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PhenoScore quantifies phenotypic variation 
for rare genetic diseases by combining facial 
analysis with other clinical features using a 
machine-learning framework
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Several molecular and phenotypic algorithms exist that establish genotype–
phenotype correlations, including facial recognition tools. However, no 
unified framework that investigates both facial data and other phenotypic 
data directly from individuals exists. We developed PhenoScore: an 
open-source, artificial intelligence-based phenomics framework, combining 
facial recognition technology with Human Phenotype Ontology data 
analysis to quantify phenotypic similarity. Here we show PhenoScore’s 
ability to recognize distinct phenotypic entities by establishing recognizable 
phenotypes for 37 of 40 investigated syndromes against clinical features 
observed in individuals with o th er n eu ro developmental disorders and 
show it is an improvement on existing approaches. PhenoScore provides 
predictions for individuals with variants of unknown significance and 
enables sophisticated genotype–phenotype studies by testing hypotheses 
on possible phenotypic (sub)groups. PhenoScore confirmed previously 
known phenotypic subgroups caused by variants in the same gene for SATB1, 
SETBP1 and DEAF1 and provides objective clinical evidence for two distinct 
ADNP-related phenotypes, already established functionally.

A substantial portion of individuals with clinically and genetically 
hetero geneous rare diseases, such as neurodevelopmental disorders 
(NDDs), has been molecularly diagnosed in the last decade using 
whole-exome sequencing (WES)1–4. Clinical WES data interpretation 

relies on filtering and prioritization for rare genetic variants that 
are subsequently interpreted in the context of the patient’s clinical  
presentation5. Although this strategy is essential to identify the 
disease-causing variant(s), it is estimated that dozens of variants are 
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radiology25–28. In genetics, these new techniques have been used in the 
assisted interpretation of genomic variants29–31 and combining molecu-
lar and phenotypic evaluations, mainly looking at methods to use 
phenotypic data to automatically prioritize genetic variants32–38. Fur-
thermore, advances in computer vision have led to the application of 
facial recognition technology in clinical genetics39–44, with the current 
state-of-the-art application GestaltMatcher achieving a top-10 accu-
racy of 64%44. Facial recognition can assist in the recognition of (neuro)
developmental syndromes because the development of the brain 
and facial shape are closely linked45–48—and therefore, a substantial  
part of genetic disorders have distinct facial features49. However, not 
all genetic syndromes have a clear, recognizable, facial gestalt, which 
hinders methods solely looking at facial features. Although tools have 
previously looked at either combining molecular data with either HPO, 
or alternatively, with facial features1,41, an important area has been left 
unexplored, which combines the facial and HPO data into an AI frame-
work to predict phenotypic similarities without the need for genomic 
data input. Therefore, we developed PhenoScore—a next-generation 
open-source phenomics framework combining facial recognition 
technology with clinical features, quantitatively collected in HPO from 
deep phenotyping.

Results
The PhenoScore framework
PhenoScore is a framework that currently consists of the following 
two modules: a component that extracts the facial features from a 
2D-facial photograph and a second module that calculates HPO-based 
phenotypic similarity. The AI-based framework then provides the 
following three outputs: a Brier score and corresponding P value, 
defining how well PhenoScore is able to distinguish the investigated 
syndrome; a facial heatmap, highlighting important facial features 

prioritized as diagnostic noise6—and this number is expected to rise 
with technological innovations (such as long-read whole-genome 
sequencing, RNA sequencing and optical genome mapping, enabling 
the discovery of noncoding variants and complex structural variation) 
finding their way into the diagnostic arena7–11.

At the molecular level, several computational methods, such as 
MutationTaster12, PolyPhen13, Sorting Intolerant from Tolerant (SIFT)14 
and Combined Annotation-Dependent Depletion (CADD) score15, 
have been designed to effectively prioritize causal variants. At the 
phenotypic level, headway has been made by introducing Human 
Phenotype Ontology (HPO), systematically capturing the presence of 
features observed in individuals with rare diseases16. However, equiva-
lent to molecular tools, algorithms using these HPO data to quantify 
phenotypic HPO similarity between individuals with genetic disorders 
would provide substantial benefits to diagnosing rare diseases. Such 
a quantitative phenotypic score could, for instance, assist with the 
interpretation of variants of unknown significance (VUS), which con-
stitute 10–30% of variants assessed4,17. Reducing the number of VUSs 
is of the essence because studies have shown that families usually do 
not comprehend its meaning18,19, potentially leading to frustration 
due to the uncertainty involving a possible diagnosis and course of  
the disease. Importantly, VUSs have also been shown to inflict inap-
propriate medical decisions20,21.

Next to reclassifying VUSs, quantifying phenotypic HPO similarity 
at the cohort level could also help to provide further steps toward per-
sonalized medicine by automatically recognizing distinct phenotypic 
subtypes leading to more tailored clinical prognosis22–24.

A branch of science that could assist in objectively quantifying 
phenotypic data is artificial intelligence (AI). AI has dramatically 
reformed the manner clinical data are processed and analyzed in recent 
years, with the AI revolution in medicine starting in pathology and 
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Fig. 1 | Overview of PhenoScore. a, Here the global workflow of this study is 
displayed, with the training and construction of PhenoScore. n individuals and 
n age-, sex- and ethnicity-matched controls are selected for each syndrome. 
The facial features are extracted using a convolutional neural network, 
VGGFace2, and in parallel, the phenotypic similarity of individuals and controls 
is calculated. PhenoScore is then trained on both the facial features and the 
HPO similarity combined. PhenoScore outputs the classification metrics (the 
Brier score, AUC and corresponding P value) to report how well it is able to 

distinguish the investigated phenotypic groups. Furthermore, facial heatmaps 
and visualizations for the most important phenotypic features are generated 
as well. b, The trained PhenoScore model for a specific syndrome is used for a 
new individual with a VUS. Again, the phenotypic similarity and facial distances 
are calculated, and these are used as input for PhenoScore after training. The 
output is a score and assesses whether the individual of interest has that specific 
syndrome, thus the VUS being (likely) pathogenic.
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and a visualization of the most important other clinical features. In the 
training phase of PhenoScore, first, an age-, sex-, ethnicity-matched 
control for every individual with the genetic syndrome of interest is 
sampled from our in-house database of 1,200 individuals with NDDs 
(Fig. 1a). Next, the facial features are automatically extracted from the 
facial photographs and the phenotypic HPO similarity is calculated 
(with several HPO terms removed from the dataset, as these are either 
facial HPO terms to be processed by the facial recognition module, or 
HPO terms that are deemed subjective and therefore at risk for inter-
observer variability). A support vector machine (SVM), a widely used 
classification algorithm in machine learning, is trained on these fea-
tures, resulting in a trained classifier that can be used to generate a score 
for individuals, suspected to have the syndrome of interest (Fig. 1b). 
Finally, to provide insight into what PhenoScore is doing and to learn 
more about the investigated syndromes, explainable AI is incorpo-
rated into PhenoScore as well, enabling PhenoScore to generate facial 
heatmaps and visualizations on the most important clinical features.

Proof-of-concept: PhenoScore for Koolen-de Vries syndrome 
(KdVS)
First, we investigated whether using our combined PhenoScore was 
an improvement on solely using either facial or phenotypic data. The 
SVM was trained on both separate feature sets alone and subsequently 

compared with the classification performance of PhenoScore. To meas-
ure classification performance, the Brier score50 was chosen as the 
performance measure to focus on—it is defined as the mean squared 
difference between the predicted outcome and the observed actual 
outcome (lower is better). Next to that, we also report the area under 
the receiving operator curve (AUC; higher is better).

To demonstrate the power of the PhenoScore framework, we 
first performed a proof-of-concept study using 63 individuals with 
KdVS (OMIM, 610443), caused by either pathogenic loss-of-function 
variants in KANSL1 (n = 11) or the 17q21.31 microdeletion (n = 52). KdVS 
most prominent features reported in literature include hypotonia, 
intellectual disability and joint laxity51–53, for which the interdepen-
dence in our modeling is preserved using the graph structure of the 
HPO terms (Fig. 2a). Running PhenoScore on the 63 individuals with 
KdVS, we confirm the improvement on overall predictive performance 
when using both facial and clinical features compared to using either 
one alone (Brier score 0.09/AUC 0.94 for PhenoScore, in contrast to 
0.13/0.91 when using only facial data and 0.10/0.92 when using only 
phenotypic data; Table 1).

We next randomly excluded four individuals (Fig. 2b) from the 
training dataset and retrained PhenoScore, evaluating the performance 
when treating them as if diagnoses of KdVS were unknown. PhenoScore 
then generated predictions for these four individuals when comparing 
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Fig. 2 | PhenoScore for KdVS. a, The HPO terms of all included individuals with 
KdVS are shown here. HPO terms present in 20% or more of the individuals are 
annotated with text, and larger nodes correspond to a higher prevalence of that 
specific clinical feature. The graph structure corresponds to that of the HPO 
terms. b, Four individuals diagnosed with KdVS are presented here (written 
informed consent for the publication of these facial images was obtained). 
These were randomly selected from the included dataset without any selection 
criterion. c, For the four randomly selected individuals, the following three 
predictions are shown: using the facial image, using the phenotypic data and, 
finally, the PhenoScore, which combines both. Furthermore, heatmaps are 
generated using LIME to see which facial areas are most important according 
to our model, where blue correlates with KdVS and red areas correlate with 

controls. The nose and eyes are clearly prioritized, corresponding to the known 
dysmorphic features in KdVS. Furthermore, the most important clinical features 
are shown for each individual and the contribution (corresponding to the LIME 
regression coefficient) of that feature to the prediction. d, Finally, a summarized 
heatmap was generated to investigate the overall most important facial and 
phenotypic features. We averaged the heatmaps of the five individuals with KdVS 
with the highest prediction. Next to that, to obtain the most important clinical 
features, too, we averaged the LIME regression coefficient for the different 
symptoms of the five highest-scoring individuals based on HPO. Shown clinical 
features are ordered based on importance, and the size of the circle indicates the 
relative importance of the feature. ID, intellectual disability.
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Table 1 | Demographics of individuals included in this study

Gene/genetic syndrome OMIM 
number

Number of 
individuals

Sex (male/
female)

Age 
(median 
in years)

Brier facial 
data only

Brier HPO 
data only

Pheno-
Score 
(Brier)

Pheno-
Score 
(AUC)

PhenoScore 
(accuracy)

P value

22q11 deletion syndrome 188400 19 10/9 (53%/47%) 5.0 0.147 0.138 0.108 0.92 0.85 1.35 × 10−6

ACTL6A NA 3 2/1 (67%/33%) 6.0 0.250 0.709 0.575 0.24 0.33 0.90

ADAT3 (NEDBGF) 615286 6 3/3 (50%/50%) 7.5 0.256 0.112 0.087 0.97 0.88 1.35 × 10−6

ADNP (Helsmoortel-van der Aa 
syndrome)

615873 33 15/18 (45%/55%) 5.0 0.175 0.118 0.117 0.91 0.84 1.35 × 10−6

ANKRD11 (KBG syndrome) 148050 22 15/7 (68%/32%) 9.5 0.236 0.216 0.203 0.78 0.70 1.46 × 10−5

ARID1A (Coffin–Siris syndrome 2) 614607 6 3/3 (50%/50%) 9.5 0.261 0.244 0.262 0.75 0.63 0.02

ARID1B (Coffin–Siris syndrome) 135900 36 16/20 (44%/56%) 5.5 0.162 0.096 0.075 0.95 0.91 1.35 × 10−6

ATN1 (CHEDDA) 618494 7 2/5 (29%/71%) 5.0 0.233 0.090 0.102 0.99 0.91 1.35 × 10−6

CHD3 (Snijders Blok–Campeau 
syndrome)

618205 27 11/16 (41%/59%) 10.0 0.198 0.122 0.118 0.92 0.84 1.35 × 10−6

CHD8 (IDDAM) 615032 20 15/5 (75%/25%) 11.0 0.247 0.195 0.183 0.80 0.72 7.52 × 10−6

CLTC (MRD56) 617854 8 4/4 (50%/50%) 14.5 0.240 0.278 0.275 0.56 0.56 0.13

DDX3X (MRXSSB) 300958 30 0/30 (0%/100%) 8.5 0.189 0.035 0.034 0.99 0.96 1.35 × 10−6

DEAF1 (NEDHELS) 617171 6 3/3 (50%/50%) 8.0 0.256 0.224 0.239 0.79 0.67 0.01

DEAF1 (Vulto-van Silfhout–de Vries 
syndrome)

615828 13 10/3 (77%/23%) 7.0 0.257 0.091 0.086 0.92 0.91 1.35 × 10−6

DYRK1A (MRD7) 614104 13 7/6 (54%/46%) 12.0 0.204 0.156 0.133 0.89 0.81 2.40 × 10−6

EHMT1 (Kleefstra syndrome) 610253 29 12/17 (41%/59%) 6.0 0.206 0.117 0.109 0.93 0.84 1.35 × 10−6

FBXO11 (IDDFBA) 618089 18 14/4 (78%/22%) 7.0 0.261 0.238 0.220 0.74 0.70 8.25 × 10−5

IQSEC2 (XLID1) 309530 10 4/6 (40%/60%) 10.5 0.254 0.084 0.086 0.97 0.91 1.35 × 10−6

KANSL1 (KdVS) 610443 63 28/35 (44%/56%) 6.0 0.128 0.096 0.082 0.94 0.90 1.35 × 10−6

KDM3B (Diets-Jongmans syndrome) 618846 13 7/6 (54%/46%) 7.0 0.254 0.178 0.176 0.81 0.77 1.84 × 10−5

MECP2 duplication (MRXSL) 300260 5 5/0 (100%/0%) 8.0 0.184 0.198 0.195 0.83 0.76 6.97 × 10−4

MED13L (MRFACD) 616789 22 13/9 (59%/41%) 6.0 0.196 0.091 0.075 0.98 0.90 1.35 × 10−6

NAA10 (Ogden syndrome) 300855 64 14/50 (22%/78%) 7.0 0.181 0.071 0.066 0.95 0.92 1.35 × 10−6

NAA15 (MRD50) 617787 33 26/7 (79%/21%) 7.0 0.271 0.136 0.131 0.88 0.83 1.35 × 10−6

PACS1 (Schuurs-Hoeijmakers 
syndrome)

615009 15 10/5 (67%/33%) 4.0 0.226 0.135 0.125 0.90 0.81 1.35 × 10−6

PHIP (Chung-Jansen syndrome) 617991 16 9/7 (56%/44%) 12.0 0.224 0.275 0.231 0.72 0.64 4.17 × 10−4

PPM1D (Jansen-de Vries syndrome) 617450 11 5/6 (45%/55%) 7.0 0.254 0.180 0.142 0.94 0.75 1.05 × 10−5

PURA (NEDRIHF) 616158 33 18/15 (55%/45%) 9.0 0.211 0.090 0.076 0.96 0.89 1.35 × 10−6

SATB1 (DEFDA) 619228 8 3/5 (38%/62%) 6.5 0.282 0.262 0.261 0.61 0.56 0.03

SATB1 (Kohlschutter-Tonz 
syndrome-like)

619229 12 5/7 (42%/58%) 11.5 0.270 0.123 0.123 0.89 0.85 1.35 × 10−6

SETBP1 (MRD29) 616078 4 1/3 (25%/75%) 13.5 0.250 0.287 0.385 0.53 0.55 0.21

SETBP1 (Schinzel–Giedion syndrome) 269150 13 7/6 (54%/46%) 1.0 0.091 0.065 0.061 0.98 0.91 1.35 × 10−6

SMARCC2 (Coffin–Siris syndrome 8) 618362 10 8/2 (80%/20%) 9.0 0.252 0.116 0.111 0.96 0.89 4.3 × 10−6

SON (ZTTK syndrome) 617140 25 13/12 (52%/48%) 6.0 0.237 0.140 0.132 0.89 0.82 1.35 × 10−6

THOC2 (XLID12) 300957 7 7/0 (100%/0%) 6.0 0.256 0.201 0.192 0.80 0.69 0.001

TRIO (MRD63) 618825 8 3/5 (38%/62%) 10.5 0.264 0.144 0.137 0.90 0.86 1.96 × 10−5

TRRAP (DEDDFA) 618454 17 6/11 (35%/65%) 11.0 0.244 0.198 0.167 0.84 0.78 2.40 × 10−6

WAC (DeSanto-Shinawi syndrome) 616708 9 3/6 (33%/67%) 4.0 0.246 0.133 0.132 0.92 0.82 4.25 × 10−6

YY1 (Gabriele-de Vries syndrome) 617557 10 5/5 (50%/50%) 8.0 0.255 0.166 0.142 0.90 0.82 1.35 × 10−6

ZSWIM6 (NEDMAGA) 617865 7 3/4 (43%/57%) 7.0 0.265 0.146 0.138 0.91 0.79 1.46 × 10−5

The number of individuals per genetic syndrome included in our analysis is shown in this table. For every individual, a facial photograph, phenotypic data, and age-, sex- and ethnicity-matched 
control with a neurodevelopmental disorder are available (otherwise, the individual was excluded). Per genetic syndrome, the sex distribution, the median age and the results of the SVM 
classifier are displayed here. The Brier score, for which lower is better, per syndrome, is shown—with the numbers shown corresponding to the mean of the scores during the five iterations 
in which matched controls were sampled. The AUC (higher is better) and accuracy (with 0.5 as the cut-off) are included as well. For almost all syndromes, the combination of facial and 
phenotypic data is an improvement over using either dataset alone. Furthermore, the last column of this table displays the calculated P values for the investigated syndromes using the 
random permutation test, calculated using a one-sided Fisher’s combined probability test (Supplementary Data). All but three are significant at the 0.05 level, as expected when inspecting the 
classification results.
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them with 59 remaining individuals with KdVS in the training set. The 
output was displayed using local interpretable model-agnostic expla-
nations (LIME), providing heatmaps of prioritized facial information 
according to PhenoScore (Fig. 2c). In addition, the most important 
clinical features according to PhenoScore to be predictive for KdVS 
were summarized. According to PhenoScore, the nose and eyes are the 
most important facial parts when recognizing KdVS while the presence 
of hypotonia, moderate intellectual disability, electroencephalography 
abnormalities, strabismus, pes planus and motor delay are the clinical 
features of interest (Fig. 2d). This is consistent with expert opinion  
and the literature51–53 and shows that harnessing the power of both  
facial and phenotypic data outperforms the separate predictions.

Expanding PhenoScore to 40 syndromes
After our proof-of-concept using KdVS, we assessed the performance 
of PhenoScore for the classification of other genetic syndromes. 
Hereto, we selected 39 further syndromes (Table 1 and Extended 
Data Table 1) including both clinically well-recognizable syndromes 
based on facial gestalt, such as Kleefstra syndrome (OMIM, 610253; 
caused by pathogenic variants in EHMT1, which encodes euchro-
matic histone-lysine N-methyltransferase 1), Helsmoortel-van der Aa  
syndrome (OMIM, 615873; ADNP, encoding Activity Dependent  
Neuroprotective Protein) and Coffin–Siris syndrome (OMIM, 135900; 
ARID1B, which encodes AT-rich interactive domain-containing  
protein 1B) but also more recently identified syndromes for which 

facial gestalt is less prominent, including intellectual developmen-
tal disorder with autism and macrocephaly (IDDAM, OMIM, 615032; 
CHD8, which encodes chromodomain-helicase-DNA-binding protein 8)  
and intellectual developmental disorder with dysmorphic facies and 
behavioral abnormalities (IDDFBA, OMIM, 618089; FBXO11, which 
encodes F-box only protein 11).

Analyzing all these syndromes, we demonstrate that PhenoScore is 
a statistically significant improvement on using either feature set alone, 
and therefore, the whole is more than the sum of its parts (median 
Brier score 0.24 for facial features on the whole dataset, 0.14 for HPO 
data and 0.13 for PhenoScore, P < 0.001; median AUC 0.58 for facial 
features, 0.89 for HPO data and 0.91 for PhenoScore, P < 0.001; Table 1).  
Furthermore, our post hoc checks show that there was no overfitting  
using the internal control dataset (Extended Data Table 2 and  
Supplementary Data). To compare the performance of PhenoScore to  
other approaches, we generated predictions for all individuals with a 
genetic syndrome in the dataset using Phenomizer32,54 and LIkelihood 
Ratio Interpretation of Clinical AbnormaLities (LIRICAL)38. Pheno-
mizer correctly included the correct diagnosis in its output in 29%  
of the individuals and LIRICAL in 39%, while PhenoScore did so in 84% 
of individuals (P < 0.001 for both; Extended Data Fig. 1 and Extended 
Data Table 3).

For 37 (93%) of 40 syndromes, PhenoScore was able to identify 
predictive features that characterized these syndromes and recognized 
a distinct phenotypic entity (Table 1 and Extended Data Fig. 2). As 
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expected and visualized in the LIME heatmaps (Fig. 3), these features 
corresponded remarkably well with those described in the literature.

Moreover, for a genetic syndrome that lacks explicit facial features, 
like IDDAM, apparent overgrowth symptoms, such as macrocephaly 
and tall stature, were identified as significant predictors, while no 
relevant facial features were extracted, as displayed in the heatmap 
and summarized ranking scores. A similar case is made for the genetic 
disorder associated with pathogenic variants in DYRK1A (the gene 
encoding dual-specificity tyrosine-(Y)-phosphorylation-regulated 
kinase 1 A) — while the classifier based only on the facial features does 
not provide any meaningful predictions, the addition of other pheno-
typic data in HPO did allow PhenoScore to distinguish this syndrome 
as a phenotypic entity. These data suggest that PhenoScore objectively 
extracts, distinguishes and visualizes the specific clinical features  
of genetic syndromes and highlights that the addition of nonfacial 
phenotypic data in HPO is essential.

Finally, we demonstrate that the performance of PhenoScore is 
stable over different age and population of origin subgroups (Extended 
Data Table 4), by evaluating the predictive performance using the 
predictions of all individuals included in this study when divided into 
subgroups based on their age and population of origin. While the perfor-
mance is slightly inferior for the included adults (a Brier score of 0.13), 
there seems to be no clear difference for the other groups (Brier scores 
between 0.09 and 0.12, P = 0.38). Although only 10% of individuals  
included in this study are of non-Caucasian/non-Western descent, the 
subgroups for the population of origin analysis do not seem to lead 
to overt differences in predictive performance between ethnicities.

PhenoScore requires a low number of individuals for training
Most genetic disorders are individually rare, with sometimes only three 
to five individuals reported worldwide. We therefore next investigated 
how many individuals PhenoScore is required for accurate classification 
of a specific syndrome. We checked the performance of PhenoScore 
while increasing the number of individuals in the complete dataset of 
40 genetic syndromes with the combination of facial and HPO features, 
starting with only two individuals. This analysis revealed that, with 
five individuals to train on, the median classification performance for  
the investigated syndromes is already clinically acceptable (AUC, 0.80; 
Fig. 4). The classification performance can be further improved when 
the training sets increase in size (median AUC is 0.89 with ten indivi-
duals, while with 20 individuals, the median AUC is 0.92).

Use case 1: objective clinical quantification of VUS
To display the power of PhenoScore in the clinical interpretation of 
variants at an individual level, we reassessed reported VUSs (American 
College of Medical Genetics and Genomics class 3) in the Radboudumc 
Department of Human Genetics. These individuals were not included 
in the training of PhenoScore and can therefore be considered real 
out-of-sample cases. In total, we identified 22 individuals in whom 
a class 3 variant was reported in either of 16 of the 40 syndromes 
(Extended Data Table 5). PhenoScores were calculated, and when using 
thresholds of ≤0.30 (for ‘no phenotypic match’) and ≥0.70 (for ‘pheno-
typic match’), PhenoScore was able to classify 13/22 (59%) of the cases 
as either match (n = 3) or no match (n = 10). The other nine cases had an 
inconclusive PhenoScore result (scores >0.30 but <0.70). Interestingly, 
for 9/13 cases for which PhenoScore was conclusive, the clinician made 
a decision for the VUS based on the phenotype PhenoScore, which was 
essential for the other four cases.

For most VUSs, pathogenicity during clinical follow-up was not 
clear at the time of writing, but for six individuals, additional (genetic) 
testing has led to a change in pathogenicity class. Two variants in 
ARID1B were both regarded as benign—one after methylation analysis 
(negative), the other variant because the individual was diagnosed with 
fragile X syndrome at a later stage. PhenoScore agrees with both assess-
ments with a low prediction probability of phenotypic similarity (0.03 
for both). Next to that, a splice variant in CHD8 with a high PhenoScore 
of 0.93 was deemed pathogenic after RNA analysis was performed. 
Finally, a variant in EHMT1 was deemed pathogenic after methylation 
analysis. This is the only variant in which PhenoScore disagrees with 
the outcome of a functional test, with a low score (0.04)—probably 
due to the phenotype not particularly matching. Furthermore, for two 
variants in SMARCC2, PhenoScore is inconclusive, while methylation 
analysis reclassified these variants as benign.

Use case 2: sophisticated genotype–phenotype correlations
Genotype–phenotype studies for rare diseases are often performed 
to gain insight into the clinical spectrum, which allows clinicians to 
provide more accurate counseling of individuals with rare diseases. 
Molecularly, the toolkit to gain in-depth insight into aspects of patho-
genicity is generally applied in a research setting, and thus often not 
readily available for diagnostic follow-up. From a clinical perspective, 
analyses are often limited to cluster analysis without being able to 
determine what aspects clinically distinguish subtypes. We tested 
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whether PhenoScore can improve these hypothesis-driven approaches 
to distinguish, or discover, clinical subtypes.

For four genes in our dataset, that is, ADNP, DEAF1 (encodes 
deformed epidermal autoregulatory factor-1 homolog), SATB1 (encodes 
special AT-rich sequence binding protein 1) and SETBP1 (encodes  
SET binding protein 1),it has previously been determined that there 
are (at least) two molecular subtypes. For SATB1 for instance, it has 
been acknowledged that individuals with missense variants and those 
with loss-of-function variants are clinically and molecularly distinc-
tive (OMIM, 619228 and 619229). As a proof-of-concept, PhenoScore 
convincingly distinguished two groups for SATB1 (Brier score, 0.18; 
AUC, 0.81; P = 0.02), confirming the original results55. For DEAF1, it 
has been demonstrated that there are two phenotypic entities based 
on the mode of inheritance, with one being autosomal recessive 
(OMIM, 615828) and the other autosomal dominant (OMIM, 617171)56. 
Next to that, genetic variants in SETBP1 can lead to either Schinzel–
Giedeon syndrome (OMIM, 269150; missense gain-of-function vari-
ants)57 or MRD29 (OMIM, 616078; loss-of-function variants leading 
to haplo insufficiency)58. Analyzing both these subgroups shows that 
PhenoScore distinguishes these groups (for SETBP1, Brier score of 
0.02 and AUC of 1.0, P < 0.001; DEAF1 leads to a Brier score of 0.13  
and AUC of 0.94, P < 0.001; Fig. 5a), suggesting that PhenoScore can 
readily identify clinical entities associated to the same gene.

For ADNP, it was recently shown that individuals with pathogenic 
variants in ADNP show one of two distinct methylation signatures (type 
2, when variant affects position between c.2000 (p.667) and c.2340 
(p.780); or type 1, when the variant occurs outside of this interval), 
suggesting the possibility of two syndromes associated with this gene59. 
Clinically, however, these individuals could not be conclusively distin-
guished60. Before determining PhenoScores, we categorized the indi-
viduals as having either a type 1 or type 2 ADNP signature. Initially, we 
assessed the performance of PhenoScore using only individuals (n = 33) 
for whom both facial photographs and clinical features were available 
but failed to identify a statistically significant difference between the 
groups (Brier score, 0.30; AUC, 0.52; P = 0.35). However, using the 
ADNP Human Disease Genes website (https://humandiseasegenes.
info/ADNP), we could collect HPO-only data of more individuals. Using 
this dataset, we obtained clinical features in the HPO of 58 individuals 
(29 in each group), and on these data, PhenoScore did show evidence 
for two phenotypically different entities (Brier score of 0.24, AUC of 
0.71, P = 0.01). Inspecting the generated PhenoScore explanations for 
clinically relevant differences (Fig. 5b), it seems that recurrent infec-
tions and gastrointestinal problems (reflux, constipation and feeding 
difficulties) are two to three times more common in type 2 than in type 1.

Finally, to further explore the classification of VUSs in genetic 
syndromes that are phenotypically alike (such as the previously named 
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individuals, 29 had a variant in the c.2000–2340 region, indicated by others 
as having a different methylation signature than variants outside this region59. 
Using only the HPO module of our PhenoScore framework, we first matched the 
groups on sex, ethnicity and age when possible to create two groups of the same 
size (29 versus 29). We then trained a classifier on the two groups and found a 
significant difference (Brier score of 0.24, AUC of 0.71, P = 0.01 with one-sided 
Mann–Whitney U test). Bottom: the most important clinical features according 
to our model (determined using LIME) and the corresponding prevalence in  
both groups.
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phenotypic subgroups), we generated predictions for each pheno-
typic subgroup as it were a VUS for the model created for the other 
phenotypic subgroup of the same gene. Depending on the similarity 
in phenotype between the two subgroups, there are no (for SETBP1) 
phenotypic matches, to almost all individuals that are classified as 
phenotypic matches (for ADNP), because these individuals are (much) 
more phenotypically alike investigated syndrome than the control 
population (Extended Data Table 6).

Discussion
PhenoScore provides a substantial step in the advancement of AI in 
clinical genetics—a machine-learning phenomics framework unifying 
facial and phenotypic features using high-quality data directly from 
affected individuals instead of generic phenotypic descriptions of a 
syndrome. Others have introduced AI in this domain of healthcare, with 
for instance the application of using HPO terms to prioritize genetic 
variants while comparing individuals to the known phenotype of  
disorders in the literature32,33,38,61. The utilization of facial recognition 
technology to assist clinicians in diagnosing individuals has been  
successful too, with most, unfortunately, relying on proprietary 
commercial algorithms37,39–44. We now show the next step, with an 
open-source framework that takes the complete phenotype into 
account, including both facial and phenotypic features directly from 
affected individuals, and uses AI to provide a score on how well the 
patient’s phenotype (as a whole) matches individuals with a known 
syndrome.

PhenoScore detected a recognizable phenotype in the large 
majority of investigated genetic syndromes (37/40; 93%), which is a 
substantial improvement over existing algorithms such as Pheno-
mizer and LIRICAL, and only needed as little as five individuals for 
acceptable classification performance. In this manner, PhenoScore 
assists clinicians and molecular biologists in quantifying phenotypic 
similarity, at both an individual level and group level for theoretically 
all OMIM-listed disorders. One of the disorders for which PhenoScore 
failed to identify a phenotype was for variants in ACTL6A. Interest-
ingly, this is the only of 40 syndromes that has not been recognized by 
OMIM as a genetic disorder, due to lack of (phenotypic) evidence. For 
the other two genetic syndromes that PhenoScore failed to identify 
(MRD29 caused by pathogenic variants in SETBP1 and MRD56, CLTC), 
some clinical features could be recognized—but apparently not enough 
to establish a definitive phenotypic entity, probably due to the low 
number of individuals with these syndromes included. PhenoScore did 
distinguish MRD56 from Schinzel–Giedeon syndrome (both associated 
with pathogenic variants in SETBP1) when compared directly. Appar-
ently, individuals with MRD56 are hard to distinguish from controls 
with NDDs—but individuals with Schinzel–Giedeon syndrome are 
phenotypically different from these controls (Fig. 3), and therefore 
PhenoScore is able to differentiate the two phenotypic subgroups 
in SETBP1. Further investigating these phenotypic subgroups and 
generating predictions for each subgroup with a model that is trained 
on the other subgroups and controls (Extended Data Table 6) show 
that PhenoScore indeed investigates phenotypic similarity. However, 
this indicates as well that a clinician should be careful in interpreting 
the results of the VUS prediction if it is possible that the investigated 
individual has another, but phenotypically similar, disorder than the 
suspected disorder because of the VUS—as the rate of false positive 
results could be elevated in that scenario.

Assisting variant classification of VUSs is an obvious use case for 
PhenoScore. Of course, several in vitro functional assays are available 
to assess variant pathogenicity, but so far these are mostly used for 
genes involved in oncogenetic disorders62,63. For NDDs, these assays are 
scarce because they need to be developed on a gene-per-gene basis, and 
for these rare disorders, this is usually not cost-effective and is solely 
done for research purposes. Other methods to assess genetic variants 
include protein structural analysis64, which still relies on the availability 

of relevant protein structures. Our approach theoretically works for 
any (genetic) condition with a recognizable phenotype, provided there 
are sufficient individuals for training the algorithm and that HPO data 
and 2D-facial photos are available. Indeed, PhenoScore is as good as 
its input data. In the field of rare diseases, however, major efforts are 
put into obtaining these high-quality quantitative phenotypic data, 
as for instance shown by collections of datasets by the Human Disease 
Genes website series65, GeneReviews, DECIPHER and OMIM66–68. Here 
the use of a selected number of HPO terms in combination with the 
use of Resnik scores minimizes the interobserver variability between 
clinicians. Although these measures should minimize any difference 
in predictive performance when applying PhenoScore in other insti-
tutions, further prospective clinical validation studies, preferably 
in a multicenter prospective design also including institutions from 
non-Western countries, are needed to confirm this.

PhenoScore also objectively obtained genotype–phenotype corre-
lations by training on suspected phenotypic subgroups combined with 
permutation testing to quantify statistical significance. We replicated 
earlier findings in SATB1, DEAF1 and SETBP1, quantitatively underscor-
ing that different molecular mechanisms or inheritance patterns lead 
to a substantially different, but recognizable, phenotype. Although for 
these genes the associated different phenotypes were also subjectively 
identifiable from expert opinion, the power of PhenoScore was shown 
by demonstrating the existence of two distinct phenotypes associated 
with pathogenic variants in ADNP. Molecularly, two different methyla-
tion signatures have been published, which were discriminated by the 
mutation location in ADNP59,60,69, but for which clinically, no differences 
were observed. PhenoScore was not only able to prove the existence 
of clinically distinctive groups but also provided insight into which 
clinical features separate the two clinical entities. For instance, neu-
rodevelopmental problems are more common in ADNP-type 1, while 
gastrointestinal symptoms, recurrent infections and short stature 
are two to three times more common in ADNP-type 2. These discrimi-
nating clinical features for the two ADNP-related disorders were not 
represented in a different facial gestalt, emphasizing the importance of 
adding HPO data across all organ systems. In addition, given that these 
two phenotypic subgroups were not identified from more subjective 
clinical analysis, using a predefined structured AI method of pheno-
typic data analysis provides insights. For ADNP, these clinical features 
have a substantial impact on an individual’s quality of life; hence, by 
identifying these subgroups, PhenoScore directly impacts clinical care, 
prognosis and recommendations for these individuals and families.

Detailed genotype–phenotype analysis could, in theory, be per-
formed for every (genetic) syndrome, suggesting that PhenoScore may 
be a valuable tool to also foster molecular insights. That is, for many of 
the 1,600 known genes associated with an NDD phenotype, multiple 
types of genetic variants (for example, SNVs and CNVs) may cause the 
disorder. Although the molecular mechanism for CNVs often relates 
to dosage sensitivity, such as haploinsufficiency, the mechanisms 
for SNVs leading to missense variants in those genes are often more 
variable. PhenoScore may assess phenotypic differences between 
individuals with the same syndrome, but caused by either CNVs (group 
1) or missense variants (group 2), and help to establish whether those 
missense variants are also haploinsufficient. Similarly, PhenoScore 
could be used to find phenotypic outliers, of which the molecular 
mechanism leading to disease might be different. By quantifying the 
complete phenotypic similarity and visualizing differences between 
(sub)groups, PhenoScore empowers detailed genotype–phenotype 
studies, leading to insights on both the genetic and phenotypic levels.

In conclusion, PhenoScore bridges a gap between the fields of AI 
and clinical genetics by quantifying phenotypic similarity, assisting 
not only in genetic variant interpretation but also facilitating objective 
genotype–phenotype studies. We showcased its use for individuals 
with NDD, whose phenotypes were captured using HPO. PhenoScore 
can, however, also easily be used beyond the field of rare disease, as 
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adjustments to use other (graph-based) ontologies, such as for instance 
Systematized Nomenclature of Medicine (SNOMED)70, can readily be 
integrated. The PhenoScore framework is thus easily extended to other 
domains of (clinical) genetics, or even to completely different branches 
of medicine, due to its open-source modular design.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41588-023-01469-w.
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Methods
Inclusion of individuals
The literature was searched for clinical studies that included facial 
photographs of 40 randomly selected genetic syndromes associated 
with NDD. The photographs were collected and clinical features, if avail-
able, were converted to HPO terms. Currently, PhenoScore is trained 
using data of 711 nonfamilial individuals diagnosed with one of the 40 
different genetic syndromes, collected from 105 different publications 
(Table 1 includes the complete overview of the demographics per 
genetic syndrome and Extended Data Table 1 includes all publications 
used as sources for the data used in this study). The phenotypic data 
were uploaded to the specific gene website in the HDG website series65 
to ensure their public availability.

Ethics declaration
In this study, data from the Biobank Intellectual Disability, which is part 
of the Radboud Biobank initiative (for more information, see72 or https://
www.radboudumc.nl/en/research/radboud-technology-centers/
radboud-biobank), were used. Within this biobank, phenotypic and 
molecular data have been systematically captured for individuals 
with (non-)syndromic ID referred to the Radboud university medical 
center. This research complies with all relevant ethical regulations, and 
the use of this dataset was approved by the ethical committee of the 
Radboud university medical center (2020-6151 and 2020-7142). Written 
informed consent was obtained for the publication of the facial images 
included in this study.

Data processing
To obtain a representative control group for our machine-learning 
models, for each syndrome with n individuals, n age-, sex- and 
ethnicity-matched controls with a NDD seen at our outpatient clinic at 
the Radboud University Medical Center were selected from our internal 
control database with over 1,200 individuals with both facial image and 
quantitative phenotypic data available (for a complete overview of the 
workflow of this study, see Fig. 1a). When no matched control was avail-
able, that particular individual was excluded from our analysis. Next to 
that, when individuals were related to each other, one individual was 
chosen (based on the quality of the picture) from that family.

For each syndrome, nested cross-validation was used to assess  
the performance of the classifiers. The number of folds during the 
outer loop of the nested cross-validation varied due to the consider-
able variation in dataset size—for every syndrome with at least five  
individuals, fivefold cross-validation was used, otherwise, leave-one- 
out cross-validation was chosen. The hyperparameters of the model 
were then tuned during the inner loop of the nested cross-validation 
procedure. All performance metrics reported in this study, whether it 
be AUC, Brier score or accuracy, are calculated based on the predictions 
during the outer loop.

As the selection of the randomly selected controls might substan-
tially influence the performance, for each genetic syndrome, different 
controls were sampled during five random restarts and the mean AUC 
and Brier scores of these five iterations were noted. Furthermore, to 
confirm the source of the data did not substantially influence our 
results, we performed post hoc analyses by using not only the individu-
als from our internal control dataset. This included analyses with the 
other syndromes as controls, but also included additional analyses 
excluding the Koolen-de Vries individuals who were seen at our clinic 
at the Radboudumc Nijmegen (Supplementary Data).

Extraction of facial features
The facial features were extracted using VGGFace2 (refs. 73,74), as 
it was previously shown to be the best-performing open-source  
solution for this task75. VGGFace2 is a state-of-the-art facial recognition 
method that uses a deep neural network. To avoid overfitting, we did 
not retrain VGGFace2 but used its pretrained weights instead on the 

database of 3.1 million images. The facial images of the individuals in 
our study were then processed by VGGFace2, and the representation  
in the penultimate layer of the network was obtained. This represen-
tation was then used as the facial feature vector.

Phenotypic similarity
To create a homogeneous dataset, the phenotype of every individual 
in this study was manually converted into HPO terms16. A selection of 
HPO terms and all their child nodes were removed to eliminate any 
subjectivity in assessing an individual. These were as follows: behavioral 
abnormality (HP:0000708), abnormality of the face (HP:0000271), 
abnormal digit morphology (HP:0011297), abnormal ear morphology 
(HP:0031703), abnormal eye morphology (HP:0012372), and every 
node which is a child node of either of these. We chose these terms as 
these are either facial features (to be assessed by our facial recognition 
model) or are suspected to vary across clinicians doing the assessment 
of an individual. In this manner, 3,810 HPO terms were excluded with 
12,259 terms remaining, after we investigated what the consequences of 
including all HPO terms were and concluding that the inclusion of facial 
data to HPO data improves the performance of models significantly 
in each scenario (P < 0.001 using a two-sided Wilcoxon signed-rank 
test). To further reduce possible interobserver variability, the pheno-
typic similarity between individuals was calculated using the Resnik 
score76, because it takes the semantic similarity between symptoms 
into account. The Resnik score uses the information content (IC) of a 
symptom. In an ontology akin to the HPO, the IC of a specific term can 
be seen as a measure of the rarity of a term. Naturally, terms closer to 
the root of the HPO tree have a lower IC. For instance, abnormality 
of the nervous system (HP:0000707) has an IC of 0.60. In contrast, 
focal impaired awareness motor seizure with dystonia (HP:0032717), 
substantially further down the HPO tree, has an IC of 8.97. This cor-
responds to our intuition—rare features provide more information 
than common features, because the prior probability of an individual 
reporting a rare symptom is, by definition, smaller. The Resnik score 
uses this property by defining the similarity between two HPO terms 
as the IC of their most informative (that is, with the highest IC) com-
mon ancestor in the HPO tree. Because terms lower in the tree have a 
higher IC, the most informative common ancestor corresponds to the 
last HPO term, which has both compared HPO terms as child nodes 
when traversing the tree downwards. As an example, for the HPO terms 
reflex seizure (HP:0020207) and focal motor seizure (HP:0011153), 
the most informative common ancestor is seizure (HP:0001250), 
which has an IC of 1.70. The Resnik similarity score for reflex seizure 
(HP:0020207) and focal motor seizure (HP:0011153) is therefore 1.70. 
Next, we used the best-match average (BMA) to calculate the similarity 
between two individuals (who usually report multiple HPO terms), in 
which the average is taken over all best-matched pairwise semantic 
similarities, as previous studies determined it to be most effective77. 
The idea is similar to that discussed above—if two individuals share a 
rare symptom (focal impaired awareness motor seizure with dystonia 
(HP:0032717), for instance), they are more similar than two individuals 
who only share a common symptom such as abnormality of the nerv-
ous system (HP:0000707). The Resnik similarity score was calculated 
for every individual and control and then averaged for both groups. 
In the end, this led to a n × 2 matrix for the HPO features—an average 
similarity score for each individual versus affected individuals and a 
score for each individual versus the control group. We calculated the 
BMA Resnik score between the individuals using the phenopy library 
in Python 3.9 (ref. 78).

Construction of machine-learning model
Finally, the data were used to train a binary classifier. We selected an 
SVM as our classifier, known for its excellent overall performance in 
classification tasks. The SVM was trained using the standard radial 
basis function kernel and a hyperparameter grid search for C, with 
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values investigated being 1 × 10−5, 1 × 10−3, 1, 1 × 103 and 1 × 105. For 
smaller datasets (less than five individuals), a logistic regression model 
was chosen, because the SVM does not support probability scores 
by default and needs an additional internal cross-validation proce-
dure to provide those (further reducing the dataset). All experiments  
were run on a machine with two graphical processing units (both an 
NVIDIA RTX2080). It is possible to train PhenoScore on a standard 
laptop without a designated graphical processing unit; however, if 
facial heatmaps are required, the process may take several hours per 
syndrome.

After determining the predictive performance of the model, we 
determined how much data the classifier needed for an acceptable  
classification performance in clinical practice. Per syndrome, we 
started with randomly selecting two individuals and two matched  
controls, training the model on those and using the rest of the indi-
viduals (n − 2, as one individual is used as training data) and matched 
controls as a test set (two individuals that were not used in the first 
iteration as the grid search in the SVM classifier needs at least two 
training samples). We ran five random restarts, randomly selecting 
another individual and matched control in each iteration. In each 
restart, cross-validation was used as in the general training of Phe-
noScore. The Brier score and AUC were noted and averaged over the five 
restarts. Next, the size of the training set was increased by one patient 
and one matched control. By increasing the training set by one indi-
vidual and matched control each time and recording the performance, 
the model’s performance with an increasing number of individuals is 
assessed (Fig. 4).

The Wilcoxon signed-rank test was used to determine statistically 
significant differences in the performance of the classifiers because it 
is a nonparametric test and, therefore, suitable—as these data are not 
normally distributed.

Explainability of predictions
To see which features contained important information for our model, 
we generated LIME79,80. The main idea of this method is to train a rela-
tively simple local surrogate model to approximate the predictions 
of the model of interest. Next, the original input data are perturbed, 
and the corresponding change in predictions is inspected to obtain  
the relative importance of individual features. A key advantage of  
LIME is that it is applicable to any model and can therefore be  
used directly on top of our pipeline.

When using LIME for image data, it is common practice to divide 
the image into several segments, called superpixels. Therefore, we 
gene rated a raster of 25 × 25-pixel squares for each facial image, ran-
domly offset for each of the 100 runs. Each pixel’s relative importance 
was averaged over these runs to obtain a higher-resolution visualization 
of their significance. For the clinical data, the original HPO features 
were perturbed to obtain the most substantial ones in predictions. In 
this case, LIME uses input data in which some HPO features are added 
and some are removed from the input data, to see what the effect on 
the prediction is.

LIME were generated for the individuals with the investigated 
genetic syndrome or phenotypic subgroup and the five highest pre-
diction scores in each iteration of sampling controls, so 25 times in  
total, for both the facial heatmaps and the phenotypic explanations. 
These explanations were then averaged to obtain an overall expla-
nation representative for that specific genetic syndrome. To ensure  
only real important features were recovered, only HPO terms that 
were identified in at least 15 individuals (out of 25 in total) were used 
in this analysis.

Hypothesis testing
To see whether we could extend the use of our classifier to other  
applications than the reclassification of VUSs, we designed a random 
permutation test for the performance of our model. This enables the 

testing of a specific hypothesis for facial features, phenotypes, or both. 
An example would be determining whether a newly discovered genetic 
syndrome consists of several (phenotypic/facial) subtypes. Using 
our framework, we trained a classifier on the labels of the suspected 
subgroups. By performing a random permutation test, a P value is 
calculated, so that the appearance of the subgroups can be quantified. 
For a complete overview of the exact methodology of this permutation 
test, see Supplementary Data.

Benchmarking PhenoScore
To determine whether our approach is an improvement over exist-
ing methods, we used the Phenomizer algorithm32,81 and LIRICAL38 
(considered as state-of-the-art82) to generate predictions for all indi-
viduals with a genetic syndrome in our dataset (except for the genetic 
syndrome associated with ACTL6A, as the absence of an OMIM number 
prohibits Phenomizer and LIRICAL to generate predictions). Because 
Phenomizer does not output a prediction score, but rather a P value, 
we counted a prediction as positive if the specific genetic syndrome 
was included in the list of possible diagnoses with an uncorrected P 
value smaller than 0.05—otherwise, it was seen as a negative prediction. 
Furthermore, because Phenomizer and LIRICAL do not process facial 
images, we included the previously excluded HPO terms (behavioral 
abnormality (HP:0000708), abnormality of the face (HP:0000271), 
abnormal digit morphology (HP:0011297), abnormal ear morphology 
(HP:0031703) and abnormal eye morphology (HP:0012372)) and all the 
corresponding child nodes in the input for Phenomizer and LIRICAL. 
The number of positive and negative predictions for Phenomizer (using 
0.5 as a cut-off for its predictions), LIRICAL (with a pretest probability  
of 0.5 to mimic a VUS prediction) and PhenoScore were counted, and 
a possible statistically significant difference was assessed using a 
chi-squared test. Other thresholds for the P value of Phenomizer and 
the scores of LIRICAL and PhenoScore were investigated as well to see 
the influence on the results (Extended Data Table 3).

Statistics and reproducibility
No statistical method was used to predetermine sample size—because 
data were collected from the literature, the number of cases available 
with both phenotypic data and facial photographs was the limiting factor.  
Data were only excluded if individuals were related to each other, to 
avoid the introduction of bias, because family members are facially 
similar. Therefore, including family members could unjustly over-
inflate the results of our analysis. The investigators were not blinded 
to allocation during experiments and outcome assessment, although 
cross-validation was used during all analyses, which is equivalent to 
blinding for algorithms and models.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The used dataset in this study is not publicly available due to both IRB 
and General Data Protection Regulation (EU GDPR) restrictions because 
the data might be (partially) traceable. However, access to the data may 
be requested from the data availability committee by contacting the 
corresponding authors via e-mail with a research proposal, who will 
respond within 14 d.

Code availability
The code of PhenoScore version 1.0.0 created during this study is 
freely available at https://github.com/ldingemans/PhenoScore  
ref. 83, to enable anyone to apply PhenoScore to their own dataset. 
Included in PhenoScore are the following two examples: the data for 
the SATB1 subgroups (positive example) and random data (negative 
example).
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Extended Data Fig. 1 | Benchmarking PhenoScore. The predictive accuracies 
of LIRICAL, Phenomizer and PhenoScore [118-120] for every included genetic 
syndrome are displayed here, except for ACTL6A, since the associated phenotype 
has no OMIM number and therefore Phenomizer and LIRICAL do not include it in 

its predictions. For PhenoScore and LIRICAL, to calculate the accuracy, a cut-off 
value of 0.5 for the predictions was used, while for Phenomizer in this case, 0.05 
was chosen. For almost every investigated syndrome, PhenoScore outperforms 
Phenomizer and LIRICAL.

http://www.nature.com/naturegenetics
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Extended Data Fig. 2 | AUC curves of PhenoScore per genetic syndrome. The receiver operating characteristic curve of all 40 genetic syndromes included in this 
study.

http://www.nature.com/naturegenetics
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Extended Data Fig. 3 | UMAP plots of facial feature vectors. The Uniform 
Manifold Approximation and Projection for Dimension Reduction (UMAP3) 
plot for the VGGFace2 vectors of all included genetic syndromes, and for the 
extra systematic confounder analysis for which the individuals with Koolen-de 
Vries syndrome seen at other centers were compared to individuals seen at our 

outpatient clinic. For all plots (except the KANSL1 internal/external plot), the 
feature vectors of all sampled controls during five iterations and the feature 
vectors of the included patients were provided as input to UMAP. The classes 
are not separable in this projected space, which provides evidence that the 
classification is not based on a systematic confounder.

http://www.nature.com/naturegenetics


Nature Genetics

Technical Report https://doi.org/10.1038/s41588-023-01469-w

Extended Data Table 1 | List of publications for data collection

A list is shown of the used publications per syndrome to create the dataset by extracting the phenotypic data and photographs of individuals in these papers. For several syndromes, not (yet) 
published individuals were added to the dataset, as indicated by Not published.

http://www.nature.com/naturegenetics
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Extended Data Table 2 | Performance of PhenoScore with other syndromes as control

The Brier scores of the support vector machine (SVM) classifier are displayed here, now with the other individuals included in this study as the control dataset, instead of the controls from 
the Radboud university medical center. A lower Brier score indicates a better result. The results are slightly worse than on the RUMC control dataset, as expected, since not for not every 
individual, a control is available because the RUMC control dataset is significantly larger than the number of individuals included in this study. AD=autosomal dominant, AR=autosomal 
recessive, SGS=Schinzel-Giedion-syndrome.

http://www.nature.com/naturegenetics
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Extended Data Table 3 | Benchmarking PhenoScore

The predictive accuracy of LIRICAL, Phenomizer and PhenoScore [118-120] for all individuals (except ACLT6A) included in this study, with different cut-off values for each algorithm. The 
Phenomizer or LIRICAL accuracy is shown first in every cell, and then the PhenoScore accuracy with those specific thresholds. Even with the least strict threshold for the p-values of 
Phenomizer (0.1) or LIRICAL (0.3) and the most stringent for the output of PhenoScore (0.9), PhenoScore still outperforms both. ***significant at the 0.001 level using a two-sided chi-squared 
test.

http://www.nature.com/naturegenetics
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Extended Data Table 4 | Subgroup analyses

The performance of PhenoScore when ignoring the specific genetic syndrome diagnoses, but focusing on different subgroups of the study population: based on age and population of origin. 
Here, we calculated both the Brier score (for which lower is better) and accuracy (with 0.5 as cut-off, higher is better) using the predictions of all included individuals in this study when not in 
the training set. The predictions were calculated for the subgroups, demonstrating that the predictive performance is relatively stable.

http://www.nature.com/naturegenetics
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Extended Data Table 5 | Classifying variants of uncertain significance

The 22 individuals with a VUS in one of the 40 included syndromes are displayed here, including the genetic information and the PhenoScore — both the score between 0 and 1 in which 
higher score indicates increased phenotypic similarity with the syndrome of interest and a PhenoScore classification using cut-offs of 0.3 and 0.7. Next to that, the area under the curve (AUC) 
of that gene is displayed, in which a higher score indicates that PhenoScore is better to distinguish that genetic syndrome in general.

http://www.nature.com/naturegenetics
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Extended Data Table 6 | PhenoScore with phenotypically similar individuals

For these analyses, a model was trained on a specific subgroup for a gene and that model was then used to classify individuals diagnosed with the other subgroup of that gene. For instance, 
a model was trained for individuals with the syndrome associated with the autosomal dominant form of DEAF1. Individuals with the recessive genetic syndrome associated with DEAF1 were 
then classified using this model. These analyses show that clinicians and researchers should be careful when interpreting the results of PhenoScore when investigating phenotypically similar 
syndromes, as the number of false-positives could be elevated in that case.

http://www.nature.com/naturegenetics
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Extended Data Table 7 | Systematic confounder analysis using Koolen-de Vries syndrome

The classification of 18 individuals that were seen at our outpatient clinic in the Radboud university medical center, the same clinic as all control individuals. For this analysis, these 18 
individuals were left out of the training data, so that only individuals with Koolen-de Vries syndrome seen outside our outpatient clinic were included when training PhenoScore. The scores 
displayed here are then the predictions when using this model to generate predictions for the individuals seen at our institution. The median PhenoScore (here a posterior probability) is 0.95, 
and 13 out of 18 are correctly identified as having KdVS, while only one is incorrectly labeled as negative (mainly because of the phenotype that is not matching: facial predictions are high in 
this case). Furthermore, when calculating the Brier score using these predictions, it is 0.0917—strikingly close to the Brier score of the regular model. This is all indication of the absence of a 
systematic confounder related to the origin of the data.

http://www.nature.com/naturegenetics
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