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optimal time window for the classification is the first day of data collec­
tion and the first week of data collection, which yielded an accuracy, sen­
sitivity, and specificity of 95.8%, 100%, and 94.4%, respectively. Features 
relating to smartphone acceleration, app use, location, physical activity, 
sleep, and call behavior were the most salient features for the classifica­
tion. Conclusions: Remotely monitored data collection allowed for the 
collection of daily activity data in patients with FSHD and non-FSHD con­
trols for 6 weeks. We demonstrated the initial ability to detect differences 
in features in patients with FSHD and non-FSHD controls using smart­
phones and wearables, mainly based on data related to physical and 
social activity.

Abstract

Background: Facioscapulohumeral dystrophy (FSHD) is a progressive 
muscle dystrophy disorder leading to significant disability. Currently, 
FSHD symptom severity is assessed by clinical assessments such as the 
FSHD clinical score and the Timed Up-and-Go test. These assessments are 
limited in their ability to capture changes continuously and the full impact 
of the disease on patients’ quality of life. Real-world data related to phys­
ical activity, sleep, and social behavior could potentially provide addi­
tional insight into the impact of the disease and might be useful in assess­
ing treatment effects on aspects that are important contributors to the 
functioning and well-being of patients with FSHD. Objective: This study 
investigated the feasibility of using smartphones and wearables to cap­
ture symptoms related to FSHD based on a continuous collection of mul­
tiple features, such as the number of steps, sleep, and app use. We also 
identified features that can be used to differentiate between patients with 
FSHD and non-FSHD controls. Methods: In this exploratory noninterven­
tional study, 58 participants (n=38, 66%, patients with FSHD and n=20, 
34%, non-FSHD controls) were monitored using a smartphone monitor­
ing app for 6 weeks. On the first and last day of the study period, clinicians 
assessed the participants’ FSHD clinical score and Timed Up-and-Go test 
time. Participants installed the app on their Android smartphones, were 
given a smartwatch, and were instructed to measure their weight and 
blood pressure on a weekly basis using a scale and blood pressure moni­
tor. The user experience and perceived burden of the app on participants’ 
smartphones were assessed at 6 weeks using a questionnaire. With the 
data collected, we sought to identify the behavioral features that were 
most salient in distinguishing the 2 groups (patients with FSHD and non-
FSHD controls) and the optimal time window to perform the classifica­
tion. Results: Overall, the participants stated that the app was well toler­
ated, but 67% (39/58) noticed a difference in battery life using all 6 weeks 
of data, we classified patients with FSHD and non-FSHD controls with 
93% accuracy, 100% sensitivity, and 80% specificity. We found that the 
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in a clinic at 1 specific moment, and do not cover the implications of the 
disease on social and physical activity during daily life. The progressive 
muscle weakness characterizing FSHD leads to massive changes in 
the way people live their lives, affecting how they get around, how 
they complete daily activities, and whether they can work or care for 
children. Therefore, assessing disease severity may be improved by not 
only measuring muscle function but also evaluating social and physical 
activity data. This study aimed to address this by first classifying disease 
using a smartphone app and wearables to continuously remotely monitor 
features relating to biometric, physical, and social activities of patients 
with FSHD in comparison with those of non-FSHD controls. Subsequently, 
we performed a second analysis in which we aimed to assess disease 
severity. This analysis will be described in a different paper.

Objectives

We investigated the feasibility of remotely monitoring multiple features 
such as step count, sleep, app use, and location tracking in patients with 
FSHD and non-FSHD controls. First, we evaluated the participants’ tolera­
bility of these devices. We then characterized the patients with FSHD and 
non-FSHD controls in terms of composites of social, physical, and biomet­
ric activities. We sought to: 
1	 Distinguish patients with FSHD from non-FSHD controls using a classifi­

cation machine learning model and determine the minimum monitor­
ing window needed to perform the classification

2	 Identify which of the remotely monitored features were most salient in 
differentiating between the 2 groups.

Methods
Study Overview

We conducted a cross-sectional, noninterventional study in patients 
with FSHD and non-FSHD controls. A total of 58 participants (n=38, 66%, 
patients with genetically confirmed FSHD and n=20, 34%, non-FSHD 

Introduction
Background

A recent Dutch population study on facioscapulohumeral dystrophy 
(FSHD) estimated that approximately 2000 people in the Netherlands and 
approximately 800,000 people worldwide are living with FSHD.1 Often, 
early symptoms include difficulty whistling, smiling, and closing the 
eyelids while asleep. Weakening of the facial muscles is generally followed 
by scapular winging. This abnormal positioning of the shoulder bone 
impairs the movement of the shoulders and arms. Further weakening of 
the muscles is commonly observed in the upper arms and may progress 
to the hip girdle and lower legs in severe cases. Less visible symptoms of 
FSHD are chronic pain and fatigue.2 In addition to the physical symptoms 
the diagnosis of FSHD comes with an emotional and social burden. The 
highly variable and unpredictable progression of the disease can have 
a strong impact on the quality of life 3,4: 90% of the affected individuals 
have visible symptoms by the age of 20 years and 1 in 5 patients with FSHD 
eventually becomes wheelchair dependent.5

No therapy is currently available that stops the progression of 
FSHD.6-9 Patients thus must rely on symptomatic treatment such as 
medical devices or surgical intervention.2 The development of novel 
treatment options to delay or halt disease progression is currently 
under investigation. However, measuring the effect of such new 
treatments is complicated because disease progression is slow and no 
objective surrogate end points, predictive for clinical benefit, have been 
established. App-based technologies may help to monitor FSHD symptom 
progression more closely and evaluate potential treatment effects on a 
continuous basis.

Currently, FSHD symptom severity is assessed by clinical scoring of 
symptoms such as the FSHD clinical score or mobility performance tests 
such as the Timed Up-and-Go test (TUG) and Reachable Workspace 
assessment.10-12 These clinical severity and functional scores have 
several drawbacks. Scores change very slowly over time,13 are assessed 
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weakness by combining the functional evaluations of the 6 muscle groups 
affected in FSHD. The scale is divided into 6 independent sections that 
assess the strength and the functionality of facial muscles, scapular gir­
dle muscles, upper limb muscles, distal leg muscles, pelvic girdle mus­
cles, and abdominal muscles.11 The TUG assesses mobility and balance 
by measuring the time it takes for a participant to stand up from a seated 
position in a chair, walk 3 meters, turn around, walk back 3 meters, and sit 
down again.12 The user experience and perceived burden questionnaire 
was developed by the CHDR to measure the impact of remote monitor­
ing of apps on smartphone performance. The questions are based on the 
overall experience of CHDR with mobile apps.

Remote Monitoring Platform  All participants were remotely 
monitored using the CHDR Monitoring Remotely (CHDR MORE) platform 
for 42 days. CHDR MORE is a highly customizable platform that allows 
remote monitoring of participants using smartphones and wearables. 
The infrastructure used includes an Android app to collect data from 
smartphone sensors and a connection to the Withings Health (Withings) 
web-based platform to collect wearable data. All collected features are 
described in Table 1.

Smartwatch, Smart Scale, and Blood Pressure Monitor  In 
total, three commercially available Withings devices were used: (1) heart 
rate, step count, and sleep patterns were assessed by the Withings Steel 
HR smartwatch; (2) weight, BMI, and skeletal muscle mass were assessed 
by the Withings Body+ scale; and (3) systolic blood pressure and diastolic 
blood pressure were assessed by the Withings blood pressure monitor. 
Data from the Withings devices were collected on the phone using Blue­
tooth and sent to the Withings storage servers before being transferred 
to a CHDR server. Participants were instructed to wear the Withings Steel 
HR smartwatch continuously for the duration of the study, and they mea­
sured their weight and blood pressure themselves weekly using the With­
ings Body+ scale and Withings blood pressure monitor, respectively.

controls) were included in this study at the Centre for Human Drug 
Research (CHDR) in Leiden, The Netherlands, between April 2019 and 
October 2019. Patients were recruited from The Netherlands and Belgium.

Ethics Approval

This study was performed in compliance with International Council for 
Harmonisation Good Clinical Practice and approved by the Stichting 
Beoordeling Ethiek Biomedisch Onderzoek Medical Ethics Committee 
(Assen, The Netherlands; CCMO number NL69288.056.19) according to Wet 
medisch-wetenschappelijk onderzoek met mensen (Dutch law on medi­
cal-scientific research with humans).

Patient Population

To represent the clinical FSHD spectrum based on symptom severity 
and age, up to 40 patients with FSHD (and 20 control participants) were 
deemed sufficient. As this study was exploratory, sample size was not 
based on power calculations. Eligible patients with FSHD were aged >16 
years, had genetically confirmed FSHD (FSHD1 or FSHD2), were symptom­
atic as demonstrated by the FSHD clinical score of >0 and had an Android 
phone that they used as their main phone or were willing to use one for 
the duration of the study period. Patients with any comorbidity, expected 
to affect the measurements, were excluded. Eligible control participants 
were included using the same inclusion and exclusion criteria that were 
used to recruit the patients, except they did not have a diagnosis or symp­
toms of FSHD.

Data Collection

Clinical Assessments  On the first and last days of the study period, 
the FSHD clinical score assessment was performed in the group consist­
ing of patients with FSHD, whereas the TUG was performed in both groups. 
On day 42 in both groups the user experience was assessed and the per­
ceived burden questionnaire (Multimedia Appendix 1) administered. The 
FSHD clinical score is a standardized clinical score that quantifies muscle 
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clinical relevance of the feature (eg, time spent on home and house apps 
were deemed clinically irrelevant). For the automated feature selection, 
variance inflation factor and stepwise regression were used to exclude 
multi-collinear features or features that did not provide additive informa­
tion, respectively.

Classification Models  We used 4 categories of data sets for the 
classification of patients with FSHD and non-FSHD controls. These cate­
gories include the composite data (all features), social data (smartphone 
features relating to social location, social and communication app use, 
and phone calls), physical activity data (smartwatch features), and bio­
metric data (scale and blood pressure monitor features). We compared 
the performance of the logistic regression, random forest, and support 
vector machine classification models (Multimedia Appendix 2 15-22). The 
performance of these classification models was evaluated by the accu­
racy, sensitivity, specificity, and Matthews correlation coefficient (MCC). 
A grid search was performed to find the optimal hyperparameters (the 
parameters that determine the model’s structure) that would yield the 
highest sensitivity and specificity for each model. Furthermore, we per­
formed a 5-fold stratified cross-validation. Cross-validation is a resam­
pling method used to evaluate the prediction performance of the classifi­
cation models. The data were divided into 5 equal subsets, with the same 
FSHD-to–non-FSHD ratio within each subset; the model was trained on 4 
(80%) partitions of the data and tested on 1 (20%) partition. This proce­
dure was repeated 5 times, with each partition serving as a test set once. 
The performance of each model validation was then averaged.

Identification of Optimal Time Window  In total, 6 weeks of data 
were collected for this study. As continuous and periodic data collection 
for long periods of time can be expensive and increase the risk of data 
loss, we investigated the minimum time window needed for reliable clas­
sification. First, we used an incrementally increasing time window to train 
the classification model, starting from day 1 and adding 1 day until we 

Privacy  The data collection as part of this study may raise privacy and 
data safety concerns. Therefore, during development of the CHDR MORE 
app, we addressed these concerns by building in several measures to 
maximize privacy for all participants. First, all data sources such as SMS 
text messaging logs, phone calls, and microphone activation only report 
summative outcomes. These sources cannot send the content of mes­
sages or whole recordings to the CHDR servers. In addition, location data 
only report relative location instead of absolute GPS coordinates. Further­
more, all calculations such as human voice detection are performed on 
the Android phone itself and removed afterward and all personal data are 
coded and safely stored on certified CHDR servers.

Statistical Analysis

Data Preprocessing  The data preprocessing and analysis pipelines 
were developed using Python (version 3.6.0; Python Software Founda­
tion). The Python library scikit-learn was used for the feature extraction 
and the development of the machine learning models.14 All data were 
manually and visually inspected for missing data and outlier data. The 
identified outliers (eg, traveling 10,000 kilometers in a single day) were 
subsequently removed from the analysis. Missing or excluded data points 
were not imputed.

Feature Extraction  As disease progression in FSHD is gradual, the 
FSHD clinical scores and TUG scores were expected to remain stable dur­
ing the 6-week period. The daily features were therefore averaged across 
a defined time window (for more information see p. 95: Identification of 
optimal time window). Table 1 provides a simplified overview of the fea­
tures that were extracted from the CHDR MORE app and Withings sensors.

Feature Selection  Before fitting the classification models to the 
data set, features were excluded using manual and automated feature 
selection. The authors (AZ, RJD, AC, EvB, GJG, and JDM) of this paper man­
ually excluded features based on the degree of missing data and the 
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Data completeness is defined as having incoming data for each day of 
the clinical trial, except for the blood pressure and scale data, for which 
completeness is defined as having incoming data each week. As phone 
and SMS text messaging data are activity triggered and are aperiodic, it 
is not possible to know whether data were missing. Table 3 provides an 
overview of data completeness for the CHDR MORE app, Withings watch,  
Withings scale, and Withings blood pressure monitor and their respective 
sensors.

Feature Selection

Several features were manually excluded before modeling. Because of 
the number of participants missing body composition data, we excluded 
all the body composition data with the exception of weight. Furthermore, 
we excluded SMS text message use features and app categories that were 
only used by only 5% (3/58) of the participants.

Identification of Optimal Time Window and 
Classification Performance

Using all 6 weeks of data, the optimal classification model (LASSO-penal­
ized logistic regression) achieved 93% accuracy, 100% sensitivity, 80% 
specificity, and 85% MCC. This classification model identified 15 fea­
tures that were relevant for differentiating between patients with FSHD 
and non-FSHD controls. Specifically, features such as app use, weight, 
location, physical activity, and sleep were important for differentiating 
between the 2 populations (Figure 2). Table 4 shows the predictive fea­
tures and their positive or negative associations with the classification 
label. The predictive features indicate that the participants in the group 
consisting of patients with FSHD were less likely to engage in moderate 
physical activity and spend time on recreational apps such as entertain­
ment apps, music and audio apps, video players and editing apps, and 
games. The predictive features also showed that the participants in the 
group consisting of patients with FSHD were more likely to spend more 
time at home and health locations than their non-FSHD counterparts. 

included all 42 days of data. We examined which time window would yield 
the highest overall accuracy, sensitivity, and specificity. We compared the 
performances of 3 classification algorithms (least absolute shrinkage and 
selection operator [LASSO]-penalized logistic regression, random forest, 
and support vector machine) to classify patients with FSHD and non-FSHD 
controls using the incremental time windows. Second, we used the opti­
mal time window to train the classification model and evaluated how sta­
ble the classification performance would be for the remaining 5 weeks of 
data. Here, we evaluated the stability of the algorithm based on the gen­
eralization error of the trained classification model.23

Results
Data Collected

In total, 58 participants (n=38, 66%, patients with FSHD and n=20, 34%, 
non-FSHD controls) participated in the study. We did not meet our goal 
of 40 patients because of difficulties in recruiting patients in an accept­
able time span. The female-to-male ratio was the same in both popula­
tions; however, the median age of the control participants without FSHD 
was lower than that of their counterparts with FSHD. Table 2 illustrates 
the demographic and disease characteristics of the participants enrolled 
in this study. The FSHD clinical scores and TUG scores remained rela­
tively stable during the 6-week period (with a maximum intraparticipant 
change of 1 point for the FSHD score and 0.63 seconds for the TUG score).

Perceived Burden and Data Loss

As shown in Figure 1, overall, 3% (2/58) of the participants found the app 
on their phone to be annoying. Furthermore, 67% (39/58) of the partic­
ipants agreed that there was a noticeable difference in battery life, 43% 
(25/58) agreed that the constant presence of the app was noticeable on 
their smartphone, 28% (16/58) rated the constant visible notification as 
annoying, and 26% (15/58) of the participants noted a difference in the 
speed of their smartphone.
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Discussion
Principal Findings

We investigated the feasibility of monitoring and characterizing the phys­
ical, social, and biometric features of patients with FSHD and non-FSHD 
controls using remote monitoring technologies. The use of the remote 
monitoring platform was well tolerated by all participants. Next, we 
found that a minimum of 1 day of data and a maximum of 1 week of data 
can be used to reliably classify the 2 populations. In fact, an FSHD classifi­
cation model trained on data from a shorter time window outperformed 
a classification model trained on data from the entire 6-week period. Fur­
thermore, we illustrated that a classification model trained on the first 
week’s data yielded stable and reliable classification predictions across 
the remaining 5-week period.

Most (37/58, 64%) of the participants tolerated the CHDR MORE app con­
stantly running on their smartphone (Figure 1). Of the 58 participants, 
only 2 (3%) stated that the app was annoying. However, the results show 
that some of the participants agreed that there was a noticeable differ­
ence in smartphone speed performance (14/58, 25%), stability (8/58, 14%), 
and overall battery life (39/58, 67%). Therefore, the presence of the app 
was noticeable for some (25/58, 43%) of the participants. The decrease in 
smartphone performance (ie, speed, stability, and battery performance) 
was likely due to the continuous sampling of the sensors. As this was the 
first study in this specific patient group with this platform, all smartphone 
sensors were frequently sampled to capture all possible features. With 
the collected data in this study, we identified the features that are useful 
in differentiating between patients with FSHD and non-FSHD controls. In 
future studies, noncontributing raw data such as data from the acceler­
ometer and gyroscope (both sampled at 5 Hz) can be turned off to reduce 
the burden on the battery performance and overall user experience. We 
do not know for certain whether, and how, the noticeability of the app 
affects participants’ behavior. Of the 58 participants, 6 (10%) stated that 
they noticed a change in smartphone use for themselves, which may 

Table 5 provides a summary of the number of selected features and the 
respective performance metric for each of the data sets fitted to the 
6-week LASSO-penalized logistic regression model. The table illustrates 
that the composite data set model outperformed the models fitted to 
the social, physical activity, and biometric data sets. The MCC is used to 
select the best model because it corrects for class imbalances. The scores 
of the individual data sets are included to give an overview of their perfor­
mance on their own. The MCC values of the social activity, physical activ­
ity, and biometric logistic regression models were 52%, 38%, and −21%, 
respectively.

As for identifying the optimal time window for accurately classifying 
the patients with FSHD and non-FSHD controls, we found that training the 
random forest on the data collected on the first day and the data collected 
during the first week yielded an accuracy, sensitivity, specificity, and MCC 
of 95.8%, 100%, 94.4%, and 93.8% (Figure 3). This approach outperformed 
the classification models that were trained on all 6 weeks of data. We also 
trained classification models on the first week’s data and fitted the data 
from subsequent weeks to assess the stability of the classification perfor­
mance over time (Figure 4). We found that the random forest achieved the 
best overall performance, with a mean accuracy, sensitivity, specificity, 
and MCC of 95% (SD 0.9%), 97.6% (SD 3.6%), 94.1% (SD 0.9%), and 93.6% (SD 
0.1%), respectively. Figure 5 provides a SHAPley additive explanations plot 
that illustrates the magnitude and direction of the effect of a feature on 
a prediction. Of the 20 selected features, the top 5 (25%) most important 
features for the classification were mean kilometers traveled, 95% maxi­
mum distance from home, total kilometers traveled, 95% highest heart 
rate, and intense activity duration. For each of these features, the partici­
pants in the group consisting of patients with FSHD had lower scores than 
the non-FSHD controls.
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potentially predictive features. The features that researchers manually 
choose to include or exclude will influence the interpretability and stabil­
ity of the model. It should be noted that although SMS text messaging fea­
tures were excluded, features regarding instant messaging app use were 
included.

Our classification models allowed for the identification of a stable set 
of features that were distinctive of FSHD symptomology. We believe that 
identifying which remotely monitored features are relevant to FSHD can 
be a first step toward continuous monitoring of symptom severity and 
disease progression. For example, our classification model identified 
sleep as a relevant feature for classifying patients with FSHD. Other stud­
ies have found that patients with FSHD typically experience sleep anom­
alies because of anxiety, respiratory muscle dysfunction, and pain.25-27 
This illustrates that the CHDR MORE platform is sensitive enough to detect 
and monitor sleep anomalies among individuals with FSHD outside of the 
clinic. Furthermore, location-related features were relevant for differen­
tiating between the 2 populations. In this study, the patients with FSHD 
spent more time at home, in areas with public transportation, or at health 
locations than the healthy participants. Patients with FSHD face a range of 
physical challenges because of the functional deterioration in the affected 
muscular regions. Consequently, patients with FSHD may become more 
home bound and more reliant on public transportation for travel, as well 
as require more visits to their physicians. In conclusion, the CHDR MORE 
platforms provide data that can be used to show differences in the daily 
lives of patients with FSHD and controls without FSHD.

We demonstrated that there is a trade-off among the classification 
accuracy, the number of sensor measurements, and the duration of 
the monitoring period. Previous studies have demonstrated that using 
data from multiple sensors improves the detection of mental and physi­
cal health status compared with using data from a single sensor.28-30 We 
illustrated that social activity, physical activity, and biometric data alone 
are insufficient for the accurate classification of FSHD. Rather, the inclu­
sion of data from the smartphone, smartwatch, and scale improves the 

mean that they changed their behavior. Therefore, participants will know 
that they are participating in a study and that they are being constantly 
monitored even if the app is perfectly optimized. As a result, some sort of 
change in behavior can be expected.

As for the user experience and perceived burden questionnaire, we 
designed a questionnaire based on our own experiences with smart­
phone use and the predicted effects of the CHDR MORE app on smart­
phones. This questionnaire was not validated in any other study. At the 
time of designing the study, there were no validated and published smart­
phone app questionnaires that would fit our purpose. For example, the 
mHealth App Usability Questionnaire24 focuses more on active smart­
phone apps, where there is interaction between the app and the partici­
pants. The CHDR MORE app is a passive app, requiring almost no interac­
tion between the app and the user. Therefore, the questions should be 
more focused on the indirect effects of the app, such as more frequent 
crashes in other apps, subjective loss of snappiness of the operating sys­
tem, or issues with battery performance. Although our questionnaire is 
not validated, it was considered the best way to accurately capture the 
perceived impact of the CHDR MORE app on smartphone use.

Feature selection is one of the most important processes for building 
a classification model. The inclusion of irrelevant features can confound 
the interpretability of the model because potentially predictive features 
would be excluded and therefore seem to be irrelevant. For example, 
because the patients with FSHD had more text-related activity than the 
non-FSHD controls, the SMS text messaging features were selected 
as important classification features. Given that the SMS text messaging 
features were not deemed clinically relevant because only 55% (21/38) of 
the patients with FSHD and 50% (10/20) of the non-FSHD controls actively 
sent outgoing SMS text messages and the majority of the SMS text mes­
sages were exchanged with unknown contacts, we excluded the SMS text 
messages as a feature. As a result, features that were initially not selected 
by the model for inclusion, such as sleep, were now deemed important 
features. The SMS text messaging features masked the relevance of other 
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on result in unrepresentative data. These data get mixed in the real data 
because these moments cannot be filtered out of the data with full cer­
tainty, resulting in unreliable data. Of note, there is no easy solution to 
this problem. It would be difficult to continuously check whether the par­
ticipants are carrying their smartphone using the built-in sensors. How­
ever, adherence to this requirement is an important aspect in remote data 
collection, emphasizing the need for clear instructions on this adherence 
aspect to participants during training sessions before study start.

The level of data loss from the Withings scale indicates that improve­
ment is needed to gather reliable scale data (Table 3). Data loss occurred 
for both the patients with FSHD and the non-FSHD controls, indicating 
that the loss of data was unlikely related to any of the FSHD symptoms. 
Although clear instructions were given at the beginning of the study and 
all participants received a manual with the same instructions, we believe 
that the data loss was caused by improper use of the scale by the partici­
pants. The weight measurement consisted of two parts: measurement of 
weight and measurement of body composition. 

Weight was determined first, followed by a blinking notification on the 
display during the measurement of body composition. This might have 
given the impression to the participant that the measurement had been 
completed, causing them to interrupt the second part of the measure­
ment, resulting in an incomplete measurement. For future studies, we 
recommend incorporating a live training at the beginning of the study on 
the correct use of the scale.

Efficient clinical testing of any FSHD intervention or of any drug tar­
geted at improving function of patients with FSHD or delaying disease 
progression requires the availability of clinical biomarkers that ideally 
change relatively rapidly over time; correlate with, and allow for, predic­
tion of progression of the existing clinical severity and functional scores; 
and allow for identification of fast progressors. Using data collected in a 
home setting might provide a more comprehensive picture of the evo­
lution of a patient’s overall condition over time. This study is a first step 
in the development and validation process of using data collected by a 

performance of the FSHD classification algorithm. Although the model­
ing of multi-sensor data can be advantageous, it can lead to several prac­
tical limitations. The inclusion of more features can increase the model’s 
complexity and thus limit the model’s explainability. Furthermore, the 
inclusion of more sensors and a longer monitoring period can be more 
expensive, potentially limiting the number of participants enrolled in a 
study, and increase the risk of data loss. Future studies will need to weigh 
the advantages and disadvantages of integrating smartphones, smart­
watches, scales, and monitoring period into their remotely monitored 
FSHD clinical trials.

Despite the good performance of our model, this study includes some 
limitations. The patients with FSHD and non-FSHD controls were compara­
ble except for the age demographic. The median age of the non-FSHD con­
trols was approximately 13 years less than that of the patients with FSHD. 
Generally, the older the person, the less they tend to use their smartphone 
and, in particular, the less they tend to use communication and social 
apps.31 When characterizing patients with FSHD and non-FSHD controls 
based on active smartphone use, the model may be biased because of the 
difference in age. However, as seen in the results, only 1 feature of active 
smartphone use—time spent on recreational apps—was included in the 
final model for the characterization of patients with FSHD, which may limit 
the impact of this difference. The other features used in the composite 
model consist of either physical activity features collected passively from 
the smartphone or biometric data collected from the Withings devices. 
Therefore, we believe that the impact of these contaminated data on the 
performance of our model is low.

The objective of our study was to capture continuous sensor data. How­
ever, these data can only be considered reliable when participants carry 
their smartphone and have it turned on all the time. During this study, all 
participants were instructed to do so. However, data captured when the 
participant was not carrying their smartphone could not be distinguished 
from data captured when the participant was carrying the smartphone. 
Therefore, all instances in which the smartphone is not carried or turned 
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TABLE 1  Overview of all smartphone and wearable sensors used in this study and their respective 
extracted features.

Device and Sensor Features
Smartphone
Accelerometer Maximum magnitude of the acceleration: 98%
Apps Number of times an app is opened; amount of time app is open in foreground
GPS Total kilometers traveled per day; average kilometers traveled per trip; 95% maximum 

distance from home
Google Places Number of unique places visited; time spent at each unique location
Calls Number of outgoing, incoming, and missed calls; number of calls from known and un­

known contacts
Microphone Percentage of time a human voice is present
Wearables (Withings)
Watch step count Total step count; mean steps per minute; mean steps per hour; maximum steps per hour
Watch heart rate Heart rate: 5%, 50%, and 95% ranges and SD of heart rate percentage of time spent in 

resting heart rate
Watch sleep Awake as well as light and deep sleep duration (minutes); number of awake as well as 

light and deep sleep periods; time to fall asleep (minutes)
Watch physical 
activity

Soft, moderate, and hard activity duration

Blood pressure 
monitor

Systolic and diastolic blood pressure

Scale Weight (kg); muscle mass (kg); bone mass (kg); body fat (%); body water (%)
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TABLE 4  Selected features for classifying patients with facioscapulohumeral dystrophy and 
controls without facioscapulohumeral dystrophy based on the complete 6-week composite data set. 
Unstandardized estimated coefficients indicate the direction of the association between the feature 
and the classification label.

Feature category Features Unstandardized estimated coeffi-
cients

Activity Moderate activity duration -0.04
App Time spent on recreational apps -0.53
Body Weight (kg) -0.45
Location Distance from home: 95% 0.85
Time spent  
at location

Travel location 1.00
Home location 0.67
Unknown location 0.53
Health location 0.29
Public location -0.12
Social location -0.14
Commercial location -0.94

Sleep Average total sleep duration 0.65
Light sleep duration -0.35
Number of awake periods during a sleep session -0.61
Maximum total sleep duration -0.69

TABLE 5  Summary of number of selected features and the respective performance metric for each 
of the data sets used to classify the patients with FSHD from the controls without facioscapulohumeral 
dystrophy.

Dataset Number of selected 
Features

Accuracy (%) Sensitivity 
(%)

Specificity 
(%)

Matthews Correla-
tion Coefficient (%)

Composite 15 93 100 80 85
Biometric 5 57 89 0 -21
Social 10 79 90 60 52
Physical Activity 13 71 78 60 38

TABLE 2  Demographics of patients with facioscapulohumeral dystrophy (FSHD) and controls 
without FSHD (N=58).

Demographics Patients with FSHD Non-FSHD Controls
Sex, n(%)
Female 23 (61) 11 (55)
Male 15 (39) 9 (45)
Age (years), mean (SD: range) 45 (14.5; 18-64) 33 (12; 23-69)
Weight (kg), mean (SD: range) 80 (16; 52-130) 78 (18; 56-129)
BMI (kg/m2), mean (SD: range) 26 (4; 20-44) 25 (5; 19-35)
FSHD clinical score, mean (SD: range) 5 (3; 1-13) 0 (0; 0-0)
Timed Up-and-Go test (seconds), mean (SD: range) 8.8 (35; 5-15.81) 7.8(1.55; 6-12.09)

TABLE 3  Overview of data completeness. The data completeness shows what percentage of data 
was collected among the participants during the 42 days of the study; hence, in total, there should be 
2436 daily instances and 232 weekly instances.

Sensor Feature  Overall data completion N (%)
Patients with FSHD Controls without FSHD
 n (%)  N n (%) N

Microphone 
(smartphone) 

Voice activation  1181 (74) 1596  688 (81.9) 840

Accelerometer 
(smartphone) 

Phone Acceleration  1260 (78.95) 1596  656 (78) 840

Google Places 
(smartphone)  

Places  1109 (69.49) 1596  616 (73.33) 840

GPS (smartphone) Relative Location  1373 (86.03) 1596  785 (93.45) 840
App use (smartphone) Use event aggregate  1404 (87.97) 1596  779 (92.74) 840
Withings blood 
pressure monitor 

Blood pressure and 
heart rate

 1452 (91.15) 1596  630 (75) 840

Withings scale Body composition  173 (75.88) 228  88 (73.33) 120
Weight  205 (89.91) 228  108 (90) 120

Withings watch Activity duration  1505 (94.3) 1596  744 (88.57) 840
Heart rate  1181 (74) 1596  588 (70) 840
Step count  1491 (93.42) 1596  708 (84.29) 840
Sleep Summary  1408 (88.22) 1596  685 (81.55) 840
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Figure 3  Performance of the incremental classification predictions for 3 classifiers (logistic 
regression, random forest, and support vector machine). The x-axis shows the time window for 
training the classification models starting from day 1 to day 42. The error bands represent the SD of the 
classification performance for the 5-fold cross-validation.

Figure 4  Performance of 3 classifiers (logistic regression, random forest, and support vector 
machine) trained on the week 1 data and used to predict the classification diagnosis of the subsequent 
weeks of data. The error bands represent the SD of the classification performance for the 5-fold 
cross-validation.

Figure 1  Feasibility and perceived burden of remote monitoring in patients with facioscapulo-
humeral dystrophy using smartphone-based technologies.

Figure 2  Selected features for classifying patients with facioscapulohumeral dystrophy and those 
without FSHD based on the composite data set using all 6 weeks of data and the least absolute shrinkage 
and selection operator–penalized logistic regression model. Unstandardized estimated coefficients 
indicate the direction of the association between the feature and the classification label.
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Figure 5  SHAPley additive explanations (SHAP) summary plot based on a random forest classifier 
that was trained on the week 1 data. The x-axis shows the feature importance, where features are ranked 
in descending order. The y-axis shows the SHAP value that illustrates the direction of the association 
between the feature and facioscapulohumeral dystrophy severity. The color scheme reflects the 
probability of a participant being classified as a patient with facioscapulohumeral dystrophy.
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