

$TGF\mbox{-}\beta$ signaling dynamics in epithelial-mesenchymal plasticity of cancer cells

Fan, C.

Citation

Fan, C. (2024, June 26). *TGF-β signaling dynamics in epithelial-mesenchymal plasticity of cancer cells*. Retrieved from https://hdl.handle.net/1887/3765351

Version:	Publisher's Version
License:	<u>Licence agreement concerning inclusion of doctoral thesis in the</u> <u>Institutional Repository of the University of Leiden</u>
Downloaded from:	https://hdl.handle.net/1887/3765351

Note: To cite this publication please use the final published version (if applicable).

Appendix

English Summary Nederlandse Samenvatting List of Publications Curriculum Vitae Acknowledgements

English Summary

In cancer cells, malfunction of transforming growth factor (TGF)- β signaling can promote migration and metastasis, in part through the induction of epithelial-mesenchymal transition (EMT). Although strategies targeting TGF- β signaling are being explored in clinical trials, the on-target side effects caused by long-term systemic TGF- β signaling inhibition limit the clinical approval of TGF- β targeted therapies in cancer patients. Therefore, unraveling the regulatory mechanisms of TGF- β signaling in cancer (and normal) cells may offer new opportunities to treat cancer patients.

Long non-coding RNAs (lncRNAs) are a class of transcripts without coding potential but some were found to have a pivotal role in regulating signal transduction pathways through various mechanisms. In **Chapter 2**, we performed transcriptomic profiling to screen for TGF- β induced lncRNAs in breast cancer cells. Follow-up loss-of-function studies identified LncRNA Induced by TGF- β and Antagonizes TGF- β Signaling 1 (*LITATS1*) as a protector of epithelial cells to suppress TGF- β -induced EMT and invasive abilities of cancer cells. Mechanistically, *LITATS1* serves as a scaffold to enforce the interaction between TGF- β type I receptor (T β RI) and the SMAD specific E3 ubiquitin ligase 2 (SMURF2), leading to the increase of polyubiquitination and proteasomal degradation of T β RI. *LITATS1* can also sequester SMURF2 protein in the cytoplasm, thereby promoting its export from the nucleus. Analysis of patient samples showed that *LITATS1* expression correlates with a favorable survival outcome in breast and non-small cell lung cancer patients, highlighting the potential of *LITATS1* as a promising prognostic marker. Of note, reintroducing *LITATS1* into highly aggressive breast cancer cells mitigated their migration and extravasation, suggesting that *LITATS1* may be a therapeutic anti-cancer agent.

LncRNAs that activate TGF- β signaling in cancer cells may be explored as alternative therapeutic targets to selectively inhibit TGF- β signaling and TGF- β -induced EMT in cancer cells. In **Chapter 3**, we described how LncRNA Enforcing TGF- β Signaling 1 (*LETS1*) promotes TGF- β -induced EMT and cancer cell migration by transcriptionally activating a T β R1-stabilizing mechanism. In this study, we demonstrated that TGF- β /SMAD-induced nuclear *LETS1* interacted with nuclear factor of activated T cells (NFAT5) to facilitate the transcription of orphan nuclear hormone receptor *NR4A1*. NR4A1 alleviates T β RI polyubiquitination and potentiates T β RI stability by facilitating inhibitory (I)-SMAD7 protein degradation, leading to an activation of TGF- β /SMAD signaling, TGF- β -induced EMT, and cancer cell migration and extravasation. Thus, we unraveled a novel mechanism by which TGF- β /SMAD signaling is fine-tuned at the receptor level through an unannotated lncRNA *LETS1*.

Ovo-like transcriptional repressor 1 (OVOL1) is a vital determinator of epithelial lineage and stimulator of mesenchymal-epithelial transition (MET). However, its interplay with TGF- β and bone morphogenetic protein (BMP) signaling is unclear. **Chapter 4** presents that BMP strongly induces the expression of OVOL1, which potentiates BMP signaling in turn. This positive feedback loop is achieved by OVOL1-mediated suppression of TGF- β /SMAD signaling. OVOL1 binds to inhibitory SMAD7 and displaces interaction with E3 ligases targeting SMAD7. OVOL1 thereby prevents the polyubiquitination and proteasomal degradation of SMAD7. As a consequence, T β RI is destabilized by OVOL1, resulting in the attenuation of TGF- β signaling and TGF- β -induced EMT, migration in breast cancer cells. In addition, we identified 6-formylindolo(3,2-b)carbazole (FICZ) as a small-molecule compound that can stimulate OVOL1 expression and thereby antagonize (at least in part) TGF- β -triggered EMT

and migration in breast cancer cells. Hence, we uncovered a mechanism by which OVOL1 interplays with TGF- β and BMP signaling and maintains breast cancer cell epithelial identity.

Taken together, we identified several novel modulators of TGF- β /SMAD signaling. We studied the role of these modulators in TGF- β -induced EMT and migration in breast and lung cancer cells, and elucidated the mechanisms by which they fine-tune TGF- β /SMAD signaling transduction. These studies contribute to a better understanding of the regulatory networks of TGF- β signaling and may offer new therapeutic potentials to target TGF- β signaling in patients with breast or lung cancer.