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Figure 5  SHAPley additive explanations (SHAP) summary plot based on a random forest classifier 
that was trained on the week 1 data. The x-axis shows the feature importance, where features are ranked 
in descending order. The y-axis shows the SHAP value that illustrates the direction of the association 
between the feature and facioscapulohumeral dystrophy severity. The color scheme reflects the 
probability of a participant being classified as a patient with facioscapulohumeral dystrophy.
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from day 1 to day 14) for the FSHD Clinical Score, TUG, and multitask esti­
mation yielded an average R2 of 0.65, 0.79, and 0.76 and an average RMSE 
of 3.37, 2.05, and 4.37, respectively. Conclusions: We demonstrated that 
smartphone and remote sensor data could be used to estimate FSHD clin­
ical severity and therefore complement the assessment of FSHD outside 
the clinic. In addition, our results illustrated that training the models on 
the first week of data allows for consistent and stable prediction of FSHD 
symptom severity. Longitudinal follow-up studies should be conducted 
to further validate the reliability and validity of the multitask model as a 
tool to monitor disease progression over a longer period.

Abstract

Background: Facioscapulohumeral muscular dystrophy (FSHD) is a pro­
gressive neuromuscular disease. Its slow and variable progression makes 
the development of new treatments highly dependent on validated bio­
markers that can quantify disease progression and response to drug 
interventions. Objective: We aimed to build a tool that estimates FSHD 
clinical severity based on behavioral features captured using smartphone 
and remote sensor data. The adoption of remote monitoring tools, such 
as smartphones and wearables, would provide a novel opportunity for 
continuous, passive, and objective monitoring of FSHD symptom sever­
ity outside the clinic. Methods: In total, 38 genetically confirmed patients 
with FSHD were enrolled. The FSHD Clinical Score and the Timed Up and 
Go (TUG) test were used to assess FSHD symptom severity at days 0 and 
42. Remote sensor data were collected using an Android smartphone, 
Withings Steel HR+, Body+, and BPM Connect+ for 6 continuous weeks. 
We created 2 single-task regression models that estimated the FSHD Clin­
ical Score and TUG separately. Further, we built 1 multitask regression 
model that estimated the 2 clinical assessments simultaneously. Further, 
we assessed how an increasingly incremental time window affected the 
model performance. To do so, we trained the models on an incrementally 
increasing time window (from day 1 until day 14) and evaluated the predic­
tions of the clinical severity on the remaining 4 weeks of data. Results: 
The single-task regression models achieved an R2 of 0.57 and 0.59 and a 
root-mean-square error (RMSE) of 2.09 and 1.66 when estimating FSHD 
Clinical Score and TUG, respectively. Time spent at a health-related loca­
tion (such as a gym or hospital) and call duration were features that were 
predictive of both clinical assessments. The multitask model achieved an 
R2 of 0.66 and 0.81 and an RMSE of 1.97 and 1.61 for the FSHD Clinical Score 
and TUG, respectively, and therefore outperformed the single-task mod­
els in estimating clinical severity. The 3 most important features selected 
by the multitask model were light sleep duration, total steps per day, 
and mean steps per minute. Using an increasing time window (starting 
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drug development have already demonstrated to be sensitive to differen­
tiating patients from healthy volunteers and are strongly correlated with 
clinician assessments.13-15 The widespread adoption of smartphones and 
wearables could provide new opportunities for objective and continuous 
monitoring of FSHD disease progression outside the laboratory.

This study was designed to identify smartphone-based and remote 
sensor–based features that could be used to assess FSHD disease sever­
ity. These features may enable the passive remote monitoring of disease 
progression and might potentially facilitate early detection of treatment 
effects on FSHD symptoms and the patient’s quality of life. We hypothe­
sized that the behavioral features captured by these remote monitoring 
devices would capture the daily physical and social burden that patients 
with FSHD experience. Although other neuromuscular disease studies 
with similar protocols have used machine learning to construct their dig­
ital end points, until now, different monitoring periods were arbitrarily 
selected by various researchers.16,17 Here, we investigated how different 
time windows affect the model’s performance to estimate one’s symp­
tom severity over time.18,19 As these features can vary considerably over 
time, we assessed the stability and test-retest reliability of the first week 
of data to estimate FSHD disease severity for the remainder of the trial. In 
this paper, we describe the development of a novel tool based on smart­
phone and remote sensor data to provide remote estimation of FSHD dis­
ease severity.

Methods
Overview

This study is an extension of a previous longitudinal clinical study that 
investigated the feasibility of monitoring and characterizing patients 
with FSHD and healthy controls in terms of biometric, physical, and social 
activities using data sourced from smartphones and other remote moni­
toring devices. Therefore, additional information regarding the data col­
lection and data quality has been previously published.15

Introduction

Facioscapulohumeral muscular dystrophy (FSHD) is a progressive neu­
romuscular disease characterized by the wasting of muscles in the face, 
upper body, and legs.1 The onset and progression vary greatly between 
individuals.2 Early symptoms include difficulties in smiling, whistling, 
and shutting of the eyelids during sleep. These symptoms are followed by 
impaired upper-arm movements and walking. A total of 20% of individ­
uals with FSHD eventually become wheelchair bound.2 Less visible FSHD 
symptoms include fatigue and chronic pain.3 In addition to the physi­
cal burden, individuals with FSHD also experience emotional, social, and 
socioeconomic burdens.4,5 As a result, patients report increased deterio­
ration in quality of life as the disease progresses.6

Currently, there are no therapies or interventions that prevent the 
wasting of muscles in patients with FSHD.7 Muscle-strengthening drugs 
have been shown to have limited effect on the disease progression.8 As 
a result, patients with FSHD largely rely on symptomatic treatments (eg, 
analgesics, exercise, and cognitive therapy). The development of novel 
treatment options to delay or halt FSHD disease progression is currently 
under investigation.9,10 However, measuring the effect of such new treat­
ments is complicated, as disease progression is slow and no objective sur­
rogate end points, predictive for clinical benefit, have been established.

Two common clinical assessments for assessing FSHD symptom sever­
ity are the FSHD Clinical Score and Timed Up and Go (TUG) test. The FSHD 
Clinical Score is composed of an evaluation of the extent of the muscle 
weakness among 6 regions of the body.11 The TUG is a test used to assess 
functional mobility.12 The test requires a participant to rise from a chair, 
walk 3 m forward, turn around, and return to the chair. These clinician-
rated assessments provide a snapshot of the disease status and are pri­
marily focused on muscular strength and function that are inherently sub­
jective. Identifying novel objective biomarkers for monitoring disease 
progression could additionally provide clinically relevant insights and aid 
drug development. Novel digital end points for neuromuscular disease 



Development of Machine Learning – Derived mHealth Composite Biomarkers for Trial@Home Clinical Trials122 123Part iii/Chapter 4

created a unique email address (containing patient identifiers) for each 
patient to couple the Withings device with CHDR MORE, thus eliminating 
the need for using the patients’ personal email.

Investigational Technologies

Smartphone and remote sensor data were collected on the CHDR MORE 
platform. This customizable platform enables the collection, ingestion, 
and management of data sourced from monitoring devices. The CHDR 
MORE app was installed on the smartphone of each participant and allows 
for the unobtrusive collection of smartphone sensor data (sourced from 
the smartphone’s accelerometer, gyroscope, magnetometer, GPS, light 
sensor, and microphone) as well as phone usage logs (eg, app usage, bat­
tery level, calls, and SMS text messages).

The smartphone sensor data provide insights into a participant’s envi­
ronment, such as location type and travel patterns (GPS), if human voices 
are present in the environment (microphone), and their physical activity 
(accelerometer and gyroscope). The phone usage logs give an indication 
of social activity (through social media and communication apps, calls, 
and SMS text messages) and smartphone usage (app usage). The app also 
collected Withings health data.

In this study, 3 Withings devices were used: Withings Steel HR smart­
watch (monitors heart rate, sleep states, and a number of steps), Withings 
Body+ scale (monitors weight and body composition) and Withings BPM 
Connect (monitors heart rate, systolic blood pressure, and diastolic blood 
pressure). Together the Withings features reflect the daily physical activi­
ties of each of the participants.

This is the first study that aimed to monitor and estimate FSHD symp­
tom severity using smartphone and wearable data. As this was an explor­
atory longitudinal study, specifically aimed to identify smartphone- and 
wearable-based features that were predictive of FSHD symptom sever­
ity, we did not identify any literature with a similar protocol. To identify 
these novel features, we decided to collect data from all available sensors 
and features from the CHDR MORE platform. As the symptoms of FSHD can 

Patients

This was a noninterventional, cross-sectional study involving patients 
with FSHD. The study was performed between April and October 2019 in 
the Centre for Human Drug Research (CHDR) research unit in Leiden, the 
Netherlands. Table 1 provides an overview of the demographic distribu­
tion of the patients with FSHD enrolled in this study.

In total, 38 patients with genetically confirmed FSHD from the Nether­
lands and Belgium were included in the study. Eligible patients were 16 
years or older, had genetically confirmed FSHD, and had an FSHD Clinical 
Score greater than zero. Patients had to be Android smartphone owners 
and willing to use either their own smartphone or an Android smartphone 
provided by CHDR for the duration of the study period. Patients with inter­
nal medical devices such as a pacemaker or deep brain stimulator were 
excluded from the study, as these could interfere with the Withings scale 
measurements.20 Participants could not be pregnant or have a severe 
coexisting illness.

Ethics Approval

This study was approved by the Ethics Committee of BEBO, Assen, the 
Netherlands (NL69288.056.19) and was registered on ClinicalTrials.gov 
(NCT04999735). Before any study-related activities, written informed con­
sent was obtained from the patients. Participants received monetary 
compensation for their time and effort during the trial.

To preserve the privacy of the patients, we deidentified the data and 
limited the amount of personally identified information collected from 
the smartphone and the connected devices. The location coordinates of 
the GPS or the cellular networks were collected as relative coordinates 
(GPS coordinates with respect to another predetermined location). For 
the calls and SMS text messaging, only metadata are stored (ie, no actual 
phone calls or text is being processed and stored). The call and SMS text 
messaging logs only store a partial phone number, making it impossible 
to identify the original phone numbers. As for the Withings devices, we 
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exhibited on a given day is the focus of FSHD clinical evaluation. As there 
are no FSHD assessments that assess FSHD symptoms over a longer 
period, we did not explore other aggregation methods. Discrete features 
(eg, step count) were summed per day per participant. Continuous fea­
tures (eg, heart rate) were averaged per day per participant. Table 2 pro­
vides an overview of how the features were aggregated based on the data 
type. Table 3 summarizes which features were extracted from the smart­
phone and Withings sensors. In addition, Table 3 shows the features that 
were provided from the MORE platform but were not included for the anal­
ysis either due to outliers, missing data, or because they were not of clini­
cal interest.

Feature Selection

Before modeling, both expert-based manual and automated feature 
selections were performed. First, features were visually inspected by all 
authors. Excluded features were based on the number of available data 
points (eg, 9 participants did not have body composition data) and clin­
ical relevance (eg, time spent on parenting apps was deemed clinically 
irrelevant). Next, two automated feature selection strategies were com­
pared: (1) stepwise regression and (2) variance inflation factor (VIF). The 
stepwise regression strategy was an iterative process to select predictive 
variables that met a significance criterion (P<.05). Both forward and back­
ward stepwise regression strategies were used. The VIF was calculated for 
all pairwise combinations of features to identify collinear features. Pairs 
of features having a VIF value greater than 10 were identified, and one of 
the features was subsequently removed for each of the pairs.24 For com­
parison, we also fitted the model without any automated feature selec­
tion strategies. For each regression model, we applied each of the feature 
selection strategies.

Statistical Analysis

Python (version 3.6.0) was used for the data analysis and modeling in 
conjunction with the Pandas,25 NumPy,26 Matplotlib,27 and Sklearn 

affect a patient’s travel abilities,21 physical activity, sleep,11,22 and social 
lives,23 we deemed these features relevant for estimating FSHD symptom 
severity.

Data Collection

Participants were monitored for 6 continuous weeks. On days 1 and 42, 
the clinical evaluations (FSHD Clinical Score and TUG) were performed. 
On day 1, the CHDR MORE and Withings Health Mate apps were installed 
on their smartphones. Participants were asked to use their smartphones 
as normal. Participants were asked to continuously wear their Withings 
Steel HR smartwatch and weigh themselves and take their blood pressure 
weekly.

Data Preprocessing

Before modeling of the data, all sensor data were preprocessed and con­
verted into features using Python (version 3.6.0) and the PySpark (version 
3.0.1) library. The raw data were checked for missing values and outliers. 
Missing values were defined as the absence of data for a specific feature 
for each day, except for 2 types of measurements: the weekly measure­
ments (eg, weight and blood pressure) and the data related to aperiodic 
activities (eg, phone calls or SMS text messages). Missing data were not 
imputed. Outliers were detected by manual visual inspection rather than 
automated statistical techniques, as our objective was to identify poten­
tial outliers that were a result of potential measurement errors rather 
than participants’ behaviors. Measurement errors were deemed not rel­
evant to our analysis, whereas outliers in behavior could still provide 
insights into a participant’s symptom severity; therefore, sensitivity anal­
ysis was not conducted. Outliers would be subsequently excluded at the 
discretion of the authors (eg, removing overlapping sleep stages).

Feature Extraction

All raw data were collected from the smartphone and Withings devices. 
The features were then aggregated per day, as the symptom severity 
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and the RMSE explain the variance and the error between the true clinical 
scores and the predicted scores of the regression models, respectively.

To assess how varying time window affects the model’s estimation of 
symptom severity, we used an incrementally increasing time window to 
train the regression models, starting with day 1 and adding the follow­
ing days until the first 2 weeks of data were included in the training set. 
To train, optimize, and assess each model’s generalizability, we applied 
a 5-fold nested cross-validation model. To validate the performance of 
these models, we used the remaining 4 weeks of data as an external val­
idation data set. To assess the stability of the trained models to yield 
consistent estimations of symptom severity, we trained the FSHD Clin­
ical Score, TUG, and multitask models on the first week of data. We esti­
mated the symptom severity for the subsequent weeks. We selected the 
first week, as each patient would have each day of the week represented 
in their data set.

In sum, we investigated 3 final models, 2 single-task models, and 1 mul­
titask model. For each model, we considered 3 types of regression models 
(the linear regression, the random forest regressor, and the gradient boost 
regressor). For each model, we considered 3 feature selection strategies 
(no automated feature selection, stepwise regression, and VIF); hence, in 
total, we compared 27 models. Given that we are mainly interested in the 
comparison of the predictions of single-task and multitask models and 
the influence of the time windows on the predictions, we reported only 
the results of these models.

Results

No patients dropped out of the study. One patient was wheelchair-bound 
and therefore unable to perform the TUG. The FSHD Clinical Scores ranged 
between 1 and 13, with a median score of 5. The TUG times ranged between 
5.5 seconds and 15.8 seconds, with a median time of 7.7 seconds. Before 
modeling, several features were manually excluded. Nine patients had 

packages.28 Three regression models were created: 2 single-task regres­
sion models, 1 for each clinical assessment and 1 for each multitask 
regression model, simultaneously estimating both clinical assessments. 
For the multitask regression model, a dummy variable was included to 
denote either the FSHD Clinical Score or TUG.

For all models, linear regression, random forest regressor, and gradi­
ent boost regressor were used. A grid search was performed to optimize 
the hyperparameters for each model. For the Elastic Net linear regression 
model, we optimized the hyperparameters for the α (range 0-200) and 
L1 ratio (range 0.0-1.0). For the random forest and gradient boost regres­
sors, we optimized the hyperparameters for the number of estimators 
(range 0-200), maximum depth (range 1-20), maximum features (range: 
auto, square root, log2), and maximum leaf nodes (range 2-20). In addi­
tion, we optimized the learning rate (range 0.0-1.0) for the gradient boost 
regressor.

Each model was validated using a group 5 outer-fold and 5 inner-fold 
nested cross-validation. By using group cross-validation, for each fold, we 
ensure that the participants in the validation are not also present in the 
training fold. While the data for all participants were used for the model­
ing, the cross-validation procedure was used for out-of-sample testing; 
hence, for each fold of the cross-validation procedure, only a subsample 
of participants’ data were used. Further, the random forest and gradient 
boost regressor models only consider a subsample of participants and 
features per decision tree node. The elastic-net linear regression penal­
ization would also reduce the potential features considered in the model. 
The cross-validation and models together would improve the generaliz­
ability and robustness of the models and therefore reduce the probability 
of spurious correlations.

We applied each of the feature selection strategies to each of the regres­
sion models and compared the results of each model. The model that 
provided the highest R2 (variance explained) and the lowest root-mean-
square error (RMSE) was selected as the best-performing model. The R2 
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visits were predictive of TUG. Figure 2 (bottom) illustrates the relationship 
between the predicted and actual TUG times.

The multitask model achieved an R2 of 0.74 and an RMSE of 1.89 for 
the FSHD Clinical Score and TUG prediction together. The same model 
achieved an R2 of 0.66 and an RMSE of 1.97 for the FSHD Clinical Score and 
an R2 of 0.81 and an RMSE of 1.61 for the TUG separately. The gradient boost 
regressor selected 50 predictive features. The relative feature importance 
is presented in Figure 3. The 5 most important features were light sleep 
duration, total steps per day, mean steps per minute, the number of times 
the social and communication apps were opened, and the number of 
incoming calls. Figure 4 illustrates the relationship between the predicted 
clinical scores and the actual clinical scores.

For each clinical score, we evaluated the effect of different monitor­
ing periods on the estimation of symptom severity. The best performing 
FSHD Clinical Score single-task model, TUG single-task model, and multi­
task model yielded the highest R2 on day 3 (0.70), week 2 (0.86), and day 
1 (0.86), and the lowest RMSE on day 3 (2.8), week 2 (1.9), and day 6 (3.4), 
respectively. As seen in Figure 5, although our analysis has identified win­
dows that yielded the highest R2 and RMSE, we found that the mean (SD) 
of the R2 and RMSE for the FSHD Clinical Score single-task model, TUG sin­
gle-task model, and multitask model was 0.65 (0.03) and 3.37 (0.19), 0.79 
(0.05) and 2.05 (0.09), and 0.76 (0.08) and 4.37 (0.20), respectively. When 
evaluating the stability, the models trained on a week’s worth of data were 
used to estimate the symptom severity for subsequent days. We found 
that the FSHD Clinical Score, TUG, and multitask models achieved median 
R2 (median RMSE) of 0.51 (3.66), 0.42 (2.44), and 0.72 (2.61), respectively (as 
seen in Figure 6).

Discussion
Principal Findings

We developed and compared 2 regression models to monitor and esti­
mate FSHD symptom severity outside the clinic with remote sensor data 

no body composition (eg, fat and muscle mass) data. As a result, the With­
ings body composition data (except weight) were excluded from the final 
analysis. We excluded SMS text message–related features as not all the 
patients used SMS text messaging (less than 30% of patients), and the SMS 
text message features were not deemed clinically relevant. Further, we 
excluded smartphone apps from the analysis that were used by less than 
5% of the patients. We did not exclude any outliers as none of the data 
points were viewed as potential measurement errors. In a previous pub­
lication, we provided an overview of the proportion of observations that 
were missing per feature.15

The FSHD Clinical Score for 24 participants did not change over the 
6 weeks. The scores of the remaining 14 participants changed by +1 or −1 
point. The average difference between the day 1 and day 42 TUG scores 
was 0.38 seconds (95% CI 0.12-0.63). After reviewing the stability of the 
TUG and FSHD scores, we decided to use the averaged clinical assess­
ment scores as the outcomes for all models. Subsequently, each feature 
was also averaged over the 6 weeks. These averaged features were used as 
inputs for the regression models.

Using all 6 weeks of data, we built a single-task model that used the 
CHDR MORE features to estimate the FSHD Clinical Score for each partic­
ipant. Comparing the estimated scores and the true FSHD Clinical Score 
yielded an R2 of 0.57 and an RMSE of 2.09. This was achieved using VIF-
selected features and Elastic Net–penalized linear regression. A total of 11 
features were predictive of the FSHD Clinical Score, as seen in Figure 1. The 
features were related to app usage, blood pressure, location visits, and 
calling behaviors. Figure 2 (top) shows the estimated FSHD Clinical Score 
in relation to the actual FSHD Clinical Score.

Similarly, the comparison of the TUG single-task model estimated TUG 
and the actual TUG yielded an R2 of 0.59 and an RMSE of 1.66 (seconds) for 
each participant. This was achieved with forwarding selection stepwise 
regression and Elastic Net–penalized linear regression. In total, 13 feature 
were predictive of the TUG score (Figure 1). The feature categories related 
to age, app usage, calling behaviors, sleep, physical activity, and location 
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severity and the complexity of the data set and model. However, given 
that the multitask model showed an important improvement over the sin­
gle-task models, we recommend using the multitask model for future esti­
mation of the FSHD Clinical Score and TUG.

It is critical to determine how much data are needed to obtain reliable 
inferences without burdening the patients and the clinicians. Insuffi­
cient data can lead to inaccurate extrapolations, whereas excessive data 
can lead to wasted time and resources. This study investigated how long a 
patient needs to be monitored to estimate symptom severity reliably. Our 
results demonstrated that behaviors exhibited that based on our sam­
ple, the optimal time window (based on the highest R2 and lowest RMSE) 
varied for each task. The multitask model yielded the overall highest R2 
based on a training data set of the first day. Although we identified that 
5 days of data seem sufficient for training the multitask model, a longer 
or shorter time window would still provide consistent estimation of the 
symptom severity. However, our results also demonstrate that selecting 
any time window between days 1 and 14 would produce relatively stable 
results. Our results also demonstrated that training the multitask model 
on the first week of data allowed for constant and reliable estimations of 
symptom severity for the subsequent weeks. This further supports the 
notion that multitask should be used to estimate the clinical scores for 
longitudinal studies.

The agreement between the clinical scores and the remotely mon­
itored features did not achieve 100% adherence. This may be due to the 
sensors being unable to capture specific aspects of the clinical score. For 
example, features captured by the remote monitoring system may not 
provide sufficient proxies for arm, scapular, and abdominal weaknesses 
(which the FSHD Clinical Score specifically addresses). Adding additional 
sensors and features could potentially allow for more complete model­
ing of FSHD. For example, an additional accelerometer could try to capture 
arm swings 36 or detect the (limited) shoulder range of motion.37 Another 
explanation for the imperfect model fit is that the clinical scores have lim­
ited accuracy in capturing disease severity. There can be variation within 

to estimate the FSHD Clinical Score and TUG for each participant. For 
the first type of model, both clinical assessment scores were separately 
estimated using 2 single-task regression models. For the second type of 
model, both clinical assessment scores were simultaneously estimated 
using a multitask regression model.

The 2 single-task models selected features that were uniquely predic­
tive of each of the clinical scores. In addition, the models’ selected fea­
tures were found to be predictive for both scores (time spent at health 
locations and total call duration). Other studies have found that (a mod­
ified version of) the TUG significantly correlated to the FSHD Clinical 
Score,12,29 indicating that these clinical scores share mutual informa­
tion. Simultaneously estimating multiple tasks with shared features can 
improve the model performance.30-32 This supports the notion that a mul­
titask approach would improve the estimation of FSHD symptom severity.

Indeed, the multitask modeling of both the FSHD Clinical Score and the 
TUG outperformed the single-task models. Additionally, the multitask 
model identified features not selected as important by the single-task 
models (eg, sleep and the resting heart rate). The clinical assessments and 
their respective single-task models only captured a limited range of dis­
ease symptoms, which misses the opportunity to model other aspects 
of the disease (eg, sleep impairments 33,34 and arrhythmic abnormali­
ties 35). The multitask model, however, identified features representa­
tive of a broader range of FSHD symptoms. As shown in the SHAP (SHAP-
ley Additive exPlanations) plot (Figure 3), participants with a higher mean 
step per minute, light sleep duration, soft activity duration, and total steps 
(indicated by the red feature value) had lower SHAP values. This indicates 
that participants with more physical activity and better sleep quality had 
a lower FSHD Clinical Score and TUG. Although the multitask model out­
performed the single-task models, the multitask model required approx­
imately twice as many features as the single-task models. Using fewer 
features could be considered beneficial as it reduces the number of sen­
sors needed. Additionally, it eases the interpretation of the results. There­
fore, there is a tradeoff between the performance of estimation of disease 
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clinicians’ assessments of a patient’s status during a clinical trial based 
on the review of the patient’s in-clinic assessments and out-of-clinic daily 
activity.

We present an FSHD tool that estimates the FSHD Clinical Score and TUG 
using smartphone and remote sensor data. The conclusions drawn from 
this study are preliminary in view of the relatively small sample size and 
cross-sectional study nature. Given the short observation period, we did 
not expect changes in the patients’ FSHD scores. As a result, we could not 
validate the use of the model to estimate changes in the FSHD severity 
over time. A trial where the FSHD clinical score is expected to change could 
help validate the FSHD tool’s capacity to detect changes in FSHD symptom 
severity. Additionally, the FSHD tool could be improved by including more 
patients with FSHD and adding other remote sensors. All in all, the remote 
monitoring approach presented here could be a promising tool for moni­
toring FSHD severity outside the clinic environment.

Conclusions

We presented a smartphone-based and remote sensor–based FSHD tool 
that can estimate a patient’s FSHD symptom severity. This is the first study 
to demonstrate how to monitor patients with FSHD remotely and subse­
quently model their FSHD Clinical Score and TUG simultaneously. The tool 
holds potential for monitoring disease progression and drug intervention 
effects outside the clinic, pending a longitudinal follow-up study to vali­
date the capacity of the FSHD tool to detect changes in the disease severity 
score over time due to disease progression or drug intervention.

a specific clinical score, as patients with the same scores may exhibit dif­
ferent FSHD symptoms. For example, patients with scores between 2 
and 4 may have impairments related to facial muscles and upper limbs, 
whereas others may be unable to walk on their heels.11

The clinical scores provide snapshots of muscular strength and func­
tion, whereas the remote monitoring approach provides a more contin­
uous measure of (FSHD-related) social and physical activity. Additionally, 
the clinical scores were assessed at the clinic, whereas the sampling of the 
remotely monitored features occurred at home, and in daily practice. Alto­
gether, these 2 clinical scores may not be the optimal clinical assessment 
strategies for fully assessing FSHD symptom severity. These are only 2 of 
several FSHD-related assessments that can be used in a clinical trial. The 
remotely monitored features may show different correlations with other 
FSHD-related assessments such as the Clinical Severity Scale for FSHD 38,39 
and the Pittsburgh Sleep Quality Index.39,40 Although the remotely mon­
itored features may not correlate strongly with the 2 clinical scores, they 
still provide relevant insights into FSHD-related symptoms. Our multitask 
model could prove to be a promising tool for monitoring the FHSD severity 
based on patients’ everyday activities outside the clinic.

Although the models cannot replace the TUG or FSHD Clinical Scores for 
estimating the disease severity, these models can potentially be used as 
a (complimentary) tool in clinical studies. When validated in longitudinal 
studies, given the continuous sampling of data from multiple sensors, this 
FSHD tool could potentially be used to track the symptom severity for long 
periods of time without patients having to visit a clinic. Previous studies 
have demonstrated that this approach of using smartphone-based mod­
els to quantify medication responses can be advantageous.37,38 When 
implemented in a clinical trial, the FSHD tool might be evaluated as a 
tool to monitor drug effectiveness by tracking drug-induced changes in 
FSHD symptom severity.41 Additionally, it might enable the identifica­
tion of improvements in specific aspects of the disease severity (e.g., mus­
cle function or sleep quality). Therefore, remote monitoring might aid 
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TABLE 1  An overview of characteristics of the FSHD participants (N=38).

Demographics Values
Gender, n

Female 23

Male 15
Race, n

African American -
Mixed 1
White 37

Age (years), mean (SD) (minimum, maximum) 44 (14.5) (18, 64)
Weight (kg), median (SD) (minimum, maximum) 79 (16) (52, 130)
BMI (kg/m2), median (SD) (minimum, maximum) 25 (4) (20, 44)
FSHD Clinical Score, median (SD) (minimum, maximum) 5 (3) (1, 13)
Timed Up and Go test (seconds), median (SD) (minimum, maximum) 7.7 (2.4) (5.5, 15.8)

TABLE 2  A simplified summation of how the features were aggregated based on the data type.

Data Type Time Unit Example  
Feature

Aggregation 
Format

Example Aggregation

Count Per day
Per hour

Steps Sum
Mean
Max

Total Steps
Max Steps Per Hour
Mean Steps Per Hour

Continuous 
Data within  
a Range

Per day Heart Rate Min (5%)
Median 
(50%)
Max (95%)

Lowest 5% Heart Rate
Median Heart Rate
Maximum 95% Hr

Duration Per day App Usage Total Dura­
tion
Mean Dura­
tion

Total Duration of Social Apps Opened
Mean Duration of Social App Use Per Interaction

GPS  
Coordinates

Per day Location Sum
Max
Mean

Total Distance Travelled
Mean And Max Distance From Home
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Figure 1  Linear regression coefficients for the features selected by the single-task FSHD Clinical Score 
and TUG models. Features with a coefficient of zero are not shown. 

FSHD: facioscapulohumeral muscular dystrophy; TUG: Timed Up and Go.

TABLE 3  An overview of the features provided from the MORE platform and the features that were 
subsequently aggregated per day (with the exception of the body measurements as that was measured 
once a week).

Category MORE Features Derived Features (Per day) Excluded Fea-
tures

Demo-
graphics

Age
Gender

Age
Gender

Accelera-
tion

Acceleration magnitude
Gyroscope
Magnetometer

98% Acceleration magnitude Mean  
Acceleration 
Magnitude

Activity Steps
Heart Rate
Physical activity  
duration
Calories

Steps: Total steps, max steps per hour, mean steps 
per hour heart rate: 5%, 50% & 95% beats per 
minute (BPMs), standard deviation of BPMs, % time 
spent in resting state physical activity: soft, 
moderate and intense activity duration

Calories
Distance  
Travelled
Distance Per 
Step

Apps App Categories:
Health & Fitness,  
Recreational,  
Communication &  
Social, Tools, Shopping

Duration
Times Open

House & Home
Libraries & 
Demo
Reading
Travel

Body Diastolic Blood Pres­
sure
Systolic Blood Pressure
​Heart Pulse (Bpm)​
Weight​

Diastolic blood pressure
Systolic blood pressure
​Heart pulse (bpm)​
Weight​

Height (M)​
Fat mass (kg)​
Fat ratio (%)​
Hydration​
Muscle Mass​

Location Location Categories:
Commercial, Health, 
Home, Leisure, Public, 
Social, Travel

Total duration at place​
Total distance travelled
Total no of unique places visited
Max distance from home
Time spent commuting 

Social Calls
Voice

Number of calls
Number of unique numbers
Number of incoming, outgoing and missing calls
Number of calls from known & unknown numbers
Total duration of calls
Average duration of calls
% Time human voice is detected

Text messages 
(SMS)

Sleep Number of sleep sessions
Total sleep duration
Number of sleep phases (awake, light sleep and 
deep sleep)
Duration of sleep phases (awake, light and deep 
sleep)
Time between sleep sessions
Time to fall asleep 
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Figure 3  SHAP (SHAPley Additive exPlanations) variable importance plot showing the feature 
importance of the top 20 most important features, in which the features are ranked in descending order. 
Each scatter point represents one prediction. The color of the scatter point reflects the value of the real 
data. If the actual value of the data point was high, then the color was red. If the value was low, then 
the color was blue. The SHAP value, as illustrated on the x-axis, shows the direction and magnitude of 
each feature’s contribution toward predicting the facioscapulohumeral muscular dystrophy symptom 
severity.

Figure 2  True FSHD Clinical Scores and TUG times against the predicted scores using the respective 
FSHD Clinical Score and TUG regression models. The lines represent a regression line with a 95% CI band. 

FSHD: facioscapulohumeral muscular dystrophy; TUG: Timed Up and Go.
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Figure 4  Scatterplot of the estimated FSHD Clinical Scores and TUG times in relation to the actual 
FSHD Clinical Scores and TUG using the multi-task learning regression model. The lines represent the 
regression lines with a 95% CI band. 

FSHD: facioscapulohumeral muscular dystrophy; TUG: Timed Up and Go.

Figure 5  Evaluating the performance of the single-task FSHD Clinical Score, TUG, and the multitask 
FSHD Clinical Score and TUG regression models trained on an incrementally increasing time window. The 
colored lines represent the 3 types of regression models trained on the data (Elastic Net, Random Forest 
Regressor, and Gradient Boosting Regressor). For each model and each incremental time window, the 
top and bottom plots show the R2 and RMSE, respectively. The lines represent the median performance, 
and the bands represent the 95% CI. 

FSHD: facioscapulohumeral muscular dystrophy; RMSE: root mean square error; TUG: Timed Up and Go.
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Figure 6  Evaluating the performance of the single-task FSHD Clinical Score, TUG, and the multitask 
FSHD Clinical Score and TUG regression models trained on the first week of data to estimate symptom 
severity for the subsequent weeks. The colored lines represent the 3 types of regression models trained 
on the data (Elastic Net, Random Forest Regressor, and Gradient Boosting Regressor). For each model 
and each week, the top and bottom plots show the R2 and RMSE respectively. The lines represent the 
median performance, and the bands represent the 95% CI. 

FSHD: facioscapulohumeral muscular dystrophy; RMSE: root mean square error; TUG: Timed Up and Go.
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