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Introduction
Motivation

Disorders that are affected by the Central Nervous System (CNS), such as 
Parkinson’s Disease (PD) and Alzheimer’s Disease (AD), have a significant 
impact on the quality of life of patients. These disorders are often pro­
gressive and chronic, making long-term monitoring essential for assess­
ing disease progression and treatment effects. However, the current 
methods for monitoring disease activity are often limited by accessibil­
ity, cost, and patient compliance.1,2 Limited accessibility to clinics or dis­
ease monitoring devices may hinder the regular and consistent monitor­
ing of a patient’s condition, especially for patients living in remote areas 
or for those who have mobility limitations. Clinical trials incur costs 
related to personnel, infrastructure, and equipment. A qualified health­
care team, including clinical raters, physicians, and nurses, contributes 
to personnel costs through salaries, training, and administrative support. 
Trials involving specialized equipment for measuring biomarkers can sig­
nificantly impact the budget due to costs associated with procurement, 
maintenance, calibration, and upgrades. Furthermore, infrastructure 
costs may increase as suitable facilities are required for data collection 
during patient visits and equipment storage. Patient compliance poses 
challenges for disease monitoring, as some methods require patients to 
adhere to strict protocols, collect data at specific time intervals, or per­
form certain tasks that can be challenging for patients to execute. Low or 
no compliance can lead to incomplete or unreliable monitoring results, 
which in turn can hinder the reliability of the assessments. Given these 
limitations, there is a growing interest in exploring alternative approaches 
to monitoring CNS disorders that can overcome these challenges. The 
increasing adoption of smartphones and wearables among patients and 
researchers offers a promising avenue for remote monitoring.

Patient-generated data from smartphones, wearables, and other 
remote monitoring devices can potentially complement or supplement 
clinical visits by providing data during evidence gaps between visits. As 

Abstract

Background: Central nervous system (CNS) disorders benefit from ongo­
ing monitoring to assess disease progression and treatment efficacy. 
Mobile health (mHealth) technologies offer a means for the remote and 
continuous symptom monitoring of patients. Machine Learning (ML) tech­
niques can process and engineer mHealth data into a precise and multi­
dimensional biomarker of disease activity. Objective: This narrative lit­
erature review aims to provide an overview of the current landscape of 
biomarker development using mHealth technologies and ML. Addition­
ally, it proposes recommendations to ensure the accuracy, reliability, 
and interpretability of these biomarkers. Methods: This review extracted 
relevant publications from databases such as PubMed, IEEE, and CTTI. 
The ML methods employed across the selected publications were then 
extracted, aggregated, and reviewed. Results: This review synthesized 
and presented the diverse approaches of 66 publications that address 
creating mHealth-based biomarkers using ML. The reviewed publications 
provide a foundation for effective biomarker development and offer rec­
ommendations for creating representative, reproducible, and interpre­
table biomarkers for future clinical trials. Conclusion: mHealth-based 
and ML-derived biomarkers have great potential for the remote monitor­
ing of CNS disorders. However, further research and standardization of 
study designs are needed to advance this field. With continued innova­
tion, mHealth-based biomarkers hold promise for improving the moni­
toring of CNS disorders.
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more outcomes. Building a statistical model that captures the relation­
ship between these variables and the corresponding outputs facilitates 
the attainment of this understanding.9 Once this model is built, it can be 
used to predict the value of an output based on the features.

ML is a powerful tool for clinical research as it can be used to build statis­
tical models. A ML model consists of a set of tunable parameters and a ML 
algorithm that enables the generation of outputs based on given inputs 
and selected parameters. Although ML algorithms are fundamentally sta­
tistical learning algorithms, ML and traditional statistical learning algo­
rithms can differ in their objectives. Traditional statistical learning aims 
to create a statistical model that represents causal inference from a sam­
ple, while ML aims to build generalizable predictive models that can be 
used to make accurate predictions on previously unseen data.10,11 How­
ever, it is essential to recognize that while ML models can identify relation­
ships between variables and outcomes, they may not necessarily iden­
tify a causal link between them. This is because even though these models 
may achieve good performances, it is crucial to ensure that their predic­
tions are based on relevant features rather than spurious correlations. 
This enables the researchers to gain meaningful insights from ML models 
while also being aware of their inherent limitations.

While ML is not a substitute for the clinical evaluation of patients, it can 
provide valuable insights into a patient’s clinical profile. ML can help to 
identify relevant features that clinicians may not have considered, lead­
ing to better diagnosis, treatment, and patient outcomes. Additionally, ML 
can help to avoid common pitfalls observed in clinical decision making by 
removing bias, reducing human error, and improving the accuracy of pre­
dictions.12–15 As the volume of data generated for clinical trials and out­
side clinical settings continues to grow, ML’s support in processing data 
and informing the decision-making process becomes necessary. ML can 
help to uncover insights from large and complex datasets that would be 
difficult or impossible to identify manually.

To develop an effective ML model, it is necessary to follow a rigorous 
and standardized procedure. This is where ML pipelines come in. Table 1 

the promise of mobile Health (mHealth) technologies is to provide more 
sensitive, ecologically valid, and frequent measures of disease activity, 
the data collected may enable the development and validation of novel 
biomarkers. The development of novel ‘digital biomarkers’ using data 
collected from electronic Health (eHealth) and mHealth device sensors 
(such as accelerometers, GPS, and microphones) offers a scalable oppor­
tunity for the continuous collection of data regarding behavioral and 
physiological activity under free-living conditions. Previous clinical stud­
ies have demonstrated the benefits of smartphone and wearable sensors 
to monitor and estimate symptom severity associated with a wide range 
of diseases and disorders, including cardiovascular diseases,3 mood dis­
orders,4 and neurodegenerative disorders.5,6 These sensors can capture 
a range of physiological and behavioral data, including movement, heart 
rate, sleep, and cognitive function, providing a wealth of information that 
can be used to develop biomarkers for CNS disorders in particular. These 
longitudinal and unobtrusive measurements are highly valuable for clin­
ical research, providing a scalable opportunity for measuring behav­
ioral and physiological activity in real-time. However, these approaches 
may carry potential pitfalls as the data sourced from these devices can be 
large, complex, and highly variable in terms of availability, quality, and 
synchronicity, which can therefore complicate analysis and interpreta­
tion.7,8 Machine Learning (ML) may provide a solution to processing het­
erogenous and large datasets, identifying meaningful patterns within the 
datasets, and predicting complex clinical outcomes from the data. How­
ever, the complexities involved in developing biomarkers using these new 
technologies need to be addressed. While these tools can aid the discov­
ery of novel and important digital biomarkers, the lack of standardization, 
validation, and transparency of the ML pipelines used can pose challenges 
for clinical, scientific, and regulatory committees.

What Is Machine Learning

In clinical research, one of the primary objectives is to understand the 
relationship between a set of observable variables (features) and one or 
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Methods
Information Sources and Search Strategy

Given the wide range of study designs and clinical populations that use 
smartphones and wearables to collect data, we used the Joanna Briggs 
Institute (JBI) guidelines to develop a search strategy.16 Based on an ini­
tial limited search of online databases for clinical trials that report using 
mHealth devices and ML, we developed a custom keyword strategy and 
performed an in-depth search in PubMed, IEEE Xplore, and CTTI (Table 2). 
The search terms for the CNS disorder terms were based on the National 
Library of Medicine’s CNS MeSH descriptor data.17 The relevant papers 
were selected based on the title and abstract. Finally, other literature 
review studies that explore the same questions were reviewed; the refer­
ences cited by these studies were then identified and reviewed if they met 
our criteria. The date range for the search was between 1 January 2012 and 
31 December 2022. The search was conducted on 7 January 2023.

Inclusion Criteria

The authors adopted the Population, Intervention, Comparator, Out­
comes, Study type (PICOS) framework to define the inclusion and exclu­
sion criteria (Table 3).13 The studies included were restricted to those 
involving participants diagnosed with CNS disorders who were remotely 
monitored under free-living conditions. The intervention and device cri­
teria were limited to passive data collected from smartphones and other 
non-invasive remote monitoring sensors, whereas data collected using 
active engagement from participants, such as disposable blood tests 
or small scales, were excluded. As we chose to focus on ML pipelines, we 
selected studies in which a statistical model was used to analyze a data­
set and could potentially be used to generate future predictions using an 
independent dataset. Therefore, traditional statistical models such as 
linear or logistic regression were included, but statistical models such as 
ANOVA and correlation analyses were not included. Further, as the focus 

showcases an exemplary ML pipeline, which serves as a systematic frame­
work for automating and standardizing the model generation process. 
The pipeline encompasses multiple stages, as defined by the authors, 
to ensure an organized and efficient approach to model development. 
First, defining the study objective guides the subsequent stages and 
ensures the final model meets the desired goals. Second, raw data must 
be preprocessed to remove errors, inconsistencies, missing data, or out­
liers. Third, feature extraction and selection identify quantifiable charac­
teristics of the data relevant to the study objective and extracts them for 
use in the ML model. Fourth, ML algorithms are applied to learn patterns 
and relationships between features, with optimal configurations iden­
tified through iterative processes until desired performance metrics are 
achieved. Finally, the model is validated against a new dataset that is not 
used in training to ensure generalizability. Effective reporting and assess­
ment of ML procedures must be established to ensure transparency, reli­
ability, and reproducibility.

Objectives

The objective of this narrative literature review is to provide an overview 
of the ML practices used in studies that use mHealth technologies and ML 
to develop novel biomarkers for clinical trials. In this review, each com­
ponent of the ML pipeline has a dedicated section. Based on the results 
obtained from the review process, each ML component section provides a 
comprehensive analysis and discussion of the most common and notable 
practices. These sections delve into the motivations behind these prac­
tices, their limitations, and their overall impact on the ML pipeline. This 
review will not provide precise recommendations for best practices, as 
much of the research in this area is new and quickly evolving. Rather, the 
recommendation section discusses the approaches for standardization 
and validation procedures that are necessary for the development of ML 
biomarkers to ensure the effectiveness and acceptance of these biomark­
ers by clinical, scientific, and regulatory committees.
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(BD) (N = 11), and Unipolar Depression or Major Depressive Disorder (MDD) 
(N = 9). The sample size of the selected studies was heterogenous, rang­
ing from 7 to 6221 participants (Figure 3). Overall, our review provides a 
comprehensive overview of the characteristics of studies that have uti­
lized mHealth devices and ML techniques, which can help inform future 
research in this field. In the following sections, we addressed how the 
selected studies approached the construction of their ML pipelines.

Missing and Outlier Data

Missing and outlier data are commonly encountered problems for remote 
sensing clinical trials. Missing data can be the result of device charging fre­
quency, device robustness, and participant compliance.18 Outliers can be 
the result of sensor or device dysfunction or malfunction, incorrect data 
entry, and incorrect classifications.19 Data preprocessing, which refers 
to the dropping or manipulation of data, is required for identifying and 
removing redundant or irrelevant data and for cleaning the data prior to 
analysis. Without preprocessing, learning from an imperfect dataset can 
influence the prediction accuracy of the models.20 In this section, we 
address how the selected studies preprocessed their raw data by treating 
their missing data and outliers, and the limitations of doing so.

Handling of Missing Data

Missing data can be Missing Completely at Random (MDD), Missing at Ran­
dom (MDD), and Missing Not at Random (MNAR).21 MDD assumes that each 
observation has the same probability of being included or being missed; 
therefore, there is no difference in the characteristics between partici­
pants or observations without missing data and those with missing data. 
For example, data may be missed due to the battery of the smartphone 
running out. MDD assumes that missing data may have systematic differ­
ences between the missing and non-missing data; however, the cause 
of the missing data can be explained by the non-missing data. For exam­
ple, a smartphone may have more missing values when the smartphone 

was on the development and validation of ML models, we did not include 
studies that did not report on model performance.

Data Extraction

Two authors conducted the data extraction following the inclusion crite­
ria, and the results were reviewed by the remaining authors. Data relat­
ing to the database source, title, DOI, publication year, trial setting or 
scenario, objective, devices used, data collection period, number of par­
ticipants, inclusion of healthy controls, data processing steps, feature 
engineering, feature selection, machine learning models used, hyperpa­
rameters and hyperparameter optimization, model performance, and 
validation procedure were extracted. The comprehensive data extrac­
tion and review conducted by the authors encompassed various essen­
tial aspects of the studies, ensuring a thorough analysis of the database 
source, trial details, data processing steps, machine learning models, and 
validation procedures.

Results
Study Selection

Our initial keyword search revealed a total of 2310 articles that utilized 
digital phenotyping devices, such as smartphones and wearables, in a 
clinical study and applied ML techniques. After screening the titles and 
abstracts based on our predefined criteria, we narrowed down the arti­
cles to 66 studies, which were used for our analysis. Figure 1 provides an 
overview of the complete selection process.

Study Characteristics

For each of the 66 studies, we extracted information about the clinical 
population and the ML pipeline that was used to develop the digital bio­
markers. We found that only half of the studies included healthy controls 
(N = 34). As seen in Figure 2, Parkinson’s disease (PD) (N = 27) was the most 
prevalent disorder identified in our search, followed by Bipolar Disorder 
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observations that were most likely the result of measurement errors.36 In 
terms of the handling of outliers, we only identified six studies that explic­
itly stated that outliers were excluded.26,30,51–53,56

Feature Engineering
Feature Scaling

Feature scaling is used to normalize the ranges of the features in a data­
set.57 Several feature engineering techniques and ML models (such as 
Principal Component Analysis and Linear Regression) calculate the dis­
tances between two observations. If one feature has a broader range of 
values compared to the other features, the calculated distances will be 
heavily influenced by this feature.58 Therefore, the ranges of all the fea­
tures should be normalized or standardized so that each feature is appro­
priately and proportionally considered with respect to the estimated 
distances.57 Feature normalization is a common scaling method for res­
caling the features into a bounding range using the minimum and maxi­
mum values, for example, between 0 and 1. Normalization is an ideal 
approach when the distribution of the data is not Gaussian, as normal­
ization preserves the original distribution of the data. However, normal­
ization uses minimum and maximum values to define ranges. This makes 
the method sensitive to outliers.57,59 Alternatively, feature standardiza­
tion, also known as z-score normalization, is a method for rescaling the 
data to fit a standard normalized distribution by using the mean and stan­
dard deviation and does not define a bounding range. Consequently, the 
standardization approach is not sensitive to outliers as it has no bounding 
range.57,59 Normalization, log-transformation, and standardization have 
been reported in a small selection of the selected studies.26,27,36,60,61

Expert Feature Engineering

Feature engineering is the process of constructing (new) features from the 
raw data or existing features while maintaining the original patterns and 
information in the data.62 The newly engineered features can be added 
to or replace features in the original dataset. Engineering of the features 

battery is low. If the battery percentage is known during the data acqui­
sition, researchers can verify the probability of acquiring missing data 
depending on the battery percentage. MNAR assumes that missing data 
are caused by unknown reasons. For example, smartphone sensors may 
be gradually worn down, which therefore creates more missing data over 
time. The type of missing data present in the dataset influences whether a 
researcher should ignore, exclude, or impute the missing data.

Among the selected studies, we found that only 21 of the studies 
reported the quantity of missing data acquired. Only 29 studies reported 
how they handled their missing data. We found that complete-case anal­
ysis and imputation were the most popular. We identified 14 studies that 
report using complete-case analysis.22–36 Complete-case analysis (other­
wise known as listwise deletion) is the deletion of an observation involv­
ing one or multiple elements of missing data.26,37,38 While complete-case 
analysis is the simplest approach to handle missing data, it does reduce 
the sample size and statistical power of the analysis 39 and can potentially 
lead to bias if the data are not MDD.40 Imputation is the statistical process 
of replacing missing data with substituted inferred values.41 We identified 
studies that imputed their missing data using linear interpolation,29,42,43 
forward filling,44−1,45 zeros, median, means, and the most frequent 
value in the column.24,46 The advantage of imputation is that it enables 
researchers to use all observations in the dataset. However, the inclusion 
of imputed values can lead to a false impression of the number of com­
plete cases and reduce the variance in the dataset.47–49

Identification of Outliers

Aggarwal’s Data mining: the textbook states that it is the subjective defi­
nition of the researcher that defines an outlier.50 In cases where the outlier 
data were discussed in the selected studies, we found that researchers 
customized their definition of outliers by either defining a range of accept­
able values 32 or by defining a threshold based on the mean and stan­
dard deviation.51–53 Visual inspection by the researchers or the optimi­
zation of different threshold mechanisms can both be used to define the 
boundaries of normal or outlier data.54,55 Maleki et al. defined outliers as 
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seizure detection,70 tremor detection,71 and FOG detection.72 In particu­
lar, Tougui et al. built 138 voice related features extracted from the ceps­
tral, frequency, and time domains.24 In sum, time series data collected 
from wearable sensors can be used to monitor the physical activity of 
study participants, but signal processing is necessary to extract meaning­
ful features. Different feature extraction techniques can be used depend­
ing on the sensor type, signal quality, and study objectives. The analysis 
of these features is not mutually exclusive, and studies that use multiple 
domains for different clinical applications have been identified.

Principal Component Analysis

A common linear dimensionality reduction technique for feature engi­
neering and selection is Principal Component Analysis (PCA).28,73,74 PCA 
is used to sufficiently explain a high-dimensional dataset through a few 
principal components and, therefore, to reduce a high-dimensional data­
set to one of fewer dimensions.75 To this purpose, PCA converts a set of 
correlated features into a set of uncorrelated features by utilizing orthog­
onal transformation.75 The principal components enable a reduction in 
the feature space by creating a linear combination of the original features, 
which consequently reduces the storage space and reduces the learn­
ing time. Therefore, the periodic components within a concurrent time 
series dataset can be isolated using PCA, which can subsequently be used 
to identify any underlying patterns within the dataset. It is important to 
note that PCA assumes that the data are normally distributed and is sensi­
tive to feature variance.75,76 Consequently, features with larger ranges will 
dominate features with smaller ranges. To make the variables compara­
ble, transformation of the data prior to PCA is required.75,76 Of the studies 
selected, PCA was used to engineer and select features from times series 
data sourced from waist-worn triaxial accelerometers and wearable 
activity trackers.28,73,74 However, the limitations of PCA are its sensitivity 
to missing data and outliers and the limited interpretation of the original 
features. Hence, this observation highlights the need for thorough data 
preprocessing prior to using PCA.

can speed up the model performance, improve learning accuracy, and 
ease the interpretability of the model. The latter is particularly impor­
tant for clinical trials.63 Features can be engineered manually by relying 
on domain-knowledge or automatically by using statistical models, such 
as Principal Component Analysis (PCA) and Deep Learning (DL).62–64 All 
features aim to increase the separability between the classes or signals, 
which in turn reduces noise in the dataset. While expert engineered fea­
tures are easy to interpret and explain and have been widely used in the 
development of digital biomarkers, these features are typically task- or 
population-dependent. Due to intra-class variability, some clinically rel­
evant characteristics may be exhibited differently by different individuals 
(such as different symptom profiles among patients with the same diag­
nosis). Furthermore, expert engineered features may not be sufficient for 
representing the most important characteristics of complex patterns and 
can be time-consuming to acquire, especially when handling large-scale 
datasets.65,66 As clinical data has expanded in terms of diversity, availabil­
ity, and complexity, the aforementioned techniques may be insufficient 
for developing generic features. In the following sections, we address the 
notable and generic procedures used to perform feature engineering.

Signal Processing

To monitor changes in the physical activity of study participants using 
time series data collected from wearable sensors, signal processing is 
necessary to detect, clean, and analyze the components of interest. The 
feature extraction technique used is influenced by the sensor type, study 
objectives, and signal quality. Typically, signal features are extracted from 
the frequency, time, or cepstrum domain.67 Frequency domain features 
show the prominence of a signal within a given frequency, whereas time-
domain features show the changes in the signal of time. Cepstrum domain 
features represent the rate of change in the different frequency bands. 
The analysis of the frequency, time, or cepstrum domain features is not 
mutually exclusive. We identified studies that use both time- and fre­
quency-based features for the estimation of gait speed,68 speech-tasks,69 
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Four studies used DL to engineer features using time series data.23,85–87 
These models were used to extract gait features from accelerometer data 
85,87 and tremor characteristics from IMU data.23,86 However, it should be 
noted that the DL models do not always outperform the ‘shallow learning’ 
models, as shown in a study by Juen et al. in which smartphone acceler­
ometers were used to predict natural walking speed and distance during a 
six-minute walk test.85

Feature Selection

In recent decades, high-dimensional clinical datasets have relied on fea­
ture selection.88 Feature selection is the process of selecting a subset 
of the most informative features that will be processed by the ML algo­
rithm.89 Reducing the features for analysis has both computational and 
practical benefits. Selecting features can limit storage requirements, 
increase the algorithm processing speed, increase the interpretability of a 
model, and improve model performance.

Overfitting and Underfitting

Overfitting and underfitting are common pitfalls for ML models. Overfit­
ting refers to when a ML model fits too well to its training dataset and is 
unable to generalize its patterns to unseen data. This problem can occur 
when the training dataset is small and not representative of the over­
all potential data distribution. Additionally, if the training dataset con­
tains many outliers, the ML model may also fit the outlier data. Underfit­
ting occurs when the trained ML model is too simple; therefore, it cannot 
identify the relationship between the features and the outputs. Underfit­
ted models will perform poorly for both the train and validation datasets. 
To address overfitting, reducing the number of features considered by the 
model or updating the model architecture to include fewer features can 
be effective.90 Underfitting can be improved by adding more features con­
sidered by the model or by updating the model architecture to increase 
the complexity of the feature space.90

Clustering

A clustering algorithm is a common feature engineering method that 
assigns similar observations to a single cluster and assigns dissimilar 
observations to another.77 While PCA compresses the features into prin­
cipal components, clustering compresses the individual observations 
into clusters. The grouping of similar observations can improve the mod­
el’s ability to discriminate between classes.78 Clustering algorithms, 
more specifically DBSCAN and K-means clustering, have been deployed 
in smartphone GPS systems and Wi-Fi-network sensors to extract mean­
ingful location features such as frequented location clusters,79 loca­
tion patterns,80 and mobility patterns.81 These studies demonstrate that 
clustering algorithms are a powerful method for reducing the number of 
observations into a smaller number of artificial variables that account for 
the variance within the dataset.

Deep Learning

The performance of ML models can be limited by the development of man­
ual and arbitrary features, and this potential obstacle can be overcome by 
DL algorithms. DL algorithms eliminate the need for manual feature engi­
neering, as the DL layers can translate the data into more compact and 
intermediate abstractions of the data, which in turn can be used as fea­
tures to predict the final output.82 While DL can reduce the need for manual 
data preprocessing and feature extraction, which can potentially improve 
the generalizability and robustness of a model, the interpretation of the 
DL model is difficult, as the abstracted features may not be explainable by 
clinicians. However, it is important to note that the discriminative power 
of the DL-derived abstractions is strongly influenced by the architecture 
of the DL algorithm, which is also dependent on the trial-and-error pro­
cess.59 Due to DL’s representation learning, DL is data-hungry, and there­
fore requires more data than other ML algorithms.83,84 For clinical trial data, 
because of technological limitations and small sample sizes, there may not 
be enough data to train a sufficiently representative DL model.76,83
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speech-related features and used Relief to select 66 most predictive vocal 
biomarkers for the classification of PD.103 Rodriguez-Molinero used Relief 
to select frequency features that were subsequently used to predict gait 
disturbances among PD patients.104 Overall, Relief has demonstrated its 
effectiveness in selecting relevant features in various studies related to 
the prediction of PD using high-dimensional clinical datasets.

Embedded Methods

The embedded method is a feature selection technique integrated into 
the ML algorithm itself and is commonly seen in penalized regression.105 
Penalized regression algorithms aim to learn the optimal coefficients for 
each feature by minimizing its loss function. Regularization (also known 
as penalization) limits the learning process of the model by increasing the 
penalty of the loss function.106 The two common penalized regression 
methods, identified in the selected studies, are LASSO (also known as L1 
penalization) (N = 9) 22,24,29,33,42,95,100,101,107,108 and Ridge (L2 penalization) 
(N = 2).109,110 An advantage of LASSO is that it eliminates non-informative 
features by reducing their coefficients to zero. The first limitation of LASSO 
is that, if the number of features f is greater than the number of observa­
tions o, LASSO will select a maximum of o predictors as non-zeros, regard­
less of the relevance of other features. The second limitation is that LASSO 
also suffers from collinearity; hence, if two or more variables are highly 
correlated, then LASSO will randomly select one feature and penalize the 
other correlated features. A disadvantage of Ridge is that it only reduces 
the weights of the non-informative features by reducing their coefficients 
towards zero, but it never reduces the number of variables. Therefore, 
all predictors are included in the final model. However, because of this 
approach, Ridge protects ML models from overfitting.111

Wrapper Methods

Wrapper methods rely on a stand-alone model to select features, but the 
performance of the selected features is reflected in the performance of 
the trained model.112 The wrapper method algorithms tend to be greedy 

Feature selection identifies the most important features in the dataset 
and eliminates the irrelevant ones, which thereby reduces noise. How­
ever, it is important to strike a balance, as strict feature selection may 
remove important signals from the data. Therefore, selecting the optimal 
set of features is important for preventing over- and underfitting. In the 
following sections, we will elaborate on the three general methods of fea­
ture selection that are suitable for ML models.75

Filter Methods

Filter methods are used during preprocessing prior to training the ML 
model. Filtering involves removing features based on domain knowledge, 
missing data, low variance, or correlation.89,91,92 As filter methods are inde­
pendent of any model that is to be used in later steps, they are typically 
faster to implement and reduce the need for repeating feature selection 
for different ML models. In our selected studies, we found five studies that 
used Analysis of Variance (ANOVA), Pearson’s Correlation, or Spearman’s 
Correlation to identify features that were statistically significant predictors 
of the outcomes.24,93–96 p-value based feature selection, while commonly 
used in clinical studies, is not always suitable for training a ML model. The 
use of p-values to identify statistically significant features was a popular 
approach that relied on the belief that insignificant features were not infor­
mative. However, important features can be missed when sample sizes are 
small. Furthermore, p-values can be biased towards low values due to the 
increased risk of type 1 errors during multiple comparisons, which in turn 
increases the probability of random variables being included into the final 
statistical model.97,98 Additionally, p-value based feature selection meth­
ods may be based on certain assumptions that may not be applicable to 
ML models, such as assuming that the distribution of scores for the groups 
among the independent variables are the same.99

We wanted to highlight one filtering method identified in our selected 
studies: Relief.100 Relief is a feature selection technique that also ranks 
features and selects only the top-scoring features; however, it is nota­
bly sensitive to feature interactions.101,102 Yaman et al. first obtained 177 
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Supervised ML algorithms use labeled data to map the patterns within a 
dataset to a known label, while unsupervised ML algorithms do not.123 
Rather, the unsupervised ML algorithms learn the structure present 
within a dataset without relying on annotations. Supervised learning can 
be used to automate the labelling process, detect disease cases, or pre­
dict clinical outcomes (such as treatment outcomes). There are scenar­
ios when experts or participants can provide labelled data; however, it can 
become labor-intensive or time-consuming to label every observation. 
For example, a supervised learning algorithm trained to classify human 
sounds can be used to automatically annotate and quantify hours of 
coughs 124 and instances of crying.125 These algorithms can also be used 
to differentiate between clinical populations and control participants 95 to 
identify known clinical population subtypes 23 or classify a clinical event 
(such as a seizure or tremor).126 The majority of our selected studies (N = 
38) used a clinician to provide the label data. Some studies (N = 22) used 
a combination of a clinician and self-reported label data, and six studies 
solely relied on self-reported assessments. Unsupervised ML algorithms 
can be used to investigate the similarities and differences within a dataset 
without human intervention. This makes it the ideal solution for explor­
atory data analysis, subgroup phenotype identification, and anomaly 
detection. Among digital phenotyping studies, unsupervised learning has 
been used to identify location patterns 81 and classify sleep disturbance 
subtypes using wrist-worn accelerometer data.127

It is important to recognize that unsupervised and supervised meth­
ods are not mutually exclusive, and they can be effectively combined. For 
instance, unsupervised methods can be employed to extract a meaning­
ful latent representation of the input data. Subsequently, these latent vec­
tors, along with the original inputs, can be used as inputs for a supervised 
model. This type of approach is commonly observed when applying tech­
niques such as PCA, clustering, or other dimensionality reduction meth­
ods.29,73,74,128 By combining unsupervised and supervised methods, valu­
able information can be extracted from the data and used to enhance the 
performance and interpretability of the overall model.

search algorithms that aim to select the optimal feature subset by itera­
tively selecting the features based on ML performance. As the wrapper 
method is an iterative process and the model must be evaluated on each 
feature subset combination, this method is computationally expensive. 
Wrapper-based feature selection can be completed by ranking the fea­
tures in terms of relative importance using a ML model (such as decision 
trees or random forests).88,101,113 We identified a handful of feature rank­
ing methods that include two stepwise regression techniques: Forward 
Selection and Backwards Elimination,29,36,52,114–116 as well as Recursive 
Feature Selection (RFE).30,117 Forward selection starts the modelling pro­
cess with zero features and adds a new feature to the model incremen­
tally, each time testing for statistical significance. Backwards elimination 
starts the modelling process with all features and incrementally removes 
each feature to evaluate its relative importance in predicting the model 
output.97,118 RFE fits a model, ranks the features, and removes the least 
informative features and continues to remove features until a predefined 
number of features is met.64,119,120 Senturk et al. illustrated that RFE-based 
feature selection increased the prediction accuracy of ANN, CART, and SVM 
when using vocal data to classify a PD diagnosis.121

Machine learning algorithms

ML algorithms build a statistical model based on a training dataset, which 
can subsequently be used to make predictions about a new, unseen data­
set. ML algorithms have been used in a wide variety of clinical trial appli­
cations, such as the classification of a diagnoses, classification of physical 
or mental state (such as a seizure or mood), and the estimation of symp­
tom severity. Within the realm of clinical research, ML algorithms can be 
broadly divided into two learning paradigms: supervised and unsuper­
vised learning.122 In this section, we will discuss the model objectives of 
supervised and unsupervised learning and the specific ML models used to 
achieve these model objectives.
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to predict a class or value.133 Ensemble learning algorithms use multiple 
ML algorithms to obtain a prediction.134 Tree-based models have several 
benefits. As each tree is only based on a subset of features and data and 
because they make no assumptions about the relationship between the 
features and distribution, they are not sensitive to collinearity between 
features, can ignore missing data, and are less susceptible to overfitting 
(for multiple trees), making the model more generalizable.135 Another 
advantage of RF and DT models is that they can support linear and nonlin­
ear relationships between the dependent and independent variables.136 
Further, as the design of the RF models can be interpreted in terms of fea­
ture importance and proximity plots, the interpretability of the RF model 
is feasible. However, a limitation of using tree-based models is that small 
changes in the data can lead to drastically different models. Additionally, 
the more complicated a tree-based model becomes, the less explainable 
a model becomes. However, pruning the trees can help to reduce the com­
plexity of the model.

According to the selected studies, RF is a versatile and powerful model 
used for classification and regression tasks across multiple datatypes and 
populations. RF models have been used for the classification of diagno­
ses among PD patients,107,110 Multiple Sclerosis,34,118 and BD and unipo­
lar depressed patients.45,61 It is also a popular classification model for the 
classification of states or episodes, such as the detection of flares among 
Rheumatoid Arthritis or Axial Spondylarthritis patients 32 and tremor 
detection among PD patients,137 to quantify physical activity among cere­
bral palsy patients 138 and detect the moods of BD patients.69,139 RF regres­
sion algorithms have also been used to predict anxiety deterioration 
among patients who suffer with anxiety.140

Support Vector Machines

A Support Vector Machine (SVM) is a supervised algorithm that is used for 
classification and regression tasks. The objective of a SVM is to identify 
the optimal hyperplane based on the individual observations, also known 
as the support vectors. For SVM regression, the optimal hyperplane 

In clinical research, supervised ML algorithms have been used to classify 
class labels or estimate scores. Classification algorithms learn to map 
a new observation to a predefined class label. These algorithms can be 
used to classify patient populations and patient population subtypes and 
identify clinical events. Regression algorithms learn to map an observa­
tion to a continuous output. These algorithms are commonly used to esti­
mate symptom severity,129 quantify physical activity, and forecast future 
events.130 Among the selected papers that were focused on the classifica­
tion of a diagnosis or state, the four most common algorithms were Ran­
dom Forest, Support Vector Machine, Logistic Regression, and k-Nearest 
Neighbors (Figure 4). Some additional classification algorithm families 
identified were Naïve Bayes, Ensemble-based methods (including Deci­
sion Trees, Bagging, and Gradient Boosting), and Neural Networks (such 
as Convolutional, Artificial, and Recurring Neural Networks). The three 
most common algorithms for the regression focused papers were Lin­
ear Regression (including linear mixed effects models), Support Vector 
Machine, and k-Nearest Neighbors (Figure 4). We found that most studies 
only considered or reported a single ML algorithm (N = 32). Additionally, 29 
of the studies considered or reported two to five ML algorithms, and the 
remaining 5 studies considered six or more. The following section pro­
vides an overview of the most widely used machine learning models, their 
properties, advantages, and disadvantages. In addition, we discuss some 
notable off-the-shelf ML approaches and some custom-built ML methods 
such as transfer learning, multi-task learning, and generalized and per­
sonalized models.

Tree-Based Models

A Decision Tree (DT) is a supervised non-parametric algorithm that is used 
for both classification and regression. A DT algorithm has a hierarchical 
structure in which each node represents a test of a feature, each branch 
represents the result of that test, and each leaf represents the class label 
or class distribution.131,132 A Random Forest (RF) algorithm is a super­
vised ensemble learning algorithm consisting of multiple DTs that aims 
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The most popular application for k-NN algorithms is for wearable-based 
time series data. K-NN classification models have been used to classify PD 
and healthy controls,24 classify tremor severity,147 predict acute exacer­
bations of chronic obstructive pulmonary disease (AECOPD),44 and iden­
tify mood stability among BD and MDD patients.33,69,148 Using wearable 
data, k-NN regression models have been used to predict the deterioration 
of symptoms associated with anxiety disorder.140

Naïve Bayes

A Naïve Bayes (NB) classifier is a supervised multi-class classification algo­
rithm. NB classifiers calculate the class conditional probability—the prob­
ability that a datapoint belongs to a given class in the data.141,149 NB clas­
sifiers are computational efficient algorithms; thus, they are suitable for 
real-time predictions, scale well for larger datasets, and can handle miss­
ing values. A limitation of NB is that it assumes that all features are con­
ditionally independent; hence, it is recommended that collinear features 
are removed in advance. Another limitation is that when new feature-
observation pairs do not resemble the data in the training data, the NB 
assigns a probability of zero to that observation. This approach is partic­
ularly harsh, especially when dealing with a smaller dataset. Hence, the 
training data should represent the entire population.

As NB classifiers help form classification models, we found that NB 
classifiers have been used for the classification of tremors or for freezing 
gait among PD patients,52 as well as to classify flares among Rheumatoid 
Arthritis and Axial Spondylarthritis patients 32 and classify bipolar epi­
sodes and mood stability among BD and MDD patients.33,69,148

Linear and Logistic Regression

A Linear Regression model is a supervised regression model that predicts 
a continuous output. It finds the optimal hyperplane that minimizes the 
sum of squared difference between the true data points and the hyper­
plane. A Logistic Regression model is a supervised classification model 
that can be used for binomial, multinominal, and ordinal classification 

represents the minimal distance between the hyperplane and the sup­
port vectors. Whereas for SVM classification, the objective is to find 
the hyperplane that represents the maximum distance between two 
classes.141 The hyperplanes can separate the classes in either a linear or 
non-linear fashion.136 Given that SVM are influenced by the support vec­
tors closest to the hyperplanes, SVM are less influenced by outliers, mak­
ing them more suitable for extreme case binary classification. The perfor­
mance of a SVM can be relatively poor when the classes are overlapping or 
do not have clear decision boundaries. This makes SVM less appealing for 
classification tasks as inter class similarity is low. SVM are computation­
ally demanding models as they compute the distance between each sup­
port vector; hence, SVM do not scale well for large datasets.142

SVM classifiers have been used to classify clinical populations (e.g., 
facial nerve palsy and their control participants).143 SVM classifiers have 
also been used to classify events or states, such as detecting gait among 
PD patients 104 and classifying seizures among epileptic children.144 
We identified studies that used SVM regression to estimate motor fluc­
tuations and gait speed among PD and Multiple Sclerosis patients, 
respectively.74,145

k-Nearest Neighbors

A k-Nearest Neighbor (k-NN) algorithm is a non-parametric supervised 
learning approach that can be used for multi-class classification and 
regression tasks. Classification k-NN algorithms determine class member­
ship by the plurality vote of its nearest neighbors. They can estimate the 
continuous value of an output by calculating the average value of its near­
est neighbors.136 Given this, the quality of predictions is not only depen­
dent on the amount of data but also on the density of the data (the number 
of points per unit). K-NN is simple to implement, intuitive to understand, 
and robust to noisy training data. However, the disadvantage is that k-NN is 
computationally slow when it is faced with large multi-dimensional datas­
ets. Further, k-NN does not work well with imbalanced datasets, as under- 
or over-represented datapoints will influence the classification.146



Development of Machine Learning – Derived mHealth Composite Biomarkers for Trial@Home Clinical Trials46 47Part i /Chapter 2

of multiple training algorithms. However, the disadvantages of NN include 
increased computational burden, reduced explainability and interpret­
ability (as NN are ‘black box’ in nature), and the fact that NN are prone to 
overfitting.154 However, it is important to highlight the growing number 
of studies that specifically explore explainable deep learning approaches 
for biomarker discovery and development. Studies utilizing methodolo­
gies such as LIME (LIME Tabular Explainer), SHAP (SHAPley Additive exPla­
nations), and other visual inspections of feature distribution and impor­
tance have aided clinicians in understanding the model mechanisms. 
These approaches also provide patient-specific insights by describing 
the importance of each feature, which may, in turn, facilitate personalized 
treatment opportunities.90,155–157

The most popular applications for neural networks were for the classi­
fication of a diagnosis or classification of a state or event. The most popu­
lar application is the detection of tremors among PD patients.23,52,86,137,158 
NN have been used to classify unipolar and bipolar depressed patients 
based on motor activity,45,159 estimate depression severity,159 forecast 
seizures,160 and classify a treatment response using keyboard patterns 
among PD patients.161

Transfer Learning

Transfer learning (also known as domain adaption) refers to the act of 
deriving the representations of a previously trained ML model to extract 
meaningful features from another dataset for an inter-related task.162 One 
applicable scenario is the training of a supervised ML model on data col­
lected in a controlled setting (such as in a lab or clinic). The performance 
of the model may suffer when applied to a dataset collected under free-
living conditions. Rather than developing a new model trained solely on 
a free-living condition dataset, transfer learning can use patterns learned 
from the controlled setting dataset to improve the learning of the pat­
terns from the free-living conditions dataset.

Transfer learning can also be a valuable technique for enhancing the 
utilization of limited or rare data.163 One practical application is to employ 

tasks. Logistic Regression classifies observations by examining the out­
come variables on the extreme ends and determines a logistic line that 
divides two or more classes.136 Linear and Logistic Regression are popu­
lar in algorithms as they are easy to implement, efficient to train, and easy 
to interpret. However, a limitation of both models is that they make multi­
ple assumptions, e.g., that a solution is linear, the input residuals are nor­
mally distributed, and that all features are mutually independent.150 Mul­
ticollinearity, the correlation between multiple features, and outliers 
will inflate the standard error of the model and may undermine the sig­
nificance of significant features.151 Further, outliers that deviate from the 
expected range of the data can skew the extreme bounds of the probabil­
ity, making both algorithms sensitive to outliers in the dataset.150

Linear Regression has been used to quantify tremors among Essential 
Tremor (ET) patients 116 and to estimate motor-related symptom sever­
ity among PD patients.31,93 It has also been used to forecast convergence 
between body sides for Hemiparetic patients.130 Logistic Regression was 
a popular approach for classifying PD diagnosis,107,110 Post-Traumatic 
Stress Disorder,109 and distinguishing fallers and non-fallers.152 Logistic 
Regression has been used to classify drug effects, such as predicting the 
pre- and post-medication states among PD patients.22

Neural Networks

Neural Networks (NN), also known as Artificial Neural Networks (ANN), 
can be used for unsupervised and supervised classification and regres­
sion tasks.153 NN consists of a collection of artificial neurons (or nodes). 
Each artificial neuron receives, processes, and sends the signal to the 
artificial neuron connected to it. The neurons are aggregated into multi­
ple layers, and each layer performs different transformations on the sig­
nal. The signal first travels from the input layer into the output layer while 
possibly traversing multiple hidden layers in between. NN offer several 
advantages, such as the ability to detect complex non-linear relation­
ships between features and outcomes and work with missing data, while 
it also requires less preprocessing of the data and offers the availability 
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tasks share no mutual information or if the information of tasks are con­
tradictory.169 MTL models have been used to simultaneously model data 
sourced from two separate sources or to model multiple outcomes.170,171 
For example, Lu Et al. explored the use of MTL to jointly model data col­
lected from two different smartphone platforms (iPhone and Android) to 
jointly predict two different types of depression assessments (QIDS and 
a DSM-5 survey).79 They illustrated that the classification accuracy of the 
MTL approach outperformed the single-task learning approach by 48%; 
thus, the classification model benefited from learning from observations 
sourced from multiple devices.

Generalized versus Personalized

ML algorithms can be trained on population data or individual subject 
data. Generalized models, which are trained on population data, are fed 
data from all participants for the purpose of general knowledge learn­
ing. Conversely, personalized models are trained on an individual’s data 
and take into consideration individual factors such as biological or life­
style-related variations.172 We have adopted these terms from Kahdemi 
et al.’s study, in which they developed generalized and personalized mod­
els for sleep-wake prediction.173 The heterogenous nature of each popula­
tion or individual can be a potential hinderance for generalizable models. 
A single individual’s deviation from the ‘norm’ may be viewed as a source 
of ‘noise’ in a generalized model. For example, patients with mood dis­
orders such as MDD and BD have large inter-individual symptom variabil­
ity. Abdullah Et al., reliably predicted the social rhythms of BD patients 
with personalized models using smartphone activity data.30 Cho et al. 
compared the mood prediction accuracy of personalized and general­
ized models based on the circadian rhythms of MDD and BD participants.38 
Their studies illustrated that their personalized model predictions were, 
on average, 24% more accurate than the generalized models. These stud­
ies lay the groundwork for developing personalized models that are more 
sensitive to individual differences.

pretraining on abundant control data and subsequently finetune the 
model on the specific population of interest to improve the model’s per­
formance.163–165 This approach not only optimizes the efficiency of utiliz­
ing scarce data but also facilitates model personalization. By adapting a 
pretrained model to individual characteristics or preferences, it becomes 
possible to create personalized models that better cater to unique needs 
or circumstances. Transfer learning thus offers a powerful means to lever­
age existing knowledge and make the most of available data resources, 
enhancing both the efficiency and personalization of biomarkers.

Given its application, transfer learning reduces the amount of labeled 
data and computational resources required to train new ML models,162 
thus making this method advantageous when the sensor modalities, sen­
sor placements, and populations differ between studies. While we only 
identified two studies that applied transfer learning to estimate PD dis­
ease severity using movement sensor data,166,167 we predict that the 
application of transfer learning will enable future researchers to over­
come the challenges of a limited dataset and develop more sensitive and 
effective ML models.

Multi-Task Learning

Multi-task learning (MTL) enables the learning of multiple tasks simulta­
neously.168 Learning the commonalities and differences between mul­
tiple tasks can improve both the learning efficiency and the prediction 
accuracy of the ML models.168 A traditional single-task ML model can have 
a performance ceiling effect, given the limitations of the dataset size and 
the model’s ability to learn meaningful representations. MTL uses all avail­
able data across multiple datasets and can learn to develop generalized 
models that are applicable to multiple tasks. To use MTL, there should be 
some degree of information shared between or across all tasks. The cor­
relation allows MTL to exploit the underlying shared information or princi­
ples within tasks. Sometimes MTL models can perform worse than single-
task models because of ‘negative transfers’. This occurs when different 
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the lower and upper thresholds. We argue that log-uniform distribution 
is particularly useful when exploring values that vary over several orders 
of magnitude. Consider the example of tuning a linear regression model 
with the hyperparameter alpha, which determines the strength of reg­
ularization. To efficiently explore a wide range of alpha values, such as 
between 0.001 and 10, the log-uniform distribution allows for an evenly 
distributed search space over different orders of magnitude. Log-uni­
form distribution can be used for the initial exploration of a large range of 
hyperparameter values. The range can then be narrowed down to explore 
with a uniform-distribution to determine the optimal hyperparameters 
for the respective models.

The manual tuning of hyperparameters is impractical due to the 
large number of available hyperparameters, hyperparameter config­
urations, and time-consuming model evaluations. Automated tuning 
approaches are preferred, and there are a wide variety of approaches 
available, including GridSearch, RandomSearch, and Bayesian Optimiza­
tion.177 GridSearch uses brute force to test a finite combination of hyper­
parameters to identify the optimal hyperparameter configuration.178 This 
approach can suffer from the effects of dimensionality, as more poten­
tial hyperparameter configurations can be time-consuming and com­
putationally expensive. An alternative to GridSearch is RandomSearch. 
RandomSearch only samples a subset of all possible hyperparameter 
configurations within a specific time or computational budget.179 While 
RandomSearch only relies on a subsample of configurations, it has been 
shown to outperform the GridSearch method.179 As GridSearch and Ran­
domSearch do not consider previous performance evaluations for their 
hyperparameter optimization strategy, they are inefficient in exploring 
the hyperparameter search space. Bayesian Optimization, which uses 
Bayes Theorem, is a powerful approach. It considers previous hyperpa­
rameter evaluations to choose which hyperparameters to evaluate next 
and disregards potential hyperparameter combinations that are deemed 
irrelevant.178 This approach reduces the time and computations required 
for hyperparameter tuning. The benefit of using these more automated 

Model Hyperparameters

The process of building an effective ML model consists of two main steps: 
selecting the appropriate ML algorithm and optimizing the model per­
formance by tuning its parameters. Each model consists of two types of 
parameters: 
•	 The parameters that are initialized and continuously updated through­

out the learning process (e.g., the weights of neurons of a neural 
networks).

•	 The hyperparameters that must be set prior to the learning process 
as they define the model architecture (e.g., the regularization param­
eters of a Linear Regression model, and the learning rates of a neural 
network).174 

Every combination of the selected hyperparameters will have a direct 
influence on the performance of the learned model. For example, as the 
number of trees in a RF increases, the more features tend to be selected 
by the model, which may not always be relevant for the development of 
biomarkers.175 Similarly, the number of layers, number of neurons per 
layer, activation functions, and the regularization techniques used for 
NN can each influence the model performance.176 While most ML algo­
rithms come with default values for the hyperparameters, these may not 
be optimal for the dataset at hand, and even tuned hypermeters are at 
risk of being non-optimal for a different dataset. The process of selecting 
the optimal hyperparameter configurations is known as hyperparameter 
tuning.177

To identify the optimal hyperparameters for a model, researchers must 
define the hyperparameter space and the hyperparameter search strat­
egy. When defining the hyperparameter space, the distribution of the 
hyperparameter ranges can be either uniform or logarithmic. The uniform 
distribution assigns equal probability to all hyperparameter values within 
a manually defined range. The log-uniform distribution samples hyper­
parameter values uniformly between the logarithmic transformations of 
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ensures that the model is operating optimally and correctly. The follow­
ing sections provide more details about the performance metrics used for 
classification and regression models. Table 4 provides an overview of the 
most common performance metrics used in the selected studies, their 
respective calculations, and their clinical interpretations.

Classification Measures

Classification models have discrete outcomes; thus, a metric must reflect 
how often an observation belongs to the correct label or class.187 There 
are three categories of classification measures: Threshold Metrics, Rank­
ing Metrics, and Error Metrics. Threshold Metrics (such as accuracy and F1 
score) quantify the prediction errors of the classification model as a ratio 
or rate. Ranking Metrics (such as the Receiver Operating Characteristics 
(ROC) and Area Under the Curve (AUC)) focus on evaluating classification 
models based on how effective they can discern separate classes. Error 
Metrics (such as Root Mean Square Error) quantify the uncertainty of the 
classification model’s predictions. While the Threshold and Ranking Met­
rics are focused on correct and incorrect predictions, the Error Metrics 
quantify the proportion of classification errors.

As ML models are increasingly being used to perform high-impact tasks 
pertaining to clinical assessments, an evaluation metric must be selected 
based on what the stakeholders find to be important regarding the model 
prediction, which can make the selection of the model metrics challeng­
ing. As seen in Table 4, accuracy, sensitivity, specificity, and precision are 
calculated based on four test results. The True Positive (TP) and True Neg­
ative (TN) indicate the presence or absence of a diagnostic or characteris­
tic. The False Positive (FP) and False Negative (FN) indicate the opposite of 
the true condition.

Binary classification models typically involve a decision threshold 
hyperparameter that determines how the model assigns labels based on 
the predicted probabilities. The default threshold is typically 0.5, mean­
ing that if the predicted probability is greater than 0.5, the positive label 
is assigned, and vice versa. However, it is important to note that this 

approaches to hyperparameter tuning is three-fold. First, it reduces the 
time effort required to optimize a ML model. Next, the performance of the 
ML models is improved as the hyperparameters explore different optimal 
model configurations for different datasets. Finally, when the hyperpa­
rameters and their ranges (together also referred to as the hyperparam­
eter space) and the hyperparameter tuning methods are reported, the 
models and the findings become reproducible.180 When similar hyperpa­
rameter tuning processes can be used for different ML algorithms for dif­
ferent datasets, researchers can then identify the optimal ML model.

Among the selected studies, 25 discussed which hyperparameters 
were considered for their models,23,24,34,43,44,46,53,69,73,86,87,94,95,107–110,114, 
138,158,159,181–184 of which one stated they used the default hyperparam­
eters of the models.69 Only nine studies discussed how they selected or 
optimized their hyperparameters. We identified four studies that stated 
GridSearch was used for the hyperparameter tuning.36,46,95,110 We did not 
identify any studies that used RandomSearch or Bayesian Optimization. 
The limited reporting of hyperparameters and the hyperparameter tuning 
process poses a problem for the transparency, reproducibility, and com­
parison of ML models.

Model evaluation

Assessing a ML model’s performance is an essential component for deter­
mining the usability and reliability of the model. Depending on the objec­
tive of the research, it is often necessary to try to compare the perfor­
mance of multiple ML models to identify the optimal model.185,186 In ML, 
the terms metric and measure are often used interchangeably, but they 
do have slightly different meanings. A metric is a function used to evalu­
ate the performance of a model, while a measure is a numerical summary 
of the performance of a model obtained using one or more metrics. It is 
best practice to use multiple metrics and model performance visualiza­
tions for the model evaluation, as a model may perform well for one eval­
uation metric and poorly for another. Using multiple evaluation metrics 
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Oversampling techniques duplicate the samples of the minority class, 
while undersampling removes samples of the majority class. However, 
these techniques also have their disadvantages, as the duplication of mul­
tiple samples can lead to overfitting of a model, while undersampling 
reduces the diverse representation of the majority class. Thus, we would 
specifically recommend using the Synthetic Minority Oversampling Tech­
nique (SMOTE) with Tomek Links or Edited Nearest Neighbor (ENN)—two 
undersampling techniques.193,194 SMOTE is first applied to create an arti­
ficial minority class to minimize the class imbalance. Next, Tomek Links 
or ENN can be used to remove samples that are close to the boundar­
ies between the classes, which would further separate the classes.193,194

Regression Measures

As regression models generate predictions on a continuous scale, the 
objective is to estimate how close the predictions were to the true val­
ues.195 Among the studies selected, we found that regression models 
used Distance Metrics and Error Metrics to estimate the strength of the 
association or the distance between the predicted values and the true 
values.29,42,87,93,96,128,152 We would like to emphasize that these met­
rics are used to compare the performance of the composite biomarkers 
rather than the performance of the individual features. The most com­
mon Distance Metrics were the correlation (also known as R) and the 
percentage of the variance explained (R2). Both were used to assess the 
strength of the association between the predicted and true values.196 
There is no rule of thumb for interpreting the strength of R2. While an 
R2 closer to 1 can be obtained in clinical trials, a low R2 can still be use­
ful with respect to trends in the data. We would like to address two 
points of caution when using the R2.185,187 First, it is not always suit­
able to compare R2 across different datasets, as different clinical pop­
ulations are likely to differ in their feature variance. Second, the R2 
will increase with the number of features. To compensate for this, one 
may use the adjusted R2 to account for the number of features.197,198 

threshold can be adjusted to accommodate specific needs or domain con­
siderations. To evaluate the performance of binary classification models 
across different decision thresholds, the ROC curve is commonly used. 
The ROC curve provides an overview of the model’s performance by illus­
trating the trade-off between TP and FP rates at various threshold values. 
ROC can aid the assessment of the model’s performance across a range of 
decision thresholds and enable the selection of the threshold that aligns 
with a specific objective.

It is worth noting that many classification metrics, including accuracy, 
precision, recall, and F1 score, assume binary labels. However, when deal­
ing with multiclass classification problems, another approach is to use 
one-vs-rest or one-vs-one strategies, wherein the problem is decomposed 
into multiple binary classification tasks. The performance of the model 
on each task can then be evaluated using the binary classification met­
rics, and the results can be aggregated or averaged to provide an overall 
assessment of the model’s performance on the multiclass problem.

Class imbalance can be an obstacle for assessing model perfor­
mance. In particular, accuracy, AUC, ROC, may be sensitive to such imbal­
ances.188 Hence, when facing class imbalance, there are two approaches 
to consider: one can choose a metric that accounts for class imbal­
ance or one can choose to balance the classes. Metrics such as balanced 
accuracy, F1-score, or Matthews Correlation Coefficient (MCC) are com­
mon metrics for handling class imbalance, as identified by 15 studies. 
23,24,29,36,44,60,61,107,108,110,114,140,159,161,189 Balanced accuracy represents 
the mean of the sensitivity and specificity, while the F1-score represents 
the mean of the precision and recall.190 The MCC measures the correlation 
coefficient of the binary and even multiclass classes. Therefore, the MCC 
score is high only if the classification model correctly predicts both the 
positive and negative predictions.190,191

The other approach to handling class imbalances is adjusting the class 
distribution using oversampling or undersampling. We identified eight 
studies that used random over/under sampling or SMOTE.29,44–46,61,95,109,192 
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Cross-validation is a popular validation method that uses resampling to 
train, test, and validate a model using different subsets of the data. The 
training dataset is used to train the ML model to learn the patterns within 
a dataset. The validation dataset is used to tune the hyperparameters of 
the model based on the performance of the ML model trained on the train­
ing dataset. The test dataset provides an unbiased estimate of the perfor­
mance of the final ML model after training and validation. In the scenario 
when both validation and test datasets are used, the test datasets are 
only used to assess the model once (via hold-out validation) or multiple 
times (via nested cross-validation). In general, datasets need to meet two 
main requirements. The datasets should not have shared or overlapping 
observations to ensure that data leakage does not lead to bias in the esti­
mates, and all observations must be statistically independent.202 When 
applying feature engineering or feature selection with cross-validation, 
any transformation or selection steps should be performed within each 
fold of the cross-validation to prevent biasing in the training of the predic­
tion model with information from the test dataset.203 The overall perfor­
mance of the prediction models, obtained by averaging across each iter­
ation of the cross-validation, evaluates the effectiveness of the combined 
feature reduction and learning methods in estimating the label for a given 
dataset.

Among the selected studies, we found that the most popular cross-
validation methods were k-fold cross-validation (N = 27), Leave-One-
Out cross-validation (N = 16), and custom validation (N = 8). Overall, 15 
studies did not report the use a validation method. K-fold cross-valida­
tion randomly splits the datasets in ‘k’ folds; one-fold is used for testing 
and the remaining folds are used for training. This step is repeated until 
every unique fold has been used as the test dataset, and the overall per­
formance is based on the average of the performance of each model in 
each fold.204 Leave-one-out cross-validation is a specific type of k-fold 
cross-validation, wherein individual observations (or participants) are the 
test datasets, and the remaining cases are used for training. Leave-one-
out cross validation prevents data leakage across datasets, as repeated 

The Error Metrics included the Mean Absolute Error (MAE), Mean Squared 
Error (MSE), and Root Mean Squared Error (RMSE).133 The MAE measures 
the average absolute difference between the true and predicted values. 
The MAE is easy to interpret and robust to outliers. The absolute difference 
accounts for negative differences. The MSE squares the error instead of 
providing the absolute error, which gives more weight to the bigger errors. 
The MSE is sensitive to outliers and not easy to interpret, as the results will 
not have the same unit as the output. However, the RMSE provides an esti­
mation of the error in the same units as the output while maintaining the 
properties of the MSE.199

Model validation

In ML, model validation refers to the process of evaluating the general­
izability of a trained model on an unseen dataset. Selecting the most 
appropriate model validation approach depends on the size and char­
acteristics of the datasets. Three datasets are required for model valida­
tion: the training, test, and validation datasets. In most cases, the valida­
tion dataset can be a subset of the original dataset; however, this can lead 
to data leakage, which could produce overly optimistic results. Another 
approach is to create a validation dataset from an independent (but com­
parable) dataset, which ensures an unbiased and independent evaluation 
of the ML model. However, a limitation is that the performance evaluation 
may reflect high variance due to the limited size of the dataset.200 More­
over, it is crucial to highlight that a participant should only be present in 
a single dataset, such as the training dataset, and should not simultane­
ously appear in other datasets such as the testing or validation datasets. 
When a participant’s observations are distributed across multiple datas­
ets, data leakage can occur, compromising the accuracy estimation and 
its applicability to new participants.183 As a result, cross-validation on the 
observation level rather than the participant level is methodologically 
flawed. Unfortunately, this is a common issue and needs to be accounted 
for in future studies.201
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Recommendations

In this recommendation section, we address the main issues consis­
tently identified in the selected studies and how to amend these issues 
for future trials (see Figure 5 for a simplified overview of these recommen­
dations). It is important to bear in mind the regulatory implications for 
developing ML-derived biomarkers. Within the European Union, AI medi­
cal systems and devices are considered high risk; therefore, they are sub­
ject to stringent reviews prior to being made available on the market.212 
These review requirements emphasize the importance of achieving high 
levels of performance, transparency, and minimal risk in ML-derived bio­
marker development.213 High performance implies that the developed 
ML models must be accurate, robust, and capable of reliably and consis­
tently predicting the target outcome variable. Furthermore, transparency 
in ML-derived biomarker development refers to the provision of clear and 
adequate information to the user, including appropriate human-readable 
measures to minimize risks associated with the use of the system. The 
development of ML-derived biomarkers must also aim to minimize risks 
and discriminatory outcomes, which can be achieved by training the ML 
model on high-quality datasets that are representative of the target pop­
ulation and by conducting adequate risk assessment checks.214 These 
considerations are critical for ensuring the safe and effective use of ML-
derived biomarkers in clinical practice.

Inclusion of Healthy Controls

When conducting a study focused on disease classification or estima­
tion, the inclusion of control data can serve several purposes. By com­
paring the data from individuals with the condition of that of the healthy 
controls, researchers can discern whether the observed differences are 
specific to the condition or a result of unrelated factors. Moreover, ana­
lyzing the performance of a model on control subjects can shed light on 
the biomarker’s effectiveness and reliability. By evaluating how well the 
model distinguishes between healthy controls and patients with the 

measurements of the same subjects can lead to the violation of indepen­
dence assumption for ordinary cross-validation.204–206

We would like to highlight the advantages of the nested cross-vali­
dation approach. While nested cross-validation was the least popular 
approach, we would argue that nested cross-validation is a more robust 
approach for selecting and evaluating a ML model.207 Currently, the model 
section without the nested cross-validation approach uses the same data 
to both tune the model hyperparameters and evaluate its performance. 
Therefore, information is ‘leaked’ between the training and validation 
of the model, which can lead to overfitting.207 Nested cross-validation 
consists of an inner loop and an outer loop. The outer loop assesses the 
model performance, while the inner loop assesses the hyperparameter 
selection.207 Each iteration of the outer loop is split into a different com­
bination of training and test sets. The outer loop training set is used in the 
inner loop, which is further split into a training and validation dataset. The 
inner loop split is repeated over k-folds, and the best performing model 
across the k-folds is evaluated in the outer loop. This ensures that differ­
ent data are used to optimize the models’ hyperparameters and evalu­
ate the model’s performance. The final model performance represents 
the average and standard deviation of the model performance as selected 
by each of the outer loops. Without the standard deviation or confidence 
intervals, it is not possible to evaluate the spread or stability of the predic­
tion error of the given models.208,209

It is important to highlight that cross-validation is only used to approxi­
mate the generalization error of the models built and not to build the final 
model that will be used for making predictions.205,210 The average predic­
tion error across the folds gives an expected error for a single model built 
on the single dataset. If the variance of the prediction error is too high, 
then the model is considered unstable. To select a single model, it is rec­
ommended that researchers rebuild the model using the full dataset.211 If 
an external validation set is available, then this validation set can be used 
to evaluate and compare the single prediction error to that of the cross-
validation prediction error.
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missing and outlier data and understanding how these factors might 
affect the generalizability and reproducibility of the ML model. While most 
studies provide detailed information on patient populations, the devices 
used, and the data collected, they often underreport information related 
to data quality and preprocessing steps. Therefore, it is important to pro­
vide sufficient details on the methods used to preprocess the data, includ­
ing the quantity of missing and outlier data and the strategies employed 
to handle such data. This information can ensure that the data collec­
tion and preprocessing process can be reproduced, which, in turn, can 
enhance the credibility and generalizability of the ML model.

Feature Engineering and Selection

There is a wide variety of manual or automated techniques used for 
engineering and selecting features to feed a model. ML models perform 
best when feature engineering and selection are leveraged to formu­
late potentially clinically relevant features from existing data. In addi­
tion, the performance of the ML model can be optimized, and the compu­
tational time can be reduced when the redundancy across the features is 
reduced. While only selecting the most informative features can remove 
noise (therefore reducing the likelihood of overfitting), selecting too few 
features may reduce the strength of the (combined) signal in the dataset, 
making the ML model vulnerable to underfitting. Feature engineering and 
selection can be guided by domain expertise and/or automated statisti­
cal models, where multiple features are evaluated by their importance 
in predicting the outcome. While automated feature engineering tech­
niques, such as clustering, PCA, and DL, can be used to extract a reduced 
set of representative features, this risks a potential decline in interpret­
ability, which may limit its clinical application.

Model Configuration and Optimization

When selecting the ML models, there are several factors that should 
be considered, such as model objectives, model types, model hyper­
parameters, and model evaluation. Poor design choices and lenient 

condition, researchers can gain a better understanding of its predictive 
capabilities. This evaluation can provide insights into potential false posi­
tives or false negatives that may occur when using the model in real-world 
settings.

It is worth noting that, when including control data, the control data 
should be appropriately matched with the patient population data. Hav­
ing age- and gender-matched control subjects can help minimize con­
founding variables, improving the accuracy of the analysis. This match­
ing process allows researchers to draw more robust conclusions about the 
relationship between the identified features or patterns and the disease 
activity while also reducing the potential impact of demographic factors 
on the results.

The finding that only half of the studies included healthy controls is sig­
nificant as it highlights a potential gap or limitation in the existing body 
of research. Without the inclusion of controls, it becomes challenging to 
attribute identified features or patterns solely to the CNS disorder or the 
severity of the condition. Further, if the dataset only contains a relatively 
homogeneous population, it calls the reliability and predictive capa­
bilities of the models into question. We encourage future researchers to 
include control subjects in their studies, as it would improve the strength 
of their biomarkers and the validity of their findings.

Data Quality and Preprocessing

The remote monitoring of clinical trials can generate large and complex 
datasets that include longitudinal data from multiple subjects and data 
sourced from multiple sensors, resulting in a multi-dimensional data 
structure. To this point, we recommend using the WHO mHealth Tech­
nical Evidence Review Groups’ mHealth evidence and evidence report­
ing and assessment (mERA) 16-item checklist to provide transparency 
on which mHealth invention was used, where, and how it was imple­
mented to support the reproducibility of the mHealth data collection.215 
To ensure the quality and reliability of the data, it is important to assess 
the quality of the data. This assessment includes examining the data for 
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excel for one metric and fail for another, this underscores the need for 
comprehensive evaluation. Employing multiple metrics ensures optimal 
operation and reduces the likelihood of blind spots.

Once the final model has been trained, there are three approaches 
to choose from to apply the model to a new target dataset. The first 
approach is to test the model ‘as-is’, implying that the ready-made model 
can be used in its original state without modifications.216 In the second 
scenario, the train data and the target data may have different character­
istics, which may lead to a distribution shift. The type of distribution shift 
between the two datasets can occur for many reasons, including differ­
ent mHealth devices used for data collection, environmental noise, and 
sampling bias.217 When this occurs, transfer learning can be used to fine­
tune the ready-made model and update its weights to better suit the tar­
get dataset.216 In the third scenario, the target dataset may have different 
requirements than the original training dataset.216 As a result, the deci­
sion boundary of the classification model can be altered, such as optimiz­
ing the model for a sensitivity of 90% instead of accuracy. Whether test­
ing the model as-is, employing transfer learning, or adjusting the decision 
boundary, these strategies offer flexibility in adapting the model to differ­
ent settings and improving its performance for validation purposes.

Model Reproducibility and Interpretability

Equally important as the model performance are the ML models’ repro­
ducibility and interpretability. Reproducibility is a core component for 
ensuring that a ML model can be validated and reused by clinical research­
ers. Technical reproducibility involves using the same computational 
procedures to produce consistent model outcomes. Statistical repro­
ducibility ensures that the model demonstrates similar statistical perfor­
mance across different subsets of data. Conceptual reproducibility refers 
to achieving consistent results under new conditions, such as data col­
lected from different settings.216 Transparency regarding data quality, 
feature engineering and selection methods, the hyperparameters consid­
ered and selected, and the model validation protocol can help ease the 

hyperparameter tuning and validation in these steps can lead to poor 
model performance. We recommend that researchers carefully consider 
each step of building their ML pipeline by comparing multiple ML algo­
rithms, using automated methods for assessing multiple hyperparame­
ter configurations, and using nested cross validation to both optimize and 
validate the ML models.

Model Validation

We would recommend using a minimum of three datasets to validate a ML 
model and train, validate, and test a dataset. At no point should the test 
set be used for the model configuration, which includes the data trans­
formation, feature engineering, and selection, or the tuning of the hyper­
parameters. The test dataset could either be a subset of the original data 
(with no overlapping subjects or observations) or a separate external 
dataset. The use of an external dataset is ideal as this ensures that there is 
no influence of bias during the data collection period and that there is no 
data leakage between the datasets. If an external dataset is not available 
or if the dataset is not sufficiently large, we recommend nested cross-val­
idation. This resampling method supports model hyperparameter tuning 
and performance evaluation without the risk of data leakage across the 
dataset.

It is crucial to report the evaluation metric results for each dataset. In 
the case of cross-validation reporting, we recommend that researchers 
report the distribution of the performance measures (e.g., the mean and 
standard deviation or median and 95% confidence interval) across the 
folds to show the average and variability of the performance of the mod­
els. As cross-validation evaluates the prediction error across multiple ML 
models, we would also recommend reporting the performance of the final 
model selected. This is achieved by re-training a ML model on the full data­
set and evaluating the performance on an external dataset.207,210 This 
would give insight into how well the model would perform under differ­
ent circumstances. We also highly recommend using multiple evaluation 
metrics for assessing the model’s performance. Seeing as a model might 
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Conclusions

The rise and breadth of ML applications in clinical trials highlight the 
increasing reliance and importance of ML in the development of novel bio­
markers.226 While the advances in ML applications have demonstrated 
great potential for innovative biomarker development, the process of 
its development is not well documented, which, in turn, limits the repro­
ducibility of these findings. This review has illustrated the steps taken 
to translate raw data from mHealth technologies into meaningful clini­
cal biomarkers using ML. Given the lack of consistent reporting in the ML 
methods, the present review cannot provide a complete or detailed pic­
ture of the notable and generic practices. However, the authors have pro­
vided an overview of the status quo of the development and translation 
of ML-derived biomarkers in mHealth-focused clinical trials. The rec­
ommended checklist provided in the review could serve as a foundation 
for the design of future ML-derived biomarkers in conventional ML prac­
tices. By encouraging consistent and transparent reporting, researchers 
can accelerate the integration of novel biomarkers derived from mHealth 
sensors and ML pipelines into future clinical trials.

ability of the scientific community to recreate the work in the published 
literature. Best practices for reproducibility include publishing the code 
on GitHub or by publishing FAIR metadata.211,218,219

Given the potential clinical application of ML models, prior to model­
ing, researchers should determine the model’s interpretability require­
ment. While ML models provide researchers with what was predicted, 
interpretability requires that the model can explain why it made the pre­
diction.185 Interpretability enables us to understand the causal relation­
ships between the data and the ML model’s predictions. There are two 
situations in which the interpretability of a model is required: when an 
inaccurate prediction can have severe or even fatal consequences for the 
patients (such as a misclassified diagnosis 220) and when the interpret­
ability can be used to identify novel relationships between clinical fac­
tors and the predicted outcome (such as factors influencing treatment 
outcomes 221). There can be two situations in which interpretability is not 
required: situations in which incorrect predictions do not have severe 
consequences (such as counting the number of coughs 222) or situations 
in which the ML model has been sufficiently validated in real clinical appli­
cations, even if the predictions are not perfect.223 While black box mod­
els may offer more accurate predictions than an interpretable model, 
they only provide limited insight into how the predictions were made. 
Therefore, both interpretable and black box models have their respective 
merits.

There are two broad approaches towards achieving interpretability.224 
One approach is to use easy-to-interpret models, such as Linear or Logis­
tic Regression, where the coefficients of the features can provide insight 
into the features’ associations with the predicted outcome. The other 
approach is to use explanation methods for explaining complex or black 
box models, such as SHAPley Additive exPlanations plots (SHAP), Local 
Interpretable Model-agnostic Explanations (LIME), or Anchors.224 We rec­
ommend that researchers report whether their final selected model was 
an interpretable model or a black box.225 If it was interpretable, we recom­
mend discussing what interpretations can be derived from the models.



Development of Machine Learning – Derived mHealth Composite Biomarkers for Trial@Home Clinical Trials66 67Part i /Chapter 2

References

1	 Au, R.; Lin, H.; Kolachalama, V.B. Tele-Trials, 
Remote Monitoring, and Trial Technology for 
Alzheimer’s Disease Clinical Trials. In Alzheimer’s 
Disease Drug Development; Cambridge University 
Press: Cambridge, UK, 2022; pp. 292–300.

2	 Inan, O.T.; Tenaerts, P.; Prindiville, S.A.; Reynolds, 
H.R.; Dizon, D.S.; Cooper-Arnold, K.; Turakhia, M.; 
Pletcher, M.J.; Preston, K.L.; Krumholz, H.M.; Et al. 
Digitizing clinical trials. NPJ Digit. Med. 2020, 3, 101.

3	 Teo, J.X.; Davila, S.; Yang, C.; Hii, A.A.; Pua, C.J.; 
Yap, J.; Tan, S.Y.; Sahlén, A.; Chin, C.W.-L.; Teh, 
B.T.; Et al. Digital phenotyping by consumer 
wearables identifies sleep-associated markers of 
cardiovascular disease risk and biological aging. 
bioRxiv 2019.

4	 Brietzke, E.; Hawken, E.R.; Idzikowski, M.; Pong, 
J.; KeNNedy, S.H.; Soares, C.N. Integrating 
digital phenotyping in clinical characterization 
of individuals with mood disorders. Neurosci. 
Biobehav. Rev. 2019, 104, 223–230.

5	 Kourtis, L.C.; Regele, O.B.; Wright, J.M.; Jones, G.B. 
Digital biomarkers for Alzheimer’s disease: The 
mobile/wearable devices opportunity. NPJ Digit. 
Med. 2019, 2, 9.

6	 Bhidayasiri, R.; Mari, Z. Digital phenotyping in 
Parkinson’s disease: Empowering neurologists 
for measurement-based care. Park. Relat. Disord. 
2020, 80, 35–40.

7	 Prosperi, M.; Min, J.S.; Bian, J.; Modave, F. Big data 
hurdles in precision medicine and precision public 
health. BMC Med. Inform. Decis. Mak. 2018, 18, 139.

8	 Torres-Sospedra, J.; Ometov, A. Data from 
Smartphones and Wearables. Data 2021, 6, 45.

9	 García-Santıllán, A.; del Flóres-Serrano, S.; López-
Morales, J.S.; Rios-Alvarez, L.R. Factors Associated 
that Explain Anxiety toward Mathematics on 
Undergraduate Students. (An Empirical Study in 
Tierra Blanca Veracruz-México). Mediterr. J. Soc. 
Sci. 2014, 5.

10	 Iniesta, R.; Stahl, D.; Mcguffin, P. Machine learning, 
statistical learning and the future of biological 
research in psychiatry. Psychol. Med. 2016, 46, 
2455–2465.

11	 Rajula, H.S.R.; Verlato, G.; Manchia, M.; Antonucci, 
N.; Fanos, V. Comparison of Conventional 
Statistical Methods with Machine Learning in 
Medicine: Diagnosis, Drug Development, and 
Treatment. Medicina 2020, 56, 455.

12	 Getz, K.A.; Rafael, A.C. Trial watch: Trends in 
clinical trial design complexity. Nat. Rev. Drug. 
Discov. 2017, 16, 307.

13	 Getz, K.A.; Stergiopoulos, S.; Marlborough, M.; 
Whitehill, J.; Curran, M.; Kaitin, K.I. Quantifying 
the Magnitude and Cost of Collecting Extraneous 
Protocol Data. Am. J. Ther. 2015, 22, 117–124.

14	 Getz, K.A.; Wenger, J.; Campo, R.A.; Seguine, E.S.; 
Kaitin, K.I. Assessing the Impact of Protocol Design 
Changes on Clinical Trial Performance. Am. J. Ther. 
2008, 15, 450–457.

15	 Globe Newswire. Rising Protocol Design 
Complexity Is Driving Rapid Growth in Clinical 
Trial Data Volume, According to Tufts Center 
for the Study of Drug Development. Available 
online: https://www.globenewswire.com/
news-release/2021/01/12 /2157143/0/en/
Rising-Protocol-Design-Complexity-Is-Driving-
Rapid-Growth-in-Clinical-Trial-Data-Volume-
According-toTufts-Center-for-the-Study-of-Drug-
Development.html (accessed on 12 January 2021).

16	 Santos, W.M.D.; Secoli, S.R.; de Araújo Püschel, 
V.A. The JoaNNa Briggs Institute approach for 
systematic reviews. Rev. Lat. Am. Enferm. 2018, 26, 
e3074.

17	 Central Nervous System Diseases—MeSH—NCBI. 
2023. Available online: https://www.ncbi.nlm.nih.
gov/mesh?Db=mesh& Cmd=DetailsSearch&Term=
%22Central+Nervous+System+Diseases%22%5B
MeSH+Terms%5D (accessed on 5 January 2023).

18	 Martinez, G.J.; Mattingly, S.M.; Mirjafari, S.; 
Nepal, S.K.; Campbell, A.T.; Dey, A.K.; Striegel, 
A.D. On the Quality of Real-world Wearable Data 
in a Longitudinal Study of Information Workers. 
In Proceedings of the 2020 IEEE International 
Conference on Pervasive Computing and 
Communications Workshops, PerCom Workshops 
2020, Austin, TX, USA, 23–27 March 2020.

19	 Ruiz Blázquez, R.R.; Muñoz-Organero, M. Using 
Multivariate Outliers from Smartphone Sensor 
Data to Detect Physical Barriers While Walking in 
Urban Areas. Technologies 2020, 8, 58.

20	 Poulos, J.; Valle, R. Missing Data Imputation for 
Supervised Learning. Appl. Artif. Intell. 2018, 32, 
186–196.

21	 Schafer, J.L.; Graham, J.W. Missing data: Our view 
of the state of the art. Psychol. Methods 2002, 7, 
147–177.

22	 Evers, L.J.; Raykov, Y.P.; Krijthe, J.H.; de Lima, 
A.L.S.; Badawy, R.; Claes, K.; Heskes, T.M.; Little, 
M.A.; Meinders, M.J.; Bloem, B.R. Real-life gait 
performance as a digital biomarker for motor 
fluctuations: The Parkinson@Home validation 
study. J. Med. Internet Res. 2020, 22, e19068.

23	 Papadopoulos, A.; Kyritsis, K.; Klingelhoefer, L.; 
Bostanjopoulou, S.; Chaudhuri, K.R.; Delopoulos, 
A. Detecting Parkinsonian Tremor from IMU 
Data Collected In-The-Wild using Deep Multiple-
Instance Learning. IEEE J. Biomed. Health Inform. 
2019, 24, 2559–2569.

24	 Tougui, I.; Jilbab, A.; El Mhamdi, J. Analysis of 
smartphone recordings in time, frequency, and 
cepstral domains to classify Parkinson’s disease. 
Healthc. Inform. Res. 2020, 26, 274–283.

25	 Meyerhoff, J.; Liu, T.; Kording, K.P.; Ungar, L.H.; 
Kaiser, S.M.; Karr, C.J.; Mohr, D.C. Evaluation of 
Changes in Depression, Anxiety, and Social Anxiety 
Using Smartphone Sensor Features: Longitudinal 
Cohort Study. J. Med. Internet Res. 2021, 23, 
e22844.

26	 Dinesh, K.; Snyder, C.W.; Xiong, M.; Tarolli, C.G.; 
Sharma, S.; Dorsey, E.R.; Sharma, G.; Adams, 
J.L. A Longitudinal Wearable Sensor Study in 
Huntington’s Disease. J. Huntingt. Dis. 2020, 9, 
69–81.

27	 Cho, C.-H.; Lee, T.; Lee, H.-J. Mood Prediction of 
Patients with Mood Disorders by Machine Learning 
Using Passive Digital Phenotypes Based on the 
Circadian Rhythm: Prospective Observational 
Cohort Study. 2019. Available online: https://www.
ncbi. nlm.nih.gov/pmc/articles/PMC6492069/ 
(accessed on 5 January 2023).

28	 Tanaka, T.; Kokubo, K.; Iwasa, K.; Sawa, K.; Yamada, 
N.; Komori, M. Intraday activity levels may better 
reflect the differences between major depressive 
disorder and bipolar disorder than average daily 
activity levels. Front. Psychol. 2018, 9, 2314.

29	 Palmius, N.; Tsanas, A.; Saunders, K.E.A.; 
Bilderbeck, A.C.; Geddes, J.R.; Goodwin, G.M.; 
De Vos, M. Detecting bipolar depression from 
geographic location data. IEEE Trans. Biomed. Eng. 
2017, 64, 1761–1771.

30	 Abdullah, S.; Matthews, M.; Frank, E.; Doherty, 
G.; Gay, G.; Choudhury, T. Automatic detection 
of social rhythms in bipolar disorder. J. Am. Med. 
Inform. Assoc. 2016, 23, 538–543.

31	 Ramsperger, R.; Meckler, S.; Heger, T.; van Uem, 
J.; Hucker, S.; Braatz, U.; Graessner, H.; Berg, D.; 
Manoli, Y.; Serrano, J.A.; Et al. Continuous leg 

dyskinesia assessment in Parkinson’s disease 
-clinical validity and ecological effect. Park. Relat. 
Disord. 2016, 26, 41–46.

32	 Gossec, L.; Guyard, F.; Leroy, D.; Lafargue, T.; Seiler, 
M.; Jacquemin, C.; Molto, A.; Sellam, J.; Foltz, V.; 
Gandjbakhch, F.; Et al.

Detection of Flares by Decrease in Physical Activity, 
Collected Using Wearable Activity Trackers in 
Rheumatoid Arthritis or Axial Spondyloarthritis: 
An Application of Machine Learning Analyses 
in Rheumatology. Arthritis Care Res. 2019, 71, 
1336–1343.

33	 Bai, R.; Xiao, L.; Guo, Y.; Zhu, X.; Li, N.; Wang, Y.; 
Chen, Q.; Feng, L.; Wang, Y.; Yu, X.; Et al. Tracking 
and monitoring mood stability of patients with 
major depressive disorder by machine learning 
models using passive digital data: Prospective 
naturalistic multicenter study. JMIR MHealth 
Uhealth 2021, 9, e24365.

34	 Schwab, P.; Karlen, W. A Deep Learning Approach 
to Diagnosing Multiple Sclerosis from Smartphone 
Data. IEEE J. Biomed. Health Inform. 2021, 25, 
1284–1291.

35	 Aghanavesi, S. Smartphone-Based Parkinson’s 
Disease Symptom Assessment. Licentiate 
Dissertation, Dalarna University, Falun, Sweden, 
2017.

36	 Maleki, G.; Zhuparris, A.; Koopmans, I.; Doll, 
R.J.; Voet, N.; Cohen, A.; van Brummelen, E.; 
Groeneveld, G.J.; De Maeyer, J.

Objective Monitoring of Facioscapulohumeral 
Dystrophy During Clinical Trials Using a 
Smartphone App and Wearables: Observational 
Study. JMIR Form. Res. 2022, 6, e31775.

37	 Twose, J.; Licitra, G.; McConchie, H.; Lam, K.H.; 
Killestein, J. Early-warning signals for disease 
activity in patients diagnosed with multiple 
sclerosis based on keystroke dynamics. Chaos 
2020, 30, 113133.

38	 Cho, C.H.; Lee, T.; Kim, M.G.; In, H.P.; Kim, L.; Lee, 
H.J. Mood prediction of patients with mood 
disorders by machine learning using passive 
digital phenotypes based on the circadian rhythm: 
Prospective observational cohort study. J. Med. 
Internet Res.2019, 21, e11029.

39	 Little, R.J.A.; Rubin, D.B. Complete-Case and 
Available-Case Analysis, Including Weighting 
Methods; John Wiley & Sons, Ltd.: Hoboken, NJ, 
USA, 2014; pp. 41–58.

40	 Demissie, S.; LaValley, M.P.; Horton, N.J.; GlyNN, 
R.J.; Cupples, L.A. Bias due to missing exposure 



Development of Machine Learning – Derived mHealth Composite Biomarkers for Trial@Home Clinical Trials68 69Part i /Chapter 2

61	 Garcia-Ceja, E.; Riegler, M.; Jakobsen, P.; Torresen, 
J.; Nordgreen, T.; Oedegaard, K.J.; Fasmer, O.B. 
Motor Activity Based Classification of Depression 
in Unipolar and Bipolar Patients. In Proceedings 
of the 2018 IEEE 31st International Symposium 
on Computer-Based Medical Systems (CBMS), 
Karlstad, Sweden, 18–21 June 2018; pp. 316–321.

62	 Liu, H. Feature Engineering for Machine Learning 
and Data Analytics. In Feature Engineering for 
Machine Learning and Data Analytics; Taylor & 
Francis Group: Boca Raton, FL, USA, 2018.

63	 Nargesian, F.; Samulowitz, H.; Khurana, U.; Khalil, 
E.B.; Turaga, D. Learning feature engineering for 
classification. IJCAI Int. Jt. Conf. Artif. Intell. 2017, 
2529–2535.

64	 Kuhn, M.; Johnson, K. Feature Engineering and 
Selection: A Practical Approach for Predictive 
Models; Chapman and Hall/CRC: Boca Raton, FL, 
USA, 2019.

65	 Ronao, C.A.; Cho, S.-B. Human activity recognition 
with smartphone sensors using deep learning neu­
ral networks. Expert Syst. Appl. 2016, 59, 235–244.

66	 Nweke, H.F.; Teh, Y.W.; Al-garadi, M.A.; Alo, U.R. 
Deep learning algorithms for human activity 
recognition using mobile and wearable sensor 
networks: State of the art and research challenges. 
Expert Syst. Appl. 2018, 105, 233–261.

67	 Zdravevski, E.; Lameski, P.; Trajkovik, V.; Kulakov, 
A.; Chorbev, I.; Goleva, R.; Pombo, N.; Garcia, 
N. Improving Activity Recognition Accuracy in 
Ambient-Assisted Living Systems by Automated 
Feature Engineering. IEEE Access 2017, 5, 
5262–5280.

68	 McGiNNis, R.S.; Mahadevan, N.; Moon, Y.; Seagers, 
K.; Sheth, N.; Wright, J.A., Jr.; Dicristofaro, S.; 
Silva, I.; Jortberg, E.; Ceruolo, M.; Et al. A machine 
learning approach for gait speed estimation using 
skin-mounted wearable sensors: From healthy 
controls to individuals with multiple sclerosis. 
PLoS ONE 2017, 12, e0178366.

69	 Maxhuni, A.; Muñoz-Meléndez, A.; Osmani, V.; 
Perez, H.; Mayora, O.; Morales, E.F. Classification 
of bipolar disorder episodes based on analysis 
of voice and motor activity of patients. Pervasive 
Mob. Comput. 2016, 31, 50–66.

70	 Yamakawa, T.; Miyajima, M.; Fujiwara, K.; Kano, M.; 
Suzuki, Y.; Watanabe, Y.; Watanabe, S.; Hoshida, 
T.; Inaji, M.; Maehara, T. Wearable epileptic seizure 
prediction system with machine-learning-based 
anomaly detection of heart rate variability. 
Sensors 2020, 20, 3987.

71	 Fuchs, C.; Nobile, M.S.; Zamora, G.; Degeneffe, A.; 
Kubben, P.; Kaymak, U. Tremor assessment using 
smartphone sensor data and fuzzy reasoning. BMC 
Bioinform. 2021, 22, 57.

72	 Aich, S.; Pradhan, P.M.; Park, J.; Sethi, N.; Vathsa, 
V.S.S.; Kim, H.C. A validation study of freezing of 
gait (FOG) detection and machine-learning-based 
FOG prediction using estimated gait characteristics 
with a wearable accelerometer. Sensors 2018, 18, 
3287.

73	 Rodríguez-Martín, D.; Samà, A.; Pérez-López, C.; 
Català, A.; Arostegui, J.M.M.; Cabestany, J.; Bayés, 
À.; Alcaine, S.; Mestre, B.; Prats, A.; Et al. Home 
detection of freezing of gait using Support Vector 
Machines through a single waist-worn triaxial 
accelerometer. PLoS ONE 2017, 12, e0171764.

74	 Supratak, A.; Datta, G.; Gafson, A.R.; Nicholas, R.; 
Guo, Y.; Matthews, P.M. Remote monitoring in the 
home validates clinical gait measures for multiple 
sclerosis. Front. Neurol. 2018, 9, 561.

75	 Bro, R.; Smilde, A.K. Principal component analysis. 
Anal. Methods 2014, 6, 2812–2831.

76	 Kim, J.; Lim, J. A Deep Neural Network-Based 
Method for Prediction of Dementia Using Big Data. 
Int. J. Environ. Res. Public Health 2021, 18, 5386.

77	 Clustering. In Principles of Data Mining; Springer: 
London, UK, 2007; pp. 221–238.

78	 Arabie, P.; Hubert, L.J. An Overview of Combinato­
rial Data Analysis. In Clustering and Classification; 
World Scientific: Singapore, 1996; pp. 5–63.

79	 Lu, J.; Shang, C.; Yue, C.; Morillo, R.; Ware, S.; 
Kamath, J.; Bamis, A.; Russell, A.; Wang, B.; Bi, J. 
Joint Modeling of Heterogeneous Sensing Data for 
Depression Assessment via Multi-task Learning. 
In Proceedings of the Proceedings of the ACM on 
Interactive, Mobile, Wearable and Ubiquitous 
Technologies; Association for Computing 
Machinery: New York, NY, USA, 2018; Volume 2, pp. 
1–21.

80	 Sabatelli, M.; Osmani, V.; Mayora, O.; Gruenerbl, A.; 
Lukowicz, P. Correlation of significant places with 
self-reported state of bipolar disorder patients. 
In Proceedings of the 2014 4th International 
Conference on Wireless Mobile Communication 
and Healthcare-Transforming Healthcare through 
INNovations in Mobile and Wireless Technologies 
(MOBIHEALTH), Athens, Greece, 3–5 November 
2014; pp. 116–119.

81	 Faurholt-Jepsen, M.; Busk, J.; ViNBerg, M.; 
Christensen, E.M.; HelgaÞórarinsdóttir; Frost, M.; 
Bardram, J.E.; Kessing, L.V. Daily mobility patterns 

data using complete-case analysis in the 
proportional hazards regression model. Stat. Med. 
2003, 22, 545–557.

41	 Enders, C.K.; London, N.Y. Applied Missing Data 
Analysis; Guilford Press: New York, NY, USA, 2010.

42	 Zhang, Y.; Folarin, A.A. Predicting Depressive 
Symptom Severity Through Individuals’ Nearby 
Bluetooth Device Count Data Collected by Mobile 
Phones: Preliminary Longitudinal Study. Available 
online: https://www.ncbi.nlm.nih.gov/pmc/arti­
cles/ PMC8367113/ (accessed on 5 January 2023).

43	 Creagh, A.P.; Dondelinger, F.; Lipsmeier, F.; 
LindemaNN, M.; De Vos, M. Longitudinal Trend 
Monitoring of Multiple Sclerosis Ambulation using 
Smartphones. IEEE Open J. Eng. Med. Biol. 2022, 3, 
202–210.

44	 Wu, C.-T.; Li, G.-H.; Huang, C.-T.; Cheng, Y.-C.; 
Chen, C.-H.; Chien, J.-Y.; Kuo, P.-H.; Kuo, L.-C.; Lai, 
F. Acute exacerbation of a chronic obstructive 
pulmonary disease prediction system using 
wearable device data, machine learning, and deep 
learning:Development and cohort study. JMIR 
MHealth Uhealth 2021, 9, e22591.

45	 Jakobsen, P.; Garcia-Ceja, E.; Riegler, M.; Stabell, 
L.A.; Nordgreen, T.; Torresen, J.; Fasmer, O.B.; 
Oedegaard, K.J. Applying machine learning in 
motor activity time series of depressed bipolar and 
unipolar patients compared to healthy controls. 
PLoS ONE 2020, 15, e0231995.

46	 Lekkas, D.; Jacobson, N.C. Using artificial 
intelligence and longitudinal location data to 
differentiate persons who develop posttraumatic 
stress disorder following childhood trauma. Sci. 
Rep. 2021, 11, 10303.

47	 Richman, M.B.; Trafalis, T.B.; Adrianto, I. Missing 
data imputation through machine learning 
algorithms. In Artificial Intelligence Methods in the 
Environmental Sciences; Springer: Dordrecht, The 
Netherlands, 2009; pp. 153–169.

48	 Jerez, J.M.; Molina, I.; García-Laencina, P.J.; Alba, 
E.; Ribelles, N.; Martín, M.; Franco, L. Missing data 
imputation using statistical and machine learning 
methods in a real breast cancer problem. Artif. 
Intell. Med. 2010, 50, 105–115.

49	 Lakshminarayan, K.; Harp, S.A.; Goldman, R.P.; 
Samad, T. Imputation of Missing Data Using 
Machine Learning Techniques.In KDD Proceedings 
1996; AAAI Press: Palo Alto, CA, USA, 1996; Volume 
96.

50	 Aggarwal, C.C. Data Mining; Springer International 
Publishing: Cham, Switzerland, 2015.

51	 Ledolter, J.; Kardon, R.H. Does Testing More 
Frequently Shorten the Time to Detect Disease 
Progression? Transl. Vis. Sci. Technol. 2017, 6, 1.

52	 Bazgir, O.; Habibi, S.A.H.; Palma, L.; Pierleoni, P.; 
Nafees, S. A classification system for assessment 
and home monitoring of tremor in patients with 
Parkinson’s disease. J. Med. Signals Sens. 2018, 8, 
65–72.

53	 Williamson, J.R.; Telfer, B.; Mullany, R.; Friedl, K.E. 
Detecting Parkinson’s Disease from Wrist-Worn 
Accelerometry in the U.K. Biobank. Sensors 2021, 
21, 2047.

54	 Buda, T.S.; Khwaja, M.; Matic, A. Outliers in 
Smartphone Sensor Data Reveal Outliers in Daily 
Happiness. Proc. ACM Interact. Mob. Wearable 
Ubiquitous Technol. 2021, 5, 1–19.

55	 Buda, T.S.; Caglayan, B.; Assem, H. DeepAD: A 
generic framework based on deep learning for 
time series anomaly detection. In Lecture Notes 
in Computer Science (Including Subseries Lecture 
Notes in Artificial Intelligence and Lecture Notes 
in Bioinformatics); Springer: Berlin/Heidelberg, 
Germany, 2018; pp. 577–588.

56	 Arora, S.; Venkataraman, V.; Zhan, A.; Donohue, 
S.; Biglan, K.; Dorsey, E.; Little, M. Detecting and 
monitoring the symptoms of Parkinson’s disease 
using smartphones: A pilot study. Park. Relat. 
Disord. 2015, 21, 650–653.

57	 Guyon, I.; Elisseeff, A. An Introduction to Feature 
Extraction. In Feature Extraction; Springer: Berlin/
Heidelberg, Germany, 2006; pp. 1–25.

58	 Raju, V.N.G.; Lakshmi, K.P.; Jain, V.M.; Kalidindi, A.; 
Padma, V. Study the Influence of Normalization/
Transformation process on the Accuracy of 
Supervised Classification. In Proceedings of the 
2020 Third International Conference on Smart 
Systems and Inventive Technology (ICSSIT), 
Tirunelveli, India, 20–22 August 2022; pp. 729–735.

59	 Dara, S.; Tumma, P. Feature Extraction by Using 
Deep Learning: A Survey. In Proceedings of 
the 2018 Second International Conference on 
Electronics, Communication and Aerospace 
Technology (ICECA), Coimbatore, India, 29–31 
March 2018; pp. 1795–1801.

60	 Tizzano, G.R.; Spezialetti, M.; Rossi, S. A Deep 
Learning Approach for Mood Recognition from 
Wearable Data. In Proceedings of the IEEE Medical 
Measurements and Applications, MeMeA 2020—
Conference Proceedings, Bari, Italy, 1 June–1 
July 2020; Institute of Electrical and Electronics 
Engineers Inc.: Piscataway, NJ, USA, 2020.



Development of Machine Learning – Derived mHealth Composite Biomarkers for Trial@Home Clinical Trials70 71Part i /Chapter 2

105	Chandrashekar, G.; Sahin, F. A survey on feature 
selection methods. Comput. Electr. Eng. 2014, 40, 
16–28.

106	Goldsmith, J.; Bobb, J.; Crainiceanu, C.M.; Caffo, 
B.; Reich, D. Penalized functional regression. J. 
Comput. Graph. Stat. 2011, 20, 830–851.

107	Prince, J.; Andreotti, F.; De Vos, M. Multi-Source 
Ensemble Learning for the Remote Prediction of 
Parkinson’s Disease in the Presence of Source-
Wise Missing Data. IEEE Trans. Biomed. Eng. 2019, 
66, 1402–1411.

108	Motin, M.A.; Pah, N.D.; Raghav, S.; Kumar, D.K. 
Parkinson’s Disease Detection Using Smartphone 
Recorded Phonemes in Real World Conditions. 
IEEE Access 2022, 10, 97600–97609.

109	Cakmak, A.S.; Alday, E.A.P.; Da Poian, G.; Rad, 
A.B.; Metzler, T.J.; Neylan, T.C.; House, S.L.; 
Beaudoin, F.L.; An, X.; Stevens, J.S.; Et al. 
Classification and Prediction of Post-Trauma 
Outcomes Related to PTSD Using Circadian 
Rhythm Changes Measured via Wrist-Worn 
Research Watch in a Large Longitudinal 
Cohort. IEEE J. Biomed. Health Inform. 2021, 25, 
2866–2876.

110	 Tracy, J.M.; Özkanca, Y.; Atkins, D.C.; Ghomi, 
R.H. Investigating voice as a biomarker: Deep 
phenotyping methods for early detection of 
Parkinson’s disease. J. Biomed. Inform. 2020, 104, 
103362.

111	 Abdulhafedh, A. Comparison between Common 
Statistical Modeling Techniques Used in Research, 
Including: Discriminant Analysis vs Logistic 
Regression, Ridge Regression vs LASSO, and 
Decision Tree vs Random Forest. OAlib 2022, 9, 
1–19. 112. Sánchez-Maroño, N.; Alonso-Betanzos, 
A.; Tombilla-Sanromán, M. Filter methods for 
feature selection—A comparative study. In 
Lecture Notes in Computer Science (Including 
Subseries Lecture Notes in Artificial Intelligence 
and Lecture Notes in Bioinformatics); Springer: 
Berlin/Heidelberg, Germany, 2007; pp. 178–187.

113	 Porter, B.W.; Bareiss, R.; Holte, R.C. Concept 
learning and heuristic classification in weak-
theory domains. Artif. Intell. 1990, 45, 229–263.

114	 Wu, C.-T.; Wang, S.-M.; Su, Y.-E.; Hsieh, T.-T.; Chen, 
P.-C.; Cheng, Y.-C.; Tseng, T.-W.; Chang, W.-S.; Su, 
C.-S.; Kuo, L.-C.; Et al. A Precision Health Service 
for Chronic Diseases: Development and Cohort 
Study Using Wearable Device, Machine Learning, 
and Deep Learning. IEEE J. Transl. Eng. Health 
Med. 2022, 10, 2700414.

115	 de Lima, A.L.S.; Evers, L.J.; Hahn, T.; de Vries, 
N.M.; Daeschler, M.; Boroojerdi, B.; Terricabras, 
D.; Little, M.A.; Bloem, B.R.; Faber, M.J. Impact of 
motor fluctuations on real-life gait in Parkinson’s 
patients. Gait Posture 2018, 62, 388–394.

116	 Pulliam, C.; Eichenseer, S.; Goetz, C.; Waln, O.; 
Hunter, C.; Jankovic, J.; Vaillancourt, D.; Giuffrida, 
J.; Heldman, D. Continuous in-home monitoring 
of essential tremor. Park. Relat. Disord. 2014, 20, 
37–40.

117	 Goni, M.; Eickhoff, S.B.; Far, M.S.; Patil, K.R.; Dukart, 
J. Smartphone-Based Digital Biomarkers for 
Parkinson’s Disease in a Remotely-Administered 
Setting. IEEE Access 2022, 10, 28361–28384.

118	 Livingston, E.; Cao, J.; Dimick, J.B. Tread carefully 
with stepwise regression. Arch. Surg. 2010, 145, 
1039–1040.

119	 Li, F.; Yang, Y. Analysis of recursive feature 
elimination methods. In Proceedings of the the 
28th ACM/SIGIR International Symposium on 
Information Retrieval 2005, Salvador, Brazil, 15–19 
August 2005.

120	Kuhn, M.; Johnson, K.; Kuhn, M.; Johnson, K. An 
Introduction to Feature Selection. In Applied 
Predictive Modeling; Springer: New York, NY, USA, 
2013; pp. 487–519.

121	 Senturk, Z.K. Early diagnosis of Parkinson’s 
disease using machine learning algorithms. Med. 
Hypotheses 2020, 138, 109603.

122	Zhang, X.D. Machine Learning. In A Matrix Algebra 
Approach to Artificial Intelligence; Springer: 
Singapore, 2020. 123. Russell, S.J.; Norvig, P. 
Artificial Intelligence: A Modern Approach, 4th ed.; 
Prentice Hall: Hoboken, NJ, USA, 2020.

124	Tinschert, P.; Rassouli, F.; Barata, F.; Steurer-Stey, 
C.; Fleisch, E.; Puhan, M.; Kowatsch, T.; Brutsche, 
M.H. Smartphone-Based Cough. Detection 
Predicts Asthma Control—Description of a Novel, 
Scalable Digital Biomarker; European Respiratory 
Society (ERS): LausaNNe, Switzerland, 2020; p. 
4569.

125	ZhuParris, A.; Kruizinga, M.D.; van Gent, M.; 
Dessing, E.; Exadaktylos, V.; Doll, R.J.; Stuurman, 
F.E.; Driessen, G.A.; Cohen, A.F. Development and 
Technical Validation of a Smartphone-Based Cry 
Detection Algorithm. Front. Pediatr. 2021, 9, 262.

126	Fatima, M.; Pasha, M. Survey of Machine Learning 
Algorithms for Disease Diagnostic. J. Intell. Learn. 
Syst. Appl. 2017, 9, 1–16.

127	Ensari, I.; Caceres, B.A.; Jackman, K.B.; Suero-
Tejeda, N.; Shechter, A.; Odlum, M.L.; Bakken, 

in patients with bipolar disorder and healthy 
individuals. J. Affect. Disord. 2021, 278, 413–422.

82	 Miotto, R.; Wang, F.; Wang, S.; Jiang, X.; Dudley, 
J.T. Deep learning for healthcare: Review, 
opportunities and challenges. Brief. Bioinform. 
2018, 19, 1236–1246.

83	 Marx, V. The big challenges of big data. Nature 
2013, 498, 255–260.

84	 Li, Y.; Ding, L.; Gao, X. On the decision 
boundary of deep neural networks. arXiv 2018, 
arXiv:1808.05385.

85	 Juen, J.; Cheng, Q.; Schatz, B. A Natural Walking 
Monitor for Pulmonary Patients Using Mobile 
Phones. IEEE J. Biomed. Health Inform. 2015, 19, 
1399–1405.

86	 Cole, B.T.; Roy, S.H.; De Luca, C.J.; Nawab, S.H. 
Dynamical learning and tracking of tremor and 
dyskinesia from wearable sensors. IEEE Trans. 
Neural Syst. Rehabil. Eng. 2014, 22, 982–991.

87	 Peraza, L.R.; KiNNunen, K.M.; McNaney, R.; 
Craddock, I.J.; Whone, A.L.; Morgan, C.; Joules, 
R.; Wolz, R. An automatic gait analysis pipeline 
for wearable sensors: A pilot study in parkinson’s 
disease. Sensors 2021, 21, 8286.

88	 Saeys, Y.; Abeel, T.; Van De Peer, Y. Robust feature 
selection using ensemble feature selection 
techniques. In Lecture Notes in Computer Science 
(Including Subseries Lecture Notes in Artificial 
Intelligence and Lecture Notes in Bioinformatics); 
Springer: Berlin/Heidelberg, Germany, 2008; pp. 
313–325.

89	 Cai, J.; Luo, J.; Wang, S.; Yang, S. Feature selection 
in machine learning: A new perspective. 
Neurocomputing 2018, 300, 70–79.

90	 Jabar, H.; Khan, R.Z. Methods to avoid over-fitting 
and under-fitting in supervised machine learning 
(comparative study). Comput. Sci. Commun. 
Instrum. Devices 2015, 70, 163–172.

91	 Hall, M.A. Correlation-based Feature Selection for 
Machine Learning. Ph.D. Thesis, The University of 
Waikato, Hamilton, New Zealand, 1999.

92	 Hall, M.A.; Smith, L.A. Feature selection for 
machine learning: Comparing a correlation-based 
filter approach to the wrapper. In Proceedings of 
the FLAIRS Conference 1999, Orlando, FL, USA, 1–5 
May 1999; Volume 1999, pp. 235–239.

93	 Galperin, I.; Hillel, I.; Del Din, S.; Bekkers, E.M.; 
Nieuwboer, A.; Abbruzzese, G.; Avanzino, L.; 
Nieuwhof, F.; Bloem, B.R.; Rochester, L.; Et al. 
Associations between daily-living physical activity 
and laboratory-based assessments of motor 

severity in patients with falls and Parkinson’s 
disease. Park. Relat. Disord. 2019, 62, 85–90.

94	 Dong, C.; Ye, T.; Long, X.; Aarts, R.M.; van Dijk, J.P.; 
Shang, C.; Liao, X.; Chen, W.; Lai, W.; Chen, L.; Et 
al. A Two-Layer Ensemble Method for Detecting 
Epileptic Seizures Using a Self-ANNotation 
Bracelet with Motor Sensors. IEEE Trans. Instrum. 
Meas. 2022, 71, 4005013.

95	 Creagh, A.P.; Simillion, C.; Bourke, A.K.; Scotland, 
A.; Lipsmeier, F.; Bernasconi, C.; van Beek, J.; 
Baker, M.; Gossens, C.; LindemaNN, M.; Et al. 
Smartphone-and Smartwatch-Based Remote 
Characterisation of Ambulation in Multiple 
Sclerosis during the Two-Minute Walk Test. IEEE J. 
Biomed. Health Inform. 2021, 25, 838–849.

96	 Chen, O.Y.; Lipsmeier, F.; Phan, H.; Prince, J.; 
Taylor, K.I.; Gossens, C.; LindemaNN, M.; de Vos, M. 
Building a Machine-Learning

Framework to Remotely Assess Parkinson’s Disease 
Using Smartphones. IEEE Trans. Biomed. Eng. 
2020, 67, 3491–3500.

97	 Steyerberg, E.W.; Eijkemans, M.J.C.; Habbema, 
J.D.F. Stepwise selection in small data sets: A 
simulation study of bias in logistic regression 
analysis. J. Clin. Epidemiol. 1999, 52, 935–942.

98	 Austin, P.C.; Tu, J.V. Bootstrap Methods for 
Developing Predictive Models. Am. Stat. 2004, 58, 
131–137.

99	 Zimmerman, D.W. Power Functions of the Test and 
MaNN-Whitney Test Under Violation of Parametric 
Assumptions. Percept. Mot. Skills 1985, 61, 
467–470.

100	Urbanowicz, R.J.; Meeker, M.; la Cava, W.; Olson, 
R.S.; Moore, J.H. Relief-based feature selection: 
Introduction and review. J. Biomed. Inform. 2018, 
85, 189–203.

101	 Kira, K.; Rendell, L.A. A Practical Approach to 
Feature Selection; Elsevier: Amsterdam, The 
Netherlands, 1992; pp. 249–256.

102	Verma, N.K.; Salour, A. Feature selection. Stud. 
Syst. Decis. Control 2020, 256, 175–200.

103	Yaman, O.; Ertam, F.; Tuncer, T. Automated 
Parkinson’s disease recognition based on 
statistical pooling method using acoustic features. 
Med. Hypotheses 2020, 135, 109483.

104	Rodriguez-Molinero, A.; Samà, A.; Pérez-Martínez, 
D.A.; López, C.P.; Romagosa, J.; Bayes, A.; Sanz, P.; 
Calopa, M.; Gálvez-Barrón, C.; De Mingo, E.; Et al. 
Validation of a portable device for mapping motor 
and gait disturbances in Parkinson’s disease. JMIR 
MHealth Uhealth 2015, 3, e9.



Development of Machine Learning – Derived mHealth Composite Biomarkers for Trial@Home Clinical Trials72 73Part i /Chapter 2

Classification. Balt. J. Mod. Comput. 2017, 5, 
221–232.

150	Worster, A.; Fan, J.; Ismaila, A. Understanding 
linear and logistic regression analyses. Can. J. 
Emerg. Med. 2007, 9, 111–113.

151	 Morrow-Howell, N. The M word: Multicollinearity 
in multiple regression. Soc. Work. Res. 1994, 18, 
247–251.

152	Schwenk, M.; Hauer, K.; Zieschang, T.; Englert, 
S.; Mohler, J.; Najafi, B. Sensor-derived physical 
activity parameters can predict future falls in 
people with dementia. Gerontology 2014, 60, 
483–492.

153	Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. 
Nature 2015, 521, 436–444.

154	Tu, J.V. Advantages and disadvantages of using 
artificial neural networks versus logistic regression 
for predicting medical outcomes. J. Clin. 
Epidemiol. 1996, 49, 1225–1231.

155	Mudiyanselage, T.K.B.; Xiao, X.; Zhang, Y.; Pan, 
Y. Deep Fuzzy Neural Networks for Biomarker 
Selection for Accurate Cancer Detection. IEEE 
Trans. Fuzzy Syst. 2020, 28, 3219–3228.

156	Yagin, F.H.; Cicek, I.B.; Alkhateeb, A.; Yagin, B.; 
Colak, C.; Azzeh, M.; Akbulut, S. Explainable 
artificial intelligence model for identifying COVID-
19 gene biomarkers. Comput. Biol. Med. 2023, 154, 
106619.

157	Wang, Y.; Lucas, M.; Furst, J.; Fawzi, A.A.; Raicu, 
D. Explainable Deep Learning for Biomarker 
Classification of OCT Images. In Proceedings 
of the 2020 IEEE 20th International Conference 
on Bioinformatics and Bioengineering (BIBE), 
CinciNNati, OH, USA, 26–28 October 2020; pp. 
204–210.

158	Fisher, J.M.; Hammerla, N.Y.; Ploetz, T.; Andras, 
P.; Rochester, L.; Walker, R.W. Unsupervised 
home monitoring of Parkinson’s disease motor 
symptoms using body-worn accelerometers. Park. 
Relat. Disord. 2016, 33, 44–50.

159	Frogner, J.I.; Noori, F.M.; Halvorsen, P.; Hicks, S.A.; 
Garcia-Ceja, E.; Torresen, J.; Riegler, M.A. One-
dimensional convolutional neural networks on 
motor activity measurements in detection of 
depression. In Proceedings of the HealthMedia 
2019—Proceedings of the 4th International 
Workshop on Multimedia for Personal Health 
and Health Care, Co-Located with MM 2019, Nice, 
France, 21–25 October 2019; pp. 9–15.

160	Meisel, C.; el Atrache, R.; Jackson, M.; Schubach, 
S.; Ufongene, C.; Loddenkemper, T. Machine 

learning from wristband sensor data for wearable, 
noninvasive seizure forecasting. Epilepsia 2020, 61, 
2653–2666.

161	 Matarazzo, M.; Arroyo-Gallego, T.; Montero, P.; 
Puertas-Martín, V.; Butterworth, I.; Mendoza, C.S.; 
Ledesma-Carbayo, M.J.; Catalán, M.J.; Molina, J.A.; 
Bermejo-Pareja, F.; Et al. Remote Monitoring of 
Treatment Response in Parkinson’s Disease: The 
Habit of Typing on a Computer. Mov. Disord. 2019, 
34, 1488–1495.

162	Weiss, K.; Khoshgoftaar, T.M.; Background, D.W. 
A survey of transfer learning. J. Big Data 2016, 3, 
1345–1459.

163	Kamishima, T.; Hamasaki, M.; Akaho, S. TrBagg: 
A Simple Transfer Learning Method and its 
Application to Personalization in Collaborative 
Tagging. In Proceedings of the 2009 Ninth IEEE 
International Conference on Data Mining, Miami, 
FL, USA, 6–9 December 2009; pp. 219–228.

164	Fu, Z.; He, X.; Wang, E.; Huo, J.; Huang, J.; Wu, D. 
Personalized Human Activity Recognition Based 
on Integrated Wearable Sensor and Transfer 
Learning. Sensors 2021, 21, 885.

165	Chen, Y.; Qin, X.; Wang, J.; Yu, C.; Gao, W. FedHealth: 
A Federated Transfer Learning Framework for 
Wearable Healthcare. IEEE Intell. Syst. 2020, 35, 
83–93.

166	Goschenhofer, J.; Pfister, F.M.J.; Yuksel, K.A.; 
Bischl, B.; Fietzek, U.; Thomas, J. Wearable-Based 
Parkinson’s Disease Severity Monitoring Using 
Deep Learning. In Lecture Notes in Computer 
Science (Including Subseries Lecture Notes 
in Artificial Intelligence and Lecture Notes in 
Bioinformatics); Springer: Berlin/Heidelberg, 
Germany, 2020; Volume 11908 LNAI, pp. 400–415.

167	Hssayeni, M.D.; Jimenez-Shahed, J.; Burack, M.A.; 
Ghoraani, B. Ensemble deep model for continuous 
estimation of Unified Parkinson’s Disease Rating 
Scale III. Biomed. Eng. Online 2021, 20, 1–20.

168	Zhang, Y.; Yang, Q. Special Topic: Machine Learning 
An overview of multi-task learning. Natl. Sci. Rev. 
2018, 5, 30–43.

169	Lee, G.; Yang, E.; Hwang, S. Asymmetric multi-task 
learning based on task relatedness and loss. In 
Proceedings of the International Conference on 
Machine Learning 2016, New York, NY, USA, 19–24 
June 2016; pp. 230–238.

170	Xin, W.; Bi, J.; Yu, S.; Sun, J.; Song, M. Multiplicative 
Multitask Feature Learning. J. Mach. Learn. Res. 
JMLR 2016, 17, 1–33.

171	 Zhang, Z.; Jung, T.P.; Makeig, S.; Pi, Z.; Rao, 

S. Digital phenotyping of sleep patterns among 
heterogenous samples of Latinx adults using 
unsupervised learning. Sleep. Med. 2021, 85, 
211–220.

128	Ko, Y.-F.; Kuo, P.-H.; Wang, C.-F.; Chen, Y.-J.; 
Chuang, P.-C.; Li, S.-Z.; Chen, B.-W.; Yang, F.-C.; 
Lo, Y.-C.; Yang, Y.; Et al. Quantification Analysis 
of Sleep Based on Smartwatch Sensors for 
Parkinson’s Disease. Biosensors 2022, 12, 74.

129	Farhan, A.A.; Yue, C.; Morillo, R.; Ware, S.; Lu, J.; 
Bi, J.; Kamath, J.; Russell, A.; Bamis, A.; Wang, B. 
Behavior vs. introspection: Refining prediction of 
clinical depression via smartphone sensing data. 
In Proceedings of the 2016 IEEE Wireless Health 
(WH), Bethesda, MD, USA, 25–27 October 2016.

130	Derungs, A.; Schuster-Amft, C.; Amft, O. 
Longitudinal walking analysis in hemiparetic 
patients using wearable motion sensors: Is there 
convergence between body sides? Front. Bioeng. 
Biotechnol. 2018, 6, 57.

131	 Freedman, D.A. Statistical Models. In Statistical 
Models: THeory and Practice; Cambridge 
University Press: Cambridge, UK, 2009. 132. 
Ahmed, S.T.; Basha, S.M.; Arumugam, S.R.; 
Kodabagi, M.M. Pattern Recognition: An 
Introduction, 1st ed.; MileStone Research 
Publications: Bengaluru, India, 2021.

133	Ruppert, D. The Elements of Statistical Learning: 
Data Mining, Inference, and Prediction. J. Am. Stat. 
Assoc. 2004, 99, 567.

134	Opitz, D.; Maclin, R. Popular Ensemble Methods: An 
Empirical Study. J. Artif. Intell. Res. 1999, 11, 169–
198. 135. Kosasi, S. Perancangan Prototipe Sistem 
Pemesanan Makanan dan Minuman Menggunakan 
Mobile Device. Indones. J. Netw. Secur. 2015, 1, 
1–10.

136	Hastie, T.; Tibshirani, R.; Friedman, J. The Elements 
of Statistical Learning: Data Mining, Inference, and 
Prediction; Springer Science & Business Media: 
New York, NY, USA, 2013.

137	San-Segundo, R.; Zhang, A.; Cebulla, A.; Panev, 
S.; Tabor, G.; Stebbins, K.; Massa, R.E.; Whitford, 
A.; de la Torre, F.; Hodgins, J. Parkinson’s disease 
tremor detection in the wild using wearable 
accelerometers. Sensors 2020, 20, 5817.

138	Ahmadi, M.N.; O’neil, M.E.; Baque, E.; Boyd, 
R.N.; Trost, S.G. Machine learning to quantify 
physical activity in children with cerebral palsy: 
Comparison of group, group-personalized, and 
fully-personalized activity classification models. 
Sensors 2020, 20, 3976.

139	Faurholt-Jepsen, M.; Busk, J.; Frost, M.; ViNBerg, 
M.; Christensen, E.M.; Winther, O.; Bardram, J.E.; 
Kessing, L.V. Voice analysis as an objective state 
marker in bipolar disorder. Transl. Psychiatry 2016, 
6, e856.

140	Jacobson, N.C.; Lekkas, D.; Huang, R.; Thomas, 
N. Deep learning paired with wearable passive 
sensing data predicts deterioration in anxiety 
disorder symptoms across 17–18 years. J. Affect. 
Disord. 2021, 282, 104–111.

141	 Hastie, T.; Tibshirani, R.; Friedman, J. Statistics the 
Elements of Statistical Learning. Math. Intell. 2009, 
27, 83–85.

142	Patle, A.; Chouhan, D.S. SVM kernel functions 
for classification. In Proceedings of the 2013 
International Conference on Advances in 
Technology and Engineering, ICATE 2013, Mumbai, 
India, 23–25 January 2013.

143	Kim, H.S.; Kim, S.Y.; Kim, Y.H.; Park, K.S. A 
smartphone-based automatic diagnosis 
system for facial nerve palsy. Sensors 2015, 15, 
26756–26768.

144	Luca, S.; Karsmakers, P.; Cuppens, K.; 
CrooneNBorghs, T.; Van de Vel, A.; Ceulemans, B.; 
Lagae, L.; Van Huffel, S.; Vanrumste, B. Detecting 
rare events using extreme value statistics applied 
to epileptic convulsions in children. Artif. Intell. 
Med. 2014, 60, 89–96.

145	Ghoraani, B.; Hssayeni, M.D.; Bruack, M.M.; 
Jimenez-Shahed, J. Multilevel Features for 
Sensor-Based Assessment of Motor Fluctuation 
in Parkinson’s Disease Subjects. IEEE J. Biomed. 
Health Inform. 2020, 24, 1284–1295.

146	Kramer, O. K-Nearest Neighbors. In Dimensionality 
Reduction with Unsupervised Nearest Neighbors. 
Intelligent Systems Reference. Library; Springer: 
Berlin/Heidelberg, Germany, 2013; Volume 51.

147	Jeon, H.; Lee, W.; Park, H.; Lee, H.J.; Kim, S.K.; Kim, 
H.B.; Jeon, B.; Park, K.S. Automatic classification 
of tremor severity in Parkinson’s disease using 
awearable device. Sensors 2017, 17, 2067.

148	Grunerbl, A.; Muaremi, A.; Osmani, V.; Bahle, 
G.; Ohler, S.; Troster, G.; Mayora, O.; Haring, C.; 
Lukowicz, P. Smartphone-based recognition 
of states and state changes in bipolar disorder 
patients. IEEE J. Biomed. Health Inform. 2015, 19, 
140–148.

149	Pranckevicˇius, T.; Marcinkevicˇius, V. 
Comparison of Naive Bayes, Random Forest, 
Decision Tree, Support Vector Machines, and 
Logistic Regression Classifiers for Text Reviews 



Development of Machine Learning – Derived mHealth Composite Biomarkers for Trial@Home Clinical Trials74 75Part i /Chapter 2

the 2016 IEEE International Conference of Online 
Analysis and Computing Science, ICOACS 2016, 
Chongqing, China, 28–29 May 2016; pp. 225–228.

195	Botchkarev, A. Performance Metrics (Error Mea­
sures) in Machine Learning Regression, Forecast­
ing and Prognostics: Properties and Typology. 
Interdiscip. J. Inf. Knowl. Manag. 2018, 14, 45–76.

196	di Bucchianico, A. Coefficient of Determination. 
In Encyclopedia of Statistics in Quality and 
Reliability; Wiley: Hoboken, NJ, USA, 2007.

197	Piepho, H. A coefficient of determination (R2) for 
generalized linear mixed models. Biom. J. 2019, 61, 
860–872.

198	Gelman, A.; Pardoe, I. Bayesian Measures of 
Explained Variance and Pooling in Multilevel 
(Hierarchical) Models. Technometrics 2006, 48, 
241–251.

199	Hodson, T.O. Root-mean-square error (RMSE) or 
mean absolute error (MAE): When to use them or 
not. Geosci. Model. Dev. 2022, 15, 5481–5487.

200	Mezzadri, G.; Laloë, T.; Mathy, F.; Reynaud-Bouret, 
P. Hold-out strategy for selecting learning models: 
Application to categorization subjected to 
presentation orders. J. Math. Psychol. 2022, 109, 
102691.

201	Gholamiangonabadi, D.; Kiselov, N.; Grolinger, 
K. Deep Neural Networks for Human Activity 
Recognition with Wearable Sensors: Leave-One-
Subject-Out Cross-Validation for Model Selection. 
IEEE Access 2020, 8, 133982–133994.

202	Little, M.A.; Varoquaux, G.; Saeb, S.; Lonini, L.; 
Jayaraman, A.; Mohr, D.C.; Kording, K.P. Using 
and understanding crossvalidation strategies. 
Perspectives on Saeb Et al. Gigascience 2017, 6, 
1–6.

203	Peterson, R.A.; Cavanaugh, J.E. Ordered quantile 
normalization: A semiparametric transformation 
built for the cross-validation era. J. Appl. Stat. 
2020, 47, 2312–2327.

204	Zhang, Y.; Yang, Y. Cross-validation for selecting a 
model selection procedure. J. Econom. 2015, 187, 
95–112.

205	Refaeilzadeh, P.; Tang, L.; Liu, H. Cross-Validation. 
In Encyclopedia of Database Systems; Springer: 
Berlin/Heidelberg, Germany, 2016; pp. 1–7.

206	Browne, M.W. Cross-validation methods. J. Math. 
Psychol. 2000, 44, 108–132.

207	Wainer, J.; Cawley, G. Nested cross-validation 
when selecting classifiers is overzealous for most 
practical applications. Expert Syst. Appl. 2021, 182, 
115222.

208	Kohavi, R. A Study of Cross-Validation and 
Bootstrap for Accuracy Estimation and Model 
Selection. 1995. Available online: http://robotics.
stanford.edu/~roNNyk (accessed on 5 January 
2023).

209	Vanwinckelen, G.; Blockeel, H. On estimating 
model accuracy with repeated cross-validation. In 
BeneLearn 2012: Proceedings of the 21st Belgian-
Dutch Conference on Machine Learning; Benelearn 
2012 Organization Committee: Ghent, Belgium, 
2012; pp. 39–44.

210	Parvandeh, S.; Yeh, H.-W.; Paulus, M.P.; McKiNNey, 
B.A. Consensus Features Nested Cross-Validation. 
bioRxiv 2020.

211	 Goble, C.; Cohen-Boulakia, S.; Soiland-Reyes, S.; 
Garijo, D.; Gil, Y.; Crusoe, M.; Peters, K.; Schober, D. 
Fair computational workflows. Data Intell. 2020, 2, 
108–121.

212	Muehlematter, U.J.; Daniore, P.; Vokinger, K.N. 
Approval of artificial intelligence and machine 
learning-based medical devices in the USA and 
Europe (2015–20): A comparative analysis. Lancet 
Digit. Health 2021, 3, e195–e203.

213	Beckers, R.; Kwade, Z.; Zanca, F. The EU medical 
device regulation: Implications for artificial 
intelligence-based medical device software in 
medical physics. Phys. Med. 2021, 83, 1–8.

214	van Oirschot, J.; Ooms, G. Interpreting the EU 
Artificial Intelligence Act for the Health Sector; 
Health Action International: Amsterdam, The 
Netherlands, February 2022.

215	Agarwal, S.; LeFevre, A.; Lee, J.; L’engle, K.; Mehl, 
G.; Sinha, C.; Labrique, A. Guidelines for reporting 
of health interventions using mobile phones: 
Mobile health (mHealth) evidence reporting and 
assessment (mERA) checklist. BMJ 2016, 352, i1174.

216	Yang, J.; Soltan, A.A.S.; Clifton, D.A. Machine 
learning generalizability across healthcare 
settings: Insights from multi-site COVID-19 
screening. NPJ Digit. Med. 2022, 5, 69.

217	Petersen, E.; Potdevin, Y.; Mohammadi, E.; 
Zidowitz, S.; Breyer, S.; Nowotka, D.; HeNN, S.; 
PechmaNN, L.; Leucker, M.; Rostalski, P.; Et al. 
Responsible and Regulatory Conform Machine 
Learning for Medicine: A Survey of Challenges and 
Solutions. IEEE Access 2022, 10, 58375–58418.

218	FAIR Principles—GO FAIR. Available online: https://
www.go-fair.org/fair-principles/ (accessed on 16 
December 2021).

219	Fletcher, R.R.; Nakeshimana, A.; Olubeko, O. 
Addressing Fairness, Bias, and Appropriate Use 

B.D. Spatiotemporal sparse Bayesian learning 
with applications to compressed sensing of 
multichaNNel physiological signals. IEEE Trans. 
Neural Syst. Rehabil. Eng. 2014, 22, 1186–1197.

172	Schneider, J.; Vlachos, M. Personalization of 
deep learning. In Data Science–Analytics and 
Applications: Proceedings of the 3rd International 
Data Science Conference–iDSC2020; Springer: 
Wiesbaden, Geramny, 2021; pp. 89–96.

173	Khademi, A.; El-Manzalawy, Y.; Buxton, O.M.; 
Honavar, V. Toward personalized sleep-wake 
prediction from actigraphy. In Proceedings of 
the 2018 IEEE EMBS International Conference 
on Biomedical and Health Informatics, BHI 
2018, Vegas, NV, USA, 4–7 March 2018; Institute 
of Electrical and Electronics Engineers Inc.: 
Piscataway, NJ, USA, 2018; pp. 414–417.

174	Kuhn, M.; Johnson, K. Applied Predictive Modeling; 
Springer: New York, NY, USA, 2013.

175	Pal, M. Random forest classifier for remote sensing 
classification. Int. J. Remote Sens. 2005, 26, 
217–222.

176	Putin, E.; Mamoshina, P.; Aliper, A.; Korzinkin, M.; 
Moskalev, A.; Kolosov, A.; Ostrovskiy, A.; Cantor, 
C.; Vijg, J.; Zhavoronkov, A. Deep biomarkers of 
human aging: Application of deep neural networks 
to biomarker development. Aging 2016, 8, 
1021–1033.

177	Yang, L.; Shami, A. On hyperparameter 
optimization of machine learning algorithms: 
Theory and practice. Neurocomputing 2020, 415, 
295–316.

178	Waring, J.; Lindvall, C.; Umeton, R. Automated 
machine learning: Review of the state-of-the-art 
and opportunities for healthcare. Artif. Intell. Med. 
2020, 104, 101822.

179	Bergstra, J.; Ca, J.B.; Ca, Y.B. Random Search for 
Hyper-Parameter Optimization Yoshua Bengio. 
2012. Available online: http://scikit-learn.
sourceforge.net (accessed on 5 January 2023).

180	Beam, A.L.; Manrai, A.K.; Ghassemi, M. Challenges 
to the Reproducibility of Machine Learning Models 
in Health Care. JAMA 2020, 323, 305.

181	 Ahlrichs, C.; Samà, A.; Lawo, M.; Cabestany, J.; 
Rodríguez-Martín, D.; Pérez-López, C.; Sweeney, 
D.; Quinlan, L.R.; Laighin, G.Ò.; Counihan, T.; 
Et al. Detecting freezing of gait with a tri-axial 
accelerometer in Parkinson’s disease patients. 
Med. Biol. Eng. Comput. 2016, 54, 223–233.

182	Rosenwein, T.; Dafna, E.; Tarasiuk, A.; Zigel, Y. 
Detection of Breathing Sounds during Sleep 

Using Non-Contact Audio Recordings; Institute 
of Electrical and Electronics Engineers Inc.: 
Piscataway, NJ, USA, 2014.

183	Pérez-López, C.; Samà, A.; Rodríguez-Martín, D.; 
Moreno-Aróstegui, J.M.; Cabestany, J.; Bayes, A.; 
Mestre, B.; Alcaine, S.; Quispe, P.; Laighin, G.; Et 
al. Dopaminergic-induced dyskinesia assessment 
based on a single belt-worn accelerometer. Artif. 
Intell. Med. 2016, 67, 47–56.

184	Bernad-Elazari, H.; Herman, T.; Mirelman, A.; 
Gazit, E.; Giladi, N.; Hausdorff, J.M. Objective 
characterization of daily living transitions in 
patients with Parkinson’s disease using a single 
body-fixed sensor. J. Neurol. 2016, 263, 1544–1551.

185	Carvalho, D.V.; Pereira, E.M.; Cardoso, J.S. Machine 
Learning Interpretability: A Survey on Methods 
and Metrics. Electronics 2019, 8, 832.

186	Zhou, J.; Gandomi, A.H.; Chen, F.; Holzinger, 
A. Evaluating the Quality of Machine Learning 
Explanations: A Survey on Methods and Metrics. 
Electronics 2021, 10, 593.

187	Hossin, M.; Sulaiman, M.N. A Review on Evaluation 
Metrics for Data Classification Evaluations. Int. J. 
Data Min. Knowl. Manag. Process 2015, 5, 1–11.

188	He, H.; Ma, Y. Imbalanced Learning; Wiley: 
Hoboken, NJ, USA, 2013.

189	Wan, S.; Liang, Y.; Zhang, Y.; Guizani, M. Deep Multi-
Layer perceptron classifier for behavior analysis 
to estimate Parkinson’s disease severity using 
smartphones. IEEE Access 2018, 6, 36825–36833.

190	Chicco, D.; Tötsch, N.; Jurman, G. The matthews 
correlation coefficient (MCC) is more reliable than 
balanced accuracy, bookmaker informedness, 
and markedness in two-class confusion matrix 
evaluation. BioData Min. 2021, 14, 1–22.

191	 Jurman, G.; RiccadoNNa, S.; Furlanello, C. A 
Comparison of MCC and CEN Error Measures in 
Multi-Class Prediction. PLoS ONE 2012, 7, e41882.

192	Faurholt-Jepsen, M.; Busk, J.; HelgaÞórarinsdóttir; 
Frost, M.; Bardram, J.E.; ViNBerg, M.; Kessing, 
L.V. Objective smartphone data as a potential 
diagnostic marker of bipolar disorder. Aust. N. Z. J. 
Psychiatry 2019, 53, 119–128.

193	Xu, Z.; Shen, D.; Nie, T.; Kou, Y. A hybrid sampling 
algorithm combining M-SMOTE and ENN based on 
Random forest for medical imbalanced data. J. 
Biomed. Inform. 2020, 107, 103465.

194	Zeng, M.; Zou, B.; Wei, F.; Liu, X.; Wang, L. 
Effective prediction of three common diseases 
by combining SMOTE with Tomek links technique 
for imbalanced medical data. In Proceedings of 



Development of Machine Learning – Derived mHealth Composite Biomarkers for Trial@Home Clinical Trials76 77Part i /Chapter 2

Table 1  Representation of a standard machine learning pipeline.

Stage Objective Example
Study  
Design

The ML pipeline is provided with a study 
objective in which the features and cor­
responding outputs are defined. The ML 
model aims to identify the associations 
between the features and outputs.

The study objective is to classify
Parkinson’s Disease patients and control 
groups using smartphone-based features.

Data  
Preprocessing

Data preprocessing filters and transforms 
raw data to guarantee or enhance the ML 
training process.

To improve the model performance, one 
may identify and exclude any missing or 
outlier data.

Feature  
Engineering  
and Selection

Feature engineering uses raw data to 
create new features that are not readily 
available in the dataset.
Feature selection selects the most 
relevant features for the model objective 
by removing redundant or noisy features. 
Together, the goal is to simplify and 
accelerate the computational process 
while also improving the model process. 
For deep learning methods, the concept 
of ‘feature engineering’ is typically 
embedded within the model architecture 
and training process, although substan­
tial preprocessing steps may occur prior 
to that.

An interaction of two or more predictors
(such as a ratio or product) or re-repre­
sentation of a predictor are examples 
of feature engineering. Removing high­
ly correlated or non-informative features 
are examples of feature selection.
Note: The feature selection step can oc­
cur during model training

Model Training  
and Validation

During training, the ML model(s) iterates 
through all the examples in the training 
dataset and optimizes the parameters of 
the mathematical function to minimize 
the prediction error.
To evaluate the performance of the
trained ML model, the predictions of 
an unseen test set are compared with a 
known ground truth label.

Cross-validation can be used to optimize 
and evaluate model performance.
Classification models may be evaluated 
based on their prediction accuracy, sen­
sitivity, and specificity, while regression 
models may be evaluated using variance 
explained (R2) and Mean Absolute Error.
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Table 3  Table of the inclusion and exclusion criteria used for study selection.

Category Criteria
Population The study must be initiated by a research organization and not by the participants.

The participants must have a clinical diagnosis that is affected by the CNS. Hence, 
studies that collected data from participants with no clinically confirmed diagnosis 
were not considered.

Intervention The study must include the use of smartphone or non-invasive wearables to remotely 
monitor and quantify passive biomarkers under free-living conditions.

Comparator A ground truth comparator for digital phenotyping such as clinical assessment, med­
ical records, or
self-reported outcomes.

Outcomes A ML model that is used to classify a clinical label (such as a diagnosis, or clinical 
event), estimate symptom severity, or to detect treatment effects.

Study Type The paper must be about a human-centered observational study (cohort or longitu­
dinal) where the data were collected outside the clinic, lab, or hospital (free-living 
conditions). Hence, studies that use smartphones or
wearables as a form of intervention or as screening tools are not of interest.
The study must show if the ML models had ecological validity by validating the mod­
els using free-living data. The study has to have been written or translated into Eng­
lish and published within the last 10 years (2012 onwards).

Table 2  An overview of the keyword strategy used for this study.

Domain Search String
Technology ((‘smartphone’[tiab] OR ‘wearable’[tiab] OR ‘remote + monitoring’[tiab] OR

‘home + monitoring’[tiab] OR ‘mobile + sensors’[tiab] OR ‘mobile + montoring’[tiab] OR
‘behavioral + sensing’[tiab] OR ‘geolocation’[tiab] OR ‘mHealth’[tiab] OR
‘passive + monitoring’[tiab] OR ‘digital + phenotype’[tiab] OR ‘digital + 
phenotyping’[tiab] OR ‘digital + biomarker’[tiab])

Analysis AND (‘machine + learning’[tiab] OR ‘deep + learning’[tiab] OR ‘random + forest’[tiab] 
OR ‘neural
+ network’[tiab] OR ‘time + series’[tiab] OR ‘regression’[tiab] OR ‘SVM’[tiab] OR 
‘knn’[tiab] OR
‘dynamics + model’[tiab] OR ‘decision + tree’[tiab] OR ‘discriminant + analysis’[tiab] 
OR ‘feature
+ engineering’[tiab] OR ‘feature + selection’[tiab] OR ‘data + mining’[tiab] OR 
‘model’[tiab] OR
‘classification’[tiab] OR ‘diagnostic’[tiab] OR ‘prognostic’[tiab] OR ‘symptom + 
severity’[tiab] OR
‘prediction’[tiab] OR ‘monitoring’[tiab])

Population AND (‘disease’[tiab] OR ‘disorder’[tiab] OR ‘diagnosis’[tiab] OR ‘prognosis’ OR
‘alzheimer’[tiab] OR ‘parkinson’[tiab] OR ‘Huntington’[tiab] OR 
‘neurodegenerative’[tiab] OR
‘degenerative’ OR ‘tremor’[tiab] OR ‘bipolar’[tiab] OR ‘depression’[tiab] OR 
‘manic’[tiab] OR
‘anxiety’[tiab] OR ‘vocal + biomarker’[tiab] OR ‘amyotrophic + lateral + sclerosis’[tiab] 
OR
‘central + nervous + system’[tiab] OR ‘symptom’[tiab] OR ‘psychosis’[tiab] OR 
‘stroke’[tiab] OR
‘muscular dystrophy’[tiab] OR ‘Facioscapulohumeral Dystrophy’[tiab] OR 
‘autoimmune’[tiab] OR
‘seizure’[tiab] OR ‘multiple + sclerosis’[tiab])

Date AND (‘2012/01/01’[PDAT]:’2022/12/31’[PDAT])
Language AND (English[lang])
Exclusion  
Criteria

NOT(‘animals’[tiab] OR ‘implant’[tiab] OR ‘hospital’[tiab] OR ‘caregiver’[tiab] OR
‘telemedicine’[tiab] OR ‘telerehabilitation’[tiab] OR ‘smartphone + addiction’[tiab] OR
‘nursing’[tiab] OR’screening’[tiab] OR ‘recruitment’[tiab] OR ‘diabetes’[tiab] OR 
‘malaria’[tiab]
OR ‘self-care’[tiab] OR ‘self-management’[tiab] OR ‘self-help’[tiab])

Article Type AND (clinicalstudy[Filter] OR clinicaltrial[Filter] OR clinicaltrialphasei[Filter] OR
clinicaltrialphaseii[Filter] OR clinicaltrialphaseiii[Filter] OR clinicaltrialphaseiv[Filter] 
OR
controlledclinicaltrial[Filter] OR meta-analysis[Filter] observationalstudy[Filter] OR
randomizedcontrolledtrial[Filter] OR systematicreview[Filter])
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Figure 1  Flow diagram illustrating the paper selection process for this review.Table 4  Clinical interpretations of common ML performance metrics. 

Term Equation Objective
Accuracy Out of all the predictions, how many predictions were correctly 

identified as positive or negative?
Precision How many predictions were correctly labeled as patients out of all 

correctly classified patients and misclassified healthy controls?
Specificity How many predictions were correctly labeled as healthy controls 

out of all healthy controls? In other words, of all healthy controls, 
who were correctly identified as such?

Recall/ 
Sensitivity

Of all the patients, who were correctly classified/identified as 
such?

F1-score How many predictions were correctly labeled as patients (recall) 
and what was the accuracy with regards to correctly predicted pa­
tients (precision)?

Mean Square  
Error

What is the absolute difference between the true scores and the 
predicted scores?

Root Mean 
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What is the average difference between the true and the predicted 
scores (in the same unit of the true scores)?

R2 What fraction of the variance in the data is captured by the model?

True Positive = TP, True Negative = TN, False Positives = FP, False Negatives = FN, Sum of Squares of Residuals = RSS, Total 
Sum of Squares = TSS, Number of Observations = N
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Figure 3  Sample sizes of clinical populations included in selected studies, with x-axis (sample size) 
presented on a logarithmic scale.

Figure 2  Clinical populations and the use of healthy controls in the selected studies.
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Figure 5  General recommendations for building an effective and reproducible ML pipeline.Figure 4  Machine learning algorithms and their respective objectives in the selected studies.


