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Introduction

Parkinson’s disease (PD) motor impairments can be characterized as 
slow and rigid and can lead to a gradual reduction in movement speed 
over time.1 The recommended instrument for assessing the severity of 
PD motor symptoms is the Movement Disorder Society’s revised version 
of the Unified Parkinson’s Disease Rating Scale, Part III (MDS-UPDRS III).2 
The MDS-UPDRS III offers a reliable and valid metric for evaluating motor 
manifestations in each body area affected by PD.3-5 There are two main 
limitations of the MDS-UPDRS III. First, the MDS-UPDRS III requires approx­
imately 15 minutes to complete with a trained rater, therefore making it 
time consuming and labor intensive.6 Thus, MDS-UPDRS III is not ideal for 
demonstrating the time of onset of fast-acting dopaminergic drugs, such 
as the inhaled and intranasal forms of levodopa (L-dopa)/carbidopa and 
apomorphine.7,8 Second, the MDS-UPDRS III provides only a coarse rating 
of motor function and therefore cannot identify or differentiate between 
specific kinematics of finger movements.3 As fine motor control abnor­
malities are typically the first manifestations of motor impairments in PD 
patients, it is important to develop composite biomarkers that are sensi­
tive to these changes.9 To address these limitations, there is a demand for 
biomarkers that detect fine-grained changes in motor function and are 
congruent with the MDS-UPDRS.

Finger tapping tasks provide insights into fine motor activity 10,11 and 
have been shown to be quick, effective, and simple assessments for esti­
mating MDS-UPDRS motor disability12,13 and assessing antiparkinso­
nian drug effects.14-19 These tasks provide insights into fin- ger and fore­
arm movement speed, accuracy, amplitude, frequency, rhythm, and 
fatigue.10,14,20,21 PD patients often experience tremors, stiffness, and 
difficulty with movement, which can significantly impact their ability to 
perform daily activities, including buttoning a shirt, typing on a keyboard, 
or using utensils.22,23 As patients want treatments that will improve their 
ability to carry out daily activities, measuring motor function through tap­
ping biomarkers can provide a more direct and meaningful assessment of 

Abstract

The validation of objective and easy-to-implement biomarkers that can 
monitor the effects of fast-acting drugs among Parkinson’s disease (PD) 
patients would benefit antiparkinsonian drug development. We devel­
oped composite biomarkers to detect levodopa/carbidopa effects and to 
estimate PD symptom severity. For this development, we trained machine 
learning algorithms to select the optimal combination of finger tap­
ping task features to predict treatment effects and disease severity. Data 
were collected during a placebo-controlled, crossover study with 20 PD 
patients. The alternate index and middle finger tapping (IMFT), alternative 
index finger tapping (IFT), and thumb–index finger tapping (TIFT) tasks 
and the Movement Disorder Society-Unified Parkinson’s Disease Rat­
ing Scale (MDS-UPDRS) III were performed during treatment. We trained 
classification algorithms to select features consisting of the MDS-UPDRS 
III item scores; the individual IMFT, IFT, and TIFT; and all three tapping 
tasks collectively to classify treatment effects. Furthermore, we trained 
regression algorithms to estimate the MDS-UPDRS III total score using 
the tapping task features individually and collectively. The IFT compos­
ite biomarker had the best classification performance (83.50% accuracy, 
93.95% precision) and outperformed the MDS-UPDRS III composite bio­
marker (75.75% accuracy, 73.93% precision). It also achieved the best per­
formance when the MDS-UPDRS III total score was estimated (mean abso­
lute error: 7.87, Pearson’s correlation: 0.69). We demonstrated that the IFT 
composite biomarker outperformed the combined tapping tasks and the 
MDS-UPDRS III composite biomarkers in detecting treatment effects. This 
provides evidence for adopting the IFT composite biomarker for detecting 
antiparkinsonian treatment effect in clinical trials.
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on state by an investigator. Patients were included if they were between 
ages 20 and 85 years during screening, experienced self-described motor 
fluctuations, and were taking oral antiparkinsonian medication. Patients 
were excluded if they had known conditions that would affect L-dopa/car­
bidopa treatment or study compliance, such as previous intolerance, drug 
dependence, or psychiatric disease.

Assessments

MDS-UPDRS III  We selected the MDS-UPDRS III as the gold standard for 
the purposes of this study. The MDS-UPDRS III was conducted by trained 
raters at CHDR. The examination took on average 15 minutes to complete. 
It was performed pre-dose and at 10, 30, 60, and 90 minutes after dosing.

Finger Tapping Tasks  All the tapping tasks were performed twice 
pre-dose and once at 10, 25, 45, 60, 75, 90, and 105 minutes after dosing. If 
the tapping tasks and MDS-UPDRS III were planned simultaneously, then 
tapping tasks were performed first.

Alternate Index and Middle Finger Tapping and Alternate 
Index Finger Tapping  Each patient was provided with a touchscreen 
laptop equipped with the alternate index and middle finger tapping 
(IMFT) and alternate index finger tapping (IFT) tasks.10 The patients were 
instructed to use the hand that was most affected (if both hands were 
equally affected, to use their dominant hand) and to perform each task as 
fast and accurately as possible for 30 seconds. For the IMFT, patients were 
asked to tap between the two targets (2.5 cm apart) with their index and 
middle fingers. For the IFT, patients were asked to tap the targets (20 cm 
apart) with their index finger. The IMFT and IFT require two different move­
ments; the IMFT and IFT are dependent on fine finger and forearm move­
ments, respectively.10 Each of the two tasks generated 43 features relat­
ing to speed (eg, total number of taps), accuracy (eg, spatial error), rhythm 
(eg, intertap interval), and fatigue (eg, change in velocity) (Table S1).10,14

the impact of treatments on patients’ lives. Therefore, the tapping tasks 
could be considered of interest to both clinicians and patients.

The complexity of parkinsonism motor impairment manifestations 
cannot be captured by a single biomarker. By exploiting machine learn­
ing algorithms, we can combine multiple objective biomarkers into a sin­
gle composite biomarker that would represent a multi-dimensional char­
acterization of PD.24 Previous studies have demonstrated that composite 
biomarkers could effectively differentiate between PD and healthy con­
trols and estimate MDS-UPDRS III symptom severity.25-27 This study inves­
tigates the accuracy and sensitivity of composite tapping biomarkers to 
detect drug effects and to estimate disease severity among PD patients.

Patients and Methods

This is an extension of a previous study that investigated the reliability of 
tapping tasks to detect the longitudinal effects of L-dopa/carbidopa and 
to determine the correlation of the tapping features with the MDS-UPDRS 
III.14 The study was conducted at the Centre for Human Drug Research 
(CHDR) in Leiden, the Netherlands, between July and November 2020 and 
is registered in the Netherlands Trial Register (trial NL8617).

Study Overview

We conducted a double-blind, placebo-controlled, randomized, two-way 
crossover study with L-dopa/carbidopa in 20 PD patients that had recog­
nizable off episodes (symptoms not adequately controlled by their med­
ication).28 Patients received a semi-individual dose of the investigational 
drug. To ensure an off-on transition, the patients were given a supramax­
imal dose that was at least 25% higher than their usually administered 
morning dose.29

Patient Criteria

Enrolled patients had a clinical diagnosis of PD, as confirmed by a neu­
rologist, and a classification of a Hoehn–Yahr stages I to III during their 
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considered using the baseline-uncorrected values to reduce the num­
ber of measurements needed for treatment classification. The base­
line-uncorrected model would require only a single tapping assessment, 
whereas the baseline-corrected model would require two.

Cross-Validation  We applied a nested k-fold cross-validation strat­
egy to assess the performance and the generalizability of the composite 
biomarkers.34 In nested cross-validation, the outer fold assesses the per­
formance of the model, whereas the inner fold performs the model and 
hyper-parameter selection. In our study, the outer-fold step was repeated 
100 times, with each iteration containing a different combination of train­
ing (80% of the data) and test sets (20%). Each outer training set was fur­
ther split into an inner training (80% of the data) and validation sets (20%). 
The inner-fold step was repeated 50 times, and the best-performing 
inner model would be evaluated in the outer fold. The final results would 
be represented as the averaged and standard deviation of the models 
selected by each outer fold.34 For the classification and regression mod­
els, we applied a group-shuffle split (same distribution of placebo and 
active treatments in each split) and a stratified-shuffle split (same dis­
tribution of MDS-UPDRS III scores in each split), respectively. To stratify 
the MDS-UPDRS III scores, we assigned each score to one of three binned 
ranges (eg, the baseline-corrected MDS-UPDRS III binned ranges were [-13, 
-8.76], [-8.76, -4.53], and [-4.53, 0.3]). Each outer fold had the same distri­
bution of binned ranges. Stratification was not applied to the inner fold, 
as the small sample size would limit the number of samples available per 
bin. Within each inner fold, all features were standardized by subtract­
ing the mean and scaling to the unit variance. To identify the features that 
were predictive of the outcomes, we identified features that were selected 
at least once by all outer-fold models.34

Classification of Active or Placebo Treatments  Classification 
models were trained to classify the active or placebo treatments. As we 
intended to predict the probability of treatment at all time points, we 

Thumb–Index Finger Tapping  A wireless goniometer (Biometrics 
Ltd, Newport, UK) was placed on the metacarpal and proximal phalanx 
of the index finger of the most affected hand (if both hands were equally 
affected, to use their dominant hand).10,14,30 Each patient was instructed 
to sit comfortably, hold up the hand, and tap the index finger on the thumb 
as widely and quickly as possible continuously for 15 seconds. The thumb–
index finger tapping (TIFT) assesses unilateral sequential fine finger move­
ments. The 25 features of the TIFT include progressive changes in ampli­
tude, hesitations, and tapping speed during the task (Table S1).14

Statistical Analysis

All data preprocessing and statistical analyses were conducted using 
Python (version 3.8.0) (31) and the Scikit-Learn library (version 1.0.1).32

Data Preprocessing  All features were visually and statistically 
inspected for normality using histograms and Shapiro–Wilk tests, respec­
tively. Log or square root transformations were applied when the features 
were not normally distributed. Only features that were normally distrib­
uted were included in the analysis. Missing values were not imputed, and 
only complete cases were considered.

As the tapping composite biomarker is designed to be a proxy for over­
all motor function, we did not account for laterality of the tapping task in 
the biomarkers. The need for assessing the tapping tasks with both hands 
is therefore avoided, which could streamline the assessment process and 
reduce the burden on patients.

Composite Biomarkers  We developed 10 composite biomark­
ers. The composite biomarkers represented the baseline-uncorrected or 
baseline-corrected MDS-UPDRS III 18-item scores; all three tapping tasks 
combined; and the IFT, IMFT, and TIFT tasks individually. From a statisti­
cal viewpoint, we corrected for baseline to remove any concomitant vari­
ability in the treatment response, which would therefore improve the 
precision of the treatment detection.33 From a practical viewpoint, we 
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with elastic-net regularization (optimized for α and the l1 ratio) was used 
to predict the MDS-UPDRS III total score at 90 minutes using the 105-minute 
tapping biomarkers. These two time points were compared, as it was pre­
viously shown that the IFT and TIFT showed significant and moderate-to-
strong correlations with the MDS-UPDRS III.14 Further, the 90- and 105-min­
ute tapping tasks were equally as close to the 90-minute MDS-UPDRS III in 
timing and therefore we assumed would perform equally well.

To assess the performance of the models, we estimated the mean abso­
lute error (MAE) of the outer-fold models. We evaluated the correlation 
between the predicted and true MDS-UPDRS III scores at all timepoints 
for each outer-fold model. Like the classification models, the MDS-UPDRS 
III scores were estimated at other time points with the 20% patients who 
were not used for training. Additionally, as for the classification models, 
those data were also used to estimate the repeatability and effect size.

Results
Data Collected

Twenty PD patients participated in this study. An overview of the demo­
graphic and disease characteristics of the patients was published previ­
ously ;14 14 patients were male, and their ages ranged from 48 to 70 years. 
Patients received one to four capsules of 100/25 mg L-dopa/carbidopa as 
they had a supramaximal morning levodopa equivalent dose (LED) rang­
ing from 47 to 391 milligrams. The median MDS-UPDRS III score when using 
regular medication was 23 and 22 on their placebo and active treatment 
days, respectively.14

We analyzed 31 IMFT, 31 IFT, and 25 TIFT features. No features were 
excluded due to nonnormal distribution. Due to goniometer damage, we 
had missing data for 1 patient in the placebo condition and 2 patients in 
the active condition. As 6 patients had difficulties performing the IMFT, 
this led to missing data. However, the missing data were equally distrib­
uted across the treatment conditions and therefore deemed missing at 
random.

chose the last measurements to train the models. The MDS-UPDRS III 
classification model was trained on the 90-minute MDS-UPDRS III item 
scores.14 The tapping classification models were trained on measure­
ments taken immediately after the MDS-UPDRS III starting at 105 minutes.
To identify the optimal classification model, we compared three 
classification models: support vector machines, logistic regression, 
and linear discriminant analysis (LDA). These classification models were 
selected as they are easy to implement and to interpret.35-37 Previous 
studies have also used these algorithms to classify PD diagnosis or esti­
mate MDS-UPDRS III.38-41 Models were compared based on their mean 
accuracy, precision, and F1 scores.40

In addition, each model selected by the outer folds was used to predict 
the treatment at the other time points, with 20% of patients who were 
not used for training. This would allow researchers to identify at which 
time point treatment effects are detected. For each time point, the mean 
and standard deviation of the class probabilities were based on the pre­
dicted log-odd ratios from each fold. Additionally, these probabilities 
were used to estimate the repeatability and effect size. The repeatability 
was assessed by calculating the intraclass correlation coefficients (ICC) 
using the placebo results only. Using a random intercept model with the 
intercept and time point as fixed effects, the ICC was calculated by divid­
ing the between-subject variance by the sum of the between-subject and 
within-subject variances. The effect size was calculated using all avail­
able data and a random intercept model with intercept, time point, treat­
ment, and interaction between time point and treatment as fixed effects. 
In addition, the effect size was calculated as the contrast between the 
probabilities after treatment and the averaged baseline probabilities 
divided by the square root of the sum of the between-subject and within-
subject variations.

Estimation of the MDS-UPDRS III Total Score  To assess if the 
tapping composite biomarkers (baseline uncorrected and baseline cor­
rected) could estimate the MDS-UPDRS III total score, linear regression 



Development of Machine Learning – Derived mHealth Composite Biomarkers for Trial@Home Clinical Trials234 235Part iv/Chapter 8

respectively) (Figure S2). The MDS-UPDRS III demonstrated higher repeat­
ability than the tapping tasks. Whereas the baseline-uncorrected MDS-
UPDRS III biomarker obtained an excellent ICC, the IFT and TIFT both 
achieved good ICCs (0.78, 0.80) (42). However, the ICCs of the baseline-cor­
rected MDS-UPDRS III and the IFT, IMFT, and TIFT biomarkers decreased to 
a moderate ICC range between 0.52 and 0.66.42

Estimation of MDS-UPDRS III

The mean MDS-UPDRS III total scores at 90 minutes for the placebo and 
active treatments were 33.5 and 22.0, respectively. When baseline-cor­
rected, the mean MDS-UPDRS III scores for the placebo and active treat­
ments were 0.3 and -13.0, respectively (Figure 3).

The best-performing baseline-uncorrected regression models were the 
TIFT and IFT composite biomarkers, which achieved the lowest average 
MAE of 10.31 and 10.36, respectively. In addition, the TIFT and IFT showed 
large effect sizes of 1.47 and 2.23, respectively, when estimating the MDS-
UPDRS III. The best-performing baseline-corrected model was the IFT 
composite biomarker, which yielded the lowest average MAE of 7.87. For 
both the baseline-uncorrected and baseline-corrected models, the best-
performing composite biomarkers outperformed that of the composite 
biomarkers of the three tasks. For the IFT features, the features that were 
mutually selected by both models were similar to that of the IFT classifica­
tion features (Figure 2; Figure S1).

Estimation of MDS-UPDRS III at All Time Points  The predicted 
and true MDS-UPDRS III scores were significantly correlated for the base­
line-corrected and baseline-uncorrected models (Table 2). Once again, 
the best positive correlations were achieved by the TIFT baseline-uncor­
rected composite biomarker (r = 0.58, P < 0.01) and the IFT baseline-cor­
rected composite biomarker (r = 0.69, P < 0.01). The greatest difference in 
the true MDS-UPDRS III scores between the placebo and active treatment 
interventions was at 90 minutes (Fig. 3). The tapping tasks achieved a 
moderate to good ICC (Table 2).

Classification of Placebo and Active Treatments

We found that the LDA classifier consistently yielded the highest accuracy 
for all models (for both baseline uncorrected and baseline corrected); 
thus, we reported only the LDA results.

Classification of Treatment Effects  The best-performing base­
line-uncorrected composite biomarker, the IFT, yielded an accuracy, pre­
cision, F1 score, and large effect size of 68.50%, 70.23%, 68.93%, and 1.60 
respectively (Table 1). The best-performing baseline-corrected compos­
ite biomarker, the IFT, achieved a higher average accuracy, precision, 
F1 score, and large effect size of 83.50%, 93.95%, 80.09%, and 2.58. Both 
models outperformed the MDS-UPDRS III classification models across all 
metrics. The IFT features that were mutually identified as important fea­
tures for the baseline-uncorrected and baseline-corrected classification 
models were related to accuracy (e.g., spatial errors and the bivariate con­
tour ellipse area), fatigue (e.g., velocity changes), and velocity (e.g., inter­
tap intervals) (Figure 1).

Classification of Treatment Effects at All Time Points  In 
Figure 2, the classification models were applied to all time points, show­
ing the mean predicted probability of an active (>0.5) or placebo treat­
ment (<0.5). In the baseline-corrected IFT, TIFT, and MDS-UPDRS III mod­
els, the mean predicted probability of a patient receiving a placebo 
treatment was consistently less than 0.5. In contrast, when active treat­
ment was administered, the baseline-corrected IFT and MDS-UPDRS 
III model had a mean predicted probability above 0.5 from 60 minutes 
onward. The baseline-corrected IMFT and TIFT models crossed the 0.5 
thresholds after 45 minutes. We found that the baseline-corrected IFT bio­
marker determined a large effect size (0.81) at 30 minutes, whereas the 
baseline- uncorrected IFT biomarker reached a large effect size of 0.84 
at 60 minutes. The MDS-UPDRS III achieved a large effect size at 60 min­
utes (1.69 and 1.04 for baseline corrected and baseline uncorrected, 
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on the patient’s tapping profile during their off state and adjusting for 
baseline removes variation in the L-dopa/carbidopa response.

Estimation of MDS-UPDRS III

We found that the baseline-corrected IFT biomarker, despite yielding the 
best performance among all the biomarkers, achieved a prediction error 
of approximately eight points and was significantly moderately corre­
lated using the MDS-UPDRS III. The prediction error is comparable to exist­
ing sensor-based composite biomarkers used to estimate the MDS-UPDRS 
III. Studies using data sourced from an Axitvity AX3 (placed on the wrist 
and back or only the wrist) to estimate the gold standard achieved an MAE 
ranging from 4.29 to 6.29 points.47,48 The tapping biomarkers predicted a 
smaller range of MDS-UPDRS III scores compared to that of the true MDS-
UPDRS III scores (Figure 3). It is likely due to using only hand and forearm 
motor function assessments to predict the MDS-UPDRS III total scores, 
which includes motor assessments of other regions affected by PD, such 
as gait, facial expression, and speech.4 As the correlations of the true and 
predicted MDS-UPDRS III scores were moderate (Table 2), the tapping bio­
markers still showed concurrent validity with the gold standard. This sug­
gests that the tapping biomarkers could provide clinicians with an under­
standing of the acute effects of drugs on motor fluctuations within a short 
monitoring period.

Despite the discrepancies between the true and predicted MDS-UPDRS 
III total scores, with the advancements in technology, it is not unusual 
for the performance of new clinical assessments to outperform the cur­
rent gold standard. However, the discrepancy between the two assess­
ments influences the accuracy estimates of the new clinical assessments, 
and as it would be interpreted as a prediction error.49 Therefore, we argue 
that accurate estimation of the MDS-UPDRS III score is not essential for the 
adoption of the composite biomarker as a new complementary assess­
ment for estimating symptom severity. Rather, the consequences result­
ing from the disagreement between the gold standard and the tapping 
composite biomarkers should be investigated.

Discussion
Detection of Treatment Effects

The IFT biomarker (baseline corrected and baseline uncorrected) was, on 
average, more predictive of and more sensitive to treatment effects than 
the MDS- UPDRS III biomarker in terms of accuracy, precision, and clini­
cal significance (as supported by the effect-size performances) (Table 1). 
This is significant as the ability to detect changes in aspects of motor func­
tion that may be missed by traditional assessments allows for a more sen­
sitive measure of treatment efficacy. This can be valuable for detecting 
small and early changes in motor function that are indicative of a treat­
ment response. The most important IFT features used to classify treatment 
effects are in concert with previous studies (Figure 1) that also identified 
that forearm movements relating to velocity, amplitude, and rhythm are 
sensitive to anti- parkinsonian drug effects.10,15,43,44 We demonstrated that 
treatment effects were detected at 45 and 60 minutes for the TIFT and IFT 
composite biomarkers, respectively (Figure 2). This finding is notable as 
the mean onset of L-dopa/carbidopa action is about 50 minutes (45). This 
suggests that tapping tasks can detect the onset of oral L-dopa/carbi­
dopa. The MDS-UPDRS III was not performed at 45 minutes, so it could not 
be determined whether the MDS-UPDRS III biomarker could detect treat­
ment effects at 45 minutes. These findings further propound that the tap­
ping tasks are practical and sensitive composite biomarkers for detecting 
motor response changes induced by anti- parkinsonian drugs (46). Further, 
the large effect sizes can potentially reduce sample size requirements and 
enhance power for future tapping task trials that assess treatment effects.

The performance of the classification models (except for the ICC) 
improved when the features were baseline corrected. Despite this, both 
models provide practical and clinical value. The baseline-uncorrected 
models required only a single measurement and represented the current 
motor function status. The baseline-corrected models require two mea­
surements and represent the changes in motor function over time. The 
increased performance suggests that treatment response is dependent 
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Conclusion

In conclusion, the IFT biomarker was more predictive of and sensitive to 
the detection of treatment effects than the MDS-UPDRS III biomarker; 
therefore, the tapping biomarkers appear to hold promise for evaluating 
the early and rapid effects of antiparkinsonian drugs. Moreover, the tap­
ping task is easy to perform and can be done in clinical settings as well 
as at home by patients themselves, making it a practical and convenient 
method for monitoring disease progression and treatment response. 
Using tapping biomarkers, clinicians can obtain accurate and reliable 
data that can inform treatment decisions in real time.

Future Work

We demonstrated that the tapping composite biomarkers could detect 
the onset of oral L-dopa/carbidopa at 45 minutes. A follow-up study could 
investigate if the tapping composite biomarkers could detect an earlier 
onset of an even faster-acting antiparkinsonian drug, such as inhaled apo­
morphine that has an onset as early as 8 minutes.8 This would further vali­
date the sensitivity of the tapping composite biomarker to detect fast-act­
ing dopaminergic drug effects.

Our sample size may limit the generalizability of this study’s findings 
as a small sample size may not be representative of the broader popu­
lation of patients with PD, making it difficult to generalize its results to a 
larger population.50 This is particularly relevant for PD studies, where 
the disease can manifest in different ways and progress at different rates 
in different patients. To mitigate the effect of the small sample sizes, we 
employed cross-validation to bootstrap and validate the models against 
different groups of patients. We propose conducting a follow-up trial to 
implement the tapping tasks among more PD patients with more diverse 
MDS-UPDRS III profiles. The data collected from the trial can be used as 
an independent data set to assess the validity, reliability, and generaliz­
ability of our current methods. Although composite biomarkers have the 
advantage of capturing multiple aspects of motor function, the effects of 
individual components within the composite biomarker must be care­
fully examined to avoid misleading interpretations of the results. For 
example, a treatment that improves tapping speed but worsens tapping 
rhythm may result in an overall neutral effect, making it difficult to inter­
pret the treatment’s efficacy. Like other composite measures, such as the 
MDS-UPDRS III total score, it is crucial to examine the effects of each fea­
ture of the composite biomarker separately, as well as in conjunction with 
the overall composite score, to better understand the treatment’s impact 
on finger motor function.
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supplementary table 1  Overview of features for the Alternate Index and Middle Finger Tapping 
(IMFT), Alternate Index Finger Tapping (IFT), Thumb-Index Finger Tapping (TIFT)(8)

Task Endpoint (UNIT) Acronyms

TIFT Amplitude: Slope from linear regression  
of each tap’s amplitude against time.  
(degrees and degrees/seconds)

Mean (TAM)
Change (TAC)

TIFT Angle frequency change: Change in peak  
tapping frequency over time (Hz/min) 
Angle change (degrees2/s) 

Frequency Mean (AFM)
Frequency Change (AFC)
Angle Mean (AAM),
Angle Change (AAC)

IMFT, IFT Bivariate contour ellipse angle (degree)
Bivariate contour ellipse area (mm2)
BCEA represents the area of an ellipse which 
encompasses the fixation points

BCEA angle (BCT)
BCEA area (BCA)

IMFT, IFT Distance travelled between consecutive taps 
(centimetres)

Total (DTT)
Average (DTA)
Standard Deviation (DTS)
Covariance (DTV)
Change between first/last (DTD)
Change between intervals (DTC)

IMFT, IFT, TIFT Inter-Tap Interval: Time between two  
consecutive taps (milliseconds) 

Average (ITA)
Standard Deviation (ITS)
Covariance (ITV) Change between (ITC) 
Change between first/last (ITD)

IMFT, IFT Missed Taps: Total number of double/missed 
taps (DBLTT)
Ratio good taps: total taps (DBLTR) (count)

Total number of double/missed taps (DBLTT)
Ratio good taps: total taps (DBLTR)

IMFT, IFT Number of Halts: Number of taps where the 
inter-tap interval is larger than 2 * ITM (count)

NOH

TIFT Peak frequency area under the curve:  
The total power around the peak frequency  
in the power spectrum around the peak  
frequency (degrees2)

Amplitude (FPA)
Frequency (FPF)
Area under the curve (FPP)

IMFT, IFT Ratio good taps:total taps: Taps on the  
correct side (left/right) of the screen

TNT

IMFT, IFT Spatial error:
Sum of the Euclidean distances between  
each tap and the center of the target
(millimeters)

Total (SET)
Average (SEA)
Standard Deviation (SES)
Covariance (SEV)
Change between (SED)
Change between first/last (SEC)

IMFT, IFT, TIFT Total number of taps TNT
IMFT, IFT Total taps inside and outside target Taps within the target circle (TIT)

Taps outside the target circle (TOT)

TABLE 1  The mean and standard deviations of the accuracy, precision, F1 score, and effect size for 
each biomarker (at 90 minutes for MDS-UPDRS III and 105 minutes for the tapping task) are based on the 
100 outer folds of the nested cross-validation

Tasks Accuracy Precision F1-score Icc Effect-size

BASELINE- 
UNCORRECTED 

IMFT  56.90% 
(±15.09%) 

61.67% 
(±22.53%) 

56.56% 
(±18.07%) 

0.60
(± 0.25) 

0.64 
(± 0.57) 

IFT  68.50% 
(±12.56%) 

70.23% 
(±16.31%) 

68.93% 
(±14.9%) 

0.78
(± 0.21) 

1.60 
(± 0.82) 

TIFT  67.72% 
(±15.84%) 

65.55% 
(±21.03%) 

67.51% 
(±18.22%) 

0.78 
(± 0.22) 

1.14 
(± 0.80) 

All 3 Tasks  63.0% 
(±16.91%) 

64.35% 
(±27.32%) 

59.82% 
(±23.16%) 

0.68
(± 0.29) 

0.91 
(± 0.68) 

MDS-UPDRS 
III item scores 

63.75% 
(±11.25%) 

61.20% 
(±10.9%) 

68.90% 
(±11.52%) 

0.92
(± 0.10) 

1.03 
(± 0.60) 

BASELINE- 
CORRECTED 

IMFT  66.86% 
(±15.23%) 

70.83% 
(±17.25%) 

69.01% 
(±15.04%) 

0.57
(± 0.17) 

1.44 
(± 0.98)  

IFT  83.50% 
(±10.74%) 

93.95% 
(±11.25%) 

80.09% 
(±14.92%) 

0.53
(± 0.16) 

2.58 
(± 0.90) 

TIFT  77.86% 
(±14.97%) 

82.32% 
(±21.43%) 

74.72% 
(±18.44%) 

0.52 
(± 0.17) 

1.14 
(± 0.80) 

All 3 Tasks  77.98% 
(±13.26%) 

81.85% 
(±21.15%) 

74.66% 
(±19.17%) 

0.48
(± 0.18) 

0.91 
(± 0.61) 

MDS-UPDRS 
III item scores 

75.75% 
(±14.45%) 

79.95% 
(±17.64%) 

73.93% 
(±16.42%) 

0.66
(± 0.11) 

2.12 
(± 1.25) 

TABLE 2  Average correlation and ICC (95% CI) between the true and predicted MDS-UPDRS scores 
across all time points for the repeated nested cross-validation 100 outer-fold predictions.

Tasks Correlation  
coefficient (r)

p-value ICC Effect-size

baseline- 
uncorrected

IMFT 0.10 [0.03, 0.16] p<.05 [<.05, 0.05] 0.69 [0.65, 0.73] 0.67 [0.53, 0.81]

 IFT 0.52 [0.45, 0.59] p<.01 [<.01, <.01] 0.80 [0.76, 0.83] 1.02 [0.91, 1.14]
TIFT 0.58 [0.53, 0.63] p<.05 [<.01, <.05] 0.78 [0.74, 0.82] 1.47 [1.27, 1.67]
All 3 Tasks 0.11 [0.04, 0.18] p<.05 [<.05, 0.05] 0.66 [0.61, 0.71] 0.75 [0.62, 0.88]

Baseline- 
corrected

IMFT 0.34 [0.27, 0.40] p<.05 [<.01, 0.06] 0.48 [0.44, 0.52] 1.10 [0.92, 1.28]

IFT 0.69 [0.65, 0.73] p<.001[<.001,<.005] 0.45 [0.42, 0.48] 2.23 [2.01, 2.45]
TIFT 0.65 [0.60, 0.69] p<.001 [<.001, <.001] 0.50 [0.46, 0.54] 1.37 [1.20, 1.54]
All 3 Tasks 0.56 [0.52, 0.61] p<.05 [<.001, <.05] 0.43 [0.39, 0.47] 1.06 [0.91, 1.21]
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Figure 1  The average feature coefficients of the respective features selected by the LDA (linear 
discriminant analysis) classifier for each finger tapping task feature and the MDS-UPDRS III (Movement 
Disorder Society-Unified Parkinson’s Disease Rating Scale, Part III) item score features (baseline-
uncorrected and baseline-corrected models). The error bars represent the 95% confidence interval.

Task Endpoint (UNIT) Acronyms

IMFT, IFT Mean of each finger tap’s velocity  
(centimetres/minute)

Average (VEA)
Standard Deviation (VES)
Covariance (VEV)
Change between first/last (VED)
Change between intervals (VEC)

TIFT Mean of each finger tap’s velocity 
(degrees/second)2

Mean (TVM)
Change (TVC)

TIFT Velocity Amplitude (degrees/second)2 Velocity Amplitude Mean (VAM)
Change (VAC)

TIFT Velocity Closing: Average of the amplitude 
(i.e. angle) travelled per second for each tap 
when moving the index finger towards the 
thumb (closing); velocity extracted from the 
derivative of the amplitude (degrees/second)

Mean (CVM)
Change (CVC)

TIFT Velocity Frequency (Hz) Mean (VFM)
Change (VFC)

TIFT Velocity Opening: Average of the amplitude 
(i.e. angle) travelled per second for each tap 
when moving the index finger away from the 
thumb (opening); velocity extracted from the 
derivative of the amplitude (degrees/s)

Mean (OVM)
Change (OVC)

[continuation of Supplementary Table 1] 
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Figure 3  Average true and predicted MDS-UPDRS III (Movement Disorder Society-Unified Parkinson’s 
Disease Rating Scale, Part III) scores with standard deviation from 0 to 105 minutes post dose for the 
placebo (blue) and active (orange) treatment interventions when baseline corrected.

Figure 2  The mean predicted probability that active treatment was administered in the placebo 
(blue) and active (orange) treatment groups. The green dotted line represents the 0.5 decision boundary. 
The bands represent the 95% confidence interval.
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Supplementary Figure 2  Effect sizes of each of the tapping tasks and the Movement Disorder 
Society-Unified Parkinson’s Disease Rating Scale, Part III, composite biomarkers at each time point.

Supplementary Figure 1  The average feature coefficients selected by the elastic-net linear 
regression models for each of the composite biomarkers under baseline-uncorrected and baseline-
corrected conditions. The errors represent the 95% confidence intervals.
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