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Clinical Epigenetics

The inactive X chromosome accumulates 
widespread epigenetic variability with age
Yunfeng Liu1, Lucy Sinke1, Thomas H. Jonkman1, Roderick C. Slieker2, BIOS Consortium, Erik W. van Zwet3, 
Lucia Daxinger4 and Bastiaan T. Heijmans1* 

Abstract 

Background Loss of epigenetic control is a hallmark of aging. Among the most prominent roles of epigenetic mech-
anisms is the inactivation of one of two copies of the X chromosome in females through DNA methylation. Hence, 
age-related disruption of X-chromosome inactivation (XCI) may contribute to the aging process in women.

Methods We analyzed 9,777 CpGs on the X chromosome in whole blood samples from 2343 females and 1688 
males (Illumina 450k methylation array) and replicated findings in duplicate using one whole blood and one purified 
monocyte data set (in total, 991/924 females/males). We used double generalized linear models to detect age-related 
differentially methylated CpGs (aDMCs), whose mean methylation level differs with age, and age-related variably 
methylated CpGs (aVMCs), whose methylation level becomes more variable with age.

Results In females, aDMCs were relatively uncommon (n = 33) and preferentially occurred in regions known 
to escape XCI. In contrast, many CpGs (n = 987) were found to display an increased variance with age (aVMCs). Of note, 
the replication rate of aVMCs was also high in purified monocytes (94%), indicating an independence of cell composi-
tion. aVMCs accumulated in CpG islands and regions subject to XCI suggesting that they stemmed from the inactive 
X. In males, carrying an active copy of the X chromosome only, aDMCs (n = 316) were primarily driven by cell composi-
tion, while aVMCs replicated well (95%) but were infrequent (n = 37).

Conclusions Our results imply that age-related DNA methylation differences at the inactive X chromosome are 
dominated by the accumulation of variability.

Keywords DNA methylation, Aging, X chromosome, Women, Variance, Gene expression

Background
Epigenetic alterations are one of the five primary hall-
marks of aging [1]. A primary role for epigenetic 
mechanisms is the inactivation of one copy of the X 
chromosome in females to maintain dosage equivalence 
between females who carry two copies of the X chromo-
some, and males who carry a single copy [2]. Since the X 
chromosome harbors hundreds of protein-coding genes, 
many of which are implicated in disease including cancer 
[3] and neurological diseases [4, 5], age-related epigenetic 
changes at the inactivated X chromosome may be rele-
vant for female aging.

DNA methylation is tightly involved in the process 
of X-chromosome inactivation (XCI) [6]. However, the 
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impact of age on the methylation of chromosome X in 
females remains unclear. Three recent studies addressed 
this question in whole blood samples and reported sets 
of CpG dinucleotides whose methylation level was asso-
ciated with age separately for males and females [7, 8] or 
showed statistical evidence for an interaction between 
age and sex [9]. However, there was a striking lack of 
overlap between the results of these studies. Moreover, 
the previous studies focused on the occurrence of differ-
ences in mean methylation with age [7–9] while there is 
increasing attention for the accumulation of variability in 
DNA methylation with age, a phenomenon that appears 
to be relatively independent of cell composition changes 
with age [10–13]. Finally, previous analyses did not inves-
tigate whether CpGs affected by age-related differences 
in DNA methylation in females mapped to regions sub-
ject to XCI. This is important because approximately 
75% of genes on the inactive X are subject to XCI, while 
15% of genes on the inactive X consistently escape XCI 
and the escape status of an additional 10% of genes var-
ies between tissues and individuals [14–16]. Hence, a 
substantial proportion of age-related DNA methylation 
observed in females may not occur in regions subject to 
XCI and presumably are independent of X-inactivation. 
These outstanding questions may be solved by analyzing 
larger sample numbers with robust statistical methods to 
test both differences in mean and variance followed by 
in-depth genomic annotation to relate findings to XCI.

Here, we report on the analysis of multiple discovery 
and replication cohorts totaling 3,334 female and 2,612 
male blood samples with methylation data on 9,777 
CpGs mapping to the X chromosome as obtained using 
the Illumina 450k methylation array. We detected and 
replicated age-related differentially methylated CpGs 
(aDMCs), whose mean methylation level differs with 
age, and age-related variably methylated CpGs (aVMCs), 
whose methylation level becomes more variable with age, 
while accounting for the impact of blood cell composi-
tion and inflation of test statistics. Systematic annotation, 
interpretation, and integration with transcriptomics data 
indicate that the inactive X is primarily affected by the 
accumulation of variance in DNA methylation with age, 
while the differences in mean are common at the active X 
chromosome but depend on changes in cell counts with 
age.

Methods
Discovery cohorts
To discover age-related differentially methylated CpGs 
(aDMCs) and age-related variably methylated CpGs 
(aVMCs), genome-wide DNA methylation data were 
generated in whole blood samples within the Biobank-
based Integrative Omics Studies (BIOS) Consortium, 

which comprises six Dutch biobanks: Cohort on Dia-
betes and Atherosclerosis Maastricht (CODAM) [17], 
LifeLines (LL) [18], Leiden Longevity Study (LLS) [19], 
Netherlands Twin Register (NTR) [20], Rotterdam Study 
(RS) [21], and the Prospective ALS Study Netherlands 
(PAN) [22]. Discovery data used in this study consist of 
4031 (2343/1688 females/males) unrelated individuals for 
which DNA methylation data were available (Additional 
file  1: Table  S1). For 3131 (1794/1337 females/males) 
of these individuals also RNA-seq data were available 
(Additional file 1: Table S1). Data linkage of the two data 
types was verified from genotype data using OmicsPrint 
[23]. In addition, data on age, sex and technical batches 
were available for each cohort.

The generation of DNA methylation data has been 
described previously [24]. In brief, 500 ng of genomic 
DNA was bisulfite converted by the EZ DNA Methyla-
tion kit (Zymo Research, Irvine, CA, USA), and 4 μl of 
bisulfite-converted DNA was measured on the Illumina 
HumanMethylation450 array using the manufacturer’s 
protocol (Illumina, San Diego, CA, USA). Preproc-
essing and normalization of the data were done using 
DNAmArray workflow previously developed by our 
group (https:// molepi. github. io/ DNAmA rray_ workf 
low/). First, original IDAT files were imported into by R 
package minfi [25], followed by sample-level quality con-
trol (QC) was performed using MethylAid [26]. Filter-
ing of probes was based on detection P value (P < 0.01), 
number of beads available (≤ 2), or zero values for signal 
intensity. Normalization was done using functional nor-
malization as implemented in minfi [25], using five prin-
cipal components extracted using the control probes for 
normalization. All samples or probes with more than 5% 
missing were excluded. In addition, probes with ambig-
uously mapping or cross-reactive were removed [27]. 
Finally, 9,777 X-chromosome CpGs and 4,031 samples 
were included in discovery set. Prior to analysis, we used 
Combat function of the SVA package to remove residual 
batch effects between cohorts, with biobank as batch and 
age, sex and known technical batches as covariates [28]. 
To exclude a negative impact of non-normal distributions 
and outliers on the validity of our results, DNA methyla-
tion data were transformed by rank-inverse normal (RIN) 
transformation for each cohort and females and males 
separately [29, 30].

Detailed information on the generation and process-
ing of the RNA-seq data can be found in previous work 
[31]. In short, globin transcripts were removed from 
whole blood RNA using the Ambion GLOBINclear kit 
and subsequently processed for RNA-sequencing using 
the Illumina TruSeq version 2 library preparation kit. 
RNA libraries were paired-end sequenced using Illu-
mina’s HiSeq 2000 platform with a read length of 2 × 50 

https://molepi.github.io/DNAmArray_workflow/
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bp, pooling 10 samples per lane. Reads which passed 
the chastity filter were extracted with CASAVA. Qual-
ity control was done in three steps: initial QC was per-
formed using FastQC (v0.10.1), adaptor sequences were 
removed using Cutadapt, and read ends with insufficient 
quality were removed with Sickle. Reads were aligned 
to the human genome (hg19) using STAR (v2.3.0e). To 
avoid reference mapping bias, all GoNL SNPs (http:// 
www. nlgen ome. nl/) with MAF > 0.01 in the reference 
genome were masked with N. Read pairs with at most 
8 mismatches, mapping to at most 5 positions, were 
used. Gene counts were calculated by summing the total 
number of reads aligning to a gene’s exons according to 
Ensembl, version 71. Samples for which less than 70% of 
all reads mapped to exons were removed.

For this study, we analyzed protein-coding genes map-
ping to the X chromosome. Raw counts of genes were 
transformed to log counts per million (CPM) values. 
After filtering out lowly expressed genes from the data-
set (median CPM < 1), 512 out of 830 genes remained 
and were used for further analysis. Similar to DNA meth-
ylation data, RNA-seq data were transformed by rank-
inverse normal (RIN) transformation for each cohort and 
females and males separately [29, 30].

Replication cohorts
Two external DNA methylation datasets were used to 
replicate our results: a whole blood dataset originated 
from Sweden Population Health study by Johansson et al. 
[32] and a purified monocytes dataset originated from 
Multi-Ethnic Study of Atherosclerosis by Reynolds et al. 
[33]. These datasets here were referred to  as Johansson 
Blood and Reynolds Monocytes. Detailed information is 
shown in Additional file 1: Table S1.

For the Johansson Blood dataset, raw IDATA files were 
downloaded from the Gene Expression Omnibus (GEO) 
database (GSE87571). Also, information on age and sex 
for was available from GEO for this data set. The pro-
cessing and normalization procedure of DNA meth-
ylation data is same as above. After processing, 9,853 
X-chromosome CpGs were available. For the Reynolds 
Monocytes dataset, DNA methylation array data were 
available from GEO (GSE56046) as quantile normalized 
data obtained  using the  lumi package [34]. The GEO 
accession also included data on age and purity data of 
isolated monocytes. The sex of samples was predicted 
by DNAmArray package. After quality control, 9,861 
X-chromosome CpGs remained. Both replication cohorts 
included all 9,777 X-chromosome CpGs measured in the 
discovery cohort.

Detecting aDMCs and aVMCs on X‑chromosome
To detect DNA methylation differences in both mean 
(aDMCs) and variance (aVMCs) with age, we applied 
double generalized linear model (DGLM). DGLM is a 
fully parametric method that first estimates mean effects 
by the linear model and then variance effects by the dis-
persion sub-model [35]. DGLM iterates between models 
until convergence. We used DGLM as implemented in 
the dglm R package (https:// cran.r- proje ct. org/ web/ packa 
ges/ dglm/ index. html) to identify aDMCs and aVMCs 
on chromosome X separately for females and males. 
The mean model part of DGLM was used to identify 
aDMCs, correcting for known covariates (age, cohort, 
cell counts and technical batches, namely sentrix posi-
tion and sample plate) and unknown covariates include 
5 latent factors estimated by SVA package [28]. Blood cell 
composition was estimated using  the IDOL method as 
implemented in the R package minfi [25] and resulted in 
predicted fractions for CD8T cells, CD4T cells, NK cells, 
B cells, monocytes and granulocytes. Of note, granulo-
cytes were excluded from the model to exclude collinear-
ity so that the effect of this cell type becomes included in 
the intercept.

where DNAmi represent 9,777 X-chromosome CpGs 
methylation matrix, Biobank represent 6 cohorts com-
prising the data, Sentrix position represent sample posi-
tion on the 450K array, Sample plate represent bisulfite 
plate and  βj represent regression coefficient for 5 latent 
factors estimated using SVA package [28], and εi repre-
sents the residual. Age-related differentially methylation 
changes were assessed by the parameter β1 in the mean 
model.

Then we estimated variance effect of age by the param-
eter γ1 in the dispersion sub-model:

To reduce false positive findings, a Bayesian method 
implemented in R package bacon was used to correct the 
bias and inflation of test-statistics generated from mean 

(1)

DNAmi =β0 + β1 ∗ Age + β2 ∗ Biobank

+ β3 ∗ CD8T%+ β4 ∗ CD4T%

+ β5 ∗ NK%+ β6 ∗ Bcell%+ β7 ∗Monocyte%

+ β8 ∗ Sentrix position+ β9 ∗ Sample plate

+ βj ∗ Latent factor1 . . . 5+ εi

(2)

εi ∼ N 0, σ 2 exp γ1 ∗ Age + γ2 ∗ Biobank + γ3 ∗ CD8T%

+γ4 ∗ CD4T%+ γ5 ∗ NK%+ γ6 ∗ Bcell%

+γ7 ∗Monocyte%+ γ8 ∗ Sentrix position

+γ9 ∗ Sample plate + γj ∗ Latent factor1 . . . 5

http://www.nlgenome.nl/
http://www.nlgenome.nl/
https://cran.r-project.org/web/packages/dglm/index.html
https://cran.r-project.org/web/packages/dglm/index.html
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model and dispersion sub-model of DGLM [36]. Statis-
tically significance of the CpGs was determined by cor-
recting multiple testing with a Bonferroni corrected P 
value < 0.05.

To replicate findings, we repeated sex-stratified analy-
sis with the same statistical model in Johansson Blood 
and Reynolds Monocytes datasets separately for all CpGs 
that were detected as aDMCs or aVMCs in the discov-
ery data set. For Johansson Blood data, cell counts were 
predicted the same way as for the discovery cohort. For 
the Reynolds Monocytes data, cell purity was included 
as covariate. CpGs were considered replicated if signifi-
cant after correcting for multiple testing using the false 
discovery rate (FDR) (PFDR < 0.05) [37] and the direction 
of the effect was the same in both replication cohorts. 
The number of tests considered was the total number of 
unique aDMCs or aVMCs detected in the discovery anal-
ysis (i.e., males + female).

To assess the number of distinct genomic loci affected 
by aDMCs or aVMCs, differentially methylated regions 
(DMRs) and variably methylated regions (VMRs) were 
first called among replicated aDMCs and aVMCs in 
females and males separately by the DMRfinder algo-
rithm [38] as implemented in the DNAmarray work-
flow (https:// molepi. github. io/ DNAmA rray_ workfl ow/). 
DMRs and VMRs were defined as regions with at least 
3 differentially or variably methylated positions (DMCs/
VMCs) with an inter-CpG distance ≤ 1 kb, allowing maxi-
mum of three non-DMCs/non-VMCs across a DMR/
VMR [38]. Next, the number of distinct loci were calcu-
lated as the total number of aDMCs/aVMCs minus the 
number of aDMCs/aVMCs in DMRs/VMRs plus number 
of DMRs/VMRs called by DMRfinder [38].

Genomic features of aDMCs and aVMCs
Replicated aDMCs and aVMCs were annotated accord-
ing to 3 features. First, the CpGs involved were divided 
into three categories based on mean DNA methylation 
level: hypomethylated (β < 0.25), intermediately methyl-
ated (0.25 < β < 0.7) and hypermethylated (β > 0.7) since 
DNA methylation level is closely linked to XCI. Inter-
mediate methylation is typical for XCI, where the Xa is 
hypomethylated and the Xi is hypermethylated and the 
measured methylation is the average of the two chromo-
somes. Hypomethylation is typical for regions escaping 
XCI, where both the Xa and Xi display low methylation 
levels. For hypermethylation, the XCI status remains 
undefined. The hypomethylated and hypermethylated 
thresholds were chosen based on the location of the 
hypo- and hyper-methylated peaks in the density plots 
of male X-methylation in BIOS discovery data (Fig.  1). 
Second, CpGs were mapped to 3 CpG island-related 
features: CpG islands (CGIs), CGI  shores and non-CGI 

regions, since XCI is associated with hypermethylation of 
CGIs [6]. The annotation was based on CGI-track down-
loaded from UCSC Genome Browser using version hg19 
of the human genome. CGI shores were annotated as 2 
kb regions flanking the CGIs and all remaining regions 
as non-CGI [38]. Finally, we annotated CpGs according 
to XCI status of the inactive X chromosome. Consensus 
XCI status calls per gene were previously defined [39] 
on the basis of three published studies [14, 15, 40] and 
resulted in genes classified into three categories: subject 
to XCI, escape XCI and variably escape XCI. These XCI 
status calls are referred to as meta-status calls [41]. For 
the annotation, we mapped CpGs to the nearest tran-
scription start site (TSS) and when within 2kb from a 
TSS, the XCI status of the CpGs was set equal to the XCI 
status of the gene associated with the TSS. CpGs further 
away than 2kb from a TSS were not annotated because of 
uncertainty about their XCI status [42]. To test whether 
aDMCs and aVMCs were enriched for each of the three 
annotations (methylation level categories, CGI annota-
tion, and XCI status), their distributions were compared 
with that of all X-chromosome CpGs that were not iden-
tified as aDMC or aVMC in males or females using a Chi-
square test or a Fisher’s exact test (if expected cell counts 
were < 5).

Associations with X chromosome gene expression levels
To explore potential functional consequences of aDMCs 
and aVMCs, a linear regression model using the R pack-
age limma [43] was fitted to test for associations between 
the CpGs involved and the expression of 512 protein-
coding genes mapping to the X chromosome. For this 
analysis, 3131 samples (1794/1337 females/males) from 

Fig. 1 Distribution of X-methylation in females and males based 
on 9777 CpGs in the discovery data (thicker solid line: BIOS Blood) 
and replication data (thinner solid line: Johansson Blood; thinner dash 
line: Reynolds Monocytes). The blue bimodal line and red trimodal 
line represent the distribution of X-methylation in males and females, 
respectively

https://molepi.github.io/DNAmArray_workflow/
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the BIOS consortium with both DNA methylation and 
gene expression were used (Additional file  1: Table  S1). 
Known covariates included age, cohort, white blood cell 
composition as estimated with the R package minfi [25] 
and technical batches (e.g., sentrix position, sample plate 
and flowcell number) were corrected in the linear regres-
sion model. Additionally, latent factors as estimated with 
the SVA package were included [28].

where Expressioni represent 512 X-chromosome genes 
expression matrix, Biobank represent 6 cohorts compris-
ing the data, Flowcell Number represent the HiSeq 2000 
flowcell used for RNA-seq measurement,δj represent 
regression coefficient for 5 latent factors estimated by 
SVA package [28], and εi represents the residual. We used 
the R package bacon [36] to correct bias and inflation 
in the test statistics generated by this linear regression 
model and follow by multiple testing correction using 
the Bonferroni method (Pbonf < 0.05). Specifically, the bias 
and inflation of t-statistics was corrected for associations 
between each CpG and 512 investigated X-linked genes.

For X-linked genes associated with at least 1 CpG, we 
performed Gene Ontology enrichment analysis using the 
R package clusterProfiler using all other X-linked genes as 
background [44].

Results
Identification and replication of aDMCs and aVMCs 
on X‑chromosome
To uncover age-related methylation changes on the X 
chromosome, we analyzed the methylation of 9,777 

(3)

Expressioni = δ0 + δ1 ∗ DNAm+ δ2 ∗ Age

+ δ3 ∗ Biobank + δ4 ∗ CD8T%

+ δ5 ∗ CD4T%+ δ6 ∗ NK%

+ δ7 ∗ Bcell%+ δ8 ∗Monocyte%

+ δ9 ∗ Sentrix position

+ δ10 ∗ Sample plate

+ δ11 ∗ Flowcell Number

+ δj ∗ Latent factor1 . . . 5+ εi

CpGs in whole blood using a discovery data set of 
2343 females and 1688 males followed by the replica-
tion of findings both in an external whole blood data-
set (388/341 females/males; Table  1) and an external 
dataset based on purified monocytes (603/583 females/
males; Table 1). As expected, X-chromosome methyla-
tion levels were distinct for females and males (Fig. 1). 
While the male X methylation pattern was similar to 
that of autosomes with the majority of CpGs being 
either hypo- or hypermethylated, the female X meth-
ylation pattern was trimodal with a significant propor-
tion of CpGs showing intermediate DNA methylation 
levels. This stems from the fact that males carry a sin-
gle active X, whereas females carry two copies of X, an 
active (Xa) and an inactive copy (Xi), where the Xi copy 
is predominantly hypermethylated as part of the mech-
anisms ensuring XCI.

We first focused on the detection of CpGs whose 
mean methylation differed with age (aDMCs) using 
DGLM. To confirm the robustness of this approach, 
we compared results with those obtained using a con-
ventional model fitted using limma [40] and the effect 
sizes were virtually identical (Additional file 1: Fig. S1). 
In the discovery data set, we identified 1837 aDMCs 
in males but only 80 in females  (Pbonf < 0.05; Table  1 
and for a full list: Additional file  2: Tables S3 and S4). 
Of the aDMCs, 47 were shared between males and 
females. When inspecting the effect sizes for aDMCs, 
a striking pattern emerged (Fig. 2a): for female-specific 
aDMCs, the effect size in males was close to 0, whereas 
for male-specific aDMCs, the effect size in females was 
lower than in males, but correlated with that in males. 
This observation may be explained by the fact that 
males lack an Xi and, hence, female-specific aDMCs 
involving the Xi are fully absent in males (Fig.  3). In 
contrast, male-specific aDMCs involve the Xa only, and 
females also carry a copy of Xa. Hence, the male-spe-
cific aDMCs are expected to be also present in females, 
albeit diluted by the presence of the unaffected Xi copy. 
This effect would be expected to dilute the effect size 

Table 1 Number of age-related differentially methylated CpGs (aDMCs) in the discovery and replication stage

Males Females

N aDMCs (loss/gain) Replication rate N aDMCs (loss/gain) Replication rate

Discovery

BIOS Blood 1688 1837 (718/1119) – 2343 80 (41/39) –

Replication

Johansson Blood 341 1371 (532/839) 75% 388 79 (41/38) 99%

Reynolds Monocytes 583 340 (195/145) 25% 603 34 (24/10) 43%

Doubly replicated – 316 (175/141) 17% – 33 (24/9) 41%
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two times  (Fig. 3). Indeed, we observed that the effect 
size for male-specific aDMCs was on average reduced 
by a factor of 0.3 in females (Fig.  2a). In addition, we 
observed that the standard error of the effect sizes for 
these aDMCs in females were higher than in males 
(Additional file  1: Fig. S2). This may be explained by 
extra noise in the data for females due to the presence 
of a copy of Xi  that does not affect Xa-specific aDMCs 
in males. The reduced effect size and greater stand-
ard error would together result in a reduced statistical 
power to detect aDMCs affecting Xa in females.

To replicate our findings, we used two external data-
sets based of whole blood and purified monocytes sam-
ples (Fig. 2b, Table 1). We found that aDMCs effect sizes 
observed in discovery cohort were consistent with the 
effect size in Johannsson Blood dataset resulting in repli-
cation rates of 75% and 99% for male and female aDMCs, 
respectively. However, in the Reynolds data set based on 
purified monocytes, the replication rate of male aDMCs 
reduced to 25%, suggesting that the occurrence of aDMCs 
on Xa as observed in whole blood is either only present 
in blood cell types other than monocytes or, which we 

Fig. 2 a Scatter plot of effect sizes for aDMCs observed in males and females in the discovery data set (BIOS Blood). Mean effect size 
of male-specific aDMCs in females were 0.3 times lower than that in males. b Scatter plot of aDMCs effect sizes in the discovery data sets 
and the Johansson Blood and Reynolds Monocytes replication datasets. Female-specific aDMCs, male-specific aDMCs and aDMCs statistically 
significant in both sexes are colored by red, blue and green, respectively. aDMCs—age-related differentially methylated CpGs

Fig. 3 Schematic representation of how carrying a single copy of Xa only (males) or a copy of both Xa and Xi (females) affects the effect size 
of age-related DNA methylation differences observed in population studies. Note that the effect size of an aDMC specific for the Xa is twice 
that in males than females resulting in higher statistical power to detect such Xa-specific aDMCs in males than females. The same reasoning applies 
to aVMCs. Male-specific aDMC and female-specific aDMC are colored by blue and red, respectively. An empty circle indicates an unmethylated CpG, 
and a shaded circle a methylated CpG



Page 7 of 12Liu et al. Clinical Epigenetics          (2023) 15:135  

consider more likely, depends on age-related changes 
in blood cell composition that is not captured by the   6 
predicted  cell types obtained  using the IDOL method. 
For females aDMCs, the replication rate was somewhat 
higher at 43%. The number of aDMCs replicating in both 
data sets were 33 in females (none of which occurred in 
regions and hence all represented distinct loci) and 316 
in males (distributed across 242 distinct loci; Table  1, 
Additional file 1: Fig. S3, Additional file 2: Table S3 and 
Table S4). Examples of the relationship between age and 
DNA methylation for replicated aDMCs are shown in 
Additional file 1: Fig. S4.

Next, we used our discovery data set to identify CpGs 
whose variability was associated with age (aVMCs) by 
fitting the dispersion sub-model of DGLM. In con-
trast to aDMCs, aVMCs were more common in females 
(n = 1098) than males (n = 39) with only one overlap-
ping CpGs  (Pbonf < 0.05, Table 2, Additional file 2: Tables 
S5 and S6). In line with the findings for aDMCs, male-
specific aVMCs had an effect size in females that was 
approximately diluted by a factor 2 (the mean effect 

sizes were 0.02 and 0.01 in males and females, respec-
tively; Fig.  4a). Unlike aDMCs, aVMCs replicated sur-
prisingly well in both the external whole blood and the 
external monocyte dataset for both sexes (> 90%; Table 2 
and Fig.  4b), which may be partly explained by earlier 
observations that aVMCs are less dependent on cell type 
composition of blood [10, 13, 45]. In total, 987 females 
aVMCs (distributed across 658 distinct loci) and 37 
males aVMCs (all represented distinct loci) replicated in 
both external data sets (Table 2, Additional file 1: Fig. S5, 
Additional file 2: Tables S5 and S6). Of note, all aVMCs 
were associated with an increase in variance with age 
except one (cg25871420), which decreased in variance 
with age specifically in males, also in both replication 
data sets (Table  2, Additional file  1: Fig. S4, Additional 
file 2: Table S5).

Annotation of X‑linked aDMCs and aVMCs
The striking contrast in the occurrence of aDMCs and 
aVMCs in males and females indicated a differential 
involvement of Xa and Xi in the two types of age-related 

Table 2 Number of age-related variably methylated CpGs (aVMCs) in the discovery and replication stage

Males Females

N aVMCs (loss/gain) Replication rate N aVMCs (loss/gain) Replication rate

Discovery

BIOS Blood 1688 39 (1/38) – 2343 1098 (0/1098) –

Replication

Johansson Blood 341 37 (1/36) 95% 388 1030 (0/1030) 94%

Reynolds Monocytes 583 39 (1/38) 100% 603 1035 (0/1035) 94%

Doubly replicated – 37 (1/36) 95% – 987 (0/987) 90%

Fig. 4 a Scatter plot of effect sizes for aVMCs for females and males in the discovery data set (BIOS Blood). Mean effect size of male-specific 
aVMCs in females were 0.4 times lower than that in males. b Scatter plot of aVMCs effect sizes in the discovery data sets and the Johansson Blood 
and Reynolds Monocytes replication datasets. Female-specific aVMCs, male-specific aVMCs and aVMCs statistically significant in both sexes are 
colored by red, blue and green, respectively. aVMCs, age-related variably methylated CpGs
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DNA methylation differences. A first feature associated 
with Xi is hypermethylation resulting in a predomi-
nance of intermediate DNA methylation levels in females 
(Fig.  1). Compared to control CpGs, both aDMCs 
(P = 1 ×  10–6) and aVMCs (P = 2 ×  10–16) in females 
were preferentially intermediately methylated (Fig.  5a, 
Table  S2). Secondly, it is known that in particular CpG 

island (CGI) methylation is involved in XCI [6]. Never-
theless, aDMCs were depleted at CGIs in females and 
were even more common in non-CGI regions (P = 0.08, 
Fig.  5b, Table  S2). However, aVMCs did preferentially 
occur at CGIs in females (P = 2 ×  10–16) while they were 
depleted in CGIs in males (P = 8 ×  10–7). Finally, we inves-
tigated the XCI-status of aDMCs and aVMCs in females. 
This analysis was restricted to those that were within 2kb 
of a TSS of a gene and had known XCI status to ensure 
validity of the XCI-status prediction (Fig.  5c, Table  S2). 
Female aDMCs all occurred outside regions subject 
to XCI (3 in escape and 2 in variably escape regions; 
P = 2 ×  10–3). In contrast, the large majority (85%) of 
annotated female aVMCs occurred in regions subject to 
XCI (P = 1 ×  10–4), in line with their enrichment at inter-
mediately methylated regions and CGIs.

Associations with X‑linked gene expression
To explore whether the methylation level of aDMCs and 
aVMCs was associated with gene expression, we inves-
tigated the relationship between DNA methylation and 
512 X-linked genes using a subset of 3131 individuals 
(1794/1337 females/males) from the discovery cohort for 
whom gene expression data were available in addition to 
DNA methylation data.

No associations with gene expression were observed 
for aVMCs in males and aDMCs in females. For 66 
male-specific aDMCs, an association was observed with 
the expression of 19 X-linked genes (Additional file  3: 
Table S7). For the majority of associations, the CpG-gene 
distance was > 100kb (n = 82). The genes included several 
immune related genes (e.g., FRMPD3 and  CXCR3) in 
support of the interpretation that the Xa-specific aDMCs 

Fig. 5 Annotation of aDMCs and aVMCs in males and females. a 
Categories of mean methylation level of aDMCs and aVMCs in males 
and females (intermediate methylated: 0.25 < β < 0.7, hypomethylated: 
β < 0.25, hypermethylated: β > 0.7). b Fraction of aDMCs and aVMCs 
in CGI-related features (CGI, CGI shore, and non-CGI). c XCI status 
annotation of aDMCs and aVMCs in females. Annotation was based 
on colocalization (< 2kb) to TSS categorized as Subject to XCI, Escape 
XCI and Variably escape XCI. aDMCs—age-related differentially 
methylated CpGs, aVMCs—age-related variably methylated CpGs, 
CGI—CpG island, XCI—X-chromosome inactivation

Fig. 6 Volcano plot showing association between female-specific 
aVMCs methylation and X-chromosome gene expression in females 
(n = 1794, range 18–85 years). aVMCs—age-related variably 
methylated CpGs
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observed in males are more likely to depend on cell com-
position. For aVMCs, we only found that 3 female-spe-
cific CpGs associated with the expression of 2 X-linked 
genes, namely ALG13 (2 CpGs: one in gene body and 
one > 1MB downstream; Fig. 6, Additional file 3: Table S8) 
and CDK16 (CpG in gene body; Fig. 6, Additional file 3: 
Table  S8). Neither aDMC- nor aVMC-associated genes 
were enriched for specific biological processes.

Discussion
We report on a systematic analysis of age-related differ-
ences in X-chromosome methylation at the level of both 
differences in mean (age-related differentially methylated 
CpGs, aDMCs) and differences in variability (age-related 
variably methylated CpGs, aVMCs). We observed strik-
ing contrasts between the two types of age-related dif-
ferences. aVMCs were common in females, rare in males 
and highly consistent across replication cohorts includ-
ing in samples of purified monocytes. This suggests that 
the occurrence of X-linked aVMCs may be a cell-intrinsic 
phenomenon in line with previous reports for autosomal 
aVMCs [10, 13, 45]. More commonly studied aDMCs, 
however, were rare in females and common in males, 
showed a poor replication rate, in particular in purified 
monocytes, indicating that X-linked aDMCs may fre-
quently be driven by changes in blood cell composition 
with age. Further analysis supported the interpretation 
that aVMCs preferentially occur in regions subject to 
XCI on the inactive X, as they were enriched in CGIs and 
regions subject to XCI. Taken together, our data imply 
that DNA methylation marks involved in XCI commonly 
accumulate variability with age, hence suggesting that 
a gradual waning of epigenetic control at the inactive X 
may be a feature of female aging.

While aVMCs have previously not been reported for 
chromosome X, three previous studies reported on 
X-linked aDMCs. However, there was a great discrepancy 
between the aDMCs reported by these studies. First, 
McCartney et al. analyzed one discovery cohort and one 
replication data set and reported only 5 sex-independ-
ent and 6 sex-dependent X-linked aDMCs using a lin-
ear regression approach that included both sexes and an 
interaction term between sex and age [9]. We observed 
one of the sex-independent aDMCs (cg25140188) and 
two of the sex-dependent aDMCs (cg20202246 and 
cg08814148) in our analysis (Additional file 2: Table S3). 
Next, Li et al. analyzed two discovery cohorts and found 
559 and 1378 male-specific, and 1367 and 1148 female-
specific aDMCs. Surprisingly, the overlap between find-
ings of the two discovery cohorts was limited (34%-38%; 
Additional file  1: Fig. S6) and the replication rate in an 
external cohort was low (5–7%; Additional file 1: Fig. S6) 
[7]. We also found limited overlap between aDMCs from 

the two discovery cohorts and our replicated aDMCs 
(0.2%–3%; Additional file 1: Fig. S6). The high frequency 
of aDMCs in females as compared with males in the two 
discovery cohorts of Li et al. is at odds with the a priori 
expectation that the analysis of X methylation will have 
less power in females than males, because Xa-specific 
DNA methylation differences will be diluted by the pres-
ence of an additional Xi and vice versa, while males carry 
a single Xa only (Fig. 3). Finally, Kananen et al. analyzed 
5 studies and reported aDMCs that were observed in at 
least 2 out of 5 studies [8]. Their findings overlapped to 
a higher degree with our replicated aDMCs (7%–17%, 
Additional file  1: Fig. S6), and the overlap substantially 
increased when we applied a similar replication crite-
rion to the Kananen aDMC set as in our current study, 
namely being a significant aDMC in 3 studies instead of 2 
(30%–32%, Additional file 1: Fig. S6). All in all, our aDMC 
results are more similar to that reported by Kananen 
et al. [8] than that reported by Li et al. [7]. Remaining dif-
ferences between our study and the previous ones may 
be explained by differences in the study design and data 
analysis. Our total samples size (3334 females and 2612 
males in discovery and replication cohorts) was sub-
stantially higher than that analyzed by Li (488 females 
and 488 males in discovery and replication cohorts) and 
Kananen (1191 females and 1240 males across 5 public 
datasets) [7, 8]. Moreover, among our replication cohort 
was a study based on purified monocytes instead of 
whole blood samples, rendering our results substantially 
less sensitive to blood cell type composition. Further-
more, we were more conservative in calling aDMCs. To 
correct for multiple testing, we applied Bonferroni cor-
rection in our discovery cohort and the false discovery 
rate for replication, whereas the previous studies used 
the more liberal false discovery rate for all analyses. In 
addition, we corrected for statistical inflation of test sta-
tistics (Additional file 1: Fig. S7), a common problem in 
genomics studies which induces false positive findings 
[46]. Finally, we adhere to a strict replication scheme 
and report only those aDMCs that were replicated in all 
cohorts. Moreover, it should be noted that in population 
studies like ours, findings in females are the average of Xa 
and Xi, in contrast to findings in males which can only 
stem from the Xa. This reduces the sensitivity to detect 
effects in females, but also the ability to definitely assign 
findings to either Xa or Xi. Nevertheless, our set of repli-
cated aDMCs may be a robust starting point for further 
studies.

We observed that X-linked aVMCs are common in 
females and are associated with XCI. A main remain-
ing question is whether aVMCs have functional rel-
evance and how they can relate to the aging process in 
females. Several aVMCs mapped to genes implicated 
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in age-related, female-specific diseases.  For example,  
one  aVMCs (cg07876586) mapped to  the  progesterone 
receptor membrane component 1 (PGRMC1), a gene 
associated with female-specific cancer types such as 
breast cancer [47] and ovarian cancer [48] (Additional 
file 1: Fig. S4, Additional file 2: Table S6). Another aVMC 
(cg23501813) mapped to Bruton’s tyrosine kinase (BTK) 
which is a key mediator of B cell receptor signaling and 
is linked to age-related autoimmune diseases common 
in females such as rheumatoid arthritis (RA) [49] and 
systemic lupus erythematosus (SLE) [50] (Additional 
file  2: Table  S6). However, only for two X-linked genes 
we observed an association between aVMC methyla-
tion and expression. The genes included ALG13, which 
is known to variably escape XCI [51], and CDK16, which 
is annotated as a gene escaping XCI. This low yield may 
be explained in at least two ways. First, DNA methyla-
tion at aVMCs simply has little effect on gene expression. 
This would contrast with the assumed key role of DNA 
methylation in establishing and maintaining XCI. How-
ever, XCI involves multiple levels of epigenetic repression 
beyond DNA methylation (e.g., histone modifications). 
These other levels may not or be less affected with age. 
However, it could also be the case that age-related differ-
ences in DNA methylation levels may not have reached a 
putative threshold necessary for  loss of XCI considering 
that most participants in our study were relatively young 
(mean age of 51 years with a range from 18 to 85 years). 
The latter links to a second potential explanation. It may 
be hypothesized that only when aVMCs reach extreme 
DNA methylation levels, for example in very old age, 
de-repression of regions normally subject to XCI occurs 
in a detectable way. Testing this hypothesis will require 
larger data sets and such analyses will have to consider 
the fact that aVMCs result from stochastic phenomena 
whose occurrence in frequency and location may be 
individual-specific.

Aging is also associated with loss of X chromosome 
(LOX) although its frequency may be low [52, 53]. As the 
phenomenon is thought to predominantly affect the Xi, 
one would expect LOX to increase the number of female-
specific aDMCs whose methylation should predomi-
nantly decrease with age since the highly methylated Xi 
is lost and only the lowly methylated Xa remains. How-
ever, we observed many more male-specific aDMCs than 
female-specific aDMCs and, among females, the number 
of loss and gain aDMCs were similar (41 and 39, respec-
tively; Table 1). A second age-related phenomenon is the 
skewing of XCI toward one parental X chromosome with 
age [54]. It remains unclear how skewing might affect the 
occurrence of aDMCs and aVMCs on the X chromosome 
in females relative to males. Our study did not allow us to 
assess the occurrence of LOX or skewing in the cohorts 

analyzed but it can be expected that these phenomena do 
not affect our overall conclusions.

Conclusions
Our analysis revealed that age-related DNA methyla-
tion changes in females, likely affecting the inactive X 
chromosome, are dominated by the accumulation of 
variability instead of commonly studied differences in 
mean. This implies that the epigenetic control of XCI 
may gradually wane with age. The putative functional 
impact of this phenomenon to female aging may need 
to be studied in aged populations.
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