from these drawbacks and are recommended to be reported together 
with the DSC [104,105].  
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We hypothesize that the commonly used entropy operator may overshadow relevant 
information that is contained in the score maps. The aim of this study was to identify a 
quality metric that can be generated directly from the output of the network, and which 
correlates with clinically relevant distance-based metrics. We additionally assessed the 
capability of the proposed metric to identify automatic segmentations that would need 
review. 

MATERIALS AND METHODS 
Data 
Two cohorts were retrospectively collected and used in this study. One cohort consisted 
of a total of 195 histologically proven cervical cancer patients treated in our institution 
between August 2012 and December 2021. Further details on patient characteristics and 
their treatment are described in Table S1. The institutional review board approved the 
study (IRBd20276). Informed consent was waived considering the retrospective design 
of the study. 

A total of 524 separate MRI images of the patients with the brachytherapy applicator in 
place were included in this work. These images were acquired using a 1.5T (104 scans) 
or 3T (442 scans) Philips MRI scanner. Axial T2-weighted (T2w) turbo spin-echo images 
were used (TR =[3500-13300 ms], TE = [100-120 ms]) with a pixel spacing of 0.39 mm x 
0.39 mm (442 scans) or 0.63 mm x 0.63 mm (104 scans) and a slice thickness of 3 mm. 
The GTV, as segmented for treatment planning by a radiation oncologist on each available 
MRI, was available as ground truth. 

The other cohort used in this study consisted of a total of 30 patients with intermediate 
risk or locally advanced rectal cancer treated in our institution. Further details on patient 
characteristics are described in Table S2. All patients in the study were enrolled in the 
Momentum prospective registration study (NCT04075305) and gave written informed 
consent for the retrospective use of their data.  

For this cohort, a total of 483 EBRT images were considered. All the fractions were carried 
out on the Unity MR-Linac (Elekta AB, Stockholm). Axial T2-weighted (T2w) turbo 
spin-echo images were used (TR=1300 ms, TE=128 ms) with a pixel spacing of 0.57 mm 
x 0.57 mm (349 images) or 0.87 mm x 0.87 mm (134 images) and a slice thickness of 
1.20 mm (155 images), 1.8 mm (134 images) or 2.4 mm (194 images). In our institution, 
the radiation therapists (RTTs) have been trained and certified to segment the CTV for 
the MRI-guided online adaptive RT workflow of the rectal cancer treatment. Therefore, 
the CTV used as ground truth was segmented by a RTT on each available MRI for clinical 
practice. The CTV segmentations were also verified by a radiation oncologist with over 
10 years of experience. 
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Segmentation framework and training scheme. 
In previous studies, we used the nnU-Net framework [76] to segment the cervical cancer 
GTV [91] and the rectal cancer mesorectum CTV [106]. In the current work, we used 
a 5-fold cross validation scheme to retrain the networks and assess the robustness of the 
quality metrics to changes in the training set composition. The training sets were the same 
as those described in previous articles [91,106], with 156 patients (418 images) for the 
cervical cancer cohort and 25 patients (406 images) for the rectal cancer cohort. For both 
cohorts, the 3D variant of the nnU-Net was used.

Score map definition. 
The score map was defined as the voxelwise softmax scores of the last layer of the network 
of the target segmentation channel before binarization (as depicted in Figure 1). This 
strategy was chosen because it can be applied to any trained network without requiring 
changes to the architecture or training procedure. 

Input image

Score map Output segmentation

(with the clinical contour)(without the clinical contour)

Score-based metrics Segmentation metrics

>0.5

Figure 1. Workflow of the study design. 

The score maps were created for the test sets described in previous studies [91,106], which 
included 39 patients (106 images) for the cervical cancer cohort and five patients (77 
images) for the rectal cancer cohort. We further subdivided these sets at the scan level into 
a validation set for parameter optimization and a final test set for evaluating the quality 
metrics. For the cervical cancer GTV segmentation task, the final validation and test sets 
each included 53 images. The analyses were done for 52 out of the 53 cases of the test set. 
The remaining case corresponded to a patient who had her uterus removed which resulted 
in a variation in anatomy unseen by the trained network. The final validation and test sets 
for the rectal cancer CTV segmentation task included 39 and 38 images, respectively. Note 
that the term “score maps” is referred to as “attention maps” in our previous work [91].

Score-based metrics. 
We defined a metric (High Score or HiS metric) as the mean of the score map values that 
were higher than a threshold λ. By thresholding the score map and retaining only the 
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high score voxels, we aimed to remove information that is unimportant for the flagging 
of potentially incorrect segmentations, as very low values on the score map are expected 
both in correct and incorrect segmentations. 

The mean and the standard deviation (STD) were computed over the non-zero values of 
the score map to represent the overall score and its variability, respectively. Additionally, 
the mean over the entropy map was computed for direct comparison with other studies 
[32–34,98]. 

For each value of λ, the difference in correlation with respect to the performance of the 
mean over all values of the score map (i.e. λ=0) was determined. The optimal value of λ 
was determined empirically as the value at which the HiS correlated best with the MSD 
in the validation set, in the range (0,0.45) with steps of 0.05. The MSD was chosen to 
determine the optimal threshold because it is a distance-based metric and therefore more 
suitable for RT applications (unlike the DSC), it evaluates the whole contour (unlike the 
95th HD, which focuses on the gross errors) and it has no hyperparameters (unlike the 
surface DSC). 

Statistics 
The correlation between the metrics and the segmentation performance was assessed 
with the Pearson correlation coefficient (r) and with the Spearman correlation coefficient. 
To check the assumption of linearity for Pearson, residual plots were computed. To study 
the robustness of each metric to the training set composition, the correlations were 
computed separately for the score maps resulting from each of the five training folds. 
The mean and the standard deviation of the r were computed over all folds.  

To assess the capability of the metrics to distinguish between segmentations that 
require reviewing and those that can be left unchecked, the area under the curve (AUC) 
was determined for detecting segmentations that exceeded a specified MSD or 95th 
HD threshold. The code and additional training details are available in: github.com/
RoqueRouteiral/his_qa. 
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RESULTS 
For both segmentation tasks and for the four segmentation metrics, the largest improvement 
of the proposed HiS metric with respect to the mean (Δr) occurred for λ<0.10, as depicted 
in Figure 2. Moreover, for λ>0.10, Δr remained fairly stable. For the case of the MSD, the 
largest correlations were found for λ=0.35 and λ=0.25 for the cervical and rectal cancer 
target segmentation tasks, respectively. We took the average between these two values, 
λ=0.30, in the subsequent analyses. The computed residual plots (Figure S1) show that the 
points were randomly scattered around the horizontal axis, confirming the assumption of 
linearity between the performance metrics and the HiS. 

Figure 2. Difference in Pearson correlation coefficient (Δr) with the segmentation metrics between 
the HiS metric and the mean over the score map as a function of the parameter λ. The bold line is the 
average Δr among the five folds. The dashed lines represent the Δr for each of the five folds. 

Table 1 shows the correlation between the studied metrics and the segmentation quality 
metrics for the test sets of both cohorts. For the segmentations of the cervical cancer GTV, 
the HiS achieved a mean r of 0.79 with DSC, -0.60 with 95th HD, -0.66 with MSD and 
0.67 with surface DSC. For the segmentations of the rectal cancer CTV, the HiS yielded 
a mean r of 0.76 with DSC, -0.53 with 95th HD, -0.74 with MSD and 0.62 with surface 
DSC. For both tasks, the HiS correlated more strongly with the segmentation quality 
metrics than the rest of the score-based metrics. The only exception was the STD in the 
case of the cervical cancer task, which correlated as strongly as the HiS and the surface 
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DSC. The HiS also correlated more strongly with all the segmentation metrics for both 
tasks with the Spearman correlation coefficient (Table S3). 

Table 1. Pearson correlation coefficients (mean ± standard deviation among folds) between the metrics 
and the segmentation performance metrics. Bold letters indicate the highest correlation among the 
different metrics. 

DSC 95th HD MSD Surface DSC
Cervical cancer cohort

Mean 0.72 ± 0.10 -0.53 ± 0.16 -0.57 ± 0.13 0.60 ± 0.1
STD 0.68 ± 0.06 -0.53 ± 0.14 -0.64 ± 0.13 0.70 ± 0.1
Mean (over entropy map) 0.43 ± 0.14 -0.38 ± 0.09 -0.43 ± 0.11 0.43 ± 0.15
HiS (λ = 0.30) 0.79 ± 0.05 -0.60 ± 0.13 -0.66 ± 0.10 0.67 ± 0.06

Rectal cancer cohort
Mean 0.60 ± 0.03 -0.42 ± 0.10 -0.61 ± 0.06 0.50 ± 0.08
STD -0.32 ± 0.11 0.22 ± 0.18 0.35 ± 0.15 -0.27 ± 0.17
Mean (over entropy map) -0.74 ± 0.06 0.47 ± 0.08 0.69 ± 0.07 -0.58 ± 0.09
HiS (λ = 0.30) 0.76 ± 0.08 -0.53 ± 0.07 -0.73 ± 0.09 0.62 ± 0.10

As an illustration, Figure 3 shows the scatter plots between the HiS metric and the 
segmentation metrics obtained in one of the five folds of the trained auto-segmentation 
networks. Note that the range of HiS values is task-dependent and the values are therefore 
not directly comparable between the two tasks. Figure 4 illustrates the segmentations 
and score maps with one example from each auto-segmentation task. For the cervical 
cancer case (Figure 4, left), the HiS metric was relatively high for this cohort (HiS=0.76). 
Indeed, the segmentation performance was high (MSD=0.78 mm), with the main error 
at the location of the applicator channel. For the rectal cancer example (Figure 4, right), 
the HiS value was relatively low for this cohort (HiS=0.89). This case corresponded to a 
target that was oversegmented by the network, resulting in poor performance (MSD=3.6 
mm), as expected. 
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Figure 3. Scatter plots between the segmentation metrics and the HiS metric for the cervical cancer 
cohort (top) and the rectal cancer cohort (bottom). The translucent band corresponds to the 95 % 
confidence interval for the estimated regression, computed via bootstrap. 

Figure 4.  Examples of the segmentations and the correspondent score maps for a cervical cancer case 
(left, HiS = 0.76) and a rectal cancer case (right, HiS = 0.89).  The input images for the segmentation 
framework, the ground truth segmentation (green) and the automatic segmentation (pink) are de-
picted on the top row. The corresponding score maps are depicted on the bottom row. The blue line 
encompasses the voxels for which the score values are higher than λ = 0.3.
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The capability of the studied metrics to detect segmentations that require reviewing is 
illustrated in Figure 5, which shows the AUC for detecting segmentations that exceed 
varying MSD and 95th HD threshold values. The proposed HiS metric achieved higher 
AUC values than the other baselines metrics for most MSD and 95th HD values, for both 
auto-segmentation tasks. In particular, for the cervical cancer cohort, the AUC varied 
between 0.82 and 0.94 for detecting cases for MSD values above 1 mm. For the rectal 
cancer cohort, the AUC varied between 0.84 and 0.99 for detecting cases with an MSD 
above 2 mm. 

Cervical cancer cohort

Rectal cancer cohort

Figure 5. AUC for detecting segmentations exceeding a specified MSD (left) or 95th HD (right). 

For each task, the AUC was reported between the minimum and maximum values of 
the obtained MSD and 95th HD over all folds, because the sensitivity and specificity are 
only defined in these ranges. For the cervical cancer task, these ranges were 0.4 mm to 7.0 
mm for the MSD and 2.6 mm to 22.5 mm for the 95th HD. For the rectal cancer task, 
the ranges were 1.2 to 3.0 mm for the MSD and 4.8 mm to 17.8 mm for the 95th HD. 
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DISCUSSION 
In this work we proposed a simple metric based on the network output for automatic 
QA of auto-segmentations of RT target volumes. This metric averages all score values 
above a threshold of 0.3. We showed that it correlated strongly with the segmentation 
performance metrics for two different auto-segmentation tasks. The correlations were 
strong not only for the DSC but also for the more clinically relevant distance-based 
metrics. Our proposed metric outperformed the often used mean value of the entire 
entropy map in the distinction between segmentations that require reviewing and those 
that can be used without an extra manual check. 

The strongest correlations between the proposed metric and the segmentation performance 
occurred for λ values above 0.1, suggesting that the lowest score values are not very 
representative of the segmentation performance. Furthermore, it was observed that the 
choice of λ was not critical for values above 0.2. 

Despite the high correlations between the proposed metric and the segmentation quality, 
similar HiS values corresponded to a large range of values on the segmentation quality 
metrics, suggesting that the HiS might not always be an accurate surrogate of the 
segmentation performance. Other works have shown similar behavior in their correlation 
plots [33,100]. The aim of this metric, however, is to flag cases that need reviewing, not to 
predict the segmentation performance. This was demonstrated with the high AUC values 
achieved by the metric. 

Previous studies have qualitatively related the uncertain areas with the segmentation 
errors [36,99]. Metrics that show qualitatively where the local edits should be performed 
could aid clinicians during editing and should therefore be investigated in future work. 
We speculate that the proposed metric could also be used to select the voxels that are more 
likely wrong in the segmentation. From our results, we can infer that voxels from the score 
map that are below the λ=0.10 threshold did not contribute to the correlation with the 
segmentation performance. This suggests that those voxels are not relevant for a potential 
correction. Clinicians could then use this information as an aid to edit the segmentation.

Pearson’s correlation coefficient has been used in previous works to study the correlation 
between the segmentation performance and QA metrics [34,102]. Its application assumes 
linearity between the two variables. Furthermore, outliers can skew its evaluation. 
To confirm the validity of our results, we computed the Spearman correlation coefficient, 
which does not assume linearity and is more robust to outliers. The HiS metric still 
correlated more strongly than the other score-based metrics.

The STD showed strong correlations with the MSD, but only for the cervical cancer GTV 
segmentation task. For rectal cancer, the correlation was much lower and importantly 
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also changed sign. A similar behavior was observed for the mean over the entropy map, 
commonly used in literature. This metric showed strong correlations for the rectal cancer 
segmentation task, but for the cervical cancer GTV the correlations were poor for the 
segmentation metrics and also changed sign. Therefore, these metrics appear to be less 
robust for QA. Tumors (like the cervical cancer GTV) are more heterogeneous in size, 
shape and texture than anatomical structures (like the rectal cancer CTV, or mesorectum). 
Uncertainties in tumor auto-segmentation networks are likely more prominent than those 
of auto-segmentation networks of anatomical structures. This may explain the difference 
in behavior of the metrics across the two tasks. Previous works have mostly focused 
on segmentation tasks with arguably lower uncertainty, such as the segmentation of 
anatomical structures [36,100] or the segmentation of brain tumors [32,33]. 

Although most studies propose using the average of the entire entropy map, other works 
[32,102] have trained models to automatically predict the DSC coefficient directly from 
the entropy maps, thereby incorporating the metric definition into the learning task. 
Learning-based metrics can be more generic than the pre-specified average, but they are 
also less interpretable and therefore might be less desirable for QA purposes. 

Recent literature has focused on other methods for computing the score maps, such as 
Monte Carlo dropout [32,33,107], which averages the scores resulting from multiple 
instances of the network. We expect our metric to also be applicable to Monte Carlo 
dropout estimates. However, using the softmax layer outputs eliminates the need for 
specific architectural or training scheme modifications. Furthermore, it does not require 
running inference multiple times which could hinder the clinical implementation of the 
method.

In clinical settings, the clinician could be provided with both the automatic segmentation 
and its associated HiS score that would serve as a quality metric. Prior to clinical 
implementation, a pilot study could be set up to assess the time savings achieved by using 
this tool in a clinical setting. The trade-off between the amount of cases that would not 
need to be reviewed manually and the missed faulty cases that would require reviewing, 
should also be assessed. 

In conclusion, we identified a simple metric derived directly from the output of the 
segmentation network that correlated strongly with commonly used segmentation metrics, 
not only for the case of DSC but also for the more clinically relevant distance-based 
metrics. The proposed metric was able to flag segmentations that would require review. 
It is also easy to compute, as it does not require any architecture or training scheme 
modifications. The proposed metric has potential as a tool for QA of automatic target 
segmentations. 
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SUPPLEMENTAL MATERIAL
Table S1. Patient characteristics in the cervical cancer cohort. 

  Training Evaluation Total
Total 156 39 195
Age (years)    

Mean 53 56 53
Standard deviation 15 17 15

FIGO stage    
FIGO I 18 (11.5 %) 6 (15.4 %) 24 (12.3 %)
FIGO II 92 (59.0 %) 22 (56.4 %) 114 (58.6 %)
FIGO III 29 (18.6 %) 8 (20.5 %) 37 (19.0 %)
FIGO IV 12 (7.7 %) 3 (7.7 %) 15 (7.7 %)
Unknown 5  0 5 (2.6 %)

Histopathological type    
Squamous cell carcinoma 128 (82.0 %) 33 (84.6 %) 161 (82.6 %)
Adenocarcinoma 22 (14.10 %) 4 (10.3 %) 26 (13.3 %)
Adeno-squamous cell carcinoma 2 (1.3 %) 1 (2.6 %) 3 (1.5%)
Non specified/unknown 4 (2.6 %)  1 (2.5 %) 5 (2.6 %)

External beam radiotherapy scheme
(prior to brachytherapy and combined with cisplatin 
(40 mg/m2 weekly)

   

23 x 2 Gy 124 (79.5 %) 32 (82.0 %) 156 (80 %)
25 × 1.8 Gy 32 (20.5 %) 7 (18.0 %) 39 (20 %)
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Table S2. Patient characteristics in the rectal cancer cohort. 

  Training Evaluation Total
Total 25 5 30
Sex    

Male 15 (60 %) 5 (100%) 20 (66 %)
Female 10 (40 %) 0 10 (34 %)

Age (years)    
Mean 59  61 59
Standard deviation 11 16 12

T stage
T2 8 (32 %) 0 8 (26.7 %)
T3 16 (64 %) 5 (20 %) 21 (70 %)
T4 1 (4 %) 0 1 (3.3 %)

N stage
N0 14 (56 %) 1 (20 %) 15 (50 %)
N1 9 (36 %) 2 (40 %) 11 (36.7 %)
N2 2 (0.08 %) 2 (40 %) 4 (13.3 %)

External beam radiotherapy scheme    
5 x 5 Gy 20 (80 %) 2 (40 %) 22 (73.3 %)
25 x 2 Gy 5 (20 %) 3 (60 %) 8 (26.7 %)

Table S3. Spearman correlation coefficients (mean ± standard deviation among folds) between the 
metrics and the segmentation performance metrics. Bold letters show the highest correlation among 
the different metrics. 

DSC 95th HD MSD Surface DSC
Cervical cancer cohort

Mean 0.73 ± 0.09 -0.59 ± 0.09 -0.62 ± 0.09 0.61 ± 0.09 
STD 0.52 ± 0.10 -0.48 ± 0.04 -0.49 ± 0.07 0.51 ± 0.07
Mean (over entropy map) 0.30 ± 0.13 -0.29 ± 0.10 -0.31 ± 0.11 0.30 ± 0.11
HiS (λ = 0.30) 0.80 ± 0.04 -0.64 ± 0.04 -0.67 ± 0.04 0.65 ± 0.06

Rectal cancer cohort
Mean 0.41 ± 0.11 -0.25 ± 0.16 -0.38 ± 0.16 0.34 ± 0.08
STD -0.26 ± 0.16 0.17 ± 0.21 0.27 ± 0.23 -0.22 ± 0.19
Mean (over entropy map) -0.47 ± 0.09 0.22 ± 0.04 0.37 ± 0.08 -0.35 ± 0.07
HiS (λ = 0.30) 0.51 ± 0.07 -0.30 ± 0.06 -0.43 ± 0.06 0.40 ± 0.05
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Supplemental Figures 

Supplemental Figure 1. Residual plots of the HIS metric with the segmentation performance. The 
results are shown for one of the folds.  
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In this thesis, we explored the topic of automated segmentation of tumors on MRI 
images. Deep learning (DL) techniques are already employed clinically in radiotherapy 
(RT) departments for organ-at-risk segmentation. However, tumor segmentation so far 
remains limited to a research setting. Furthermore, most existing studies about automatic 
segmentation of tumors use CT or FDG-PET images as the primary modality, even 
though MRI is often preferred to visualize cancer tissue in several tumor sites. We aimed 
to implement DL techniques to deliver clinically acceptable tumor segmentations in MRI 
cohorts. Two different MRI cohorts acquired in a clinical setting were used throughout 
this thesis: a cohort of oropharyngeal primary tumors in multiparametric diagnostic MRIs 
(in chapters 2 and 3) and a cohort of cervical cancer gross tumor volume in MRI images 
of brachytherapy treatment (in chapters 4 and 5). 

INTRODUCING MULTIPLE MRI SEQUENCES AS 
INPUT FOR SEGMENTATION 
When physicians manually segment tumors, they often rely on information from various 
sources, such as different imaging modalities or MRI sequences. Each of these images 
can provide distinct insights of the anatomy of the patient. The physicians can define the 
boundaries of the tumor by combining these different insights in their minds. Therefore, 
we also expect DL methods to benefit from combining different images as input. 

In chapter 2, we investigated the effect on the segmentation performance of using different 
anatomical MRI sequences as input for the task of oropharyngeal cancer segmentation. 
The investigated MRI sequences were T1-weighted (T1w), T2-weighted (T2w) and T1 
weighted after gadolinium injection (T1gd). We compared the segmentation performance 
of the networks trained with each of those sequences as input and with all the sequences 
together. Indeed, the network trained with all the available sequences outperformed the 
networks trained with one sequence only. This suggests that DL segmentation techniques 
also benefit from combining several input images. 

Similar conclusions have been reached in other studies. Wahid et al. [42] investigated 
the use of both anatomical MRI sequences (T1w and T2w) and quantitative MRI 
sequences (ADC, Ktrans, and Ve) for automatic segmentation of the oropharyngeal 
tumor in an MRI-only workflow. Their study demonstrated that the best segmentations 
were achieved when combining both anatomical sequences. Ren et al. [80] explored 
the optimal combination of imaging modalities (MRI, CT, and PET) to improve the 
automatic segmentations. The model that incorporated the information from all the 
imaging modalities outperformed the rest of segmentation models. Thus, these works 
further support the claim that DL segmentation techniques benefit from being trained 
with multiple input images.



79

6

General discussion 

In all of the aforementioned studies, the quality of the automatic segmentations was 
assessed by comparing them to ground truth segmentations made by physicians. These 
ground truth segmentations were carried out on a single reference image. Although other 
images are consulted, the final voxel-level decision is based on just this reference image. 
This reference image may differ across different studies. For instance, in our work the 
ground truth segmentations were made in the T1gd sequence. In the study of Wahid et 
al [42], the ground truth segmentations were made in the T2w sequence. This can create 
differences in the ground truth segmentations. Given that the ground truth is used for 
training and evaluation of the network, it may also make the comparison between studies 
more challenging.

An alternative approach to compute the ground truth segmentations without the bias of 
a reference image is desirable. The presence of tumor at a pixel level could be confirmed 
with histopathology data, considered the gold standard in cancer diagnostics. However, 
obtaining this type of data is a complex process. It involves the surgical removal of the 
tumor tissue, subsequent staining, and precise registration with the 3D radiological images. 
Hence, histopathological validation is limited in the most tumor auto-segmentation 
studies, as acknowledged by Jager et al. [108]. 

In some tumor sites, the physicians also use the information from physical examinations to 
manually segment the tumor. This is the case for the two tumor sites studied throughout 
this thesis (i.e. the head and neck cancer and the cervical cancer), for which the tumor is 
reachable by the physicians. This information is not taken into account by the DL methods 
described in this section, which only rely on imaging data. The physicians in charge of the 
treatment might need to edit the automatic segmentation after the physical examination 
of the patient to include this information. 

IMPROVING THE SEGMENTATIONS BY 
INCORPORATING PRIOR KNOWLEDGE 
A common promise in the machine learning field is that underperforming methods 
would improve their performance by being trained on more data. As already stated in 
the introduction, inclusion of new data is challenging in the field of medicine. In the 
context of automatic segmentation of medical structures Fang et al. [109] observed that the 
performance improved logarithmically with the dataset size. They showed quantitatively 
that for the structures that were more dependent on the size of the dataset (i.e. the optical 
nerves, in their work) an improvement of 0.04 on the Dice Similarity Coefficient (DSC) 
was achieved with a training set 10 times larger. This suggests that even by collecting 
more data, performance gains may be rather modest. Therefore, a different approach to 
improve the segmentation performance is preferable. 



80

Chapter 6 

In chapters 2 and 3, we hypothesized that the segmentation performance would improve by 
reducing the amount of context present in the image given as input. The rationale behind 
it is that by reducing the context around the tumor, the network does not need to spend 
any resources in localizing the tumor in the whole image. This simplifies the segmentation 
task, leaving more resources for the network to accurately segment the tumor. Our results 
confirmed that indeed, reducing the context led to improved performance. 

Other strategies of simplifying the segmentation task have been investigated to improve the 
automatic segmentations in medical imaging. One approach is to use shape or anatomical 
constraints during training, thereby regularizing the solution space to only anatomically 
reasonable segmentations. This has been shown to result in more accurate segmentations 
than when training the segmentation network from scratch [110,111]. 

Another approach is to combine the segmentation task together with other relevant tasks, 
such as registration. In the context of adaptive image-guided radiotherapy for prostate 
cancer, S. Elmahdy et al. [112] framed the registration and segmentation as a joint problem 
within a multi-task learning setting. This yielded improved segmentation performance 
compared to the single-task setting. 

Self-supervised learning (SSL) has been often posed as a promising strategy to improve the 
performance of machine learning techniques, particularly in low-data regimes [113,114]. 
SSL generally consists of leveraging information from unlabeled data during a pretraining 
phase. This approach reduces the need for extensive datasets for subsequent trainings. 
The work by Chaitanya et al [115]. serves as an example of the application of SSL to the 
field of automatic segmentation of medical images. In their study, they demonstrated 
improved segmentation performance for the networks trained with SSL compared to the 
networks initialized from scratch for three different medical segmentation tasks.

Leveraging the anatomical information of an individual patient by utilizing previous 
images and contours of that same patient can also improve the segmentations. This 
approach is sometimes referred to as “patient-specific fine-tuning” and is especially 
promising in scenarios that require segmentations for the same patient across different 
time points, such as the different fractions in RT. Li et al. [116] proposed such an approach 
for online contouring for MR-guided adaptive radiotherapy. Their results demonstrated 
improved segmentation performance compared to the network trained without patient-
specific fine-tuning. Their segmentations were also more accurate than the segmentations 
generated by existing deformable registration algorithms commonly employed in clinical 
settings. 

Though employing fairly different methodologies, these techniques share a common 
thread with the work presented in chapters 2 and 3: the integration of clinically relevant 
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prior knowledge during the training of segmentation networks is a promising strategy to 
improve the quality of the resulting automatic segmentations. 

EVALUATION OF AUTOMATIC SEGMENTATIONS: 
WHAT IS A GOOD (AUTOMATIC) SEGMENTATION? 
Determining the quality of the automatics segmentations was done in two ways throughout 
this thesis. In chapters 2 and 3, we geometrically compared the automatic segmentations 
to the manual segmentations made by expert radiologists. The aim of the radiologists was 
to accurately draw the extent of the tumor visible in the available imaging modalities. 
Therefore, a geometric comparison between the manual and automatic segmentations 
was adequate. This comparison was assessed with commonly used metrics: DSC, 95th 
Hausdorff distance (95th HD) and the mean surface distance (MSD). 

In chapters 4 and 5, the manual segmentations used as ground truth for training and 
evaluation were performed by radiation oncologists. These segmentations were used in 
clinical practice to derive a treatment plan. A dosimetric evaluation was in this case 
also pertinent to evaluate the quality of the automatic segmentations. More specifically, 
we determined dose-volume parameters D90 and D98 for the automatic and expert 
delineations using the clinical dose distribution. Dosimetric evaluation of the automatic 
segmentation is important, because an error in the segmentation may have a different 
clinical impact depending on the dose that will be given to that point. This effect cannot 
be represented with geometric evaluation metrics, given that they do not take into account 
the dose distribution delivered to the patient. 

In chapter 4, the segmentation performance of automatic segmentation of tumors in the 
cervix was further stratified in subgroups based on the tumor volume and the FIGO 
stage. Tumors with different FIGO stage or volume may appear differently on the MRI. 
Specifically, tumors with FIGO stage I will be limited to the cervix, while tumors with 
FIGO stage II and higher may extend to other anatomical structures, such as the vagina or 
the pelvic wall. The segmentation network potentially needs to look at different anatomical 
areas in the image to segment tumors depending on these clinical parameters. Therefore, 
differences in segmentation performance between the different subgroups of patients can 
arise. Another potential reason for performance differences is that some of these subgroups 
were under-represented in the training set. Regardless of the source of these differences, 
analyzing the segmentation performance separately for FIGO and volume can reveal a 
bias of the trained network towards certain subgroups of patients. Physicians could take 
this information into account to only use the segmentation network in the subgroups it 
performs best. 
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We used different evaluation metrics compared to other auto-segmentation works in 
literature. Firstly, it is not uncommon to find articles that report the DSC only. However, 
the DSC is volume-dependent by construction. Therefore, larger and more rounded 
structures typically result in higher values than smaller or more eccentric structures. 
This is particularly critical for structures with variable sizes, such as the tumors. Therefore 
we opted to always provide distance-based metrics together with the DSC. Secondly, the 
normalized surface distance (NSD) and the added path length (APL) are two quality 
metrics that are used in other works but not in this thesis. Although interesting metrics, 
they present shortcomings. The NSD is defined with a certain degree of tolerance, making 
them dependent on this hyper-parameter. The APL is not normalized or expressed with 
known units, making it less interpretable.  Arguably, the distance-based metrics used in 
this work (95th HD, MSD and the surface DSC), also present shortcomings. The 95th 
HD primarily reflects the most significant error in the segmentation, often ignoring other 
relevant errors. MSD considers the entire contour but averages all errors together, which 
can lead to bias in the results, especially when gross errors are present. The surface DSC 
also depends on a tolerance parameter. To provide a more comprehensive assessment of 
contour quality, we recommend reporting a combination of these metrics.

Specifically for RT purposes, some geometric metrics may be more relevant than others. 
DSC has been shown not to correlate strongly with editing time [104] nor with dose/
volume parameters [103]. In contrast, distance-based metrics, such as the 95th HD, the 
MSD, the surface DSC and the APL, have been shown to correlate more strongly with 
the editing time. Furthermore, a certain degree of geometric variability is expected in the 
manual tumor delineations due to interobserver variability. These geometric differences 
are taken into account by treatment margins for some tumor areas. If the error of the 
automatic segmentations is within the interobserver variability, the tumor segmentation 
might be clinically valid. Given that the treatment margins are defined as a certain distance 
around the tumor delineation, distance based metrics may also be more appropriate for 
this type of assessment.

Other works [42,117–119] have used the Turing test (or “Imitation game”) to assess the 
quality of the automatic segmentations. The rationale behind it is that if a human observer 
cannot distinguish whether the contour was automatically generated or not, the contour 
closely resembles a manually created contour. Therefore, it is likely clinically acceptable. 
However, the source of the contour (automatic or human) does not necessarily indicate 
that the contour is clinically acceptable. Gooding et al. [117] proposed to complement 
the Turing test with additional questions that directly refer to clinical acceptability of the 
contour. These questions related to whether the observer would perform changes to the 
contour or how large those changes would be. In any case, these tests are strongly tied to 
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the expertise and environment of the observer. Consequently, we would recommend using 
them in complement with other evaluation techniques.

Overall, there are many approaches to evaluate the quality of a contour, each of them 
with their own advantages and limitations. Our recommendations would be two-fold: 
1) to consider the clinical end goal of the contour, and use the evaluation framework 
that more closely assesses if that contour is acceptable, and 2) to combine the different 
evaluation metrics to describe the quality of the contour. 

OPTIMIZING FOR THE RELEVANT LOSS 
FUNCTION 
The loss function is a crucial part of the training of any neural network, including 
segmentation networks. Because of its importance, a multitude of different loss functions 
have been proposed in literature [30,70]. Ma et al. [30] grouped the available loss functions 
in three main categories: overlap-based loss functions, such as the DSC loss; distribution-
based loss functions, such as the cross entropy loss or the focal loss; and boundary-
based loss functions, such as the Hausdorff distance loss. Despite the large amount of 
loss functions available, the DSC loss is still selected in most works. A comprehensive 
evaluation of which loss function renders best segmentation performance for each specific 
task is rarely investigated. 

In chapter 3 of this thesis, we trained the segmentation networks with different loss 
functions for the task of oropharyngeal cancer segmentation. The investigated loss 
functions were two overlap-based loss functions (DSC loss and Generalized DSC loss) 
and two distribution-based loss function (Focal Tversky loss and Unified Focal loss). 
No significant differences in DSC, 95th HD or MSD were found when training any of the 
loss functions. This suggests that the DSC loss was sufficient for our specific task. Similar 
conclusions were reached by Ma et al [30]. In their work, they compared 20 different loss 
functions on four different segmentation tasks. The showed that loss functions derived 
from the DSC were overall performing best.

All the loss functions compared in both our work and the work by Ma et al. reflect 
geometric differences between the automatic segmentation and the ground truth. This 
means that the segmentation networks are optimized during training to resemble the 
shape of the manual segmentations as closely as possible. However, the desired automatic 
segmentations for RT purposes are not necessarily those with the exact same shape than 
the manually acquired segmentations. In reality, the desired segmentations are those 
that reach the same dosimetric impact as the manual segmentations. Consequently, an 
interesting future line of research is to build loss functions that consider the dosimetric 
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impact in its definition. Further in the future, the loss function could even consider the 
RT patient outcomes in their definition, such as tumor control and toxicity. 

QUALITY ASSURANCE OF AUTOMATIC 
SEGMENTATION OF TARGETS 
Current automatic segmentation techniques do not render good quality segmentations 
for tumors in all the cases. This hinders their use in clinical practice, because physicians 
would still need to check, and potentially correct, the automatic segmentations. 
A possible solution is the implementation of quality assurance (QA) algorithms for the 
automatic segmentations. These QA algorithms could help the physicians by flagging the 
segmentations that would require review. 

In chapter 5, we identified a metric that could be used for QA of the automatic 
segmentations. The proposed quality metric showed good capability to distinguish 
between cases that would require review as compared to adequate automatic segmentations 
that could be used without further check. Furthermore, the proposed metric correlated 
strongly with the DSC but also with clinically relevant distance-based metrics. These 
results indicate the potential of the metric as a QA tool. 

Our work differed from the current literature of QA for automatic segmentations in two 
ways. Firstly, most works only correlate QA metrics to the DSC [32–34,102]. As discussed 
in previous sections, DSC does not fully describe the quality of the contour. Therefore, we 
considered it important to correlate our metric to distance-based metrics as well. Secondly, 
our metric can be derived directly from the output of the segmentation network. Instead, 
other works often extract their QA metrics from uncertainty maps [32,33,98], computed 
by applying the entropy operator on the output of the network. However, the entropy 
operator is not injective and can therefore destroy relevant information of the score maps.

Even if we can detect the segmentations that would require review, physicians would still 
need to spend time in the correction. A potential solution would consist on signaling the 
areas where the automatic segmentation is likely wrong. This information would assist 
the physicians in adjusting the contour in a semi-automatic manner. Even further in the 
future, the QA approaches could provide insights on how each potential editing would 
affect the final RT treatment outcome. With this relevant clinical information at hand, 
physicians could then make the final decision regarding the contour adjustments. 
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CLINICAL IMPLEMENTATION OF TUMOR AUTO-
SEGMENTATION. 
Ultimately, the aim is to implement automatic segmentation techniques for the tumors in 
clinical practice, as it is already the case for the OARs. As stated in the previous section, 
these techniques do not render acceptable segmentations in all the cases yet. Any errors 
in the tumor segmentation can have a large impact in the outcome of the patient, because 
tumors receive the highest radiation dose during the RT treatment. The responsibility of 
accepting the tumor segmentations lies with the radiation oncologists. However, they will 
not accept a segmentation unless they are certain of its quality. 

The studies presented in this thesis can approach us towards clinical implementation in 
two ways. In chapters 2, 3 and 4, we focused on improving the quality of the automatic 
segmentations. By continuing to improve the auto-segmentations, we could eventually 
provide segmentations that radiation oncologists find acceptable in all cases. Furthermore, 
in chapter 5, we proposed a metric that can be used for QA purposes. With this tool in 
hand, the radiation oncologist could potentially distinguish which segmentations are 
clinically acceptable without the need of checking each auto-segmentation. However, 
further efforts are likely still needed to reach the clinical implementation of these 
techniques. 

Vinod et al. [120] reviewed different applications to reduce the interobserver variability 
in target and OARs contouring. They observed that providing radiation oncologists with 
an automatic segmentation as a starting point that can be subsequently edited is an 
effective method to reduce contouring variability. One example of this was shown by 
Ferreira Silvério et al. [106] where they automatically segmented the mesorectum (CTV 
in MRI-guided rectal cancer treatment) and then asked an expert to manually correct the 
automatic segmentations. These corrections were not only comparable in terms of quality 
to the current clinical standard but also completed faster than the delineations made from 
scratch. Therefore, the clinical implementation of automatic segmentation techniques 
could already provide clinical value as an aid to the radiation oncologist to edit in a semi-
automatic setting. Arguably, such an evaluation framework is a necessary step towards the 
clinical implementation of auto-segmentation tools. This approach can provide clinically 
acceptable segmentations more quickly than the current clinical approaches, while also 
increasing the trust in the auto-segmentations. 
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CONCLUSIONS 
In this thesis, we explored the topic of automatic segmentation of tumors on MRI. 
Deep learning methods are already employed in clinical settings to segment anatomical 
structures. However, automatic segmentation of tumors remains in a research capacity, 
showcasing the complexity of the problem. A promising approach to improve the quality 
of the segmentations consists of utilizing prior information to guide the training of 
the segmentation network. Two examples have been demonstrated in this thesis: the 
reduction of context around the tumor and the incorporation of different MRI sequences. 
Furthermore, clinical relevant information should be considered both during the training 
and evaluation of these methods. During training, this can be achieved by defining 
clinically relevant loss functions. During the evaluation, this is possible by defining 
clear clinical end points. Besides potential improvements in the quality of the automatic 
segmentations, automatic QA can also play a crucial role in advancing towards clinical 
applicability. QA methods are not only important for safety reasons but also to increase 
the trust of clinicians in these techniques. Finally, a currently viable strategy involves an 
interactive approach in which a candidate auto-segmentation is provided as a starting 
point. This could presently reduce the time spent by the clinical staff in the segmentations, 
thereby enhancing the efficiency of the RT workflow. 
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SUMMARY 
Tumor segmentation is a crucial part of the radiotherapy treatment workflow. In the 
current clinical practice, this task is done manually by expert clinicians. This is time-
consuming. A promising alternative is to automate this task with deep learning (DL) 
techniques. These methods have already been successfully applied clinically to segment 
other relevant structures for the radiotherapy treatment planning, such as the organs 
at risk. However, the automatic segmentation of tumors is not yet part of the clinical 
workflow. The aim of this thesis was to implement DL techniques to deliver clinically 
acceptable tumor segmentations. These algorithms were applied in two different MRI-
based cohorts: a cohort of oropharyngeal primary tumors in multiparametric diagnostic 
MRIs and a cohort of cervical cancer gross tumor volume in MRI images of brachytherapy 
treatment. 

When clinicians delineate the oropharyngeal cancer, they often rely on the information 
from several MRI sequences, such as the T1 weighted after gadolinium injection, T2 
weighted or T1 weighted sequences. We hypothesised that DL methods may also benefit 
from combining the information from these different MRI sequences. Therefore, in 
Chapter 2, we studied the effect of combining different MRI sequences as input for the 
segmentation networks. Indeed, the performance of the DL networks improved when 
combining different MRI sequences as inputs compared to the use of single sequences.

Given the complexity of the task of oropharyngeal cancer segmentation, we hypothesised 
that we could achieve better auto-segmentations by simplifying the task. To that end, 
we split the task in two stages: first a coarse localization of the tumor and then its fine 
segmentation. In Chapter 2, we implemented this two stage approach in a semi-automatic 
manner. The first stage consisted of a localization step manually performed by clinicians, 
who were asked to draw a box around the tumor. Then, the final segmentation was 
performed by a DL network within the drawn box. As expected, the auto-segmentations 
rendered by this semi-automatic two stage approach outperformed the auto-segmentations 
achieved when directly providing the whole image as input.

The oropharyngeal cancer is present in a substantially smaller amount of voxels compared 
to the rest of structures in the MRI image. In the field of DL for automatic segmentation, 
this is known as the class imbalance problem, and can result in poor segmentation 
performance. In Chapter 3, we studied two different strategies to tackle this problem. 
One of these strategies was the use of different loss functions to train the segmentation 
networks. The most commonly used loss function when training segmentation networks 
is the Dice loss function, even though it is known to be suboptimal for smaller structures. 
In this chapter, we trained the segmentation networks with different loss functions 
designed to tackle class imbalance. Our results showed that all the proposed loss functions 
performed comparably to each other for the case of oropharyngeal cancer segmentation.
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Another strategy to tackle the class imbalance problem consisted of the implementation of 
a two stage approach. Similarly to the previous chapter, we split the task in a localization 
step and a segmentation step. However, in Chapter 3, both stages were performed by 
neural networks thereby fully automating the semi-automatic approach proposed in the 
previous chapter. We demonstrated that our proposed two stage approach was an effective 
strategy to mitigate the class imbalance problem.

Brachytherapy is part of the standard of care for locally advanced cervical cancer. In this 
type of therapy, an applicator is placed inside the patient for treatment delivery. The tumor 
segmentations are made with this applicator inside, which can be uncomfortable for 
the patient. Therefore, it is desirable to acquire the tumor segmentations as promptly 
as possible. Due to these time constraints, the need for automatic segmentation is even 
more critical in the case of brachytherapy. In Chapter 4, we assessed the quality of the 
automatic segmentations of the cervical cancer gross tumor volume on brachytherapy MRI 
images. This assessment was performed both geometrically and dosimetrically. Our results 
showed similar dose-volume parameters as the manual segmentations used clinically, 
indicating that current DL methods can already render close to clinically valid tumor 
auto-segmentation in some cases.

In other cases, DL methods still produce tumor auto-segmentations that would not 
be clinically valid. Consequently, clinicians would still need to verify whether these 
auto-segmentations are acceptable for clinical use, limiting the time-gains of automatic 
segmentation methods. Therefore, there is a need for metrics that describe the quality 
of the auto-segmentations. However, common metrics to assess the quality of auto-
segmentations also rely on comparing them to manually drawn segmentations, making 
them unsuitable for quality assurance. In Chapter 5, we identified a quality metric that 
can be generated directly from the output of the network. This quality metric had a 
high capability to distinguish between well and poorly performing auto-segmentations, 
showcasing its potential for quality assurance.

In conclusion, in this thesis we implemented different DL based approaches for automatic 
segmentation of tumors on MRI images. Strategies that provided relevant prior information 
to the segmentation networks were proved effective to increase the quality of the auto-
segmentations, such as combining different MRI sequences as input or restricting the 
context around the tumor. Furthermore, we illustrated that current auto-segmentation 
frameworks can already render auto-segmentations that are comparable to clinically valid 
segmentations. Finally, besides the demonstrated improvements in the quality of the tumor 
auto-segmentations, we proposed a quality assurance metric that can distinguish between 
well and poorly performing cases. This type of metrics will potentially play a crucial role 
in advancing auto-segmentation methods for tumors towards clinical applicability. 



102

Appendices

SAMENVATTING 
Tumorsegmentatie is een cruciaal onderdeel van de workflow voor een radiotherapeutische 
behandeling. In de huidige klinische praktijk wordt deze taak handmatig uitgevoerd 
door deskundige artsen. Dit is een tijdrovende activiteit. Een veelbelovend alternatief 
is om deze taak te automatiseren met behulp van deep learning (DL) technieken. Deze 
methoden zijn al succesvol toegepast in de kliniek om andere relevante structuren 
voor de radiotherapie behandeling te segmenteren, zoals de risico-organen. Echter, de 
automatische segmentatie van tumoren maakt nog geen deel uit van de klinische workflow. 
Het doel van dit proefschrift was om DL-technieken te implementeren waarmee klinisch 
acceptabele tumorsegmentaties worden geleverd. Deze algoritmen werden toegepast in 
twee verschillende MRI cohorten: een cohort van patiënten met primaire tumoren in de 
mond-keelholte (orofarynx) met multiparametrische diagnostische MRI scans en een 
cohort van patiënten met baarmoederhalskanker met MRI-beelden ter voorbereiding van 
de behandeling met brachytherapie. 

Bij het segmenteren van de orofaryngeale tumor maken artsen vaak gebruik van 
informatie uit verschillende MRI-sequenties, zoals de T1-gewogen sequenties voor 
en na gadoliniuminjectie, en T2-gewogen sequenties. Onze hypothese was dat DL-
methoden ook baat zouden kunnen hebben bij het combineren van de informatie uit deze 
verschillende MRI-sequenties. Daarom hebben we in Hoofdstuk 2 het effect bestudeerd 
van het combineren van verschillende MRI-sequenties als input voor de segmentatie 
netwerken. De prestaties van de DL-netwerken verbeterden inderdaad toen verschillende 
MRI-sequenties als input werden gecombineerd in vergelijking met het gebruik van een 
enkele sequentie.

Gezien de complexiteit van de taak van het segmenteren van orofaryngeale tumoren, 
verwachtten we dat we betere autosegmentaties konden bereiken door de taak te 
vereenvoudigen. Met dat doel hebben wij de taak opgesplitst in twee fasen: Eerst een grove 
lokalisatie van de tumor, en vervolgens een gedetailleerde segmentatie. In Hoofdstuk 2 
hebben we deze methode op een semi-automatische manier geïmplementeerd. De eerste 
fase bestond uit handmatige lokalisatie van de tumor door artsen, die werden gevraagd 
om een kubus rond de tumor te tekenen. Vervolgens werd de definitieve segmentatie 
uitgevoerd door een DL-netwerk binnen het getekende vak. Zoals verwacht, presteerden 
de auto-segmentaties die door de twee-fasen methode werden verkregen beter dan de 
auto-segmentaties die werden verkregen door direct de hele afbeelding als input te geven.

Orofaryngeale kanker is aanwezig in aanzienlijk minder voxels vergeleken met de rest 
van de structuren in de MRI-afbeelding. In het veld van automatische segmentatie met 
DL staat dit bekend als het ‘class imbalance’ probleem en kan leiden tot segmentaties van 
slechte kwaliteit. In Hoofdstuk 3 hebben we twee verschillende strategieën bestudeerd om 
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dit probleem aan te pakken. Een van deze strategieën was het gebruik van verschillende 
loss functies om de segmentatie netwerken te trainen. De meest gebruikte loss functie 
bij het trainen van segmentatie netwerken is de Dice loss functie, ook al is bekend dat 
deze suboptimaal is voor kleinere structuren. In dit hoofdstuk hebben we de segmentatie 
netwerken getraind met verschillende loss functies die zijn ontworpen om het ‘class 
imbalance’ probleem aan te pakken. Onze resultaten toonden aan dat alle geïncludeerde 
loss functies vergelijkbaar presteerden voor orofaryngeale kankersegmentatie.

Een andere strategie om het ‘class imbalance’ probleem aan te pakken, bestond uit de 
implementatie van een twee-fasen methode. Net als in het vorige hoofdstuk hebben we 
de taak opgesplitst in een lokalisatiestap en een segmentatiestap. Echter, in Hoofdstuk 3 
werden beide fasen uitgevoerd door neurale netwerken, waardoor de semi-automatische 
methode volledig werd geautomatiseerd. We hebben aangetoond dat onze voorgestelde 
twee-fasen methode een effectieve strategie was om het ‘class imbalance’ probleem te 
verminderen.

Brachytherapie maakt deel uit van de behandeling voor lokaal gevorderde 
baarmoederhalskanker. Bij deze soort therapie wordt een applicator bij de patiënt ingebracht 
waarbinnen radioactieve bronnen worden geleid voor bestraling. De tumorsegmentaties 
worden gemaakt wanneer deze applicator is ingebracht, Omdat de applicator ongemakkelijk 
kan zijn voor de patiënt, is het wenselijk om de tumorsegmentaties zo snel mogelijk te 
verkrijgen. In Hoofdstuk 4 hebben we de kwaliteit beoordeeld van de automatische 
segmentaties van de primaire tumor op MRI-beelden verkregen bij brachytherapie. 
Deze beoordeling werd zowel gebasserd op geometrische als dosimetrische criteria. Onze 
resultaten lieten dosis-volume parameters zien die vergelijkbaar waren met die van de 
klinisch gebruikte handmatige segmentaties. Dit toont aan dat huidige DL-methoden 
in een aantal gevallen auto-segmentaties kunnen genereren die vergelijkbaar zijn met 
handmatige tumorsegmentaties. In andere gevallen produceren DL-methoden nog steeds 
tumorauto-segmentaties die niet klinisch acceptabel zouden zijn. Om die reden zouden 
artsen alle auto-segmentaties nog steeds moeten controleren, waardoor de tijdwinst van 
automatische segmentatiemethoden deels wordt verloren. Daarom is er behoefte aan maten 
die de kwaliteit van de auto-segmentaties beschrijven. Echter, gangbare maten om de 
kwaliteit van auto-segmentaties te beschrijven, zijn meestal gebaseerd op een vergelijkingen 
met handmatig getekende segmentaties, waardoor ze ongeschikt zijn voor kwaliteitsborging 
in een klinische setting. In Hoofdstuk 5 hebben we een kwaliteitsmaat geïdentificeerd die 
rechtstreeks kan worden gegenereerd uit de output van het netwerk. Deze kwaliteitsmaat 
was succesvol in het onderscheiden van wel en niet acceptabele segmentaties.

We hebben in dit proefschrift verschillende op DL gebaseerde technieken geïmplementeerd 
voor automatische segmentatie van tumoren op MRI-beelden. Strategieën die relevante 
vooraf beschikbare informatie aan de segmentatie netwerken leverden, bleken effectief om 
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de kwaliteit van de auto-segmentaties te verbeteren, zoals het combineren van verschillende 
MRI-sequenties als invoer of het beperken van de context rond de tumor. Verder hebben 
we aangetoond dat huidige auto-segmentatie frameworks al auto-segmentaties kunnen 
produceren die vergelijkbaar zijn met klinische segmentaties. Ten slotte hebben we naast 
de aangetoonde verbeteringen in de kwaliteit van de auto-segmentaties van tumoren 
een kwaliteitsmaat voorgesteld die onderscheid kan maken tussen goed en slecht 
gesegmenteerde gevallen. Dit type maten zal naar verwachting een cruciale rol spelen bij 
het toepasbaar maken van auto-segmentatiemethoden voor tumoren in de kliniek. 
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