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visits to in-patient facilities like hospitals or clinical research units. This 
approach has several benefits, such as strict control over the study envi­
ronment and standardized data collection. However, a limitation is that 
the data collected only represents a snapshot of the patient’s health and 
disease activity, often in an isolated context. As a result, evidence gaps 
between visits are created, and clinicians’ insight into patients’ overall 
health may be limited.

To overcome the limitations of conventional clinical trials, mHealth 
devices like smartphones, wearables, and tablets offer a unique oppor­
tunity for continuous and longitudinal data collection from clinical trial 
participants under free-living conditions.2–6 Mobile applications (apps) 
installed on smartphones and tablets can be utilized to actively collect 
self-reported outcomes from patients through electronic diaries.7 Simul­
taneously, apps can passively collect data from various sensors such as 
accelerometers, cameras, gyroscopes, microphones, and phone logs, 
providing an additional source of valuable physical and behavioral data.8–
10 Wearables support continuous tracking of physiological responses or 
physical activity, such as heart rate or steps, enable characterization of 
intra- and inter-individual variability in disease activity and quantification 
of drug response.11–14 This approach of collecting data from multiple sen­
sors acknowledges that a patient’s experience of their disease is a conse­
quence of multiple neurobiological processes, and therefore is expressed 
as a diverse array of symptoms simultaneously.

The use of mHealth devices in clinical trials has sharply increased since 
the global adoption of the smartphone. Between 2012 to 2022, the term 
‘mHealth’ was incorporated in 1605 clinical studies posted on clinicaltri­
als.gov. Only 15 studies used the term between 2000 to 2011.15 mHealth 
biomarkers have been shown to be effective in monitoring disease activ­
ity and estimating symptom severity for a wide range of diseases such as 
mood disorders,16–21 neurodegenerative disorders,22–24 and cardiovascu­
lar diseases.25 The benefits of mHealth devices in clinical trials are two-
fold. First, real-world data collected under free-living conditions, which is 
data collected outside of controlled clinical trial settings, can be used to 

Development of novel biomarkers

Clinical biomarkers serve a critical role in diagnosing diseases, monitor­
ing disease progression, measuring drug effects, and predicting treat­
ment outcomes.1 As our understanding of biology and diseases con­
tinue to evolve, there is a growing demand for the development of novel 
biomarkers that offer more precise, in-depth, and timely understand­
ing of the disease and provide early detection and quantification of drug 
effects. To meet this need, researchers are increasingly turning towards 
novel technologies that enable the development of innovative biomark­
ers. This goal is not without hurdles. Challenges such as data collection, 
standardization, validation, and regulatory considerations need to be 
carefully addressed. Additionally, the translation of these biomarkers 
from research setting to clinical practice requires robust evidence of their 
clinical utility and reliability.

The primary objective of this thesis is to address the development and 
validation of innovative biomarkers by harnessing the data of mobile 
health (mHealth) devices, such as smartphones, tablets, and wearable 
devices. These widely available and data-intensive technologies offer 
an unprecedented opportunity to capture diverse physiological and 
behavioral data outside the traditional clinical setting. To effectively uti­
lize this wealth of information, Machine Learning (ML) techniques will be 
employed to transform the unstructured and multifaceted mHealth data 
into meaningful clinical biomarkers. This research aims to address the 
challenges, important factors, and potential benefits associated with the 
development and validation of mHealth biomarkers.

mHealth devices for clinical trials

Clinical trials play a crucial role in assessing the efficacy of new pharma­
cological treatments and are typically conducted by academic hospitals 
and Contract Research Organizations (CROs). Conventionally, data for 
observational and randomized clinical trials is collected during patients’ 
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heterogeneous datasets into biomarkers that can aid the understanding 
and prediction of complex clinical outcomes.

ML and traditional statistical learning methods both play important 
roles in the analysis and interpretation of clinical trial data. While both 
share a common objective of extracting meaningful insights and inform­
ing decision-making, they have distinct approaches and applications.28 
Traditional statistical learning methods typically focus on hypothesis 
testing, parameter estimation, and model interpretability and inference 
and therefore are classically used to test the significance of individual 
covariates or predictors, estimating effect sizes, and calculating sample 
sizes.29 As traditional statistical learning methods are typically designed 
to answer specific research questions or test predefined hypotheses, their 
primary focus is on estimating the effects of individual covariates or pre­
dictors rather than generating accurate predictions for new, unseen data. 
These methods may lack the ability to generalize well to different popula­
tions, settings, or contexts, as they are often tailored to the specific char­
acteristics of the analyzed dataset. With time-honored techniques such 
as ANOVA, t-tests, linear and logistic regression, and survival analysis 
deeply rooted in the field of clinical trials, the continued utilization of tra­
ditional statistical learning remains pivotal in advancing medical research 
and improving patient outcomes.29,30 However, their limitations can hin­
der their effectiveness in analyzing complex and diverse clinical trial data, 
where flexibility and adaptability may be required.

Conversely, ML is primarily focused on developing data-driven statisti­
cal models that are both generalizable and predictive in nature.28,31,32 As 
a result, ML is often considered more ‘data-hungry’ compared to statisti­
cal learning due to its reliance on large and diverse datasets. Generalizabil­
ity is a desirable characteristic of biomarkers as it indicates their ability to 
perform well in diverse scenarios. Generalizable and predictive biomark­
ers derived from ML techniques can be applied across different patient 
populations, settings, and clinical trial protocols. A key step in the ML pipe­
line is the use of cross-validation. By employing cross-validation, clinicians 
can obtain a reliable estimate of how well the ML model is likely to perform 

generate novel hypotheses or insights into the most effective treatments. 
This can help to provide the ecological validity of findings produced by 
well-controlled clinical trials. Second, the use of mHealth devices for clin­
ical trials may also be cost-effective due to the emerging concept of Bring 
Your Own Device (BYOD).26,27 By leveraging participants’ own devices for 
data collection, costs are reduced for clinical trials as study specific hard­
ware does not need to be purchased, distributed, or maintained. The bur­
den for participants is also reduced as they can use hardware that they are 
already familiar with and can have access to in their daily lives.

Despite these advantages, integrating mHealth devices into clinical tri­
als presents its own challenges. The most significant issues include ensur­
ing tolerability and usability of the mHealth devices by patients and cli­
nicians and developing, validating, and interpreting the biomarkers given 
the lack of control under free-living conditions.5 Unlike controlled clini­
cal settings, free-living conditions offer minimal control over the environ­
ment in which data is collected. Participants may also engage in various 
activities and encounter unpredictable situations that can influence data 
quality and consistency. Factors such as variations in daily routines, social 
interactions, and environmental exposures can introduce variability and 
noise into the collected data. The accuracy and reliability of the collected 
data can be affected by factors such as user engagement, device perfor­
mance, and data synchronization. Ensuring data quality requires clear 
patient instructions, participant compliance, and regular monitoring to 
address any issues that may arise. When collecting data in free-living con­
ditions, there is a greater risk of breaching participants’ privacy. The use 
of mHealth devices, such as smartphones and wearable devices, often 
involves capturing personal information and sensitive data. Safeguard­
ing privacy becomes crucial to ensure participants’ trust and compliance. 
Implementing robust data encryption, secure data storage, and strict pri­
vacy policies are essential to mitigate privacy risks. The datasets gener­
ated by these devices are often complex, large, and subject to influence 
by external factors such as differences in devices, lifestyles, weather, and 
location. ML provides a potential solution for processing these large and 
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Clinical validation of composite mhealth 
biomarkers

Composite mHealth biomarkers can offer several benefits to both clini­
cians and patients. By consolidating multiple clinical features into a sin­
gle composite digital biomarker, this biomarker can be used to predict 
clinical outcomes, serving as a complement rather than a replacement 
for multiple clinical endpoints. The resulting composite biomarkers have 
the potential for inference and prediction, contributing to the discovery 
of generalizable and robust evidence to guide clinical studies. This the­
sis proposes that there are three beneficial applications for composite  
biomarkers. Firstly, composite biomarkers may be more sensitive to sub­
tle changes or treatment effects that may not be evident when assess­
ing individual biomarkers independently. Secondly, by combining multi­
ple biomarkers, this can help mitigate the measurement variability that 
are inherent in an individual biomarker. The aggregated biomarker can 
provide a more stable representation of the underlying phenomenon. 
Lastly, a composite biomarker may provide a more holistic evaluation 
of disease activity. A composite biomarker provides a more comprehen­
sive and multi-faceted assessment, and therefore may capture a broader 
spectrum of treatment effects. However, to determine if these composite 
digital biomarkers have utility in clinical research, they must be clinically 
validated.35 The following section addresses the validation criteria con­
sidered to evaluate if a biomarker is suitable for clinical adoption.

Validation of novel composite biomarkers before incorporating them 
into clinical trials is crucial. To validate these biomarkers, Kruizinga 
et al. have proposed five criteria, which we have adopted along with an 
optional criterion of Interpretability and Explainability.35 The first crite­
rion, Classifying Patients and Healthy Controls, focuses on accurately dis­
tinguishing between patients and healthy individuals to identify disease-
specific biomarkers. The second criterion, Correlation with Gold Standard 
or Disease Metrics, involves establishing the validity of the biomarker and 
its ability to accurately reflect disease activity by correlating it with the 

on unseen data sourced from a similar population or setting. This assess­
ment of predictive accuracy is crucial in determining whether the devel­
oped model can generalize its findings beyond the specific dataset used 
for training. This versatility allows for the broader utilization of biomarkers 
in various healthcare contexts, increasing their potential impact and value.

A ML model has the potential to build a representative composite bio­
marker by integrating and capturing complex relationships among differ­
ent features, which would lead to a more comprehensive and informative 
representation of the underlying biological or pharmacological pro­
cesses. However, while the complexity of the biomarker can increase its 
predictive accuracy, it may limit its interpretability. ML offers a wide range 
of model types, such as decision trees, neural networks, ensemble meth­
ods, transfer learning, and unsupervised learning methods that can be 
adapted to different types of data and objectives, allowing for more flex­
ible and adaptable modelling approaches.28,33 Many ML algorithms, par­
ticularly deep learning models, can automatically learn and extract fea­
tures directly from the data, eliminating the need for manual feature 
engineering. The automation of the identification of relevant features and 
patterns in the data, reduces the need for manual feature selection and 
engineering. This can streamline the biomarker development process and 
improve the efficiency of clinical trial analyses. In addition, unsupervised 
learning algorithms, which can identify patterns in data without being 
explicitly told what to look for, can be useful for exploratory data analy­
sis or for discovering hidden patterns or subgroups within data that may 
not be immediately apparent.34 In conclusion, ML’s data-driven approach, 
flexibility in model selection, automated feature extraction, and ability to 
identify hidden patterns offer significant advantages over traditional sta­
tistical learning methods in the development of biomarkers for clinical tri­
als. Its reliance on large and diverse datasets may make it more data-hun­
gry, but this enables the creation of generalizable and predictive models. 
By streamlining the biomarker development process and improving the 
efficiency of clinical trial analyses, ML has the potential to greatly impact 
clinical research and contribute to improved patient outcomes.
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gold standards. The third criterion, Detecting Changes in Disease Activity 
or Treatment Effects, refers to detecting changes in disease activity over 
time, which is crucial for monitoring disease progression or response 
to treatment. The fourth criterion, Tolerability and Usability, is particu­
larly important for mHealth devices that may be worn continuously or 
for extended periods. The device should not cause discomfort or irrita­
tion and should be easy to use. If tolerability and usability of the device are 
poor, the missing or poor-quality data collected will negatively impact the 
development of the biomarker. The fifth criterion, Repeatability and Vari-
ability, refers to the device producing consistent measurements under 
different conditions and over multiple time points. Finally, the optional 
criterion, Interpretability and Explainability, refers to the ability of the 
composite biomarker to provide clear and understandable explanations 
for its predictions. This is important for building trust in the biomarker 
and its ability to inform clinical decision-making.

Research objectives and structure of this thesis

The overall research question of this thesis is How can m h e al t h  devices and 
ML algorithms be used to develop composite biomarkers for clinical appli-
cations? To address this question, we have outlined a series of research 
questions that will explore different aspects of the development and 
clinical validation of these biomarkers. These research questions will be 
addressed in their respective chapters, culminating in a discussion of the 
general findings and recommendations for future research in this field.

Parts 2 to 4 will use clinical trial data collected using Centre for Human 
Drug Research (CHDR)’s Trial@Home platform. The Trial@Home platform 
aims to investigate alternative approaches for collecting clinical trial data 
in non-traditional clinical settings. Serving as a comprehensive solution, 
Trial@Home offers end-to-end services, encompassing trial design, exe­
cution, and data analytics. By integrating smartphones, tablets, and wear­
ables (such as smartwatches, smart scales, and sleep mats) into clinical 
trials, participants can experience reduced visit frequency while enabling 
more convenient and representative data collection. This innovative 

approach captures participants’ real-world experiences in their daily 
lives, providing valuable insights under free-living conditions. Through 
the use of ML, the collected data is transformed into novel and validated 
digital biomarkers. The following chapters provide more insight into the 
type of data collected during these trials, and how the data was trans­
formed into validated biomarkers for clinical applications.

Part 1 (Introduction) asks What is the motivation behind creating com-
posite m h e al t h  biomarkers for clinical applications and how are they cur-
rently being developed? This part addresses the challenges and limita­
tions of using mHealth devices and ML for developing and validating 
composite biomarkers in clinical trials. Chapter 1 provides a brief over­
view of concept, reasoning, and importance of using ML in clinical trials 
that use mHealth devices. Chapter 2 offers a literature review of existing 
published studies that have used similar techniques to derive composite 
biomarkers. Given the rise and breadth of ML applications in clinical tri­
als, we sought to identify both the generic and best practices of develop­
ing these ML applications. However, given the lack of consistent report­
ing in these studies, the literature review does not provide a complete or 
detailed overview. On the contrary, the literature review presents a set of 
recommended reporting practices aimed at enhancing the transparency 
and reproducibility of the methods utilized.

Part 2 (Classification of Diagnosis) asks How can m h e al t h  devices and 
m l  be utilized to create composite biomarkers for the classification of diag-
noses? This part addresses how different types of mHealth devices com­
pare in terms of their usability, tolerability, and data quality for develop­
ing composite biomarkers. Further, it examines the methods required 
for developing accurate and clinically relevant biomarkers for the classi­
fication of disease diagnoses using mHealth data and ML. Chapter 3 use 
the Trial@Home platform to classify the remotely monitored behavioural 
activity of Facioscapulohumeral Muscular Dystrophy (FSHD) patients 
respectively from Healthy Controls. To assess the feasibility of piloting a 
Trial@Home study, these publications also report the data completion 
rate and patient experience of the Trial@Home app to reflect the tolerabil­
ity and usability of the devices.
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Condensed structure of the thesis

Given the criteria for evaluating the clinical validity of candidate com­
posite biomarkers, this thesis consists of 5 parts. Part 1 provides the the­
oretical and historical framework for the development of these biomark­
ers. Part 2, 3, and 4 focus on clinical trials that use ML to classify a clinical 
diagnosis, to estimate symptom severity, and to detect treatment effects 
respectively. In each of these sections, we provide a detailed account of 
our approach to the proposed clinical validation. Chapter 9 discusses the 
general findings of this thesis and addresses general recommendations 
for developing future biomarkers that use mHealth devices and ML.

Part 3 (Estimation of Symptom Severity) asks How can m h e al t h devices 
and m l  be utilized to create composite biomarkers for the estimation of 
symptom severity? This part investigates the effectiveness of the devel­
oped composite biomarkers in estimating the severity of disease symp­
toms in patients compared to traditional methods. Chapter 4 and 5 use 
regression algorithms and the Trial@Home platform to estimate the 
symptom severity of the FSHD and Major Depressive Disorder (MDD) 
patients. In addition to estimating the symptom severity, we evaluated 
how varying time windows used to train the models can affect the repeat­
ability and variability of their predicted outcomes. Chapter 6 and 7 focus 
on developing ML models that can automatically quantify the number 
of coughs and cries using a smartphone microphone respectively. While 
these activities cannot be used as diagnostic tools themselves, they serve 
as relevant and informative proxies for disease activity.

Part 4 (Detection of Treatment Effects) asks Can the use of m h e al t h 
devices and m l  algorithms enable the detection of treatment effects in clin-
ical trials and provide insights into the efficacy of pharmacological treat-
ments? To address this question, Chapter 8 explore if a composite tapping 
biomarker can detect treatment effects and to estimate symptom severity 
among Parkinson’s Disease patients respectively. The underlying motiva­
tion for this investigation lies in examining whether the same tapping bio­
marker can serve the dual purpose of monitoring both treatment effects 
and symptom severity in alignment with the gold standard, thus unveiling 
new possibilities for comprehensive biomarker applications.

Chapter 9, the discussion, reflects on the methodologies and analyses 
in Parts 2 to 4 and addresses the motivations, factors, and limitations that 
contribute to the development and adoption of mHealth composite bio­
markers for the purposes of diagnosis classification, symptom severity 
estimation, and treatment effects detection. Given the potential impacts 
of mHealth biomarkers, the discussion reflects on the practical and ethi­
cal implications of mHealth biomarkers for clinicians, other Central Ner­
vous System (CNS) disorders, and future clinical trials.
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