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Introduction

Coughing is a physiological mechanism of the respiratory system to clear 
excessive secretions. It can be caused by various acute and chronic dis­
eases, such as viral upper respiratory tract infections, bacterial infections, 
asthma, protracted bacterial bronchitis or tic cough, and is a common rea­
son for parents to seek medical consultation for their children.1,2 Several 
studies have shown that cough severity is correlated with disease activity 
in asthma and other pulmonary diseases,3–6 making cough frequency an 
attractive candidate biomarker for respiratory disease severity. Although 
coughing is traditionally quantified via self‐ or parent‐report in the form 
of questionnaires, technological advances allow for more sophisticated 
(semi‐) automatic cough monitoring methods. Indeed, several commer­
cial and academic entities have endeavoured to develop cough detection 
algorithms, with varying success.7 The most notable and reliable examples 
are the Leicester Cough Monitor and the VitaloJak, which record sounds 
with a dedicated body‐contact device and microphone, and subsequently 
use semi‐automated counting methods.8,9 Several completely automated 
cough counting algorithms have been developed, mostly for an adult 
population, but none have proceeded towards widespread availability.7  
A summary of the key principles of automatic cough detection and a thor­
ough overview of cough counting technologies used in a clinical setting is 
provided by Hall et al. 10 A notable disadvantage of body‐contact devices 
is that they are inconvenient in the field of pediatrics, especially in infants 
and toddlers. Additionally, pediatric cough sounds exhibit more variability 
across different ages due to the developing respiratory‐ and vocal system, 
which can make robust detection more challenging. 11 An ideal algorithm 
would require no manual input, be able to monitor from a distance, and be 
operational on low‐cost consumer devices that are readily available, such 
as smartphones. To date, no such algorithm has been developed in the 
field of pediatrics. This study aimed to develop an algorithm that objec­
tively and automatically counts cough sounds in children based on audio 
features collected via a smartphone application.

Abstract

Introduction: Coughing is a common symptom in pediatric lung disease 
and cough frequency has been shown to be correlated to disease activ­
ity in several conditions. Automated cough detection could provide a 
non-invasive digital biomarker for pediatric clinical trials or care. The aim 
of this study was to develop a smartphone‐based algorithm that objec­
tively and automatically counts cough sounds of children. Methods: The 
training set was composed of 3228 pediatric cough sounds and 480,780 
non-cough sounds from various publicly available sources and contin­
uous sound recordings of 7 patients admitted due to respiratory dis­
ease. A Gradient Boost Classifier was fitted on the training data, which 
was subsequently validated on recordings from 14 additional patients 
aged 0–14 admitted to the pediatric ward due to respiratory disease. The 
robustness of the algorithm was investigated by repeatedly classifying a 
recording with the smartphone‐based algorithm during various condi­
tions. Results: The final algorithm obtained an accuracy of 99.7%, sen­
sitivity of 47.6%, specificity of 99.96%, positive predictive value of 82.2% 
and negative predictive value 99.8% in the validation dataset. The corre­
lation coefficient between manual‐ and automated cough counts in the 
validation dataset was 0.97 (p <.001). The intra‐ and inter-device reliabil­
ity of the algorithm was adequate, and the algorithm performed best at 
an unobstructed distance of 0.5–1 m from the audio source. Conclusion: 
This novel smartphone‐based pediatric cough detection application can 
be used for longitudinal follow‐up in clinical care or as digital endpoint in 
clinical trials

.
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by an investigator using Audition software (Adobe). No filter was applied 
to remove ‘silent’ sections of the recording to ensure that the estimated 
accuracy reflects real‐life conditions. As a result, the proportion of cough 
sounds in the validation dataset was 0.7%. The composition of the final 
training‐ and validation dataset are displayed in Table 1.

Audio feature extraction and selection

Audio feature were extracted from all audio clips using the Open-SMILE 
software (version 2.3.0, audEERING).13 The software converted all audio 
clips into 1582 features per epoch. Epoch length was fixed at 0.5 s since the 
average cough duration in the training dataset was 0.3 s. The extracted 
features included several audio domains, such as Mel‐frequency ceps­
tral coefficients and fundamental frequencies (F0) (Supporting Informa­
tion Text S1). Using manual inspection, the most robust features across 
multiple conditions were selected (Supporting Information Text S2) and 
only these features were included in the final dataset used for algorithm 
development.

Algorithm development and validation

For the cough detection algorithm, we compared the classification per­
formance of two ensemble‐based decision‐tree classifiers: Random For­
ests and Gradient Boosting Machines. Both differ in their process to build 
learners (also known as ‘trees’). Random Forests classifiers build multi­
ple trees simultaneously, each tree learnings a random subsample of the 
data. This subsampling makes the final model more robust as it is less 
likely to be biased towards the training data. Gradient Boosting Machines 
classifiers build one tree at a time, and each new tree corrects the pre­
diction error of the previous tree. Five fold cross‐validation was used to 
select the optimal features and hyperparameters for the model. Given 
that the number of coughs and non-coughs are imbalanced, the optimal 
classifier was selected based on the highest overall Matthew’s Correlation 
Coefficient (MCC). The MCC score provides a more informative and reliable 
evaluation of binary classifications compared to accuracy as MCC takes 

Materials and methods
Ethics and logistics

This study was conducted at the Centre for Human Drug Research (CHDR, 
Leiden, The Netherlands) and the Haga Teaching Hospital, Juliana Chil­
dren’s Hospital (The Hague, The Netherlands). Institutional review board 
approval was obtained (registration number: T19‐080), and the study was 
conducted in compliance with the general data protection regulation. The 
algorithm was developed as part of the CHDR MORE® system, a remote 
monitoring clinical trial platform. Reporting was performed in accordance 
with EQUATOR guidelines.12

Data collection

A comprehensive training dataset was obtained from multiple sources. 
First, audio was extracted from 91 publicly available videos on YouTube 
that contained coughing children with an estimated age between 0 and 16 
years old. Furthermore, 334 non-coughing audio clips were gathered from 
YouTube, GitHub, and the British Broadcasting Corporation sound library. 
The non-coughing set contained various sounds that were expected 
to occur in real‐life settings, such as talking, breathing, footsteps, cats, 
sirens, dogs barking, cars honking, snoring, glass breaking, and church 
clocks. Additionally, 21 children aged 0–16 and admitted due to pulmonary 
disease were included, after obtaining informed consent from parents, on 
the general ward of Juliana Children’s Hospital. Children were recorded 
during a day or night during the admission with a G6 (Motorola) smart­
phone. The smartphone contains two microphones and runs on Android 
8.0 Oreo. Data of the first 7 children (3 diagnosed with bronchiolitis, 2 diag­
nosed with pneumonia, 1 with viral wheezing and 1 with an upper respi­
ratory infection, age range from 2 weeks to 15 years) were used to sup­
plement the training dataset, with a maximum of the first 150 coughs per 
child to avoid overrepresentation of a single subject. Remaining cough 
sounds of the 7 children were discarded. Data from the other 14 subjects 
were used as validation dataset. All audio clips were manually annotated 
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of 73.7%, sensitivity of 99.6% and specificity of 99.9% in the training set 
(Table 2). The most important audio features the algorithm relied on were 
derived from the mel frequency and loudness categories (Supporting 
Information Text S3).

Algorithm validation

For validation, 14 patients with respiratory disease aged 0–14 were 
recorded during a hospital admission. The median recording duration was 
632 (interquartile range [IQR]: 477–775) minutes. In total, 4123 0.5‐s epochs 
contained coughing. The median cough count per subject was 150 (IQR: 
38–446). Table 2 displays the overall accuracy of the algorithm in the val­
idation dataset. Overall sensitivity was 47.6% and specificity was 99.96%. 
Due to the relatively low frequency of cough counts in the dataset, the NPV 
and PPV in these real‐world settings were 99.78% and 82.2%, respectively. 
The performance of the algorithm differed between subjects. Individual 
patient characteristics and classification accuracies are displayed in Table 
3. The correlation coefficient between manual cough count and auto­
mated cough count was 0.97 (p < .001, Figure 1).

Limited algorithm robustness tests

Repeated (N = 7) tests with the same device and show comparable perfor­
mance during each iteration (Figure 2A), while the inter‐device variabil­
ity tests show some variability in cumulative cough count across devices 
(Figure 2B). The effect of the distance of the device to the audio source 
was assessed (Figure 2C) and demonstrated comparable accuracy for 0.5 
and 1 m distance. The accuracy was lower when the distance of the moni­
toring device from the audio source was increased. Finally, the effect of a 
small‐ and large barrier was investigated, as well as the effect of ambient 
television sounds playing in the background (Figure 2D). During this test, 
it appeared that a small physical barrier did not impact algorithm perfor­
mance, but a large physical barrier and background television sounds led 
to a lower cumulative cough count.

into account the number of true and false positives and negatives when 
assessing classification performance. The selected model was then used 
to classify all 0.5‐s epochs in the validation dataset. The sensitivity, spec­
ificity, MCC, positive predictive value (PPV), and negative predictive value 
(NPV) were calculated for the complete validation dataset and per subject.

Initial robustness tests

Limited robustness tests were conducted to ensure the algorithm per­
forms comparably across a range of different conditions when applied 
as a smartphone application. First, a 27‐min long audio‐clip was gener­
ated which included coughing‐ and household sounds, as well as sections 
with silence. The clip was subsequently played repeatedly from a speaker, 
while a G6 smartphone (Motorola) with the CHDR MORE® application was 
placed in proximity. The application has incorporated openSMILE soft­
ware and is able to calculate and transmit the generated audio features. 
The following conditions were tested: first, the intra‐device variability 
was tested by repeating the assessment 7 times with the same device; sec­
ond, the inter‐device variability was tested by repeating the assessment 4 
times with different devices of the same type; third, the effect of device dis­
tance (0.5, 1, and 4 m) from the audio source was assessed and finally accu­
racy was assessed when a small (plant and book) or large (loft bed) barrier 
was placed in front of the audio source and when television sounds were 
played in the background. Because the 0.5‐s epochs from the original file 
and the output of the MORE® application could not be paired, cumulative 
cough count plots were generated and compared across conditions.

RESULTS
Algorithm training

The training set consisted of 3424 0.5‐s cough epochs of various sources, 
as well as 431,622 0.5‐s non-cough epochs. The final algorithm, fitted 
through a Gradient Boost Classifier, achieved an accuracy of 99.6%, MCC 
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cough frequency in the case of an asthma exacerbation could be identified 
reliably with the current algorithm, and subsequent treatment leading to 
a significant decrease in nocturnal coughing will also be detectable even 
with the current sensitivity. In the future, algorithm output could be com­
bined with other non-invasive assessments known to be related to pulmo­
nary disease activity, such as physical activity, heart rate and pulmonary 
function monitoring, as well as electronic patient reported outcome mea­
sures. Together, this could provide a holistic overview of multiple aspects 
of pulmonary disease severity and quality of life.17

Multiple research groups have developed cough detection algorithms 
in recent years. However, only one was developed specifically for a pedi­
atric population.18 Although this algorithm was not applied in a mobile 
device. Still, pediatric cough detection is theoretically more challeng­
ing due to changing vocal cord acoustics during various stages of devel­
opment. In adults, the most widely reported cough detection devices 
are the Leicester cough monitor and the VitaloJak.7 These methods have 
been validated in independent datasets and appear both sensitive (91%–
99%) and specific (99%), but the use of dedicated microphones is less 
user‐friendly in general, and the use contact‐devices precludes their use 
in several age categories in pediatrics. Furthermore, the semi‐automated 
counting method used by both devices remains laborious and requires 
training, which means that widespread use in large‐scale clinical trials or 
in general care is not feasible. Other algorithms that count coughs auto­
matically have reported sensitivities of 78%–99% and specificities of 92%–
99%,7,18–23 but only a few have been applied on a smart phone.21,22,24 The 
one that most resembles the current study is a smartphone‐based algo­
rithm developed by Barata et al.,21 who use a convolutional neural net­
work to classify nocturnal sounds in adult asthmatics and obtained a sen­
sitivity of 99.9% with a specificity of 91.5%.21 In addition, other projects 
are often based on data obtained in tightly controlled environments and 
lack validation in independent or clinical datasets,18,22–24 and may show 
a similar drop in accuracy during validation as was observed for the algo­
rithm developed here. For example, the PulmoTrack® device, designed for 

Discussion

The current manuscript described the development and initial valida­
tion of a novel cough detection algorithm in pediatrics. Publicly available 
audio recordings were combined with real‐life recordings to fit an algo­
rithm that had excellent classification capability in the training dataset. In 
the validation dataset, a sensitivity of 47.6% and specificity of 99.96% was 
obtained, which resulted in a PPV of 82.2% and an NPV of 99.8% in these 
real‐world conditions. There was a strong correlation between manual 
cough count and automatic cough count. The accuracy of the algorithm 
in the validation set was confirmed by several robustness tests, which 
repeatedly showed a cumulative cough count that was roughly half of the 
true cough count across various conditions. The algorithm performed 
best when there was a relatively unobstructed maximum distance of 0.5–1 
m from the audio source.

The current sensitivity is suboptimal but does not disqualify the algo­
rithm, and we envision the current algorithm is already suitable for appli­
cation in several settings. Algorithm‐derived cough count could be incor­
porated as (secondary) digital endpoint in pediatric pulmonary disease 
trials. For this application, clinical validation of cough count as digital end­
points should be performed first, focusing on demonstrating a difference 
between patients and healthy children, correlation of the novel endpoint 
with traditional endpoints or patient reported outcomes, and sensitivity 
to change in disease activity.14 In addition to clinical trials, applying this 
algorithm in clinical care is likely to be much more reliable than patient‐ 
or parent recall regarding cough frequency.15,16 The strong correlation 
between manually‐ and automatically‐ counted coughs means the algo­
rithm can discriminate children that cough excessively from children that 
do not and can uncover individual trends over time, e.g., to characterize 
clinical recovery after a hospital admission, or to assess the effect of treat­
ment in excessively coughing patients with persistent bacterial bronchi­
tis. This is further supported by the very high specificity of the algorithm 
that is maintained in all validation tests. For example, change in nocturnal 
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First, accuracy could improve by addition of additional covariates such 
as age, sex, and diagnosis, although this would require some user input 
before use. Second, the exponential increase in processing power of 
mobile devices could allow for the development of personalized models 
in the future, which would both be trained, validated, and deployed on 
the participants’ own smartphones. A personalized classification model 
that is tuned to the cough characteristics of an individual could poten­
tially be much more accurate, considering the intra‐individual variabil­
ity in cough sounds is assumed to be smaller compared to inter‐individ­
ual variability. Future studies could also aim to quantify cough intensity, 
as this characteristic may have greater impact on quality of life than cough 
frequency.

CONCLUSION

This novel smartphone‐based cough detection application is one of the 
first of its kind and able to count coughs in pediatric patients with a sensi­
tivity of 47%, specificity of 99.96%, PPV of 82% and NPV of 99.8%. Although 
the observed sensitivity in the intended use must be improved in the 
future, the current algorithm may be reliable enough for longitudinal 
monitoring in the context of clinical trials‐ or care, which will be evaluated 
during a clinical validation process.

automatic clinic‐based monitoring, showed a reduced sensitivity of 26% 
compared to human annotation during validation in a new cohort.25

A major advantage of the algorithm developed in this study is the con­
version of raw audio into audio features on the smartphone before trans­
mission to the study center, which ensures the privacy of participants. 
The automated classification is another advantage, allowing devices to 
analyze and transmit cough counts in real‐time. This study focuses on 
detecting single coughs, which was the reason for using a 0.5 s epoch dur­
ing algorithm development. In the future, aggregation of data into ‘cough 
bouts’ could add additional value in measuring the impact and severity 
of respiratory diseases.26 For real‐world application of the algorithm, we 
envision that parents could use a spare phone to run the algorithm and 
leave the phone close to their child. Additionally, miniaturization of cur­
rent technology could lead to a dedicated clip‐on device to attach to (the 
bed of) infants with respiratory illness. A limitation was the manual fea­
ture selection performed, which introduces a potentially subjective fac­
tor to the analysis. Furthermore, a laptop speaker was used during the ini­
tial robustness tests and using a higher quality speaker may have led to 
slightly different performance during these tests. However, we believe 
the device quality is sufficient for the purpose of testing repeatability and 
investigating the effects of differing conditions. During this study, a sin­
gle smartphone type (Motorola G6) was used, and the observed perfor­
mance may vary when other devices are used.27 Another potential prob­
lem would arise when the sensitivity of the algorithm would be highly 
dependent on the underlying disease that is studied, although there is no 
evidence of this in the validation dataset, such factors need to be studied 
further during clinical validation for which we can supply the algorithm 
to other interested academic groups. The current algorithm is devel­
oped as a one‐size‐fits‐all solution that can classify coughs of all pediatric 
patient groups and ages and that only used sound features as input vari­
ables. Although the current accuracy appears sufficient to include as digi­
tal biomarker in the applications mentioned above, the accuracy of future 
algorithms could improve significantly with the cost of added complexity. 
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TABLE 3  Performance of the final algorithm among individual subjects

Sub-
ject
(#)

Age Diagnosis Recording 
duration 

(min)

Manual  
Count  

(n)

Algorithm  
count  

(n)

Sens. Spec. MCC

1 14 years Pneumonia 4 22 7 32% 100% 55%
2 4 years Wheezing 717 63 49 73% 100% 73%
3 5 years Pneumonia 237 29 21 72% 100% 85%
4 1.5 years Pneumonia 609 16 6 19% 100% 31%
5 6 weeks Bronchiolitis 727 85 70 58% 100% 63%
6 3 years Pneumonia 792 454 344 69% 100% 79%
7 9 weeks Bronchiolitis 967 895 436 34% 100% 69%
8 4 years Pneumonia/

wheezing
497 29 17 52% 100% 88%

9 11 years Asthma 598 171 98 56% 100% 73%
10 5 weeks Bronchiolitis 873 1038 516 37% 100% 53%
11 2 years Pneumonia 434 474 355 70% 100% 81%
12 3 years Pneumonia 470 420 256 54% 100% 68%
13 13 weeks Bronchiolitis 654 128 45 34% 100% 57%
14 4 years Pneumonia 791 299 166 40% 100% 53%

TABLE 1  Composition of training and validation datasets

Training dataset Validation da-
taset

YouTube  
(91 clips)

Various sourc-
es (334 clips)

Hospital  
(7 children)

Total Hospital  
(14 children)

Cough sounds (n) 2229 – 999 3228 4123
Noncough sounds (n) 9702 39,456 431,622 480,780 100,522
Total (n) 11,931 39,456 432,621 484,008 104,645
Cough proportion (%)1 18.5% 0% 0.2% 0.7% 0.4%
Mean cough duration (s) 0.3 – 0.3 0.3 0.3

1. Proportion of 0.5‐s epochs that contain cough sounds.

TABLE 2  Performance of the final algorithm

Training dataset Validation dataset
Parameter Mean (SD) performance1 Overall performance
Accuracy 99.61% (±0.13%) 99.74%
MCC 73.67% (±0.16%) 62.40%
Sensitivity 99.62% (±0.13%) 47.56%
Specificity 99.89% (±0.09%) 99.96%
PPV 99.65% (±0.08%) 82.16%
NPV 99.82% (±0.02%) 99.78%

1. Mean (SD) performance of fivefold cross‐validation. 
MCC, Matthew’s Correlation Coefficient; NPV, negative predictive value; PPV, positive predictive value.
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Supplementary Text S1 
OpenSMILE Audio features  
OpenSMILE generated features from each 0.5 second epoch in the following domains: for each domain, 
the following statistics were derived by the openSMILE software:

Feature group Description
Fundamental frequency (F0) Pitch
Jitter and shimmer Voice quality
Mel-frequency cepstrum (coefficients) Power spectrum
Line spectral frequencies Frequencies
Loudness Sum of auditory spectrum. (Intensity & approximate loudness)
Voicing Probability of voicing

Statistics obtained from each feature during each 5-second epoch 

Arithmetic mean

Quartiles and IQR ranges (1-2, 1-3, 2-3)

Skewness and kurtosis

Linear regression slope, offset and approximation error

Relative position of minimum and maximum

Percentile 1%, percentile 99% and range

Standard deviation

Percentage of frames above 75/90% of range

Supplementary Text s2 
OpenSMILE feature selection 
Feature selection was performed using the audio file generated during the robustness tests. The file 
was played back through a laptop speaker (B&O PLAY, incorporated in HP Pavilion 15-CK094ND) during 
differing ambient conditions (see paragraph Initial robustness tests in Materials & Methods), once more 
through a dedicated speaker (Luxman L-114A amplifier, Dali 6006SE speaker), and finally also processed 
using openSMILE software on a personal computer. Considering the data was derived from the exact 
same audio file, the frequency distribution of features should be identical during all conditions (see 
Supplementary Figure S2a below). However, this was not the case for all features, particularly those 
that were derived from the extremes of each feature (e.g. Percentile 1% percentile 99%). Therefore, 
distribution plots were judged visually by the authors and each feature that demonstrated a clear 
difference in means or standard deviations across conditions was excluded from the final dataset. 
Manual selection was preferred over statistical methods to compare distributions, as the large size of the 
dataset meant that statistical tests such as the Kolmogorov-Smirnov would have too much statistical 
power and irrelevant deviations would be flagged as significant difference.

Figure 1  Correlation manual- and automatic cough count in validation dataset. Pearson correlation 
between manually counted coughs and automatically detected coughs. Each dot represents an 
individual subject in the validation dataset..

Figure 2  Performance of the algorithm under varying circumstances. (A) Intra‐device repeatability. 
Each individual line represents a different session with the same device. (B) Inter‐device repeatability. 
Each individual line represents a different session with a different device of the same type. (C) Influence 
of device distance from the audio source. (D) Influence of physical barrier or ambient background noise. 
In each of the panels, the light‐blue line is the reference from the audio file. 
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Supplementary Figure S3  Feature importance plot of the final algorithm. On the y-axis, the  
10 most important features derived from the openSMILE software are displayed. The bars and the x-axis 
represent the relative importance of each feature.

Supplementary Figure S2a  Example of distribution plots of each feature used during the 
feature selection process. Each color represents a different condition. Of the displayed features, the top 
right (mfcc_sma7_linregc1) and bottom left (mfcc_sma7_skewness) features were included in the final 
datasets.



Development of Machine Learning – Derived mHealth Composite Biomarkers for Trial@Home Clinical Trials196 197Part iii/chapter 6

24	 Hoyos‐Barceló C, Monge‐Álvarez J, Pervez Z, 
San‐José‐Revuelta LM, Casaseca‐de‐la‐Higuera 
P. Efficient computation of image moments for 
robust cough detection using smartphones. 
Comput Biol Med. 2018;100:176‐185.

25	 Turner RD, Bothamley GH. How to count coughs? 
Counting by ear, the effect of visual data and the 
evaluation of an automated cough monitor. Respir. 
Med. [Internet] Elsevier Ltd. 2014;108:1808‐1815. 
doi:10.1016/j.rmed.2014.10.003

26	 Chung KF, Bolser D, Davenport P, Fontana G, 
Morice A, Widdicombe J. Semantics and types 
of cough. Pulm. Pharmacol. Ther. [Internet] 
Elsevier Ltd. 2009;22:139‐142. doi:10.1016/j.
pupt.2008.12.008

27	 Barata F, Kipfer K, Weber M, Tinschert P, Fleisch 
E, Kowatsch T Towards device‐agnostic mobile 
cough detection with convolutional neural 
networks. 2019 IEEE Int. Conf. Healthc. Informatics, 
ICHI 2019 IEEE; 2019; 1–11.

REFERENCES

1	 Kantar A. Phenotypic presentation of chronic 
cough in children. J Thorac Dis. 2017;9:907‐913.

2	 Goldsobel AB, Chipps BE. Cough in the pediatric 
population. J. Pediatr. [Internet] Mosby, Inc. 156, 
2010:352‐358. doi:10.1016/j.jpeds.2009.12.004

3	 Theodore AC, Tseng CH, Li N, Elashoff RM, Tashkin 
DP. Correlation of cough with disease activity and 
treatment with cyclophosphamide in scleroderma 
interstitial lung disease: findings from the 
scleroderma lung study. Chest. 2012;142:614‐621.

4	 Sato R, Handa T, Matsumoto H, Kubo T, Hirai 
T. Clinical significance of self‐reported cough 
intensity and frequency in patients with interstitial 
lung disease: A cross‐sectional study. BMC Pulm. 
Med. 2019;19:1‐10.

5	 Li AM, Tsang TWT, Chan DFY, et al. Cough 
frequency in children with mild asthma 
correlates with sputum neutrophil count. Thorax. 
2006;61:747‐750.

6	 Van Der Giessen L, Loeve M, De Jongste J, Hop W, 
Tiddens H. Nocturnal cough in children with stable 
cystic fibrosis. Pediatr Pulmonol. 2009;44:859‐865.

7	 Cho PSP, Birring SS, Fletcher HV, Turner RD. 
Methods of cough assessment. J. Allergy 
Clin. Immunol. Pract. [Internet] Elsevier Inc. 
7,2019:1715‐1723. doi:10.1016/j.jaip.2019.01.049

8	 Birring SS, Fleming T, Matos S, Raj AA, Evans 
DH, Pavord ID. The leicester cough monitor: 
preliminary validation of an automated cough 
detection system in chronic cough. Eur Respir J. 
2008;31:1013‐1018.

9	 McGuinness K, Holt K, Dockry R, Smith J. P159 
Validation of the VitaloJAK 24 Hour Ambulatory 
Cough Monitor. Thorax [Internet]. 67. BMJ 
Publishing Group Ltd; 2012:A131‐A131 Available 
from.https://thorax.bmj.com/content/67/
Suppl_2/A131.1

10	 Hall JI, Lozano M, Estrada‐Petrocelli L, Birring S, 
Turner R. The present and future of cough counting 
tools. J Thorac Dis. 2020;12: 5207‐5223.

11	 Chang AB. Pediatric cough: children are 
not miniature adults. Lung United States. 
2010;188(Suppl):S33‐S40.

12	 Luo W, Phung D, Tran T, et al. Guidelines for 
developing and reporting machine learning 
predictive models in biomedical research: a 
multidisciplinary view. J Med Internet Res. 
2016;18:1‐10.

13	 Eyben F, Schuller B. OpenSMILE:). ACM 
SIGMultimedia Rec. 2015;6: 4‐13.

14	 Kruizinga MD, Stuurman FE, Exadaktylos V, 
et al. Development of novel, value‐based, 
digital endpoints for clinical trials: a structured 
approach toward fit‐for‐purpose validation. 
Pharmacol Rev. 2020;72(4):899‐909.

15	 Morey MJ, Cheng AC, McCallum GB, Chang 
AB. Accuracy of cough reporting by carers of 
Indigenous children. J Paediatr Child Health. 
2013;49:49‐E203.

16	 Chang AB, Newman RG, Carlin JB, Phelan PD, 
Robertson CF. Subjective scoring of cough in 
children: parent‐completed vs child‐completed 
diary cards vs an objective method. Eur Respir J. 
1998;11:462‐466.

17	 Kruizinga MD, Stuurman FE, Groeneveld GJ, 
Cohen AF The Future of Clinical Trial Design: The 
Transition from Hard Endpoints to Value‐Based 
Endpoints. 2019;371–397. Available from: http://
link.springer.com/10.1007/164_2019_302

18	 Amrulloh YA, Abeyratne UR, Swarnkar V, Triasih 
R, Setyati A. Automatic cough segmentation 
from non‐contact sound recordings in pediatric 
wards. Biomed. Signal Process. Control [Internet] 
Elsevier Ltd. 2015;21:126‐136. doi:10.1016/j.
bspc.2015.05.001

19	 Coyle M, Keenan D, Henderson L, et al. Evaluation 
of an ambulatory system for the quantification 
of cough frequency in patients with chronic 
obstructive pulmonary disease. Cough. 2005;1:3.

20	 Vizel E, Yigla M, Goryachev Y, et al. Validation of 
an ambulatory cough detection and counting 
application using voluntary cough under 
different conditions. Cough. 2010;6:1‐8.

21	 Barata F, Tinschert P, Rassouli F, et al. Automatic 
recognition, segmentation, and sex assignment 
of nocturnal asthmatic coughs and cough 
epochs in smartphone audio recordings: 
observational field study. J Med Internet Res. 
2020;22(7):e18082.

22	 Monge‐Alvarez J, Hoyos‐Barcelo C, Lesso P, 
Casaseca‐De‐La‐ Higuera P. Robust detection of 
audio‐cough events using local hu moments. IEEE 
J. Biomed. Heal. Informatics. 2019;23:184‐196.

23	 Pramono RXA, Imtiaz SA, Rodriguez‐Villegas E. A 
cough‐based algorithm for automatic diagnosis 
of pertussis. PLoS One. 2016;11:1‐20.


