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Introduction 
Transforming growth factor (TGF)-β is a multifunctional secreted cytokine that exerts highly 

context dependent effects on many different cell types, including growth inhibition, 

extracellular matrix (ECM) production, apoptosis and differentiation1, 2. TGF-β1 is the 

prototype of a large family of evolutionarily conserved structurally and functionally related 

dimeric proteins that include TGF-βs, activins and bone morphogenetic proteins (BMPs). 

Signaling occurs via transmembrane serine/threonine kinase type I and type II receptors, that 

is TβRI and TβRII, respectively3. TGF-β induces the formation of a complex of TβRI and 

TβRII, upon which TβRII phosphorylates TβRI, thereby transmitting the signal across the cell 

membrane. Inside the cells, activated TβRI phosphorylates specific down-stream effector 

molecules, among which are canonical SMAD and non-SMAD signaling components. SMADs 

can act as transcription factors and thus relay the signal from the membrane into the nucleus4. 

Each step of the signaling pathway is intricately regulated to fine tune the cellular responses of 

TGF-β5. 

 

Misregulation of TGF-β signaling associates with many diseases, including cancer, fibrosis and 

cardiovascular diseases6-8. In this review, we focus on its dual role in cancer. Moreover, as 

TGF-β stimulates cancer cell invasion and metastasis, this pathway has been subject to 

therapeutic targeting by academic and industrial laboratories. We provide an update on the 

latest clinical developments of TGF-β targeting agents for the treatment of cancer9, 10. 

 

TGF-β Signaling 
Ligands and Their Receptors 

Shortly after the cDNA cloning of TGF-β1 in 198511, the structurally and functionally related 

TGF-β2 and TGF-β3 were characterized12. In this review, we indicate specific TGF-β isoforms 

when relevant, for example, when they have distinct functional properties; otherwise we refer 

to them as TGF-β. TGF-β is a conserved 12.5 kilodalton (kDa) polypeptide that forms a 

disulfide-linked dimer13. While predominantly present as homodimers, heterodimers between 

different TGF-β isoforms have been described14. Of note, TGF-β may exert diverse, sometimes 

even opposing, effects depending on cell types and development stages1, 2. The three TGF-β 

isoforms are differentially expressed. TGF-β1 is highly abundant in platelets and bone and is 

widely expressed and synthesized among diverse tissues. TGF-β is secreted in an inactive form 

in which the amino-terminal pro-peptide (also termed the latency-associated peptide) is non-

covalently associated with the carboxy-terminal mature peptide15. Activation of TGF-β can be 
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mediated via specific proteases and cell surface-associated integrins that liberate the mature 

peptide, which can then bind to cell surface receptors16. This activation step is a pivotal control 

mechanism that regulates the local bioavailability of TGF-β.  

 

Activated TGF-β initiates cellular responses by binding to cell surface single transmembrane 

TβRI and TβRII17. TGF-β induces the formation of a heterotetrameric complex containing two 

TβRIIs and two TβRIs18. Initially, TGF-β1 and TGF-β3 (but not TGF-β2) bind to TβRII, and 

thereafter, TβRI is recruited. TGF-β type III coreceptor (also termed betaglycan), which lacks 

intercellular enzymatic activity, can facilitate the interaction between TβRI and TβRII19. In 

particular, TGF-β2 requires TβRIII for efficient binding to signaling receptors20. Upon the 

ligand-induced TβRI/TβRII complex formation, TβRI is phosphorylated by TβRII on specific 

serine and threonine residues in the glycine/serine-rich (GS) domain. The extracellular ligand 

signal is thereby transduced across the membrane, and the activated TβR complex is ready to 

initiate intracellular responses by phosphorylating intracellular effector proteins21-23 (Fig. 1). 

 

TGF-β/SMAD and Non-SMAD Signaling 

With the help of genetic approaches in worms and fruit flies, Sma- and Mad-related proteins, 

termed SMAD proteins, were identified in vertebrates as unique and pivotal intracellular 

effectors of TGF-β24. SMADs are classified into three groups: the receptor-regulated SMADs 

(R-SMADs), the common SMADs (Co-SMADs) and the inhibitory SMADs (I-SMADs)25-27. 

R- and Co-SMADs share two conserved domains, i.e, N-terminal Mad Homology 1 (MH1) 

and C-terminal Mad Homology 2 (MH2) domain. Both domains are separated by a proline-

rich linker region. There is also an MH2 domain in I-SMADs. 

 

 
 

Fig. 1 TGF-β/SMAD and non-SMAD signaling. (A) In the SMAD-dependent pathway, binding of active TGF-β induces the 

assembly of TβRI and TβRII into a complex in which TβRI is phosphorylated by the TβRII kinase. Activated TβRI 

subsequently signals by recruiting and phosphorylating SMAD2/3, which form heteromeric complexes with SMAD4. The 

SMAD complexes then translocate into the nucleus and regulate target gene transcription by cooperating with other cofactors. 

(B) In the non-SMAD signaling pathways, TGF-β receptors activate other pathways including MAPKs (such as ERKs, p38 

and JNK) and PI3K-AKT signaling to regulate transcriptional and translational events and modulate the Rho-like GTPase 

activity for tight junction dissolution. Abbreviations: ERK, extracellular regulated kinase; GRB2, growth factor receptor-

bound protein 2; mTOR, mammalian target of rapamycin; PI3K, phosphatidyl inositol-3-kinase; S6K, S6 kinase; SMURF, 
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SMAD ubiquitin regulatory factor; SOS, son of sevenless; TAK1, TGF-β activated kinase; TβR, TGF-β receptor; TGF-β, 

transforming growth factor-β; TRAF, TNF associated factor; Ub, ubiquitin. 

 

 
 

Fig. 2 Regulation of TGF-β/SMAD signaling. Fibrillin-1, proteases, ROS, GARP, integrin-mediated contractile forces and 

stromal-derived factors modulate the bioavailability of TGF-β ligands and accessibility to its receptors. At the cell membrane 

level, the activity of TβRs is modified by glycosylation, phosphorylation, ubiquitylation, deubiquitylation, sumoylation and 

neddylation, as well as the interactions with coreceptors and other accessory proteins. At the cytoplasmic level, SMAD proteins 

are under tight control by phosphatases, ubiquitylating enzymes, deubiquitylating enzymes and microRNAs (miRNAs). In the 

nucleus, the SMAD complex affects different transcriptional responses in combination with diverse cofactors. SMAD proteins 

are also required for the maturation process of miRNAs. Moreover, modulators such as long non-coding RNAs (lncRNAs) 

can regulate TGF-β pathway components at the transcription level. 

 

Upon activation, TβRI recruits and phosphorylates R-SMAD family members, SMAD2 and 

SMAD3, at two serine residues in their C-terminal regions. Activated SMAD2/3 form 

heteromeric complexes with SMAD4 which subsequently translocate into the nucleus. 

Activated SMAD2/3/4 complexes can form transcriptional complexes in conjunction with a 

large variety of DNA binding cofactors and thereby gain high affinity and specificity to DNA. 

The intrinsic binding activity of SMAD3 and SMAD4 (via their MH1 domain) is weak, and 

their direct binding ability to DNA is lacking in the predominantly expressed splice variant of 

SMAD2. These SMAD-containing transcription factor complexes interact with coactivators, 

corepressors and chromatin remodeling factors to regulate the transcription of target genes in 

a cell type-dependent manner22, 25, 28 (Fig. 1A). 

 

In addition to the canonical SMAD-dependent pathway, non-SMAD signaling pathways can 

be initiated by activated TGF-β receptor complexes in specific cell types (Fig. 1B). These 

pathways can also modulate the SMAD pathway29. Via phosphorylation or direct interaction 

with signaling modules, TGF-β receptors can activate pathways such as the mitogen-activated 

protein kinase (MAPK) signaling cascade, which includes extracellular signal-regulated 

kinases (ERKs), p38 and c-Jun amino terminal kinase (JNK), phosphatidylinositol-3 kinase 

(PI3K)-AKT signaling and Rho-like GTPase activity29-32. TβRII is phosphorylated by non-

receptor tyrosine kinase Src on Tyr284, which acts as a docking site for growth factor receptor-

bound protein 2 (GRB2) and Src homology domain 2 containing (Shc), leading to the activation 

of ERK MAPK pathway33. Moreover, Shc is reported to be directly phosphorylated by TβRI, 
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which provides a docking site for GRB2 that interacts with the exchange factor SOS to activate 

the pro-oncogenic Ras-Raf-MEK1/2-ERK1/2 signaling31. Phosphorylated ERK1/2 translocate 

into the nucleus and regulate gene transcription by phosphorylating target transcription 

factors34. TGF-β activated kinase 1 (TAK1), a MAP kinase kinase kinase (MAPKKK) that is 

recruited to the TGF-β receptor complex by polyubiquitylated TRAF6, phosphorylates specific 

MAP kinase kinases (MKKs), leading to the phosphorylation of JNK and p3835. In addition, 

TGF-β stimulation triggers the interaction between TβRI and the PI3K subunit p85, leading to 

AKT phosphorylation and the activation of downstream effectors (e.g., mTOR, P70S6K and 

4EBP1)36, 37. PAR6 can also be phosphorylated by TβRI and recruit SMURF1 to degrade RhoA, 

which regulates cell–cell interactions via tight conjunctions38. CDC42, another GTPase, can be 

recruited to the TGF-β receptor complex and mediate the activation of p21-activated kinase 2 

(PAK2), which stimulates tight conjunction disassociation39, 40 (Fig. 1B). 

 

Regulation of TGF-β/SMAD Signaling 

As a pivotal cytokine in cell homeostasis, TGF-β signaling activity is under precise control, 

from ligand bioavailability to receptor and SMAD activation (Fig. 2). After synthesis and 

intracellular furin-mediated cleavage of the precursor protein (removal of the signal peptide), 

the bioactive growth-factor domain (mature TGF-β) and prodomain, also termed the latency-

associated peptide (LAP), are secreted in a small latent complex (SLC) form. Binding of TGF-

β ligand to its receptors is prevented by LAP. The large latent complex (LLC), a more 

commonly deposited complex, contains the SLC and the latent TGF binding protein (LTBP)41-

44. LLC is bound to elastic microfibrils via the binding of LTBP to the extracellular protein 

fibrillin-145. Stromal-derived molecules including proteases and reactive oxygen species (ROS) 

substantially contribute to the increase of active TGF-β levels by interacting with the latent 

TGF-β complex43, 46-48. Moreover, glycoprotein-A repetitions predominant protein (GARP) 

functions as a critical docking receptor on regulatory T cells to concentrate and activate latent 

TGF-β on the cell surface49, 50. In addition, contractile forces exerted by the integrins across the 

LLC play a vital role in the release of mature TGF-β42, 51-53. Fibronectin deposited in the ECM 

prior to LLC formation impairs TGF-1 bioactivity by interacting with LTBP54. Decorin, a 

member of the proteoglycan family, also exerts a suppressive role in TGF-β activity via binding 

to all isoforms of soluble TGF-β55.  

 

Apart from the ECM level, TGF-β responsiveness is tightly controlled at the cell membrane. 

Glycosylation of the extracellular domain of TβRII inhibits its transportation to the cell 

membrane and lowers its TGF-β binding affinity56, 57. E3 ubiquitin ligases such as SMAD-

specific E3 ubiquitin protein ligase 1/2 (SMURF1/2) cooperate with inhibitory SMAD7 to 

regulate the availability of TβRI receptor on the cell surface by polyubiquitylation and 

proteasomal degradation58, 59. In contrast, deubiquitinating enzymes ubiquitin-specific protease 

(USP) 4, 11 and 15 remove the polyubiquitin chains from TβRI60. Moreover, two phosphatases, 

i.e. protein phosphatase (PP)1c and PP2A, impair receptor activation by targeting TβRI for 

dephosphorylation61, 62. Akin to ubiquitylation, sumoylation and neddylation have also been 

implicated to regulate TGF-β receptor stability. The interaction between TGF-β receptors and 

the coreceptors located in the cell membrane is another determinant for the signaling strength21, 

63. The coreceptor betaglycan stabilizes the receptor complex between TβRI and TβRII and 

propagates signaling transduction initiated by TGF-β264. Endoglin, another accessory protein 

structurally related to betaglycan, inhibits TGF-β/ALK5-mediated SMAD2/3 signaling but 

promotes TGF-β/ALK1-induced SMAD1/5/8 signaling in endothelial cells65, 66. 

 

At the cytoplasmic level, phosphorylated SMAD proteins can be deactivated by phosphatases 

such as PPM1A and PDP, leading to signal termination67-69. Similar to the TGF-β receptors, 
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SMAD2/3 are destabilized by multiple ubiquitylating enzymes such as SMURF1/2 and 

NEDD4L70, 71. Conversely, USP4 promotes SMAD4 activity by removing the suppressive 

monoubiquitination triggered by SMURF272. MicroRNAs (MiRNAs) also inhibit the 

expression of various signaling components73. MiR-200b, a miRNA whose expression is 

downregulated by TGF-β1, attenuates TGF-β signaling by targeting SMAD2 mRNA at the 

post-transcriptional level, thereby forming a negative feedback loop74. 

 

Upon activation, the SMAD2/3/4 complex translocate into the nucleus and form a transcription 

complex with other cofactors. In combination with different sequence-specific transcription 

factors, the SMAD complex generate various transcriptional responses in a context and cell 

type-dependent manner1, 75-77. In addition, activated SMAD proteins participate in the 

maturation of miRNAs by recruiting the RNA helicase p68 (DDX5) to the Drosha complex78. 

MEG3, an intranuclear long noncoding RNA (lncRNA), can bind to the distal regulatory 

elements of genes encoding for TGF-β signaling components, including TGFB2, TGFBR1 and 

SMAD, to inhibit their transcription79.  

 

TGF-β as a Tumor Suppressor 
TGF-β-Induced Growth Inhibition 

TGF-β induces growth inhibition (Fig. 3) and apoptosis (Fig. 4) in normal epithelial (and 

certain premalignant) cells; these properties are associated with its function as a tumor 

suppressor80. The molecular mechanisms by which TGF-β elicits these processes involve 

multiple intracellular pathways81-83. 
 

 
 

Fig. 3 Gene regulation in TGF-β-induced cell cycle arrest. TGF-β receptor activation leads to SMAD2/3 phosphorylation. 

Phosphorylated SMAD2/3 bind to SMAD4, and the SMAD2/3/4 complex translocate into the nucleus to modulate gene 

transcription. C-Myc and cdc25A gene expression is repressed, while p15INK4b and p21CIP/WAF1 gene expression is induced 

by TGF-β, leading to the cell cycle arrest into the G1 phase. Abbreviations: CDK, cyclin dependent protein kinase; TβR, TGF-

β receptor; TGF-β, transforming growth factor-β. 

 

Numerous studies support the notion that TGF-β inhibits cell proliferation by arresting cells 

into the G1 phase of the cell cycle (Fig. 3). SMAD-containing protein and transcriptional 

coactivator complexes can activate the transcription of two major cell cycle inhibitors, CDK 
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inhibitors (CKIs), p15 and p2184, 85. In keratinocytes, TGF-β/SMAD signaling induces the 

expression of cyclin-dependent kinase inhibitors p15INK4b and p21CIP/WAF1, which inhibit the 

CDK4/6-cyclinD complex86. These cyclin-dependent kinase inhibitors suppress the CDK 

activities associated with the G1 to S phase progression, prevent cyclin-dependent kinases-

mediated Rb phosphorylation, and arrest cells in the G1 phase87. The activated SMAD proteins 

target the promoters of c-Myc and CDK genes and repress their transcription in cooperation 

with nuclear corepressors88. TGF-β receptor-initiated non-SMAD signaling can also exert an 

anti-proliferative effect on some cell types89. 
 

 
 

Fig. 4 TGF-β-induced cell apoptosis. TGF-β promotes the activation of SMADs and the expression of pro-apoptotic genes 

such as Dapk, Ship and Tieg. SMADs also bind and inactivate the survival kinase AKT, thereby inducing apoptosis. TGF-β-

induced activation of the JNK and p38 pathways can also result in apoptosis. TGF-β can also induce, via the adaptor XIAP, 

the activation of the TAK1-TAB complex, leading to JNK or p38 activation, both of which can lead to apoptosis. Abbreviations: 

Dapk, death associated protein kinase; Ship, SH2-containing inositol phosphatase; TAB1, TAK1 binding protein; TAK1, TGF-

β activating kinase; TGF-β, transforming growth factor-β; Tieg, TGF-β-inducible early-response gene; XIAP, X chromosome-

linked inhibitor of apoptosis. 

 

TGF-β-Induced Apoptosis 

TGF-β can induce cell apoptosis in normal epithelial (and some premalignant) cells (Fig. 4). 

Several apoptotic regulators have been implicated as downstream targets of TGF-β signaling, 

often in a cell- or tissue-specific manner90. Induction of the pro-apoptotic genes such as Ship 

and Tieg have been shown in TGF-β-induced apoptosis91. In liver cancer cells, the Daxx 

adaptor protein couples TGF-β signaling to the cell death machinery through its interaction 

with TRII92. In liver cancer cells, TGF-β can induce the expression of the death-associated 

protein kinase DAPK, which promotes cell death93. In addition, TGF-β-induced activation of 

TGF-β-activated kinase-1 (TAK-1), a protein of the MAPKKK family that activates p38 and 

JNK signaling, is involved in TGF-β-induced apoptosis94. TGF-β can also induce apoptosis 
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through repressing the phosphoinositide 3-kinase/AKT/survivin pathway in colon cancer 

cells95 (Fig. 4).  

 

Mutation in TGF-β Signaling Components in Cancer 

Analysis from clinical tumor samples reveals that TGF-β-mediated signaling is indeed strongly 

implicated in the regulation of cancer96. Recent studies have shown that in various human 

tumor types, components of the TGF-β signaling pathway, namely, TGFBR2, TGFBR1, 

SMAD2, SMAD3 and SMAD4, are commonly inactivated through mutation81, 97. Multiple 

genetic alterations in genes encoding central components in TGF-β signaling pathway are 

found in human cancers, in particular in pancreatic, esophagus, colorectal and head and neck 

cancer98 (Fig. 5). Indeed, TGFBR2-inactivating mutations in its poly A gene tract are frequently 

found in cancers associated with microsatellite instability (MSI)99. SMAD point mutations 

associated with cancer are loss-of-function mutations that either target functional elements or 

affect the overall stability of the protein. Studies in cultured cells have shown that these 

inactivating mutations mediate an escape from TGF-β-induced growth arrest and apoptosis.  

 

 
 
Fig. 5 Frequency of genetic alterations in TGFBR1, TGFBR2, SMAD2, SMAD3 and SMAD4 by cancer type. The graph 

displays the frequency of genetic alterations (point mutations, deletions, amplifications, or multiple alterations) in TGFBR1, 

TGFBR2, SMAD2, SMAD3 and SMAD4 in different types of cancer. Data were derived from TCGA datasets (The Cancer 

Genome Atlas, cancergenome.nih.gov/) at the time of this writing. Analysis was done using cBioPortal (www.cbioportal.org/). 

 

In addition to the known mutations in the TGF-β receptors and SMAD pathway, other types of 

(epi)genetic alterations may also affect TGF-β signaling and tumor formation89. For example, 

oncogenic activation of the Ras-Raf-MAPK pathway and c-Jun NH2-terminal kinase in 

hepatocellular carcinoma has been reported to induce phosphorylation of the SMAD3 linker 

domain by MAPK, further preventing C-terminal phosphorylation of SMAD by the TβRI 

kinase domain and thereby inhibiting the TGF-β cytostatic effects100. 
 

http://www.cbioportal.org/
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Fig. 6 TGF-β-induced EMT, invasion and metastasis. (A) TGF-β induces EMT by decreasing the expression of epithelial 

makers (in green) and increasing the expression of mesenchymal markers (in blue). TGF-β also promotes the secretion of 

MMP2 and MMP9, thereby conferring tumor cells highly invasive abilities. (B) Bone-derived TGF-β increases the secretion 

of PTHrP, which activates osteoclast activity through interacting with RANKL, thereby promoting osteolytic metastasis. IL-

11 and CTGF are also key effectors induced by TGF-β in this process. Osteolysis leads to more local TGF-β release, causing 

the formation of a positive feedback loop. Moreover, TGF-β-induced ANGPTL4 plays a vital role in disrupting the junctions 

between pulmonary endothelial cells and contributes to lung metastasis formation. Abbreviations: ANGPTL4, angiopoietin-

like 4; EMT, epithelial to mesenchymal transition; MMP, matrix metalloproteinase; SMA, smooth muscle actin; RANKL, 

receptor activator of nuclear factor B ligand; TGF-β, transforming growth factor-β. 

 

TGF-β as a Tumor Promoter 
TGF-β-Induced EMT and Invasion 

In the late stage of tumor progression, TGF-β switches from a tumor suppressor to a tumor 

promoter by inducing EMT, tumor invasion, distant dissemination, angiogenesis and immune 

evasion101-104. During EMT, tumor cells switch from an epithelial phenotype to a mesenchymal 

phenotype and gain highly migratory and invasive abilities. Moreover, they acquire cancer 

stem cell (CSC) properties and become more resistant to detachment-induced apoptosis105. 

During EMT, epithelial cells downregulate the expression of genes encoding epithelial markers, 

such as E-cadherin, Occludin and ZO-1, upregulate the expression of genes encoding 

mesenchymal markers, such as N-cadherin, Vimentin and -smooth muscle actin (SMA), and 

dissolve the tight junctions. EMT greatly facilitate tumor cell invasion106, 107 (Fig. 6A). In 

response to TGF-β, the SMAD complex directly increases the expression of multiple EMT-

transcription factors including ZEB, TWIST and SNAIL family members by binding to their 

promoters. In addition, in combination with ZEB2 or SNAIL, the SMAD complex suppresses 

the transcription of genes encoding E-cadherin and Occludin, conferring the mesenchymal 

traits to cancer cells108, 109. In addition, SMAD4 binding enhances the promoter activity of miR-

155. MiR-155 dissolves the tight junctions by targeting RhoA mRNA and downregulates CDH1 

(mRNA encoding for E-cadherin) expression by inhibiting the expression of transcriptional 

activator CEBPB (mRNA encoding for C/EBP)110, 111. LncRNA-ATB, a long non-coding RNA 

activated by TGF-β, serves as a sponge for the miR-200 family members that restrain ZEB1/2 

protein expression, and thereby promotes EMT and hepatocellular carcinoma progression112. 

In combination with the SMAD-dependent pathway, SMAD-independent pathways also 
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potentiate TGF-β-induced EMT29, 107, 113. Activation of proto-oncogenes such as Ras and 

receptor tyrosine kinase pathways cooperate with TGF-β pathway to promote EMT114, 115. By 

directly modulating the activity of AP1 transcription factors that can cooperate with SMADs 

or phosphorylate R-SMADs, the ERK, p38 and JNK MAPK pathways play a key role in TGF-

β-induced EMT and tumor invasion116-119. In addition, PI3K/AKT signaling participates in 

TGF--triggered EMT by activating the mTOR and EMT-related transcription factors such as 

SNAIL and TWIST137, 120-122. Activation of the Rho family GTPases including RhoA, Rac1, 

and Cdc42 by TGF-β receptors contributes to cell–cell junction dissolution and cytoskeletal 

reorganization, which are important determinants for EMT38, 123, 124. 

 

Local invasion through the surrounding ECM and stromal cell layers is the first step of the 

invasion-metastasis cascade125. Results from human cancer specimens suggest that 

coexpression of SMAD3/4 and SNAIL is correlated with the loss of E-cadherin and coxsackie 

and adenovirus receptor (CAR), a tight junction-associated cell adhesion molecule, at the 

invasive front109. Apart from conferring EMT properties to cancer cells, TGF-β induces the 

expression and secretion of matrix metalloproteinases 2/9 (MMP2/9) in tumor cells or/and 

stromal cells (e.g., myofibroblasts). These two proteinases promote ECM and collagen 

proteolysis, leading to the invasion of tumor cells into their stromal compartment126, 127 (Fig. 

6A). In addition, TGF-β employs miR-181b to inhibit the protein level of TIMP3, an inhibitor 

of metalloprotease. The latter promotes MMP2/9 activities and the invasion of hepatocellular 

carcinoma cells128. 

 

TGF-β-Induced Metastasis to Bone, Lung and Other Organs 

Cancer metastasis contributes to the death of most cancer patients129. Bone metastasis is a 

common event in specific cancer types, including breast, lung and prostate cancers. The 

interaction between disseminated cancer cells and resident skeletal cells disrupts bone integrity, 

conferring a receptive microenvironment for the outgrowth of metastatic cancer cells130, 131. 

Bone-derived TGF-β promotes SMAD-dependent pathway activation in cancer cells, which 

increases the expression and secretion of parathyroid hormone-related protein (PTHrP), a 

major osteoclastogenic factor. PTHrP potentiates osteoclast activity by interacting with 

receptor activator of nuclear factor B ligand (RANKL), thereby promoting bone metastasis131-

134 (Fig. 6B). By employing in vivo selection of highly metastatic cell lines and functional 

imaging, Kang et al. identified a bone metastasis gene signature that includes C-X-C motif 

chemokine receptor 4 (CXCR4), interleukin 11 (IL-11) and connective tissue growth factor 

(CTGF), which contribute to metastasis by directing the homing of breast cancer cells to bone, 

osteolysis and angiogenesis, respectively135, 136. IL-11 and CTGF expression is induced by 

TGF-β. The degraded bone in turn secretes stored factors including TGF-β to form a positive 

feedback loop called “vicious cycle”137. 

 

TGF-β signaling also contributes to lung metastases formation. A TGF-β-induced gene 

expression signature in estrogen receptor (ER)-negative breast cancer cells was found to 

correlate with the potential to form lung metastases. Blockade of TGF-β signaling impairs the 

extravasation of ER-negative breast cancer cells in lung capillaries, while TGF-β pretreatment 

increases the metastatic abilities of tumor cells138. TGF--induced adipokine angiopoietin-like 

4 (ANGPTL4) plays a vital role in the disruption of junctions between pulmonary endothelial 

cells (Fig. 6B). However, bone metastasis is not affected by TGF-β preincubation or ANGPTL4 

knockdown, which can be explained by the microvasculature difference in these two organs96. 

 

TGF-β also participates in the metastatic growth of tumor cells in liver139, 140. Upon 

extravasating into liver parenchyma, TGF-β released by colorectal cancer cells promotes the 
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transformation of surrounding hepatic satellite cells (HSCs) into myofibroblasts. Tumor-

associated myofibroblasts in turn increase the expression of C-X-C motif chemokine ligand 12 

(CXCL12) and hepatic growth factor (HGF), which trigger the metastatic growth of cancer 

cells141. 

 

Stimulation of Angiogenesis and Immune Evasion by TGF-β 

Angiogenesis is indispensable for solid tumors larger than 2–3 mm3 to obtain oxygen and 

nutrients, remove waste products and spread through the circulatory system142. An elevated 

level of TGF-β in plasma correlates with an increase of tumor angiogenesis and poor clinical 

outcomes in many cancer types143-146. TGF-β can directly activate endothelial cells by 

promoting TGF-β/ALK1 signaling147. The coreceptor endoglin, which is highly expressed in 

activated endothelial cells, can potentiate this signaling response148. Moreover, in the tumor 

niche with low oxygen, hypoxia and TGF-β signaling can cooperate to initiate an angiogenic 

program in cancer cells. Mechanistically, hypoxia-induced HIF-1, in cooperation with SMAD3, 

enhances the transcription of vascular endothelial growth factor (VEGF), which is of 

importance in capillary formation and endothelial cell migration, thereby promoting tumor 

angiogenesis149, 150.  

 
Table 1 Overview of clinical trials with TGF-β targeting agents 

 

Stage Drug Type Target 

 

Disease Clinical trial 

identifier 
 
 

 

 
 

 

 
 

Phase 1 

AP 12009 AON TGF-β2 Multiple cancers 

 
NCT00844064 

TAG Vaccine Vaccine 

therapy 

TGF-β2 & 

immune 

Carcinoma/Advanced 

Metastatic 
 

NCT00684294 

TEW-7197 Kinase 

inhibitor 

TβRI Advanced Stage Solid 

Tumors 

NCT02160106 

 

NIS793 Antibody TGF-β Multiple cancers NCT02947165 

Paclitaxel/Carboplatin + 

Galunisertib 

Kinase 

inhibitor 

TβRI Carcinosarcoma, Ovarian NCT03206177 

TEW-7197 Kinase 
inhibitor 

TβRI Multiple Myeloma NCT03143985 

LY2157299 Kinase 

inhibitor 

TβRI Multiple myeloma NCT00689507 

LY573636 Kinase 
inhibitor 

TβRI Hematopoietic 
malignancies 

NCT00718159 

Fresolimumab (CG1008) Antibody TGF-β2 Multiple cancers NCT00356460 

 

Phase 

1/Phase 2 

Fresolimumab (CG1008) Antibody TGF-β2 Multiple cancers NCT02581787 

LY2157299 Kinase 

inhibitor 

TβRI Multiple cancers NCT02423343 

LY2157299 Kinase 

inhibitor 

TβRI Glioma NCT01220271 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

Phase 2 

LY2157299 Kinase 
inhibitor 

TβRI Prostate Cancer NCT02452008 

Lucanix (belagen-

pumatucel) 

Vaccine 

therapy 

TGF-β2 & 

immune 

Multiple cancers NCT01058785 

PF03446962 Antibody ALK1 Transitional Cell 
Carcinoma of Bladder 

NCT01620970 

Fresolimumab (CG1008) Antibody TGF-β2 Primary Brain Tumors NCT01472731 

LY2157299 Kinase 

inhibitor 

TβRI Metastatic Breast Cancer NCT02538471 

LY2157299 Kinase 
inhibitor 

TβRI Rectal Adenocarcinoma NCT02688712 

AP 12009 AON TGF-β2 Glioblastoma/Anaplastic 
Astrocytoma 

NCT00431561 

Fresolimumab (CG1008) Antibody TGF-β2 Pleural Malignant 
Mesothelioma 

NCT01112293 

Fresolimumab (CG1008) Antibody TGF-β2 Renal Cell Carcinoma NCT00923169 

LY2157299 Kinase 

inhibitor 

TβRI Hepatocellular Carcinoma NCT02178358 

Fresolimumab(CG1008) Antibody TGF-β2 Metastatic Breast Cancer NCT01401062 
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LY2157299 Kinase 

inhibitor 

TβRI Hepatocellular carcinoma NCT01246986 

LY573636 Kinase 

inhibitor 

TβRI Melanoma NCT00383292 

LY573636 Kinase 
inhibitor 

TβRI Non-small cell lung 
carcinoma 

NCT00363766 

Fresolimumab(CG1008) Antibody TGF-β2 & 

immune response 

Kidney cancer NCT00899444 

 

Phase 3 

AP 12009 AON TGF-β2 Anaplastic 
Astrocytoma/Glioblastoma 

NCT00761280 

Lucanix Vaccine 

therapy 
TGF-β2 & 

immune response 
Non-small Cell Lung 

Cancer 

NCT00676507 

Phase 4 Vitamin D3  TGF-β1 Multiple cancers NCT02460380 

 

 

 

 

Preclinical 

LY2109761 Kinase 

inhibitor 
TβRI/TβRII Pancreatic cancer  

SD208 Kinase 
inhibitor 

TβRI Melanoma 

SM16 Kinase 

inhibitor 
TβRI Multiple cancers 

TRII Antibody Antibody TβRII Multiple cancers 

sTβRII (Fc) Ligand Trap TβRII Multiple cancers 

sBetaglycan Ligand Trap Betaglycan Multiple cancers 

1D11 Antibody TGF-β1/2/3 Multiple cancers 

2G7 Antibody TGF-β1/2/3 Multiple cancers 

Data from www.clinicaltrials.gov 

 

Silencing SMAD2 (in contrast to SMAD3 depletion) in breast cancer MDA-MB-231 cells 

enhances TGF-β-induced VEGF secretion in vitro and promotes the formation of bone 

metastases in vivo151. TGF-β also enhances the transcription of CTGF, another key angiogenic 

factor, in breast cancer cells with high bone metastatic potential135.  

 

In addition to supporting EMT, invasion, metastasis and tumor angiogenesis, TGF-β also 

contributes to tumor progression by stimulating tumor evasion from immune surveillance. 

CD8+ cytotoxic T cells are a cell population that can induce cancer cell apoptosis. TGF-β 

represses the transcription of granzyme, perforin and interferon- through SMAD and ATF1 

in CD8+ T cells, thereby inhibiting the cytotoxic activity of CD8+ cytotoxic T cells152, 153. TGF-

 can also induce the differentiation of regulatory T-cells (Tregs), which suppress the 

proliferation and activation of CD8+ cytotoxic T cells, resulting in immunosuppression and a 

decrease in immunosurveillance154-156. The activation of natural killer (NK) cells, another 

cytotoxic cell type, is attenuated by TGF-β-induced downregulation of IL-15 and NKG2D, an 

activating receptor of NK cells157, 158. In addition, TGF-β-triggered miR-183 expression 

represses DAP12 protein expression, leading to the destabilization of the NK receptor and 

inhibition of cytotoxicity159. In addition, TGF-β is a driver of the tumor-suppressive M1 

macrophage phenotype transition into the tumor-promoting M2 phenotype, thereby promoting 

the production of tumor-promoting factors and inhibiting the activity of T cells160, 161. 

 

Targeting TGF-β Signaling in Cancer 
Due to the strong pro-oncogenic effects of TGF-β, inhibitory agents targeting TGF-β have been 

developed, including antisense oligonucleotides (AONs), small molecule receptor kinase 

inhibitors and neutralizing antibodies. The mechanisms of these inhibitors involve the 

inhibition of TGF-β and receptor expression, the interference of receptor kinase signaling, and 

the blockade of TGF-β ligand and receptor binding (Fig. 7, Table 1). These agents have been 

tested in preclinical and clinical stages. While inhibiting tumor progression by blocking TGF-

β signaling is a promising approach, the biphasic action of TGF-β in cancer progression and its 

multifunctionality make it a challenging target. 

 

Antisense Oligonucleotides 
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The binding of ligands to receptors is the first step of TGF-β signaling activation; AONs have 

been developed to degrade TGFB mRNA162 (Fig. 7). The antisense RNA drugs AP12009 and 

AP11014 targeting TGFB2 and TGFB1, respectively, have been used in (pre)clinical cancer 

treatment studies. AP12009 has been reported to inhibit neovascularization and tumor invasion 

and has been used to treat high-grade glioma and anaplastic astrocytoma patients163-165. In 

addition, AP11014 has been reported to display an anti-tumor effect in animal models of colon 

cancer, prostate cancer and lung cancer and is being studied in preclinical research166, 167. 

 

TGF-β Receptor Kinase Inhibitors 

Small ATP-mimetic compounds have been synthesized to selectively inhibit TβRI (and TβRII) 

kinase activity (Fig. 7). These compounds have been tested in preclinical and clinical studies 

of multiple cancer types. Systemic administration of the TβRI kinase inhibitor SD208 can 

increase the median survival of mice with malignant glioma inoculation168 and reduce tumor 

metastasis in pancreatic and breast cancer169, 170. LY2157299 is the first TβRI kinase inhibitor 

that has been reported to inhibit primary tumor growth in breast and lung cancer cell lines171, 

172. To optimize the applicability of LY2157299 to cancer therapy, a first-in-human dose 

evaluation found that LY2157299 administration at 300 mg per day is safe173. Another kinase 

inhibitor, LY2109761, inhibits both the activity of TβRI and TβRII. A large number of studies 

have indicated that LY2109761 exhibits great potential in the prevention of cancer metastasis 

in multiple cancer types including colon174 and pancreatic cancer175, glioblastoma176 and 

ovarian cancer177, 178. TEW-7197 is an orally administered small molecule that targets TβRI 

kinase activity. It stimulates apoptosis and suppresses TGF-β-induced activation of SMAD2/3 

in human and murine myeloma cells in vitro, leading to the inhibition of myeloma cell growth 

and viability179. While the preclinical results of these studies are promising, the clinical 

translation has been difficult. On-target side effects on the cardiovascular system have halted 

clinical advancement. By using an intermittent dosing strategy, these adverse side effects may 

be overcome172, 180. 

 

 
Fig. 7 Targeting TGF-β in cancer. TGF-β signaling has an important effect on tumor progression and provides a new approach for tumor 

targeting therapy. Many inhibitors of the TGF-β pathway (including kinase inhibitors, AONs, and antibodies) have already been applied in 

preclinical and clinical trials (see Table 1). Abbreviations: ECM, extracellular matrix; TβR, TGF-β receptor; TGF-β, transforming growth 
factor-β. 
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Antibodies Against TGF-β Ligands and Extracellular Domains of TGF-β Receptors 

1D11, an antibody that recognizes all three TGF-β isoforms, interferes with TGF-β and TGF-

β receptor binding and, thus, neutralizes TGF-β activity (Fig. 7). This antibody has been used 

in (pre)clinical studies. 1D11 significantly increases NK cell and nuclear T cell invasion, 

as well as NKG2D expression and cytotoxic perforin and granzyme B release in breast cancer 

cells, thereby enhancing the anti-tumor effect of CD8+ T cells and NK cells181. Additionally, 

1D11 has also been found to suppress bone metastasis in prostate cancer182. Like 1D11, 2G7 

also inhibits MDA-MB-231 cell invasion. Additionally, the combination of dendritic cell (DC)-

based vaccines and 2G7 potently inhibits the development of the established murine mammary 

tumors183, 184. A clinical trial of another monoclonal antibody, fresolimumab (CG1008), which 

inhibits all three TGF-β isoforms, demonstrated its safety and efficacy in suppressing 

metastatic melanoma and renal cell carcinoma185. Fresolimumab may help to stabilize the 

condition of patients during malignant pleural mesothelioma therapy. Importantly, adverse 

effects, such as skin toxicity (including formation of cutaneous squamous-cell carcinomas and 

basal cell carcinoma), have been reported in cancer patients after fresolimumab treatment185. 

 

Similar to neutralizing antibodies, soluble TβRII and TβRIII ligand traps are also used to block 

TGF-β signaling. These molecules are expressed in the extracellular domain of the receptor, 

which prevent ligands from binding to TGF-β receptors103. The ligand trap TβRII:Fc (a fusion 

of the extracellular TGF-β-binding domain of TβRII with IgG1 Fc domain) shows anti-tumor 

effects on multiple cancers, including inhibition of mesothelioma growth and suppression of 

breast cancer cell viability and migration186, 187. The expression of soluble TβRIII (sBetaglycan) 

effectively suppresses tumor growth in MDA-MB-231 xenograft-bearing athymic nude mice188 

and inhibits glioma and non-small cell lung cancer progression in other mouse models189, 190. 

Due to the risk of tumor development caused by the TGF-β soluble receptors191, 192, these 

receptors have not yet entered the clinical research phase. 

 

Targeting TGF-β signaling provides a new approach and opportunity for cancer therapy. Since 

TGF-β pathway is also involved in many normal biological functions, the exact mechanism of 

action in the patients and the adverse reactions caused by systemic inhibition of TGF-β are still 

not clear. A further understanding of the dual roles of TGF-β will be beneficial to the 

development of therapeutics specifically targeting TGF-β in tumor progression. Sole treatment 

with TGF-β-targeting agents will likely not be successful in curing cancer patients, and a 

combination of TGF-β targeting therapies with chemo- and radiotherapy or other forms of 

targeted therapy should be explored. 

 

Concluding Remarks 
TGF-β has a dual action in cancer by acting as a tumor suppressor in the early stages and a 

tumor promoter in the late phases of tumor progression. Cancer cells are insensitive to the 

cytostatic effects of TGF-β through the activation of proto-oncogenes and inactivation of tumor 

suppressor genes. The latter (epi)genetic changes also cooperate with TGF-β to mediate EMT, 

thereby facilitating invasion and metastasis. Moreover, TGF-β promotes tumorigenesis by 

stimulating immune evasion and promoting angiogenesis. The biphasic role in cancer and its 

multifunctional properties in the maintenance of tissue homeostasis make TGF-β a challenging 

pathway to target for treatment of cancer patients. A more detailed understanding of the 

mechanism of action in cancer patients, careful dosing and the selection of patients who will 

most benefit from the TGF-β targeting agents will be important for their clinical 

implementation. 
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Abstract 
Transforming growth factor-β (TGF-β) signaling can have a dual role during cancer 

progression and suppress tumorigenesis at initial stages of cancer but promote cancer 

progression at advanced stages. The latter is achieved, in part, by acting directly on cancer cells 

by inducing a transition from epithelial to a highly invasive mesenchymal state (EMT). Ligand-

induced activation of transmembrane TGF-β receptor triggers EMT through activation of 

intracellular SMAD transcription factors. TGF-β signaling is regulated by modulators at 

multiple levels during EMT. Although the importance of protein coding genes that are 

modulated in response to TGF-β/SMAD signaling have been well studied, an important role of 

long non-coding RNAs (lncRNAs) in TGF-β/SMAD signaling action is emerging. This mini-

review focusses on the mechanisms by which lncRNAs interplay with TGF-β signaling. 

 

Molecular Basis of LncRNAs  
Although more than 70% of human genome can be actively transcribed, only around 2% of it 

is transcribed into protein coding messenger RNAs (mRNAs)1, 2. However, a large amount of 

lncRNAs, which had been recognized as “transcription noise” for a long time, is extensively 

transcribed within the human genome3, 4. A recent study that collected the sequencing results 

from various publicly available databases revealed 95,243 human lncRNA genes and 323,950 

human lncRNA transcripts5. LncRNAs are arbitrarily defined by that their transcript length is 

longer than 200 nucleotides (nt). Similar to mRNAs, most lncRNAs are transcribed by RNA 

polymerase II (Pol II), and a large proportion of lncRNAs undergo alternative splicing and 

polyadenylation6, 7. Unlike mRNAs, lncRNA primary sequences are less conserved among 

species and lncRNA expression generally exhibits high tissue specificity2, 8-10.  

 

Mechanisms of LncRNAs  
LncRNAs can be divided into nuclear and cytoplasmic lncRNAs depending on their subcellular 

localization (Fig. 1). By interacting with chromatin modifiers or transcription (co)factors, 

nuclear lncRNAs can alter the epigenetic landscape or the transcription process, and thereby 

change target gene expression11-15. Nuclear lncRNAs can influence RNA splicing by interacting 

with the serine and arginine-rich (SR) protein16, 17. Moreover, a subgroup of lncRNAs called 

enhancer RNAs, which are transcribed from active enhancers, can modulate chromatin looping 

in cis or in trans, leading to the activation of target gene transcription18-21. Cytoplasmic 

lncRNAs can regulate mRNA stability or translation through directly binding to mRNAs or 

RNA binding proteins (RBPs). LncRNAs localized in the cytoplasm can also act as sponges 
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for microRNAs (miRNAs)22, 23. Recent studies have shown that functional small peptides can 

be encoded by cytoplasmic lncRNAs that associate with ribosomes24, 25. Additionally, both 

cytoplasmic and nuclear lncRNAs can regulate protein post-translational modifications (PTMs) 

or molecular complex formation by functioning as scaffolds or decoys26-29. 

 

 
 
Fig.1 Mechanisms of lncRNAs function. Nuclear lncRNAs can interact with chromatin modifiers (A) or transcription 

(co)factors (B) to regulate chromatin landscape or gene transcription. They can also mediate alternative splicing (C) and 

chromatin looping (D). Cytoplasmic lncRNAs can affect mRNA stability (E) or translation (F), sponge miRNAs (G), encode 

small peptides (H), and modulate protein interactions and post-translational modification (I, J). ORF: open reading frame; SR: 

serine and arginine-rich; PTM: post-translational modification. 
 

LncRNAs Function as Effectors of TGF-β Signaling  
TGF-β-induced gene products frequently function as effectors of  TGF-β-induced responses, 

for example EMT30, 31. Consistent with this scenario, TGF-β-induced lncRNAs can drive TGF-

β-induced EMT in cancer. LncRNA-HOXA transcript induced by TGF-β (LncRNA-HIT) 

promotes TGF-β-induced EMT and migration by specifically mitigating E-cadherin expression 

in mouse mammary NMuMG cells32. TGF-β promotes the expression of lncRNA-activated by 

TGF-β (lncRNA-ATB), which stabilizes interleukin-11 (IL-11) mRNA, resulting in the 

promotion of hepatocellular carcinoma (HCC) cell colonization in secondary tissues33. In 

addition, lncRNA-ATB drives EMT by serving as a sponge for miR-200, leading to the 

upregulation of EMT transcription factor ZEB1/233. Moreover, expression of other TGF-β 

downstream EMT transcription factors including SNAIL34, 35, SLUG34-36 and TWIST37, 38 can 

be activated by TGF-β-induced lncRNAs.  

 

TGF-β can induce lncRNA expression to influence the transcriptional output by altering 

epigenetic modifications. TGF-β-induced Metastasis Associated Lung Adenocarcinoma 

Transcript 1 (MALAT1) interacts with H3K27 methyltransferase suppressor of zeste 12 (suz12), 
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a component of the polycomb repressive complex 2 (PRC2), to promote H3K27me3 abundance 

at the promoter of CDH1 (the gene that encodes E-cadherin) and to potentiate EMT in bladder 

cancer cells39. TGFB2-antisense RNA1 (TGFB2-AS1) associates with PRC2 adaptor protein 

EED to facilitate H3K27me3 modification at the promoter of TGF-β target genes40.  

 

 
 

Fig.2 Interplay between lncRNAs and TGF-β signaling. TGF-β signaling induces lncRNAs to regulate EMT in cancer. 

LncRNAs can also modulate TGF-β signaling transduction at different levels, from ligand production to transcriptional output. 

(For description see text) 

 

LncRNAs Function as Modulators of TGF-β Signaling  
LncRNAs can act as modulators to fine-tune TGF-β signaling transduction in a negative or 

positive feedback manner41, 42. TGF-β induced mir-100-let-7a-2-mir-125b-1 cluster host gene 

(MIR100HG) enhances TGFB1 mRNA stability by promoting the binding of RBP HuR to 

TGFB1 mRNA in multiple cancer cells43. MIR100HG enhances TGF-β1 autocrine to potentiate 

TGF-β signaling43. SGO1-AS1 facilitates TGFB1/2 mRNA decay by competing their binding 

to PTBP1, an RBP that stabilizes TGFB1/2 mRNA44. TGF-β1/2 production is therefore 

decreased by SGO1-AS1, leading to the attenuation of EMT and cancer metastasis44. 

 

Expression of TGF-β signaling receptors is regulated by lncRNAs. SMAD3-associated long 

non-coding RNA (SMASR) expression is suppressed by TGF-β/SMAD signaling in lung 

adenocarcinoma cells45. SMASR interacts with SMAD3 to attenuate TBRI mRNA transcription, 

thus leading to inactivation of TGF-β/SMAD signaling45. LINC01232 recruits the RBP insulin 
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like growth factor 2 mRNA binding protein 2 (IGF2BP2) to protect TBRI mRNA from 

degradation46. As a consequence, TGF-β signaling and cell stemness are potentiated by 

LINC01232 in lung adenocarcinoma cells46.  

 

R-SMADs (i.e. SMAD2/3) and the co-SMAD SMAD4 are reported to be modulated by 

lncRNAs. TGF-β/SMAD-induced TGF-β/SMAD3-interacting long noncoding RNA (lnc-TSI) 

binds to the MH2 domain of SMAD3 to diminish its interaction with TRI in human tubular 

epithelial cells47. EMT-associated lncRNA induced by TGF1 (ELIT-1) selectively binds to 

SMAD3, but not SMAD2, and recruits SMAD3 to target gene promoter in multiple cancer cell 

lines48. ELIT-1 depletion greatly abrogates TGF-β-induced EMT and migration48. LINC00941 

functions as a molecular decoy to bind SMAD4 MH2 domain and to protect SMAD4 from 

being degraded by the E3 ligase -TrCP in colorectal cancer cell49.  

 

Perspectives 
The interplay between lncRNAs and TGF-β signaling reveals the important effector role of 

lncRNAs in TGF-β-induced biological responses and also the intricate and multi-level 

regulation of TGF-β signaling by lncRNAs to fine-tune its strength and duration. Manipulating 

critical lncRNA expression in cancer cells may provide a new strategy to target TGF-β-

triggered EMT in cancer progression. The tissue-specific expression of lncRNAs can be 

exploited to selectively target TGF-β signaling in highly-malignant mesenchymal cancer cells 

to circumvent the on-target effects caused by systemic TGF-β signaling intervention. However, 

considering the dichotomous role of TGF-β signaling in early and late phases of cancer 

progression, it is key to understand the mechanisms by which lncRNAs modulate TGF-β 

signaling in cancer cells in different stages or with difference genetic mutations. Differentially 

expressed lncRNAs that functionally correlate with  TGF-β-induced pro-tumorigenic responses  

may serve as biomarkers to select cancer patients who can benefit from TGF- targeted 

therapies.  
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3) Scope of this thesis 

 
In Chapter 1, we review the transduction of TGF-β signaling and the intricated regulation of 

TGF-β signaling at multiple layers. The biphasic role of TGF-β signaling in cancer progression 

is discussed. We also review the interplay between long non-coding RNAs (lncRNAs) and 

TGF-β signaling in EMT. In Chapter 2, we identified a lncRNA LITATS1 that functions as a 

protector of TGF-β-induced EMT in breast and non-small cell lung cancer. LITATS1 enhances 

the polyubiquitination and proteasomal degradation of TβRI by strengthening the interaction 

between TβRI and the E3 ligase SMURF2. LITATS1 maintains the cytoplasmic localization of 

SMURF2. In Chapter 3, we uncovered an unannotated lncRNA LETS1 as a novel enforcer of 

TGF-β signaling and TGF-β-induced EMT in breast and non-small cell lung cancer cells. 

Mechanistic study revealed that LETS1 cooperates with NFAT5 to bind NR4A1 promoter and 

induces the expression of NR4A1, a critical determinant of a destruction complex for inhibitory 

SMAD7. In Chapter 4, we found that a transcriptional repressor Ovo like transcriptional 

repressor 1 (OVOL1) inhibits TGF-β-induced EMT by facilitating TβRI degradation. We 

uncovered that OVOL1 interacts with and prevents SMAD7 polyubiquitination and 

degradation. A small molecule compound 6-formylindolo(3,2-b)carbazole (FICZ) was 

identified to activate OVOL1 expression and thereby antagonizes (at least in part) TGF-β-

mediated EMT and migration in breast cancer cells.  

 

 

 

 



 

 


