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data to create remotely monitored biomarkers, we can potentially create 
novel mHealth biomarkers that can be used for diagnosis classification, 
symptom severity estimation, and quantification of treatment effects. 
These biomarkers can potentially generate novel insights that may be 
missed by the clinical gold standard assessments, making it possible to 
gain a deeper understanding of disease states.4 However, this relatively 
young field still requires further research and standardization to encour
age adoption of these technologies into clinical trials.

In the following sections, I will summarize the findings and discus
sions presented in my previous thesis chapters that explore the var
ied applications and challenges of mHealth biomarkers in clinical trials. 
I will address how these biomarkers can be developed and applied for 
diagnosis classification, and as a result offer novel insights into disease
related behavioural profiles that may be elusive in conventional clini
cal settings. Additionally, the role of mHealth biomarkers in estimating 
symptom severity will be discussed, and I will examine the importance of 
developing mHealth biomarkers that are reliable across different condi
tions and populations. I will also speak to how these biomarkers can be 
designed for treatment detection, setting the stage for longitudinal mon
itoring of treatment efficacy. Finally, I will delve into the limitations of 
mHealth biomarkers, identifying areas that warrant further research and 
standardization.

Disease Classification

In the context of clinical trials, disease severity classification biomark
ers not only offer a quantifiable measure to assess the baseline severity 
of a disease among trial participants, but it can also act as a reference to 
track disease progression over time. When evaluating the effectiveness 
of investigational drugs, these biomarkers become invaluable. If the drug 
aims to influence the trajectory of a disease, a change in the biomarker’s 
course over time can be indicative of the drug’s effect. As a result, leverag
ing disease severity classification biomarkers can enhance the precision 

Introduction

The traditional methods of monitoring Central Nervous System (cns) dis
eases often rely on sporadic inperson clinical assessments conducted 
under clinical settings, which may offer an incomplete or distorted rep
resentation of a patient’s condition.1,2 This episodic and inperson 
approach can miss fluctuations in a patient’s condition and doesn’t cap
ture a complete picture of their daily living. However, advances in mobile 
health (mHealth) technologies, including smartphones, wearables, and 
tablets, offer a potential solution for addressing these limitations by 
enabling continuous, realtime data collection on a patient’s daily liv
ing.3 These mHealth technologies can monitor a variety of health met
rics, like heart rate, sleep patterns, and daily physical activity through
out the day and night, regardless of the patient’s location. Using mHealth 
technologies to remotely collect data unobtrusively can provide a clini
cian a more complete overview of a patient’s clinical status. The integra
tion of mHealth and ml into clinical trials should be viewed as a comple
ment to, rather than a replacement for, traditional clinical methodology. 
The clinical expertise of humans, which includes clinical experience and 
human rapport remains irreplaceable. As both mHealth technologies, ml, 
and clinical practices continue to evolve, this integrated approach allows 
for a more dynamic and datadriven approach, which may ensure that the 
design of clinical trials remain at the forefront of both technological and 
medical advancements.

The sheer volume and complexity of data generated through mHealth 
devices can present new challenges. It’s not merely the size but the het
erogeneity of the data that makes manual analysis not just laborinten
sive but also difficult to model.4,5 This is where Machine Learning (ml) 
comes into play. Chapter 2 underscores the potential for ml algorithms 
to develop validated mHealthbased biomarkers that can be deployed in 
clinical trials.6 ml algorithms can efficiently sift through vast and multi
faceted datasets to identify patterns or correlations that may aid the clin
ical interpretation of the data. By combining ml algorithms with mHealth 
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can be especially valuable in discerning even the most subtle changes in 
symptom severity, which is fundamental for early identification of the 
efficacy of a treatment. By continuously monitoring changes in the bio
markers, researchers can gain valuable feedback on whether the drug is 
having its intended effect, which is especially crucial during Phase 2 trials 
where therapeutic effects are under scrutiny. For these biomarkers to be 
regarded as clinically valid, it is imperative that they correlate with recog
nized clinical endpoints. Whether those endpoints concern disease pro
gression, symptom relief, or other clinically relevant measures, a strong 
association assures that the biomarker is a trustworthy measure of the 
drug’s impact.

Chapter 4 investigated the performance of multitask models to simul
taneously estimate the scores of two clinical assessments, the fshD clin
ical score and the Timed Up and Go (tug) test.15 Traditional singletask 
models, while they may be effective for predicting a single outcome, may 
fall short when applied to the multidimensional symptom profiles that 
often encountered in clinical settings. Therefore, the principal advantage 
of multitask models over their singletask counterparts is their ability 
to leverage shared representations and insights across multiple clinical 
assessments.16–18 Moreover, the ability of multitask models to general
ize from one clinical assessment to another can be critical in evaluating 
disease severity across a spectrum of assessments. For example, if the 
model identifies a deterioration in the fshD clinical score, it might also 
predict a parallel decline in the tug score. Finally, multitask models can 
offer a more holistic view of patient health, encompassing various facets 
of disease severity in a single, unified framework. By enabling the parallel 
assessment of multiple assessments, these models can provide a fuller, 
more nuanced picture of disease status, thus guiding more targeted and 
effective interventions.

In Chapter 5, the significance of selfreported outcomes, specifically 
the Depression Anxiety Stress Scale (Dass) and the Positive and Nega
tive Affect Schedule (panas), emerged as decisive features for the depres
sion models. Their inclusion served as a robust indicator for subjective 

and reliability of clinical trial outcomes, ensuring that potential treat
ments are assessed both for their immediate impact and their influence 
on the longerterm progression of the disease.

Chapter 3 investigated the feasibility of classifying Facioscapulo
humeral dystrophy (fshD) patients and healthy controls using the chDr’s 
Trial@Home platform. Key features, such as sleep activity and loca
tion patterns, were identified that distinguished between fshD patients 
and controls.9 This suggests that significant variances observed in sleep 
and location patterns might serve as potential novel clinical biomarkers 
as they currently are not captured by the gold standard assessments of 
fshD.10 These biomarkers, in turn, can be essential in guiding the process 
of drug development, potentially offering a targeted approach for drug 
interventions in treating or managing the associated conditions. 11

Achieving optimal classification accuracy requires a delicate balance 
between the quantity of features and the duration of monitoring. Intro
ducing a broader range of features from various sensors, such as those 
from smartwatches and smartphone gps systems, can improve the pre
cision of the predictions. However, increasing the amount of information 
into a model also adds complexity to the clinical understanding of these 
mHealth biomarkers and increases the patient’s burden of increased data 
collection.12,13

symptom severity estimation

mHealth biomarkers, when utilized for symptom severity estimation, 
offer an innovative approach to assessing the effects of drug interven
tions in clinical trials. As researchers assess new drugs in Phase 2 trials, 
understanding the relationship between a drug, its dosage, and its resul
tant effects over time is pivotal.14 mHealth biomarkers can provide a clear 
picture of this relationship, aiding in establishing a safe and effective dos
age range. mHealth biomarkers also have the potential to serve as imme
diate indicators of a drug’s efficacy. They can quantify symptom fluc
tuations over time, offering a more comprehensive view compared to 
laborintensive methods like clinical interviews. This frequent monitoring 
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Treatment effects

For detecting treatment effects, mHealth biomarkers need to dem
onstrate their ability to detect changes in disease activity following a 
drug intervention. In essence, this approach to designing and validat
ing mHealth biomarker can make them valuable tools not just for under
standing a disease but also for tailoring and evaluating treatment strat
egies. Here, the focus isn’t solely on the biomarker as a predictive or 
diagnostic tool but also on its sensitivity and efficacy in detecting treat
ment effects relative to the gold standard. By demonstrating sensitiv
ity to treatmentinduced changes, these biomarkers can serve as more 
dynamic endpoints in trials, which can facilitate more immediate and 
accurate assessments of a treatment’s impact.

Chapter 8 discusses the development of mHealth biomarkers for mon
itoring the effects of antiparkinsonian drugs and estimating Parkinson’s 
disease symptom severity.19 The alternative index finger tapping (ift) bio
marker was found to be more predictive and sensitive to treatment effects 
in motor function than the traditional mDs-upDrs iii score, both in terms 
of accuracy and clinical significance. Treatment effects were detected at 
45 minutes for the thumb–index finger tapping (tift) biomarker and at 
60 minutes for the ift composite biomarkers. This coincides well with 
the mean onset of action for the drug Ldopa/carbidopa, which is around 
50 minutes. The findings suggest that ift and tift are sensitive tools for 
assessing motor function in the context of symptomatic treatments for 
conditions like Parkinson’s disease, potentially identifying small and early 
changes missed by traditional measures. The large effect sizes also found 
in this study could reduce the sample size requirements and enhance 
the statistical power for future studies involving tapping tasks. This pilot 
study can advance the understanding of how to accurately detect and 
measure treatment effects on fine motor function, particularly in condi
tions like Parkinson’s disease. It not only validates the efficacy of new bio
markers but also provides methodological guidance for validating novel 
biomarkers in future research focus on investigating drug effects.

psychological states, highlighting the irreplaceable value of patient input 
in capturing the nuances of mental health conditions. Interestingly, even 
though passively collected features like walking speed and location were 
not as predictive as Dass and panas, they still made valuable contribu
tions to the overall effectiveness of the models. This finding also under
scores the importance of integrating realworld, passively collected data, 
as it appears to reveal patterns and insights that might be overlooked 
in more controlled clinical settings. Additionally, the models’ capac
ity to accurately represent the full spectrum of depression severity was 
augmented by the inclusion of healthy controls. This inclusion not only 
enhanced the robustness of the models but also extended the represen
tation of the potential remission states of depression in the models. This 
multidimensional approach, combining both active and passive data col
lection, thus provides a more comprehensive and nuanced understand
ing of mental health conditions.

Estimating symptom severity using mHealth biomarkers presents spe
cific challenges, particularly when considering the inherent variability in 
both the devices and the patients themselves. One significant concern 
is the interdevice variability.2 Difference in mHealth devices may pro
duce slightly varied measurements, leading to inconsistencies in the col
lected data. This variation can introduce noise into analyses, potentially 
skewing results or diminishing the precision of symptom severity esti
mations. Additionally, symptom severity and expression itself can vary 
within and between patients, adding another layer of complexity to mod
elling efforts. External factors that cannot be controlled or accounted for 
can also confound readings. For instance, while an mHealth device might 
detect an increased heart rate as a potential symptom of a health condi
tion, however this elevation could be attributed to external influences 
such as anxiety, physical exercise, or other nonmedical causes. Thus, dis
tinguishing genuine symptom fluctuations from these external factors 
remains a challenge in leveraging mHealth biomarkers for accurate symp
tom severity estimation.
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Limitations

Many conditions, like mental health disorders or chronic diseases, are 
multifaceted and may not be fully captured by a single gold standard 
assessment or a single device. In these cases, both the gold standard 
and the mHealth devices may not capture the complexity of the disease, 
leading to discrepancies when comparing the true and predicted clinical 
scores. These discrepancies can be the result of three causes. First, limi
tations of mHealth devices to capture all clinically relevant behaviors. For 
instance, the mHealth devices failed to capture and therefore failed to 
predict the upper arm functionality of fshD’s patients, as seen in Chapter 
3 and 4.9,15 Second, shortcomings of the gold standards in capturing all 
clinically relevant behaviors. As seen in Chapter 5, we found that walking 
and travel behaviors are predictive of mDD, however, these characteristics 
are not addressed by the sigh-D iDsc. Further, the gold standard’s limita
tions, such as interrater variability or a failure to capture the full complex
ity of a disease, may introduce biases affecting the biomarker’s reliability. 
In some cases, the gold standard involves human assessment, which can 
vary depending on the rater’s expertise or even daytoday conditions. For 
instance, in Chapter 8, the finger tapping tasks that tracks multiple tap
pingrelated characteristics could offer insights into motor functionality 
that might be more comprehensive than traditional Parkinson’s Disease 
studies that solely rely on clinical observation.19 Third, there may be dis
parities between the objective behavioral biomarkers and subjective end
points. For example, a depressed patient may report feeling more rest
less when in bed, but the objective sleep data captured by the smartwatch 
shows that the patient slept for 8 hours. As a result, the objective measure 
of sleep may not correlate well with the subjective experience of sleep as 
seen in Chapter 5. Therefore, it’s crucial to consider both objective mea
surements and subjective experiences when evaluating the effectiveness 
of mHealth devices for monitoring and managing conditions like depres
sion. The objective measurements may not always be a representative 
endpoint for subjective experiences.

Repeatability of predictions over time and 
settings
In the context of clinical research, the term ‘repeatability’ refers to the 
ability of a test, measurement, or algorithm to yield consistent results 
when it is performed multiple times under the same conditions.20,21 In 
both clinical and home settings, consistent monitoring is vital for track
ing the progression or alleviation of symptoms. For instance, if a cough 
detection algorithm is used to monitor the effectiveness of a new asthma 
medication in children, inconsistent results would compromise the integ
rity of the research and could lead to incorrect conclusions. For algo
rithms designed to monitor biological signals or events—such as coughs 
or cries—repeatability across different data collection settings and across 
patients is a key attribute that underscores the algorithm’s reliability.20 In 
the fields of computer science and ml, repeatability can be interchanged 
with ‘robustness’ and ‘external validity.’ Essentially, these terms—repeat
ability, robustness, and external validity—point towards an algorithm’s 
consistent performance across varying conditions and datasets. Chap-
ter 6 and Chapter 7 focused on the development of a smartphone
based algorithm for automated cough and cry detection among infants 
and children.22,23 Both algorithms show strong repeatability, which is 
crucial for consistent monitoring over time. The cry algorithm appears 
robust against different types of physical barriers and can be used at var
ious distances, making it flexible for realworld applications. While both 
algorithms show some level of interdevice variability, it is within an 
acceptable range that does not severely compromise their utility. Both 
algorithms are affected by background noise, albeit to varying extents. 
This points to an area for potential improvement. These findings suggest 
both algorithms are robust enough for potential use in monitoring cries 
and coughs in a clinical setting or for homebased care, although adjust
ments may be needed depending on the device or environmental condi
tions used.
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