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Introduction

Crying is a primary indicator of decreased infant wellbeing.1 Besides the 
normal cryingbehavior that is natural for every infant, a change in cry 
duration, intensity or pitch can be a symptom of illness.2 Cry duration 
has been used as a biomarker for diagnostic and followup purposes for 
a wide range of clinical conditions of infancy, such as gastroesophageal 
reflux and cow milk allergy.3,4 However, traditional methods to record cry 
behavior, such as parent or nurse reported cry duration, are subjective 
and vulnerable to observer bias.5 On the other hand, more objective man
ual annotating of audio recordings is labor intensive and may be subject 
to privacyconcerns by parents. An objective, automated and unobtrusive 
method to quantify crying behavior in an athome and clinical setting may 
improve the diagnostic process in excessively crying infants, allow for 
objective determination of treatment effects by physicians, and enable 
researchers to include objectively determined cry duration as digital  
biomarker in clinical trials. Therefore, a classification algorithm is nec
essary for the automatic recognition of cries in audio files. Given the  
importance for researchers to study the relationship between an infant’s 
crying patterns and their health, automatic detection and quantification 
of infant cries from an audio signal is an essential step in remote baby 
monitoring applications.6

Automatic cry detection has been reported in the form of remote baby 
monitors for nonintrusive clinical assessments of infants in hospital set
tings,6–9 and several researchers have shown that classification of cry and 
noncrysounds is possible with machinelearning algorithms.10–12 How
ever, most algorithms lack validation in a completely independent dataset, 
which is crucial to predict performance in new and realworld settings, 
while data regarding intra and interdevice variability and other factors 
that may influence repeatability is lacking as well.10,13,14 Finally, algorithms 
are often developed for use on personal computers or dedicated devices. 
Usability of an algorithm would be increased if it were available on low
cost consumerdevices such as smartphones, which are readily available 

Abstract

Introduction: The duration and frequency of crying of an infant can be 
indicative of its health. Manual tracking and labeling of crying is labori
ous, subjective, and sometimes inaccurate. The aim of this study was to 
develop and technically validate a smartphonebased algorithm able to 
automatically detect crying. Methods: For the development of the algo
rithm a training dataset containing 897 5s clips of crying infants and 1,263 
clips of noncrying infants and common domestic sounds was assembled 
from various online sources. Opensmile software was used to extract 
1,591 audio features per audio clip. A random forest classifying algorithm 
was fitted to identify crying from noncrying in each audio clip. For the 
validation of the algorithm, an independent dataset consisting of real
life recordings of 15 infants was used. A 29min audio clip was analyzed 
repeatedly and under differing circumstances to determine the intra and 
inter device repeatability and robustness of the algorithm. Results: The 
algorithm obtained an accuracy of 94% in the training dataset and 99% in 
the validation dataset. The sensitivity in the validation dataset was 83%, 
with a specificity of 99% and a positive and negative predictive value 
of 75 and 100%, respectively. Reliability of the algorithm appeared to be 
robust within and across devices, and the performance was robust to dis
tance from the sound source and barriers between the sound source and 
the microphone. Conclusion: The algorithm was accurate in detecting 
cry duration and was robust to various changes in ambient settings.
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selected because the median cry duration (without a silent break) in the 
training dataset was 4s.

algorithm training

To prevent overfitting of the algorithm on nonrobust audio features pro
vide by the software, manual feature selection was performed to exclude 
features that exhibited different distributions when analyzed under 
different conditions (Supplementary Text 3). Feature selection was per
formed using the audio file generated during the robustness tests. The 
file was played back through a laptop speaker during differing ambi
ent conditions with (see paragraph Robustnesstests in section Materi
als and Methods), a dedicated speaker, and processed to opensmile fea
tures with the chDr more® application. Additionally, the raw file was 
processed using opensmile software on a personal computer. Consider
ing the data was derived from the exact same audio file, the distribution 
of features should be identical during all conditions (Supplementary Text 
3). However, this was not the case for all features, particularly those that 
were derived from the extremes of each feature (e.g., Percentile 1% per
centile 99%). Therefore, distribution plots were judged visually by the 
authors and each feature that demonstrated a clear difference in means 
or standard deviations across conditions was excluded from the final 
dataset. After selection, 980 features audio features remained in the data
set. Two discriminative classifiers Random Forest and Logistic Regres
sion17–20 and one generative classifier (Naïve Bayes) were considered for 
the classification of crying and noncrying sounds. For each classifier, a 
5fold crossvalidated gridsearch to select the best combination of fea
tures and hyperparameters was performed to minimize the error esti
mates in the final model. The primary objective of the model was to iden
tify crying and therefore, hyperparameters that optimized for sensitivity 
were prioritized. This was followed by 5fold crossvalidation to robustly 
estimate the model performance and generalization of the model. The 
classifier with the highest Matthew’s Correlation Coefficient (mcc) was 
chosen as the final model and subjected to algorithm validation.

in most households and are easy to operate. Furthermore, smartphones 
have adequate processing power to analyse and transmit data continu
ously for monitoring in realtime. The aim of this study was to develop and 
validate a smartphonebased crydetection algorithm that is accurate, reli
able, and robust to changes in ambient conditions.

Materials and methods
location anD ethics

This was a prospective study conducted by the Center for Human Drug 
Research (chDr) and Juliana Children’s Hospital. The study protocol was 
submitted to the Medical Ethics Committee Zuidwest Holland (iD 19003, 
Leiden, Netherlands), who judged the protocol did not fall under the pur
view of the Dutch Law for Research with Human Subjects (Wmo). The 
study was conducted in compliance with the General data protection reg
ulation (gDpr). The algorithm was developed and reported in accordance 
with eQuator guidelines.15

algorithm Development

training dataset A training dataset was obtained from various 
online sources (Supplementary Table 2) and consisted of both crying 
and noncrying sounds. Noncrying sounds consisted of common reallife 
sounds and included talking, breathing, footsteps, cats, sirens, dogs bark
ing, cars honking, snoring, glass breaking, and ringing of church clocks. 
Furthermore, noncrying infant sounds (hiccoughs, wailing, yelling, bab
bling, gurgles, and squeaking), as well as adult crying sounds, were 
included in the training dataset. All sounds were played back through 
a loudspeaker and processed into nonoverlapping 5s epochs on a g5 
(Motorola, Chicago, il, usa) or g6 (Motorola, Chicago, il, usa) smart
phones and. A total of 1,591 audio features (Supplementary Text 3) were 
extracted from each 5s epoch with opensmile (version 2.3.0, audeering, 
Gilching, Germany) 16 on the smartphone. Each 5s epoch was manually 
annotated as crying or noncrying by a single investigator. A 5s epoch was 
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robustness tests A series of robustness tests was conducted to 
ensure that the developed algorithm was robust to varying conditions 
when used with a smartphone with the final application (chDr more®) 
installed, which is how the algorithm would be deployed in practice. A 
29minlong clip containing 16.7 min of crying was played from a speaker 
with a smartphone with the chDr more® application in proximity. This 
application, developed inhouse, has incorporated opensmile technol
ogy and is able to extract and transmit audio features. The following con
ditions were tested during this phase of the study: intradevice variabil
ity (n = 10), interdevice variability (n = 10), distance from audio source 
(0.5, 1, 2, and 4 m) and by placing the phone behind several barriers and 
in the presence of background tv sounds. For intradevice variability, a 
single phone was used 10 times to determine repeatability within a single 
device. For interdevice variability, 10 different devices of the same type 
(g6) were used to determine the repeatability across devices. Because it 
was not technically possible to pair the application output with the raw 
audio features of the original recording, cumulative cry count plots were 
construed for each condition and compared with cumulative cries in the 
original recording. A schematic overview of the analysis steps is displayed 
in Supplementary Figure 1.

Results
algorithm training

The training set consisted of 897 5s audio clips, as well as 1,263 noncrying 
5s clips. Of the three methods applied to develop the algorithm, the Ran
dom Forest method achieved the highest accuracy and mcc with 93.8 and 
87.3%, respectively (Table 1). The 10 most important audio features for the 
algorithm were derived from Mel Frequency cepstral coefficients, Mel fre
quency bands and Voicing Probability. A variable importance plot of the 
10 most important features included in the final algorithm is displayed in 
Supplementary Figure 4.

algorithm valiDation

data collection An independent validation dataset was obtained 
from two sources. First, audio recordings were made in an athome set
ting of 4 babies aged 0–6 months using the g5 or g6 smartphones. Sec
ond, audio recordings were made with the g5 or g6 smartphones of 11 
babies aged 0–6 months admitted to the pediatric ward due to various 
reasons. Audio recordings were made after obtaining informed consent 
from both parents and were stripped of medical and personal informa
tion prior to analysis.

Performance analysis Each 5s epoch in the recordings was anno
tated as crying and noncrying by one annotator. In the case of doubt on 
how to classify an epoch, two additional annotators were included, and 
a choice was made via blinded majority voting. The developed algorithm 
was used to classify each epoch, and annotations and classifications were 
compared to calculate the accuracy, mcc, sensitivity, specificity, positive 
predictive value (ppv) and negative predictive value (npv) in the complete 
dataset and in the hospital and home datasets separately.

Post-Processing of cry ePochs into novel biomarkers Some 
infants are reported to cry often, but with short intervals in between. 
Only counting the number of epochs that contain crying for such infants 
could result in an underestimation of the burden for infants and parents. 
As such, the duration of ‘cry sequences’ (periods during which an infant is 
crying either continuously or occasionally) is an important additional fea
ture. To calculate this, postprocessing of detected cries was performed 
to calculate the number and duration of cry sequences as separate candi
date biomarkers. A cry sequence was defined by the authors with a start 
criterion (at least six 5s epochs containing crying within 1 min) and a stop 
criterion (no crying detected for 5 min). Individual timelines were con
structed for true and predicted cry sequences to determine the reliability 
of the algorithm for this novel biomarker.
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by a television appeared to slightly decrease the specificity of the algo
rithm, as the final cry count according to the algorithm was higher com
pared to the true number of cries in the audio file.

Discussion

This paper describes the development and validation of a smartphone
based cry detection algorithm in infants. A random forest classifier had 
the highest accuracy in the training dataset and achieved a 98.7% accu
racy in an independent validation set. Although the sensitivity of 83.2% 
was slightly lower compared to the estimated accuracy in the train
ing dataset, the individual classification timelines show that this should 
not lead to unreliable estimation of cry duration. The fact that most 
misclassifications occurred directly before or after crying indicates that 
such misclassifications may be due to crylike fussing, which are difficult 
to classify for both the algorithm and the human annotators. Postpro
cessing of the detected cry epochs into cry sequences decreased the mis
match and resulted in excellent performance for each individual infant.

The observed accuracy of the algorithm is comparable to others 
described in the literature, although there is large variation in reported 
accuracy. Traditional machine learning classifiers and neural network
based classifiers have been used for infant cry analysis and classifica
tion.21 We found that several studies that explored the use of minimum, 
maximum, mean, standard deviation and the variance of MFCCs and 
other audio features to differentiate normal, hypoacoustic and asphyxia 
types using the Chillanto database.6 Support Vector Machines (svm) are 
among the most popular infant classification algorithms and routinely 
outperform neural network classifiers.22,23 Furthermore, Osmani et al. 
have illustrated that boosted and bagging trees outperform svm cry clas
sification.24 Additionally, sensitivities between 35 and 90% with specific
ities between 96 and 98% have been reported using a convoluted neural 
network approach.10,14 Ferreti et al. and Severini et al. also used a neu
ral network approach and achieved a reported precision of 87 and 80%, 

algorithm valiDation

The 15 infants [mean age: 2 months (sD 1.9)] created a total of 150 min (1,805 
5s epochs) of crying and 4,372 min (52,464 5s epochs) of noncrying. The 
median cry duration of the infants recorded at home was shorter (1.4 min, 
iQr 0.58–2.6) compared to children recorded during their admission to the 
hospital (5.8 min, iQr 2.2–16.7). Performance of the algorithm in the inde
pendent validation dataset is displayed in Table 1. Overall accuracy was 
98.7%, but sensitivity was lower (83.2%) compared to the performance in 
the training dataset. Due to the relatively low crying incidence compared 
to noncrying incidence, the specificity of 99.2% led to a ppv of 75.2%. Sup
plementary Figure 5 displays individual timelines for each infant, dis
playing the epochs where crying and misclassifications were present. 
After postprocessing of cry epochs into cry sequences, the median num
ber of cry sequences per infant in the validation dataset was 3 (iQr 1–3), 
for a total of 39 cry sequences. The median difference between true and 
predicted cry sequences was 1 (iQr 0.25–1). Furthermore, the median 
difference between true and predicted cry sequences duration was 6 min 
(iQr 2–15 min, Table 2). Individual timelines and concordance between 
true and predicted cry sequences are displayed in Figure 1.

algorithm roBustness

To ensure the algorithm and smartphone application performs 
sufficiently for the intended use, multiple tests were conducted to test 
robustness with the resulting smartphone application. Figure 2A shows 
the estimated repeatability of the algorithm by repeatedly classifying the 
same recording with the same device. Figure 2B shows the cumulative cry 
count of 8 different devices of the same type, which gives an indication of 
repeatability. The distance from the audio source, up to 4 meters, did not 
appear to impact the accuracy of the algorithm (Figure 2C). Finally, block
ing the audio signal by placing the phone behind several physical barriers 
in front of the audio source demonstrated comparable accuracy across 
conditions (Figure 2D). Creating additional background noise generated 
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parents to overestimate the true duration of crying, and placeboeffects 
may cause parents to underestimate true cry duration after an interven
tion.25 Additionally, parents may underreport nocturnal cry duration 
when they sleep through short cry sequences during the night. Current 
tracking of cry duration in clinical settings is performed by nurses, who 
have other clinical duties as well, possibly making the quality of the cry 
diary dependent on the number of patients under their care. While the 
consequences of all these factors are not easy to quantify, the combina
tion of these sources of inaccuracy leads to the conclusion that objective 
and automated crymonitoring could significantly improve the reliability 
of objective followup of cry duration in both clinical trials and care. Still, 
parental report of cry duration and cry behavior will remain an important 
component of followup.

A technical limitation of any Android application, including the more® 
application, is that continuous recording can be interrupted by other 
smartphone applications apps that also access the microphone, like 
phone calls. However, using a dedicated smartphone for the purpose of 
cry monitoring will diminish this limitation. Only Motorola g5/g6 phones 
were used during each phase of algorithm development and validation. 
Although performance on other smartphones is uncertain, the approach 
used in this paper could easily be replicated to adapt the algorithm to 
other devices and obtain a similar accuracy. In the future, incorporation 
of covariates such as age, sex or location in the model may improve classi
fying capability even further, and further stratification could allow to dis
criminate different types of crying. In this manner cries from asphyxiated 
infants,26 preterm infants,27 or infants with respiratory distress syndrome 
could be differentiated from healthy infants.13 One potential technical 
limitation of our approach is the use of loudspeakers to create the train
ing dataset. An ideal training dataset would include smartphonebased 
audio recordings of multiple subjects under different conditions over a 
long period of time. We found the most appropriate alternative was to re
record opensourced cry corpus using smartphone. While the playback 
could have potentially hindered the quality of the opensmile features 

respectively.11,12 However, algorithms often lack validation in an inde
pendent dataset as, and reallife performance in new and challenging 
environments will most likely be lower. Our algorithm has several advan
tages compared to other approaches that have been described in the 
past. Most importantly, the algorithm was validated on independent and 
reallife data obtained from two settings where the application could be 
used in the future. Validation invariably leads to a drop in accuracy com
pared to the performance of the training data but gives reassurance 
regarding the generalizability of the algorithm in new settings that were 
not included during training. Furthermore, the algorithm can be deployed 
on all Android smartphones and no additional equipment is needed for 
acquiring the acoustic features. Although it is possible to implement com
plex deep learning algorithms on portable devices, we demonstrated 
that a shallow learning algorithm such as a random forest achieves good 
classifying capability. This means that audio processing and classifica
tion can be performed on the device in realtime with the more® applica
tion, and thus, precludes direct transmission of audio to a central location 
with inherent preservation of privacy. Finally, the manual feature selec
tion that was performed should lead to further generalizability of the algo
rithm in new condition, since the observed variability in the excluded 
audio features would most likely result in a drop in accuracy in challeng
ing acoustic environments. While automated feature selection methods 
could have been used, automated feature selection requires a static def
inition of similarity between distributions within features. This is not a 
straightforward task. Given the nature of the features, we chose to man
ually exclude features that presented a clearly different distribution from 
the rest of the features.

All in all, the performance of the algorithm in combination with the 
mentioned advantages indicate reliability of the algorithm and may be 
preferable over manual tracking of cry duration through a diary in sev
eral situations. Although the literature regarding sources of inaccuracy in 
cry monitoring via a diary is sparse, several factors make manual track
ing through a diary a subjective assessment.5 Observer bias can cause 
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table 1 Performance of the final algorithm

Training Dataset Validation Dataset
Parameter Performance  

[Mean (sD)]*
Hospital Subjects 
(n=11)(%)

Home Subjects  
(n=4) (%)

All Subjects  
(n=15)(%)

Accuracy 93.8% (±1%) 98.5 99.7 98.7
mcc 87.3% (±2.2%) 75.5 98.6 78.4
Sensitivity 93.8% (±1.1%) 80.6 97.5 83.2
Specificity 94.8% (±1.1%) 99.1 100 99.2
ppv  72.2 100 75.2
npv  99.4 99.6 99.5

table 2 Individual Algorithm Performance
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Hospital Dataset
1 764 145 120 80 99.5 66.2 99.7 3 5 37 59
2 610 65 43 90.7 99.6 60 99.9 3 3 19 21
3 245 12 11 90.9 99.9 83.3 99.9 1 1 5 6
4 648 52 20 80 99.5 30.7 99.5 3 3 17 25
5 540 17 12 91.7 99.9 64.7 99.9 1 1 7 8
6 317 721 711 82.3 95.6 81.1 95.9 7 7 117 122
7 16.5 26 24 87.5 97.1 80.7 98.2 1 1 6 8
8 441 200 148 66.5 98.2 52.5 98.9 7 8 55 72
9 77.5 70 80 75 98.8 85.7 97.7 3 3 18.5 26
10 365 99 79 62 98.8 49.5 99.2 3 3 22 36
11 452 320 290 87.9 98.7 79.7 99.2 6 7 64 80
Home Dataset
12 36 38 40 95 100 100 99.5 1 1 2.8 2.4
13 13 7 7 100 100 100 100 0 0 0 0
14 2 25 25 100 100 100 100 0 0 0 0
15 1 8 8 100 100 100 100 0 0 0 0

and thus the classification, it resulted in excellent classification perfor
mance of the home and hospital recordings. Hence the impact of the qual
ity of the loudspeakerbased dataset was deemed acceptable. A followup 
study that uses an original smartphonebased cry corpus could poten
tially improve the accuracy of the classification algorithm. The start and 
stop criteria used to determine the beginning and end of a cry sequence 
are a new proposal that was not previously described in the literature. 
However, the criteria appear reasonable and individual timeline figures 
demonstrated that this postprocessing step was able to generate a solid 
highlevel overview of individual cry behavior. Still, alternative criteria 
could obtain similar accuracy and may be explored in the future.

The developed algorithm already provides an excellent overview of 
the cry behavior of infants and preliminary tests of the robustness of the 
resulting algorithm show inter and intradevice repeatability and reli
ability up to 4 m from the audio source. The algorithm can replace current 
methods to track cry behavior, such as cry diaries, in clinical and athome 
settings. However, more research is needed before implementing the cry 
duration and the amount of cry sequences as digital endpoint in trials. 
Clinical validation of cry duration and cry sequence count as digital bio
marker in a patient population is necessary, and should focus on estab
lishing new normative values for objectively determined cry sequence 
duration and count, the difference between patients and healthy con
trols, correlation with diseaseseverity and sensitivity to change after an 
intervention.28

Conclusion

The proposed smartphonebased algorithm is accurate, robust to vari
ous conditions and has the potential to improve clinical followup of cry 
behavior and clinical trials investigating interventions to enhance infant 
wellbeing.
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figure 2 Cumulative cry count during robustness tests. (a) Intra-device repeatability. Each individual 
line is a different run with the same phone. (B) Inter-device repeatability. Each individual line is a run with 
a different phone of the same type. (c) Influence of device distance from the audio source. (D) Influence 
of physical barrier or ambient background noise. In each of the panels, the light-blue line is the reference 
from the audio file.

figure 1 True and predicted cry sequence per infant
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supplementary table 2 Audio sources

Dataset Source Crying  
(5-second epochs)

Non-crying**  
(5-send epochs)

Training Datasets Github repository: ***
https://github.com/giulbia/baby_cry_detection

146 216
 

Freesound.org: ***
https://freesound.org/search/?q=infant+cry

102 15
 

British Broadcasting Company  
sound library: ***
https://soundeffects.bbcrewind.co.uk/

207 336
 

Home Validation
Dataset

Home Recordings 78 549
 

Hospital Validation  
Dataset

Hospital recordings 350 594
 

Merged epochs* 92 102 
Total  975 1812 

* Merged crying sounds with additional background noise. ** The non‐crying sound included common baby sounds 
(babies hiccoughing, gurling, babbling and yelling), common human sounds (breathing, coughing, talking), general 
indoor sounds (doors closing, footsteps and vacuuming) and general outdoor sounds (birds, thunder, sirens). 
*** This is a labelled collection of environmental audio recordings. The audio recordings have been extracted from 
public field recordings.

supplementary fiGure s1 Schematic overview of analysis steps



Development of machine learning – DeriveD mhealth composite Biomarkers for trial@home clinical trials216 217part iii/chapter 7

suPPlementary text S3 Audio features and feature selection.  
 
OpenSMILE generated features from each 5 second epoch in the following domains:

Feature group Description

Fundamental frequency (F0) Pitch
Jitter and shimmer Voice quality
Melfrequency cepstrum (coefficients) Power spectrum
Line spectral frequencies Frequencies
Loudness Sum of auditory spectrum (Intensity & approximate 

loudness)
Voicing Probability of voicing

 
For each domain, the following statistics were derived by the openSMILE software:

Statistics obtained from each feature during each 5-second epoch

Arithmetic mean
Quartiles and iQr ranges (12, 13, 23)
Skewness and kurtosis
Linear regression slope, offset and approximation error
Relative position of minimum and maximum
Percentile 1%, percentile 99% and range
Standard deviation
Percentage of frames above 75/90% of range

 

suPPlementary figure s3a Example of distribution plots of each feature used during the feature 
selection process. Each color represents a different condition. Of the displayed features, only the bottom 
left feature (mfcc_sma[1] skewness) was included in the final dataset.
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suPPlementary figure s5 True and predicted crying epochs per infantsuPPlementary figure s4 Variable importance Feature importance plot of the final algorithm. 
On the y-axis, the 10 most important features derived from the openSMILE software are displayed. The 
bars and the x-axis represent the relative importance of each feature.
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