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Summary
We propose a permutation-based method for testing a large collection of
hypotheses simultaneously. Our method provides lower bounds for the number
of true discoveries in any selected subset of hypotheses. These bounds are
simultaneously valid with high confidence. The methodology is particularly
useful in functional Magnetic Resonance Imaging cluster analysis, where it
provides a confidence statement on the percentage of truly activated voxels
within clusters of voxels, avoiding the well-known spatial specificity paradox.
We offer a user-friendly tool to estimate the percentage of true discoveries for
each cluster while controlling the family-wise error rate for multiple testing
and taking into account that the cluster was chosen in a data-driven way. The
method adapts to the spatial correlation structure that characterizes functional
Magnetic Resonance Imaging data, gaining power over parametric approaches.

K E Y W O R D S
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1 INTRODUCTION

Functional Magnetic Resonance Imaging (fMRI) is the most frequently used technique to understand which regions of
the human brain are activated as a consequence of a stimulus. Brain activation is measured as the correlation between a
sequence of (cognitive) stimuli and the resulting blood oxygenation level dependent (BOLD) signal. The BOLD signal over
the entire brain is measured in small cubes termed voxels, and for each of these, we test for significant BOLD activity. Typ-
ically, around 300,000 voxels are analyzed, so the resulting multiple testing problem has roughly 300,000 statistical tests.

Controlling Type I error at the voxel level usually negatively affects the power to detect activation.1 Therefore,
cluster-extent based thresholding was developed to analyze the data at the level of clusters of contiguous voxels. This
method is less conservative than voxel-wise inference since it exploits the spatial nature of the signal using Random
Field Theory (RFT).2 However, the assumptions behind this method require a very high initial cluster-forming threshold,
resulting in relatively small clusters left for significance testing.3 Moreover, the method suffers from the spatial specificity

Abbreviations: AORC, asymptotically optimal rejection curves; ARI, all-resolution inference; BET, brain extraction tool; BOLD, blood
oxygenation level dependent; FDR, false discovery rate; FLIRT, FMRIB’s linear image registration tool; fMRI, functional Magnetic Resonance;
FSL, FMRIB software library; FWER, family-wise error rate; FWHM, full width at half maximum; MNI, Montreal neurological institute;
MCFLIRT, motion correction FLIRT; PRDS, positive regression dependency on subset; RFT, random field theory; SPM, statistical parametric
mapping; TDP, true discovery proportion; TFCE, threshold-free cluster enhancement.
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paradox,4 meaning that the larger the cluster we find, the less we can say about the signal within that cluster. Since the
method tests the hypothesis that none of the voxels in the cluster are active, rejecting this null hypothesis only allows the
claim that there is at least one active voxel inside the cluster; hence, the larger the cluster, the less we can say about it.
That is, the number of active voxels and their spatial location remains unknown, and doing follow-up inference inside
the cluster (“drilling down”) leads to a “double-dipping” problem and inflated Type I error rate.5

These problems motivated Rosenblatt et al6 to propose All-Resolution Inference (ARI), a method to compute the lower
confidence bound for the true number of active voxels within a cluster (true discovery proportion (TDP)) simultaneously
for all possible sets, for example, all clusters of voxels. Simultaneous control permits users to drill down within clusters
while maintaining error guarantees, thus resolving the spatial specificity paradox. ARI is based on the approach proposed
by Goeman and Solari7 using closed testing8 with local Simes test9 to control the family-wise error rate (FWER). The
closed testing method has an exponential computational load in general; nevertheless, for this specific case, Goeman
et al10 and Meijer et al11 proposed a fast and exact linear time short-cut. ARI relies on the Simes inequality, assuming
positive regression dependency on subsets (PRDS).12 While the Simes inequality can be assumed to be valid for fMRI
data,1 it can be conservative under strong positive dependence. This makes the method inefficient in the neuroimaging
data framework since brain measurements have strong spatial dependence due to both physics and physiology.

Permutation tests assume only exchangeability under the null hypothesis13 and can handle data having any correlation
structure, adapting to that correlation structure both to keep type I error control and to gain power. Hemerik et al14 pro-
posed a permutation-based method, related to ARI, that adapts the procedure to the correlation structure of the p-values.
However, this method finds TDP only for sets consisting of the smallest k p-values, simultaneously over k, and can there-
fore not handle spatially defined clusters. Moreover, the method allows much freedom in the choice of the shape of its
rejection curve, and the optimal choice for fMRI data is not clear.

In this paper, we merge the strengths of ARI with the permutation-based method of Hemerik et al,14 adapting ARI
to use permutations following the approach of Hemerik et al.14 The new method provides a lower bound for the TDP
for all brain regions, allowing regions of interest to be chosen post-hoc, as in ARI, without compromising family-wise
error control. By using permutation-based test statistics, the method gains in power compared to the parametric version
of ARI because it adapts to the correlation structure. Moreover, permutation tests are robust, as widely demonstrated
in the neuroimaging literature3,15,16 and can be used when the parametric assumptions of ARI are not satisfied. The
permutation-based post-hoc method proposed here is similar to the one offered by Blanchard et al,17 which essentially
generalized the approach of Hemerik et al14 to arbitrary subsets of the hypotheses. However, we also propose here an
iterative approach based on the idea presented by Hemerik et al,14 which uniformly improves Blanchard et al17 method in
most cases.

This paper is organized as follows. Section 2 introduces the concept of closed testing based on a critical vector, revis-
iting the results from Goeman et al18 and Rosenblatt et al.6 Then, in Section 3, we combine these results to obtain a
permutation-based ARI, and its iterative version in Section 4. We discuss the families of critical curves to be used in
Section 5 and which test and permutations we recommend to use in fMRI data in Section 6. Section 7 evaluates the per-
formance of our method in comparison with the parametric version in fMRI data. We validate the method using the
resting-state fMRI null data of Eklund et al3 in Section 8. Finally, we perform some simulations in Section 9 in order to
investigate the influence of the shape of the rejection curve in different scenarios.

2 CLOSED TESTING FOR TRUE DISCOVERY PROPORTIONS

In this section, we revisit some results from Rosenblatt et al6 and Goeman et al18 to introduce notation and clarify the
need for selective inference in fMRI data.

Suppose the brain B, with |B| = m, is composed of m voxels, and let 2B be the collection of all subsets of the brain.
Some of the voxels are truly active: let A ⊆ B be the unknown set of all truly active voxels. For a cluster of interest S ⊆ B
we want to make inference on a(S) = |A ∩ S|, that is, the number of truly active voxels in S, or equivalently the TDP, that
is, a(S)∕|S|.

We assume that we have computed a test statistic for each voxel i, where i = 1, … ,m, corresponding to the null
hypothesis that the voxel is not active. Based on some knowledge or guess of the marginal null distribution of these
test statistics, we may compute the corresponding (parametric) p-values pi ∶ Ω→ [0, 1] where Ω is the sample space
of the data X . In the parametric version, we will assume that these p-values will be valid, that is, stochastically
smaller than the uniform distribution of all inactive voxels. For the permutation-based method, we emphasize
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here that, to guarantee FWER control, we do not make any assumptions on the distribution of these p-values.
The reason is that it will suffice that the p-values are computed in the same way for all permuted versions of
the data.14

We will now revisit the simultaneous inference on TDP using closed testing and critical vectors. First, we define a
critical vector.

Definition 1. A vector (l1, … , lm) is a critical vector if and only if

Pr(∩|N|

i=1{q(i) ≥ li}) ≥ 1 − 𝛼, (1)

where N = B ⧵ A is the set of inactive voxels, and q(i), 1 ≤ i ≤ |N|, are their sorted p-values.

The general parametric version of ARI assumes that, for a chosen error rate 𝛼 ∈ [0, 1], there is a critical vector
(l1, … , lm), possibly random, expressed as Definition 1. If such a critical vector exists, then as a corollary to Lemma 6
from Goeman et al18 we have the following theorem, which we prove in Appendix.

Theorem 1. Let li satisfy (1). Then for every ∅ ≠ S ⊆ B,

ā(S) = max
1≤u≤|S|

1 − u + |{i ∈ S ∶ pi ≤ lu}| (2)

is a lower (1 − 𝛼) confidence bound of a(S), simultaneously for all S ⊆ B, that is

Pr(∀S ⊆ B ∶ ā(S) ≤ a(S)) ≥ 1 − 𝛼. (3)

In ARI, the Simes-based critical vector is li = i𝛼∕h, where h is a random variable that can be calculated using
the short-cut defined by Goeman et al.10 It is the largest set size of a subset of the brain not rejected by the
Simes test.

The multiplicity control (3) that ARI guarantees is very versatile. It guarantees, simultaneously for every subset
S of the brain, that the true activation a(S) is at least as large as the claimed activation ā(S). The analogous result
for TDP follows immediately. Several more familiar error rates can be derived from Equation (3). Taking all clusters
with TDP = 1 is equivalent to strong control of FWER at the voxel level. Taking clusters with TDP > 0 is equiva-
lent to strong control of FWER at the cluster level but weak FWER control at the voxel level. At intermediate levels
of TDP, Equation (3) gives intermediate information between weak and strong control at the voxel level. For more
about relationships between Equation (3) and classical error rates, see Goeman et al.18 Note that standard cluster-wise
approaches based on the RFT or permutations19,20 only provide strong control of the FWER at the cluster-level and
weak control at the voxel-level, which is one of the error rates implied by Equation (3). The second feature, perhaps
even more relevant, of Equation (3) is that the inference is simultaneous over all possible subsets of tested hypotheses
(ie, voxels). Simultaneously implies that any exploratory and iterative approaches (ie, double-dipping) that are not pos-
sible in the cluster-wise approach become valid in the ARI class of methods. That is, the inferences on all subsets S
are valid simultaneously and regardless of how they were selected (after seeing the data, changing the cluster-wise
threshold, etc.).

Figure 1 illustrates computation of ā(S) as defined in Equation (2), where |S| = 1000. In the left part, the length
of the dashed black segments is the 1 − u + |{i ∈ S ∶ pi ≤ lu}| with u ∈ {1, … , |S|} described in Equation (2), while
the solid red segment is the maximum value over u, that is, the highest distance between the curve of observed
p-values and critical vector (l1, ..., lm), for example, Simes-based. In the right part, we can see the trend of ā(S) over
u. The maximum value of 1 − u + z = 232, where z = |{i ∈ S ∶ pi ≤ lu}|, is reached when u equals 97. This implies
that ā(S) = max1≤u≤|S| 1 − u + |{i ∈ S ∶ pi ≤ lu}| = 232 is a lower confidence bound for the number of true discoveries
in S.

The crucial assumption of Theorem 1 is that li satisfies Equation (1). In the case of the Simes test used by
ARI, this follows from the PRDS assumption, commonly also adopted for the False Discovery Rate (FDR) con-
trolling approach proposed by Benjamini et al.21 Although this assumption is commonly accepted in neuroimag-
ing,1 the critical values (l1, … , lm) can be overly strict if p-values are positively correlated, leading to conserva-
tive results. Moreover, the Simes critical vector may also be too strict or too loose if the p-values are not well
calibrated.
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2314 ANDREELLA et al.

F I G U R E 1 Left figure: A graphical display of the computation of ā(S). The sorted p-values p(i) are plotted as solid line against their
indexes i for i = 1, … , 1000. ā(S) equals then the highest horizontal distance (solid red segment) between the curve of observed p-values p(i)
and critical vector (dotted line) considering the distances represented by the black dashed long lines (here we put a sample). Right figure:
Example of the computation of ā(S), that is, the maximum 1 − u + z over u where u ∈ {1, … , 1000} and z = |{i ∈ S ∶ pi ≤ lu}|. ā(S) is then
the maximum value of 1 − u + z, represented by the red dotted line, attained when u equals 97.

3 PERMUTATION-BASED ALL-RESOLUTIONS INFERENCE

To obtain a critical vector that leads to improved power, we propose a permutation procedure based on results in
Hemerik et al.14 The permutation method takes into account the dependence structure of the p-values and, therefore,
often leads to a higher critical curve than parametric methods. Moreover, permutation methods not only adapt to the
dependence structure but also to the marginal distributions of the p-values. This means that we do not require the null
p-values to be uniformly distributed. Instead, we require that the null p-values are exchangeable with the corresponding
post-permutation p-values (Assumption 1 in Hemerik et al).14

Following Hemerik et al,14 we consider a group of permutations or sign-flipping transformations or any other data
transformation that preserves the distribution of the test statistics under the null hypothesis, such as rotations.22 These are
maps from the support of the data distribution to itself. Our method is based on w random permutations or sign-flipping
transformations. Let p1

1, ..., p
1
m = p1, ..., pm be the p-values for the real data, and for every 2 ≤ j ≤ w, let pj

1, ..., p
j
m be the

p-values obtained for the j-th random permutation of the data.
Computing all possible permutations could be computationally infeasible, especially in the fMRI framework. How-

ever, Proposition 2 of Hemerik and Goeman23 states that if the permutation set has a group structure, and 𝛼 ∈
[0∕w, 1∕w, … (w − 1)∕w], the random permutations reach an exact 𝛼 level. This means that the 𝛼 level is exhausted if all
hypotheses are true, and the error rate is at most 𝛼 otherwise.

To obtain the permutation-based critical vector, the user must choose a family of candidate critical vectors. Examples
of such candidate vectors are given in Section 5. We suppose that the candidate vectors are indexed by 𝜆

𝛼
∈ Λ ⊆ R, so that

l(𝜆
𝛼
) denotes the candidate vector corresponding to 𝜆

𝛼
. The family of candidate vectors is thus  = {l(𝜆

𝛼
) ∶ 𝜆

𝛼
∈ Λ}. We

assume that the family of candidate vectors is monotone, in the sense that if 𝜆1
𝛼

, 𝜆

2
𝛼

∈ Λ and 𝜆1
𝛼

≤ 𝜆
2
𝛼

, then li(𝜆1
𝛼

) ≤ li(𝜆2
𝛼

)
for every 1 ≤ i ≤ m.

We define the permutation-based critical vector to be l(𝜆
𝛼
), where

𝜆
𝛼
= sup{𝜆 ∈ Λ ∶ w−1|{1 ≤ j ≤ w ∶ pj

i ≥ li(𝜆) ∀i ∈ B}| ≥ 1 − 𝛼}. (4)

By Hemerik et al,14 the following holds, so that Theorem 1 applies.
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ANDREELLA et al. 2315

F I G U R E 2 Example of l(𝜆
𝛼
) computation using 𝛼 = 0.10. The sorted p-values p(i) are plotted against their indexes i = 1, … ,m with

m = 150,000. The dashed red line represents the highest critical curve, that is, the optimal critical vector (l1(𝜆𝛼), … , lm(𝜆𝛼)) than the gray
ones, such that the 𝛼% p-values distribution (black curves plus red one) is below it.

Theorem 2. The vector l(𝜆
𝛼
) is a critical vector, that is, it satisfies (1) of Definition 1.

The 𝜆
𝛼
-calibration permits to incorporate the unknown dependence structure of the data into the choice of the critical

vector. As seen from Equation (4), the 𝜆
𝛼

value is computed in such a way that for at least (1 − 𝛼)100% of the permutations,
all p-values lie above it. This is illustrated in Figure 2, considering a random sample of 100 permutation curves. The 𝜆

𝛼

parameter tends to be lower if many null hypotheses are false, being εoptimalε if Equation (4) considers only pi ∈ B ⧵ A,
that is, the set of true null hypotheses.

We use the critical vector l(𝜆
𝛼
) ∈  in Theorem 1 instead of the Simes-based one employed in ARI to gain power in

computing ā(S). The time complexity to compute the lower confidence bounds for the TDP is(|S|log(|S|)), after an initial
step of calculating the critical values, which takes (wmlog(m)), using a similar algorithm as was used by Meijer et al11

for the version with the parametric Simes test. So, it remains close to linear also if the whole brain is analyzed. Finally,
the method can be uniformly improved by its iterative version,14 presented in the next section.

4 ITERATIVE APPROACH

We propose here an iterative method that uniformly improves ā(S) defined in Equation (2) following the idea proposed by
Hemerik et al.14 The confidence envelope is defined as the minimum confidence bound computed in the complementary
set of the rejection set having a cardinality equal to the lower bound of the number of true discoveries found in the previous
iteration. The improvement is then substantial only when the number of detectable false hypotheses is large. In short,
the iterative method improves ā(S) sequentially in each step using the bound obtained in the previous step. The method
always converges after a finite (and usually small) number of steps.

We rephrase below Theorem 2 of Hemerik et al14 to get an improvement of the calibration parameter 𝜆
𝛼
.

Theorem 3. Let 𝜆0
𝛼

=𝜆
𝛼

as defined in Equation (4), we define 𝜆
𝛼
(K) as,

𝜆
𝛼
(K) = sup{𝜆 ∈ Λ ∶ w−1|{1 ≤ j ≤ w ∶ pj

i ≥ li(𝜆) ∀i ∈ K}| ≥ 1 − 𝛼}.

For i ∈ N and fixed c ∈ [0, 1] we consider R = {x ∈ B ∶ px ≤ c}, and we determine:

𝜆

i+1
𝛼
= min{𝜆

𝛼
(Kc) ∶ K ∈ R, |K| = max

1≤u≤|R|
1 − u + |{i ∈ R ∶ pi ≤ lu(𝜆i

𝛼
)}|}
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2316 ANDREELLA et al.

where Kc is the complement of K. Then 𝜆0
𝛼

≤ 𝜆
1
𝛼

≤ · · ·, and for a certain i ∈ N, 𝜆i
𝛼

= 𝜆i+1
𝛼

. The function l(𝜆it
𝛼

)where
𝜆

it
𝛼

= maxi∈N 𝜆
i
𝛼

is a critical vector in the sense of Definition (1).

Theorem (3) returns a confidence bound which uniformly improves the one defined in Theorem (1) with l(𝜆
𝛼
) defined

in Theorem (2) as critical vector. Furthermore, if in every step we compute the improved bound for all c ∈ [0, 1] and take
the best one, then we are always better than the method proposed by Blanchard et al17 if the same family of curves  is
used. There are multiple versions of the iterative method, and that one (where in each step, we find the best c) is a uniform
improvement of Blanchard et al17 method.

In addition, we can simply demonstrate the uniform improvement over Blanchard et al17 method by setting a specific
c ∈ [0, 1]. First of all, by Definition (4), if K1 ⊆ K2, then 𝜆

𝛼
(K1) ≥ 𝜆𝛼(K2). Consequently 𝜆

𝛼
(K1) returns a greater confidence

bound for a(S) than the one calculated with 𝜆
𝛼
(K2). We can then focus on the size of the set K used to compute 𝜆

𝛼
(K)

to analyze the improvement of the iterative method. In the first step, the Blanchard et al17 algorithm computes 𝜆
𝛼
(K1)

with |K1| = |{i ∈ B ∶ pi ≥ l1(𝜆𝛼(B))}| = k. Instead, our iteration approach computes 𝜆
𝛼
(K2) where |K2| = m − ā(R). By

definition of R, we can consider c = l1(𝜆𝛼(B)). Therefore, we have |R| = m − k and ā(R) ≤ |R| which implies |K2| ≤ m −
m + k = k, so |K2| ≤ |K1|. This leads to 𝜆

𝛼
(K2) ≥ 𝜆𝛼(K1), and then we can say that the lower confidence bound proposed

in Theorem 3 uniformly improves the one proposed by Blanchard et al.17

The iterative method is uniformly more powerful than the single-step method defined in Section 3, and also is uni-
formly more powerful than the step-down approach presented by Blanchard et al17 under certain conditions. However,
the power gain has as a cost a high computational time. In fact, the calculation of 𝜆it

𝛼

can be computationally infeasi-
ble if a large number of hypotheses is considered, as in the fMRI scenario. The iterative approach must compute the
minimum of a set of size |S|!∕(|S| − āi(S))!āi(S)!. Nevertheless, we suggest to use the approximated approach defined by
Hemerik et al14 which can be directly applied to our case. It simply calculates the minimum across sets randomly sam-
pled from {K ⊆ S ∶ |K| = āi(S)} for i ∈ N. The computation time, in this case, equals approximately 37 seconds analyzing
2000 hypotheses, 20 observations, and 1000 permutations. Finally, the approximated iterative approach provided valid
inference in all simulations in Hemerik et al.14 Please see Appendix D for further details.

5 CHOICE OF FAMILY OF CURVES

In the previous section, we consider a general family  of candidate vectors l(𝜆
𝛼
), 𝜆

𝛼
∈ Λ. Here we will discuss several

examples of such families, which we considered in the application later in the paper.
The first family  that we consider is inspired by Simes’ probability inequality.9 The vectors are obtained by multiply-

ing and shifting the Simes’ critical vector. We denote the shift by 𝛿 ∈ {0, … ,m − 1}. For every such 𝛿, we have a different
family, indexed by 𝜆

𝛼
∈ R. The candidate critical vector l(𝜆

𝛼
) is defined by

li(𝜆𝛼) =
(i − 𝛿)𝜆

𝛼

m − 𝛿
. (5)

The shift parameter 𝛿 can be used to determine how sensitive the critical vector l(𝜆
𝛼
)will be to the smallest p-values. The

parametric Simes-based approach corresponds to 𝛿 = 0 and 𝜆
𝛼
= 𝛼. We gain over that approach only if the 𝜆

𝛼
value is

greater than 𝛼.
Regarding the choice of 𝛿, note that li(𝜆𝛼) ≤ 0 for i ≤ 𝛿. As a consequence, we will find ā(S) ≤ |S| − 𝛿, and ā(S) = 0

for all S with |S| ≤ 𝛿. The value of 𝛿, therefore, corresponds to the minimum size of a cluster that we are interested in
detecting. To compensate, methods with large 𝛿 will often have a steeper slope 𝜆

𝛼
and consequently have more power for

detecting large clusters. In addition, the lower confidence bound ā(S) computed by the shifted version, that is, 𝛿 > 0, can
not reach the 100% true discovery proportion, since the maximum equals to (|S| − 𝛿)∕|S|. Further details about the shift
parameter in computing bounds for the false discovery proportion can be found in Katsevich and Ramdas.24

The second example that we propose is a family of candidate vectors that are derived from the asymptotically optimal
rejection curves (AORC) considered in Finner et al25 to control the FDR in an asymptotic Dirac uniform setting. Again
we add a shift parameter 𝛿 ∈ {0, … ,m} as above, and we have a different family of candidate vectors for each 𝛿. The
calibration parameters lie in Λ ⊆ R. The candidate critical vector l(𝜆

𝛼
) is defined by

li(𝜆𝛼) =
(i − 𝛿)𝜆

𝛼

(m − 𝛿) − (i − 𝛿)(1 − 𝜆
𝛼
)
. (6)
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ANDREELLA et al. 2317

Our third example is related to the Higher Criticism method proposed by Donoho and Jin.26 The candidate vectors
are indexed by 𝜆

𝛼
∈ Λ ⊆ R and are given by

li(𝜆𝛼) =
2i + 𝜆2

𝛼

−
√
(2i + 𝜆2

𝛼

)2 − 4i2(m + 𝜆2
𝛼

)∕m)
2(m + 𝜆2

𝛼

)
. (7)

Finally, we, we consider the family of candidate vectors l(𝜆
𝛼
) defined as follows:

li(𝜆𝛼) = inf{x ∶ 𝜆
𝛼
≤ Fi(x)}. (8)

Here 𝜆
𝛼
∈ Λ = [0, 1] and Fi(X) is the cumulative distribution function of the beta distribution Beta(i,m + 1 − i). This

family was also considered in Hemerik et al.14

Further examples of candidate critical vectors can be found in references 17,27,28 and 14, but we did not consider them
here. The results obtained with our permutation method will depend on the critical vector l(𝜆

𝛼
) and hence on the choice

of the family  = {l(𝜆
𝛼
) ∶ 𝜆

𝛼
∈ Λ}. However, one choice of a family will essentially never lead to a uniform improvement

compared to another family, but only to improved TDP bounds for some sets of hypotheses and worse bounds for other
sets of hypotheses. Thus, the most appropriate family will depend on which set of hypotheses we are most interested in,
for example, on whether we are interested in large or small clusters. Section 7 provides guidelines regarding a good choice
of  for fMRI data.

6 CHOICE OF PERMUTATIONS AND T-STATISTIC

In fMRI activation studies, the correlation between the (convolved) sequence of cognitive stimuli and the changes in
BOLD response expresses brain activation. The changes in local hemodynamics affect the intensity of the magnetic
resonance signal, that is, the voxel intensity. Therefore, the intensity of each voxel becomes the unit of interest. The differ-
ences in intensity, either between different conditions of an experiment or between different groups of participants, are
expressed as a statistic value (t, z, or F usually), with an associated p-value. In fMRI, intensity values are often character-
ized by high spatial correlations and heteroscedasticity across voxels and across subjects due to the nature of the BOLD
signal and external nuisance factors (eg, quality of the recording, respiration, or heartbeat). The permutation approach is
useful in this situation, where parametric tests fail due to violations of assumptions.

In this section, we review which permutation test is valid and powerful to perform fMRI group analysis consisting
of multi-subject studies to explore the differences in BOLD response recorded under two experimental conditions.29-31

Group fMRI data are widely analyzed using a two-stage summary statistics approach within a mixed model. This approach
uses ordinary least squares (OLS) methods,32 in particular one- or two-sample t-tests, using within-subject parameter
estimates as observations.

Let the first level within-subject model for each voxel i ∈ {1, … ,m} and each subject j ∈ {1, … , J}:

Yij = Xj𝛽ij + 𝜖ij,

where Yij ∈ Rn is the brain signal of subject j in voxel i, n is the total number of time points, J is the total number of subjects,
m is the total number of voxels, Xj ∈ Rn×p is the design matrix, where p regressors of interest, 𝛽ij ∈ Rp is the vector of
parameters, and 𝜖ij ∈ Rn is the vector of autocorrelated and non-independent error terms. Let 𝛽1ij be the parameter relative
to the first experimental condition, while 𝛽2ij to the second experimental condition for the subject j, we then assume for
simplicity p = 2. We make inference on the contrasts of parameter estimates involving brain activation differences, that
is, Dij = ̂

𝛽1ij − ̂
𝛽2ij, so:

Dij = 𝜇i + 𝜖⋆ij (9)

where 𝜇i is the unknown parameter of interest representing the between-subject mean activation in voxel i, and 𝜖⋆ij are
the error terms ∼ (0,Σ). To make inference on 𝜇i, the one-sample t-test is performed for each voxel i:

Ti =
�̂�i

√

𝜎i
2∕J

(10)

 10970258, 2023, 14, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.9725 by L
eiden U

niversity L
ibraries, W

iley O
nline L

ibrary on [20/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2318 ANDREELLA et al.

where �̂�i equals
∑J

j=1Dij∕J and 𝜎i
2 equals

∑J
j=1(Dij − �̂�i)2∕(J − 1). So, we have m statistical tests to analyze, one for each

voxel i, that is, H0i ∶ 𝜇i = 0, that create a statistical brain mapping.
Nevertheless, we need valid permutations to have a valid permutation testing procedure. It needs a null-invariant

transformation of the data, that is, the joint distribution of the p-values under H0i does not change.23 In this case, H0i ∶
𝜇i = 0 implies that (𝛽1ij, 𝛽2ij)

d
= (𝛽2ij, 𝛽1ij), that is equivalent to Dij

d
= −Dij for each voxel i. The compound symmetry is

weaker than normality and also allows for heteroskedasticity. It can be justified by subtraction of two sample means with
the same (arbitrary) distribution. Therefore, under H0i, we can flip the sign at random of each Dij,30 always taking the
identity permutation as the first transformation to have an exact 𝛼 method.13,23

The same approach can be used in the case of two-sample t-test. Let Gj = {1, 2} expresses the group label for the

j-th subject, the null hypothesis is then defined as H0i ∶ 𝜇1i = 𝜇2i. The exchangeability assumption implies (Dij|Gj = 1)
d
=

(Dij|Gj = 2) for each voxel i, we can just shuffle the subject-group labels at random to compute the p-values null distribu-
tion. Permutation-based tests can be applied in various hypothesis testing’s situations, for example, tests for linear models
even in the presence of nuisance effects,30,31,33 and tests for generalized linear models.22

7 FMRI DATA APPLICATION

In this section, the permutation-based ARI method is evaluated using fMRI data. Two datasets from https://openneuro.org
are analyzed. Both datasets have the same experimental design, that is, a block design with two stimuli. Pre-processing
and first-level data analysis were performed using FMRIB Software Library (FSL).34 Registration to Montreal Neuro-
logical Istitute (MNI) space was done using FMRIB’s Linear Image Registration Tool (FLIRT),34,35 motion correction
using MCFLIRT,36 and brain extraction using BET.37 We applied spatial smoothing using a Gaussian kernel of 6mm
full width at half minimum (FWHM). Finally, we applied a high-pass filter to the time-series data (Gaussian-weighted
least-squares straight-line fitting, with sigma = 64.0 s). The parameter estimates (copes), that is, Dj ∈ Rm, were used as
input in the pARI38 package developed in R.39 These parameter estimates are instead downloadable by installing the
fMRIdata R package.40

For all the analyses, the 𝛼 level is taken as 0.05 for a two-sided alternative hypothesis. We use 1000 permutations: 999
random permutations plus the identity. The approximated iterative approach (100 random combinations) presented in
Section 4 is then applied. The results using the single-step method, that is, 𝜆

𝛼
computed on the full set of hypotheses, are

reported in Appendices A and B.
We chose 𝛿 as 0, 1, 9, and 27 to account for signal spreading out in clusters with size at least equals 0, 1, 9, and 27

voxels. The third powers were considered to exploit the three-dimensional structure of the voxels.

7.1 Auditory data

We analyzed data from 140 subjects passively listening to vocal (ie, speech) and non-vocal sounds, collected by Pernet
et al,41 available at https://openneuro.org/datasets/ds000158/versions/1.0.0. We estimated the statistics map regarding
the contrast that describes the difference of neural activation during vocal and non-vocal stimuli for each participant,
that is, Dj. The hypothesis testing is then constructed considering H0i ∶ 𝜇i = 0 with two-sided alternative, where 𝜇i is the
mean

∑J
j=1
̂𝜷vocal j − ̂𝜷non-vocal j∕J computed for each voxel i = 1, … ,m, as described in Equation (10).

In concordance with results from earlier studies,42-44 we found activation in the Frontal Pole (FP), Cingulate Gyrus
(CG), Superior Frontal Gyrus (SFG), Temporal Occipital Fusiform Cortex (TOF), Lateral Occipital Cortex (LO), Lingual
Gyrus (LG), Occipital Fusiform Gyrus (OFG), Inferior Temporal Gyrus (ITG), Supramarginal Gyrus (SG), Angular Gyrus
(AG), Superior Temporal Gyrus (STG), Planum Temporale (PT), Middle Temporal Gyrus (MTG), Heschl’s Gyrus (HG),
Precentral Gyrus (PrG), Thalamus (T), Inferior Frontal Gyrus (IFG), Insular Cortex (I), Central Opercular Cortex (CO),
and Frontal Medial Cortex (FM). While our method allows any method for forming clusters, we started from a map
computed using RFT with a cluster-forming-threshold equalling |Ti| > 3.2. This threshold is quite liberal, and therefore
we will make additional inferences inside these clusters with a threshold of |Ti| > 4.

Table 1 includes the lower bounds of the proportion of active voxels (𝜋(S) = ā(S)∕|S|), the size of the cluster (|S|), the
FWER-corrected p-values (pFWER) from classical cluster analysis and the mm coordinates of the maximum. The FWER
p-values based on the clusterwise RFT are reported only for the first cluster-forming-threshold equals to |Ti| > 3.2, since
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ANDREELLA et al. 2319

T A B L E 1 Auditory data: Clusters S identified with threshold t = 3.2 and active proportion percentage 𝜋(S) using Simes and AORC
families (𝛿 = 1) and parametric ARI, “drill down” clusters at t = 4.

Cluster Threshold Size % active RFT Voxel

P-values Coordinates

S t |S| 𝝅(S) pFWER x y z

Perm Perm Parametric

Simes (11) AORC (12) Simes (13)

FP/CG/SFG/TOF/LO 3.2 40,094 96.77% 96.79% 84.98% < 0.0001 −30 −34 −16

LG/OFG/ITG/SG/AG

Left LO/TOF 4 8983 99.14% 99.14% 97.66% − −30 −34 −16

Right LO/LG/ITG 4 7653 98.96% 98.96% 97.25% − 28 −30 −18

Left SFG/FP 4 1523 94.75% 94.81% 86.28% − −28 34 42

CG 4 1341 94.11% 94.11% 84.41% − 6 40 −2

Right FP 4 1327 93.97% 93.97% 84.32% − 30 56 28

Left SG/AG 4 859 90.69% 90.8% 75.79% − −50 −56 36

Right FP 4 243 67.08% 67.08% 43.21% − 30 64 −4

Left SFG 4 202 61.88% 61.88% 40.1% − −18 8 52

Right SFG 4 122 46.72% 46.72% 19.67% − 22 10 52

Right STG/PT/MTG 3.2 12,540 90.02% 90.05% 83.49% < 0.0001 60 −10 0

HG/PrG/T

STG/PT/MTG/HG 4 9533 99.19% 99.19% 97.8% − 60 −10 0

PrG 4 485 86.19% 86.19% 78.35% − 52 0 48

T 4 292 72.6% 72.6% 53.77% − 10 −10 8

Left STG/PT/MTG/ 3.2 10,833 88.4% 88.45% 80.41% < 0.0001 −60 −12 2

HG/IFG/T

HG/PT/MTG/STG 4 7894 98.99% 98.99% 97.35% − −60 −12 2

IFG 4 667 88.01% 88.16% 74.06% − −40 14 26

T 4 34 26.47% 26.47% 17.65% − −14 −26 −4

Right IC/CO 3.2 408 37.25% 37.26% 24.01% 0.0002 38 −2 16

— 4 226 67.26% 67.26% 43.36% − 38 −2 16

Left PrG 3.2 276 49.64% 49.64% 43.84% 0.002 −52 −6 50

— 4 192 71.35% 71.35% 63.02% − −52 −6 50

FM 3.2 270 22.59% 22.59% 13.33% 0.002 4 50 −14

— 4 128 47.66% 47.66% 28.13% − 4 50 −14

SFG 3.2 187 6.95% 6.95% 0% 0.0123 6 52 38

— 4 64 20.31% 21.23% 0% − 6 52 38

Left T 3.2 176 1.14% 1.14% 0% 0.0157 −14 −14 10

— 4 49 4.08% 4.08% 0% − −14 −14 10

Note: The size of the clusters |S| and the voxel coordinates (x, y, z) are reported for each cluster.
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2320 ANDREELLA et al.

this method does not allow double-dipping. The results are computed using the permutation-based ARI with the Simes
and AORC family using 𝛿 = 1. We compared these methods with the original parametric ARI calculated using the R
package ARIbrain.45

As can be seen, the permutation-based ARI, that is, columns (11) for the Simes family and (12) for the AORC family
in Table 1, has a better performance overall than the parametric approach, that is, column (13) in Table 1. However, the
two families of candidate curves return very similar results; this likely reflects the similar structure of these two families
of critical vectors. We also applied the shifted versions with 𝛿 > 1 (see Appendix A for the results) but found that the
loss of power in small clusters is not sufficiently offset by the gain in power in the larger clusters. We believe that this is
due to the conservativeness of the null p-values, as shown in Figure 3. The family of critical vectors based on the Higher
Criticism provide lower TDP than the ones given by the Simes and AORC families, and we put the results in Appendix
A. The family based on the Beta quantile instead does not work on fMRI data due to the large number of variables that
make the beta parameters unmanageable in terms of numerical precision. In addition, we believe that the weakness of
both these two families is due also to mismatch between the design of the curves based on independent p-values that
contrasts with a high correlation in the actual data.

Figure 4 shows the TDP bounds as a cluster brain map using the results using the Simes family confidence bound. In
these maps, the user can directly interpret activation as the proportion of truly active voxels inside a cluster.

F I G U R E 3 Auditory data: p-values null distribution (black lines plus dotted red one) with critical vectors from Simes family
considering 𝛿 ∈ {0, 1, 3, 9, 27} (solid colored lines). The red dotted line represents the observed p-values.

F I G U R E 4 Auditory data: True discovery proportion map using the Simes family of critical vector with 𝛿 = 1. Colors express the True
Discovery Proportion for clusters based on a threshold of 3.2 and “drilled” down at 4.
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ANDREELLA et al. 2321

7.2 Rhyme data

Subsequently, we analyzed data from 13 subjects making rhyming judgments for pairs of either words or pseudo-words,
collected by Xue and Poldrack46 and available at https://openneuro.org/datasets/ds000003/versions/1.0.0. The analysis
follows directly the one performed in Section 7.1, but the neural activation during the word stimulus was analyzed.

We found activity in Paracingulate Gyrus (PG), Lateral Occipital Cortex (LOC), Superior Frontal Gyrus (STG), Frontal
Operculum Cortex (FOC), Putamen (P), Inferior Frontal Gyrus (IFG), Lingual Gyrus (LG), Occipital Fusiform Gyrus
(OFG), Insular Cortex (IC), Cingulate Gyrus (CG), Superior Parietal Lobe (SPL), and Post Central Gyrus (PCG).47 The
cluster map is thresholded the same as the previous dataset: using cluster-wise RFT with a threshold of |Ti| > 3.2. We
then drilled down 𝜋(S) using a threshold of |Ti| > 4. For completeness, we also analyzed the clusters defined by the
threshold-free cluster enhancement (TFCE) method.20 The analysis results are reported in Appendix B.

Figure 5 shows the null distribution of the p-values from the one-sample t-test (two-sided alternative) for the con-
trast regarding the word stimulus. As in Section 7.1, Table 2 represents the results using the Simes family in column

F I G U R E 5 Rhyme data: p-values null distribution (black lines plus dotted red one) with critical vectors from Simes family considering
𝛿 ∈ {0, 1, 3, 9, 27} (solid colored lines). The red dotted line represents the observed p-values.

T A B L E 2 Rhyme data: Clusters S identified with threshold |T| > 3.2 and active proportion percentage 𝜋(S) using Simes and AORC
families (𝛿 = 27) and parametric ARI, “drill down” clusters at |T| > 4.

Cluster Threshold Size % active RFT Voxel

P-values Coordinates

S t |S| 𝝅(S) pFWER x y z

Perm Perm Parametric

Simes (14) AORC (15) Simes (16)

LOC/LG/OFG/PG/SFG 3.2 34,115 89.15% 89.4% 38.16% < 0.001 4 12 48

FOC/P/IFG/IC/CG

LOC/LG/OFG 4 11,045 91.21% 91.45% 42.01% − −6 −56 −12

FOC/P/IFG/IC 4 6930 85.75% 86.2% 29.32% − −42 14 −6

PG/SFG/CG 4 2100 57% 57.81% 18.05% − 4 12 48

Left P 4 38 2.63% 2.63% 2.63% − −32 −18 −8

Left SPL/PCG 3.2 1546 1.49% 1.75% 0% < 0.001 −24 −62 44

Note: The size of the clusters |S| and the voxel coordinates (x, y, z) are reported for each cluster.
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2322 ANDREELLA et al.

F I G U R E 6 Rhyme data: True discovery proportion map using the Simes family of critical vector with 𝛿 = 27. Colors express the true
discovery proportion for clusters corresponding to a threshold of 3.2 and “drilled” down at 4.

(14) and the AORC family in column (15) with 𝛿 equalling 27. As can be seen, the power improvement over the
parametric method, that is, column (16) of Table 2, is striking in this dataset. We decided to take 𝛿 equals 27 since, in
this case, all clusters based on RFT have large sizes. The results using 𝛿 ∈ {0, 1, 9} are shown in Appendix B. Once again,
the critical vectors based on Higher Criticism and the beta distribution do not work well due to the high correlation in
the data.

Finally, Figure 6 shows the TDP represented in Table 2 as a cluster brain map.

8 VALIDATING PERMUTATION-BASED ARI

FMRI data has noise characteristics that are hard to simulate using parametric distributions. Therefore, when performing
simulations, often resting-state fMRI data (ie, fMRI data with no stimulus linked BOLD signal) is used. In these null
data, the hypothesis of mean zero activation between groups is true while still retaining the noise characteristics of fMRI
data. Eklund et al3 found that many software programs, such as FSL34 and Statistical Parametric Mapping (SPM),48 do
not properly control the probability or the average proportion of the false positives in cluster-wise inference when RFT
assumptions are not met. As for ARI, RFT assumptions do not have to be met, we want to analyze the false positive rate
of the permutation-based ARI using resting-state fMRI data with no signal. For this, we used the Oulu dataset provided
by the 1000 Functional Connectomes Projects.49 The pre-processing pipeline follows the one used in Eklund et al.3 In
particular, we analyzed the Oulu dataset from https://tinyurl.com/clusterfailure considering fMRI images pre-processed
by FSL34 with a level of smoothness equal to 6 mm FWHM and 6 different first level designs (four event activity paradigms,
and two block activity paradigms).

The Oulu dataset consists of 103 subjects; however, to estimate the false positive rate, this set of subjects is not suffi-
cient. In addition, Eklund et al3 found asymmetric errors in the case of permutation test for the one-sample t-test using
the Oulu dataset; therefore, we validate the permutation-based and parametric ARI, performing the two-sample t-tests.
We select two groups of 20 subjects by randomly permuting 100 times the subject numbers and selecting the first 40 of
this permuted dataset. Eklund et al3 underline that the estimate of the familywise false positive rate is unbiased, even
if these random datasets are not independent. Finally, the set of voxels used as a cluster map is used as the whole-brain
mask. Please see Appendix G for the results of applying the one-sample t-tests.

Figure 7 shows the FWER estimated considering six different first level designs (ie, two-block activity paradigms:
boxcar10 (10-s on-off), boxcar30 (30-s on-off) and four event activity paradigms: E1 (single event of 2-s activation, 6-s
rest), E2 (single event 1- to 4-s activation, 3- to 6-s rest, randomized), E3 (13 events of 3–6 s for each task), and E4 (13
events of 3–6 s for each task, randomized). See references 3 and 50 for more details about tested parameter combinations.

To sum up, in most cases, the parametric-based ARI returns a false positive rate equal to 0, while the
permutation-based ARI with the Simes family returns false positive rates greater than 0. Considering the boxcar10, E1,
and E2 designs, the families with lower shifts, that is, 0 and 1, are more powerful than imposing the shift equals 3, 9,
and 27. Therefore, both methods (ie, parametric-based and permutation-based ARI) control the FWER. In addition, the
analysis confirms the conservativeness of the parametric ARI method in case of strong positive dependence due to the
Simes inequality and positive regression dependence on subsets (PRDS)12,17 assumptions.
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F I G U R E 7 Estimated FWER considering six different first level designs, that is, two-block activity paradigms: boxcar10 (10-s on-off),
boxcar30 (30-s on-off), and four event activity paradigms, that is, E1 (single event of 2-s activation, 6-s rest), E2 (single event 1- to 4-s
activation, 3- to 6-s rest, randomized), E3 (13 events of 3–6 s for each task), and E4 (13 events of 3–6 s for each task, randomized), and six
different methods to compute the TDP’s lower bound (parametric Simes and permutation-based Simes considering five different values of the
shift parameter, that is, 𝛿 ∈ {0, 1, 3, 9, 27}). The solid red line represents the estimated nominal FWER equals 0.05, while the star symbols
describe the estimated FWER equals 0.

9 SIMULATION STUDY

We simulate data considering the simple following model (ie, model (9)):

Dij = 𝜇i + 𝜖⋆ij

where Dj ∈ Rm, with j = 1, … , J, J is the number of independent observations (ie, subjects) and m is the total number of
voxels. The noise 𝜖⋆j ∈ Rm follows the multivariate normal distribution with mean 0 and spatial correlation structure, that
is, 𝜖⋆j ∼ (0,Σ

𝜃
), where 𝜃 describes how rapidly the correlation declines with respect to the distance between two voxels.

The three-dimensional coordinates of the voxels are defined as all combinations of vector c = {1, … ,m1∕3}, then Σ
𝜃
=

exp(−𝜃K) where K is the matrix containing the euclidean distances between the three-dimensional coordinates’ voxels.
For example, if 𝜃 = 0.2, the correlation between two voxels with a distance of 1 equals 0.819, while the correlation between
two voxels with a distance of 5 equals 0.368, and so on. The signal 𝝁 ∈ Rm is computed considering the difference in
means having power of the one-sample t-test equals 0.8, that is,𝝁 = (z1−𝛼∕2 + z1−𝛽)∕

√
J, where 𝛼 = 0.05 is the significance

level, 𝛽 = 0.8 is the power level, and za is the quantiles of the standard normal distribution at level a. The signal 𝝁 is equal
to 0 under the null hypothesis.

First of all, we want to understand how the improvement of the nonparametric TDP lower bound changes concerning
𝜃 and the proportion of null hypotheses 𝜋0. Let J = 50, m = 1000, 𝜃 ∈ {0, 0.01, … , 0.5} and 𝜋0 ∈ {0.6, 0.7, 0.8, 0.9}, we
simulate data 1000 times and the mean of 𝜋(Sm) over simulation is represented. The Simes family of confidence bound
without shift is taken into account to compare with the parametric approach directly. Having no prior knowledge about
the structure of the set of hypotheses to analyze, we consider the full set of hypotheses, that is, Sm. Figure 8 shows the
difference of 𝜋(Sm) computed using the permutation and parametric methods over the 𝜃 and 𝜋0 values. As expected, the
permutation approach gets some power with respect to the parametric one in the case of correlation between pairs of
variables. It can handle any type of dependence structure of the p-values.
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F I G U R E 8 Difference of lower bounds for the true discoveries proportion considering the permutation 𝜋(Sm)permutation and parametric
𝜋(Sm)parametric methods using simulated data and considering the full set of hypotheses Sm over different values of 𝜃 ∈ {0, 0.01, … , 0.5} and
𝜋0 ∈ {0.6, 0.7, 0.8, 0.9}.
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F I G U R E 9 Simulated true discovery lower bound over Sm and different values of 𝜃 ∈ {0, 0.01, … , 0.99, 1} using the Higher Criticism
(dotted line), Beta (dashed line) and Simes critical vectors (dotted dashed line). The solid line represents the number of true discoveries,
which equals 100 considering 1000 variables, and the proportion of null hypotheses 𝜋0 = 0.9.

Secondly, we want to examine why certain families of critical curves do not provide good results in Section 7. The
Higher Criticism critical vector (7), the Beta critical vector (8), and the Simes critical vector (5) are then used to com-
pute ā(Sm) using simulated data with 𝜋0 = 0.9, m = 1000 and J = 50. As previously, we repeat the simulations 1000
times for each framework, and the mean value of ā(Sm) is computed. Figure 9 shows the behavior of these three fam-
ilies of critical vectors with respect to 𝜃 ∈ {0, 0.01, … , 0.99, 1}. In Section 5, we said that the Higher Criticism and
Beta families could be problematic in the case of a strong correlation between tests. As expected, the Beta critical vec-
tor does not work in the case of a strong correlation between variables, that is, low values of 𝜃. However, the Higher
Criticism family seems to work considering various values of 𝜃 in contrast to the results with fMRI data. This may
be due to the different spatial correlation in the fMRI data, which is much more complex than that specified in the
simulations. However, it can be seen that the lower bound for the TDP calculated by the Higher Criticism family
is close to the one computed by the Simes family as the correlation increases. Finally, the Beta family works only if
𝜃 > 0.2 (ie, correlation between voxels equals 0.28 on average). However, high values of correlation are unrealistic in
real applications. For example, the mean correlation across 10,000 randomly sampled voxels equals 0.25 in the case of
Rhyme data.
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F I G U R E 10 Left side: True discovery lower bound using simulated data. The full set of hypotheses Sm is considered over different
values of 𝛿. Right side: Empirical cumulative density function of observed raw p-values, that is, F(pi).
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F I G U R E 11 Lower Bounds for the true discovery proportion using simulated data with 𝜃 ∈ {0.2, 0.3, 0.4, 0.5}. In the left figure, the full
set of hypotheses is considered, while in the right figure a random sample of 40 hypotheses is analyzed. The critical vectors based on the
Simes family with 𝛿 ∈ {0, 5, 10, 15, 20} are used in both situations.

Thirdly, we want to analyze how the Simes family of critical curves (5) works if anti-conservative p-values distribu-
tion is considered. Let J = 50, m = 1000, 𝜃 = 0.2 (ie, correlation between voxels equals 0.28 on average), and 𝜋0 = 0.9,
we compute ā(Sm) for every 1000 simulations, and once again the mean over simulations is reported. Figure 10 shows
ā(Sm) considering the Simes family using 𝛿 ∈ {0, … , 30}. We can note that the shifted version works well in the case of
anti-conservative p-values if the corrected value for the tuning parameter 𝛿 is chosen, described by the red dotted line,
that is, 𝛿 = 8.

Therefore, we explore how the Simes family of critical curves (5) works with different values of 𝜃 and S size. The
left part of Figure 11 shows the mean of the lower bounds for the true discoveries considering the full set of hypotheses,
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F I G U R E 12 Simulated true discovery proportion lower bound for S
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over different values of 𝜃 and power using the single-step
(dashed line), iterative approximated version (dotted line) and iterative exact version (solid line). The dotted line is behind the solid line.

that is, Sm, and 𝛿 ∈ {0, 5, 10, 15, 20} over 1000 simulations. We can note that in almost all scenarios, the shifted version
outperforms the unshifted ones. The difference gets smaller if 𝜃 decreases (ie, the correlations between voxels increase).
However, the situation changes if we compute the TDP for a smaller set of hypotheses than Sm as shown in the right part
of Figure 11. In this case, we randomly sample 40 hypotheses from the false null ones, that is, S40.

Finally, the performance of the iterative approach proposed in Section 4 is compared with respect to the single-step
one presented in Section 3. Let consider directly S

𝜋1 the set of true discoveries, therefore 𝜋(S
𝜋1) = 1. Figure 12 shows the

true discovery proportion 𝜋(S
𝜋1) computed on 1000 simulated data with 𝜋0 equals 0.9, 𝜃 ∈ {0.2, 0.3, 0.4, 0.5} and different

levels of power used to simulate the data. In this case, we consider m = 64 so that we can use the exact iterative method.
First of all, we can see how the approximated iterative version equals the exact one and, more importantly, how both of
them uniformly improve the single-step approach.

To sum up, we suggest using the Higher Criticism and Beta families if the correlation across the variables is
supposed to be low. Besides, we recommend considering the shifted version of the Simes or AORC families if the
interest is in large sets of hypotheses rather than small ones. The shifted version of the Simes and AORC families is
again recommended if the p-values’ distribution is expected to be anti-conservative. We stress that the value of the 𝛿
parameter must be decided a priori and chosen reasonably concerning the data analyzed, as seen in the fMRI data
application.

We include some simulation analyses to examine the power of the iterative approach presented in Section 4 and the
influence of the number of combinations chosen for its approximated version in Appendix D. Finally, we show some
simulation studies in Appendix H in the case of equi-correlation variance structure for 𝜖⋆j .

10 CONCLUSIONS

Our proposed method finds simultaneous lower bounds for the TDP over all possible hypothesis subsets using the
permutation theory in a computationally efficient way. As a simultaneous method, it allows the decision of which
hypothesis sets to analyze to be entirely flexible and post-hoc, that is, the user can choose it after seeing the data
and revise the choice as often as he/she wants. It is particularly useful in fMRI single and multi-subjects analy-
sis to infer inside clusters, resolving the so-called spatial specificity paradox, without falling into the double-dipping
problem.
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A method that has some apparent similarity with the permutation-based ARI approach is the TFCE approach pro-
posed by Smith and Nichols.20 Both methods use permutation theory, and both are flexible in the choice of threshold.
There are two important differences between the methods, however. First, while TFCE allows data-driven thresholds,
our proposed method is more flexible since it allows the simultaneous use of many thresholds, which can be chosen
after viewing the data. Second—and more importantly—permutation-based ARI provides additional information about
the clusters: a lower bound for the proportion of true discoveries. In contrast, TFCE remains a cluster-level inferential
method, returning only a p-value for the clusterwise null hypothesis.

Permutation-based methods are recommended whenever they can be used, gaining power over the parametric
approaches, especially when the p-values are strongly dependent, as for fMRI data. In this work, we used permu-
tation theory to calculate the critical vector needed for ARI. Our method adapts to the correlation structure of the
data in an exact way by means of the calibration of the parameter 𝜆

𝛼
. In this way, our method remedies the existing

issues of anti-conservativeness and conservativeness. Indeed, we found that the permutation-based method has more
power than the parametric approach both in simulated and real data and confirmed FWER control using resting-state
null data.

Permutation methods are not assumption-free but require the exchangeability of the test statistics under the null
hypothesis. We showed the results using the OLS one-sample t-test for fMRI group analysis, having a fast and straight-
forward computation of the permutation null distribution, randomly flipping the sign of each subject’s contrast. The
exchangeability assumption needed to perform permutation-based methods is satisfied, that is, the error terms of the
model need to be symmetric around 0. However, the method is also applicable using other statistical tests, for example,
two-sample t-tests. Even if permutations are employed to perform the method proposed, the computation time remains
low, for example, around 210 s using the single-step method, while around 1 h using the iterative approach with 10 combi-
nations, having 150,000 hypotheses and 1000 permutations. The computation time is related to a device with a processor
having 1.8 GHz CPU and 16 GB of RAM, finally, the R package pARI available on CRAN38 based on the C++ language
was used.

The proposed method is general, allowing different families of confidence bounds. The choice of the family is
critical since it directly influences the bounds for the true discovery proportions and, thus, the power properties of
the method. Simulations and real data analysis suggest the Simes (5) and AORC (6) families in the fMRI frame-
work, while the Higher Criticism (1) and Beta families (8) if the correlation between variables is supposed to be low.
Simes (5) and AORC (6) families depend on the shift parameter 𝛿. We recommend fixing 𝛿 = 1 if the practitioner
is interested in computing the lower bound for the TDP in small clusters, while 𝛿 > 1 if the attention is focused on
large clusters. Finally, drilling down may increase or decrease the lower bound for the TDP of some subclusters if a
large cluster is analyzed, for example, the first cluster found in Section 7.2. This suggestion is also confirmed by the
simulation analysis. We found that the shifted versions gain power if the raw p-values are anti-conservative. Other
types of families that we analyzed, based on Higher Criticism26 and Beta quantiles, do not seem to perform well
in fMRI data analysis due to the strong correlation among the voxels, as also illustrated in the simulation study of
Section 9. Generally, we suggest a family of critical vectors more concentrated on small p-values if the number of
rejected hypotheses may be low and a family of critical vectors more diffuse if the number of rejected hypotheses may
be high.

Finally, we implement the iterative approach proposed by Hemerik et al14 in the simultaneous post-hoc inference
scenario, which uniformly improves the Blanchard et al17 bounds in most cases. There is a power gain here, but for fMRI
data with sparse signal, the gain is small and comes at a large computational cost.

Our presently used method provides a useful and practical selective inference for fMRI data that exploits the advan-
tages of permutation theory and the closed-testing procedure, resolving the spatial specificity paradox with quite fast
computation time. The proposed method would be applicable not only for the fMRI data but more for any other
data types that may yield multiple testing problems and cluster-wise inference (eg, electroencephalography data and
genomic data).
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APPENDIX A. AUDITORY DATA ANALYSIS

Table A1 contains the results using the single-step approach presented in Section 3 with 𝛿 = 1 as Table 1 of Sub-
section 7.1. Instead, Table A2 shows the results using the Simes family of confidence bounds, considering 𝛿 equal
respectively to 0, 9, and 27. In the same way, Table A3 proposes the results using the AORC family. Finally, Table A4
shows the results using the family of critical vectors based on the Higher Criticism. In all analyses, we consider 𝛼
equals 0.05.
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T A B L E A1 Auditory data: Clusters S identified with threshold t = 3.2 and active proportion percentage 𝜋(S) using Simes and AORC
families (𝛿 = 1) and parametric ARI, “drill down” clusters at t = 4.

Cluster Threshold Size % active RFT Voxel

P-values Coordinates

S t |S| 𝝅(S) pFWER x y z

Perm Perm Parametric

Simes (A1) AORC (A2) Simes (A3)

FP/CG/SFG/TOF/LO 3.2 40,094 96.7% 96.73% 84.98% < 0.0001 −30 −34 −16

LG/OFG/ITG/SG/AG

Left LO/TOF 4 8983 99.11% 99.11% 97.66% − −30 −34 −16

Right LO/LG/ITG 4 7653 98.96% 98.96% 97.25% − 28 −30 −18

Left SFG/FP 4 1523 94.75% 94.75% 86.28% − −28 34 42

CG 4 1341 94.11% 94.11% 84.41% − 6 40 −2

Right FP 4 1327 93.97% 93.97% 84.32% − 30 56 28

Left SG/AG 4 859 90.69% 90.8% 75.79% − −50 −56 36

Right FP 4 243 67.08% 67.08% 43.21% − 30 64 −4

Left SFG 4 202 61.88% 61.88% 40.1% − −18 8 52

Right SFG 4 122 46.72% 46.72% 19.67% − 22 10 52

Right STG/PT/MTG 3.2 12,540 89.82% 89.86% 83.49% < 0.0001 60 −10 0

HG/PrG/T

STG/PT/MTG/HG 4 9533 99.16% 99.16% 97.8% − 60 −10 0

PrG 4 485 86.19% 86.19% 78.35% − 52 0 48

T 4 292 72.6% 72.6% 53.77% − 10 −10 8

Left STG/PT/MTG/ 3.2 10,833 88.4% 88.45% 80.41% < 0.0001 −60 −12 2

HG/IFG/T

HG/PT/MTG/STG 4 7894 98.99% 98.99% 97.35% − −60 −12 2

IFG 4 667 88.01% 88.19% 74.06% − −40 14 26

T 4 34 26.47% 26.47% 17.65% − −14 −26 −4

Right IC/CO 3.2 408 37.25% 37.25% 24.01% 0.0002 38 −2 16

— 4 226 67.26% 67.26% 43.36% − 38 −2 16

Left PrG 3.2 276 49.63% 49.64% 43.84% 0.002 −52 −6 50

— 4 192 71.35% 71.35% 63.02% − −52 −6 50

FM 3.2 270 22.59% 22.59% 13.33% 0.002 4 50 −14

— 4 128 47.66% 47.66% 28.13% − 4 50 −14

SFG 3.2 187 6.95% 6.95% 0% 0.0123 6 52 38

— 4 64 20.31% 21.23% 0% − 6 52 38

Left T 3.2 176 1.14% 1.14% 0% 0.0157 −14 −14 10

— 4 49 4.08% 4.08% 0% − −14 −14 10

Note: The single-step method is applied. The size of the clusters |S| and the voxel coordinates (x, y, z) are reported for each cluster.
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ANDREELLA et al. 2331

T A B L E A2 Auditory data: Clusters S identified with threshold t = 3.2 and 𝜋(S) computed using Simes family of critical vectors with
𝛿 ∈ {0, 9, 27}.

Cluster Size % active voxel coordinates

S |S| 𝝅(S) x y z

𝜹 = 0 𝜹 = 9 𝜹 = 27

FP/CG/SFG/TOF/LO/LG/OFG/ITG/SG/AG 40,094 96.33% 97.01% 97.31% −30 −34 −16

Right STG/PT/MTG/HG/PrG/T 12,540 89.09% 90.56% 91.43% 60 −10 0

Left STG/PT/MTG/HG/IFG/T 10,833 87.33% 89.25% 90.1% −60 −12 2

Right IC/CO 408 36.03% 36.76% 33.57% 38 −2 16

Left PrG 276 49.28% 47.46% 42.03% −52 −6 50

FM 270 21.11% 21.11% 16.67% 4 50 −14

SFG 187 6.42% 3.74% 0% 6 52 38

Left T 176 1.14% 0% 0% −14 −14 10

Note: The iterative method is applied. The size of the clusters |S| and the voxel coordinates (x, y, z) are reported for each cluster.

T A B L E A3 Auditory data: Clusters S identified with threshold t = 3.2 and 𝜋(S) computed using AORC family of critical vectors with
𝛿 ∈ {0, 9, 27}.

Cluster Size % active voxel coordinates

S |S| 𝝅(S) x y z

𝜹 = 0 𝜹 = 9 𝜹 = 27

FP/CG/SFG/TOF/LO/LG/OFG/ITG/SG/AG 40,094 96.37% 97.04% 97.33% −30 −34 −16

Right STG/PT/MTG/HG/PrG/T 12,540 89.15% 90.64% 91.5% 60 −10 0

Left STG/PT/MTG/HG/IFG/T 10,833 87.42% 89.34% 90.16% −60 −12 2

Right IC/CO 408 36.28% 36.76% 33.58% 38 −2 16

Left PrG 276 49.28% 47.46% 42.03% −52 −6 50

FM 270 21.11% 21.11% 16.67% 4 50 −14

SFG 187 6.42% 3.74% 0% 6 52 38

Left T 176 1.14% 0% 0% −14 −14 10

Note: The iterative method is applied. The size of the clusters |S| and the voxel coordinates (x, y, z) are reported for each cluster.

T A B L E A4 Auditory data: Clusters S identified with threshold t = 3.2 and 𝜋(S) computed using the family of critical vectors based
on the higher criticism.

Cluster Size % active voxel coordinates

S |S| 𝝅(S) x y z

Higher Criticism

FP/CG/SFG/TOF/LO/LG/OFG/ITG/SG/AG 40,094 95.66% −30 −34 −16

Right STG/PT/MTG/HG/PrG/T 12,540 86.17% 60 -10 0

Left STG/PT/MTG/HG/IFG/T 10,833 83.99% -60 -12 2

Right IC/CO 408 0% 38 -2 16

Left PrG 276 24.64% -52 -6 50

FM 270 0% 4 50 −14

SFG 187 0% 6 52 38

Left T 176 0% -14 -14 10

Note: The single-step method is applied. The size of the clusters |S| and the voxel coordinates (x, y, z) are reported for each cluster.
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2332 ANDREELLA et al.

APPENDIX B. RHYME DATA ANALYSIS

Table B1 includes the results applying the single-step method presented in Section 3 imposing 𝛿 = 27, following the struc-
ture of Table 2 of Subsection 7.2. The performance having 𝛿 ∈ {0, 1, 9} is proposed in Table B2 using the Simes family of
confidence bounds and in Table B3 using the AORC family. Table B4shows the results using the family of critical vectors
based on the Higher Criticism. In all the analyses, the 𝛼 level equals 0.05. Finally, Table B5 shows the lower bounds for the
TDP as before but considering clusters computed by threshold-free cluster enhancement (TFCE) method20 using p-value
threshold equals 0.05. We found activity in Lingual Gyrus (LG), Occipital Pole (OP), Putamen (P), Superior Frontal Gyrus
(SFG), Frontal Pole (FP), Insular Cortex (I), Occipital Fusiform Gyrus (OFG), Lateral Occipital Cortex (LO), Precentral
Gyrus (PrG), Post Central Gyrus (PCG), and Paracingulate Gyrus (PG).

T A B L E B1 Rhyme data: Clusters S identified with threshold t = 3.2 and active proportion percentage 𝜋(S) using Simes and AORC
families (𝛿 = 27) and parametric ARI, “drill down” clusters at t = 4.

Cluster Threshold Size % active RFT Voxel

P-values Coordinates

S t |S| 𝝅(S) pFWER x y z

Perm Perm Parametric

Simes (B4) AORC (B5) Simes (B6)

LOC/LG/OFG/PG/SFG 3.2 34,115 87.38% 87.85% 38.16% < 0.001 4 12 48

FOC/P/IFG/IC/CG

LOC/LG/OFG 4 11,045 90.82% 91.09% 42.01% − −6 −56 −12

FOC/P/IFG/IC 4 6930 85.38% 85.81% 29.32% − −42 14 −6

PG/SFG/CG 4 2100 56.95% 57.67% 18.05% − 4 12 48

Left P 4 38 2.63% 2.63% 2.63% − −32 −18 −8

Left SPL/PCG 3.2 1546 1.49% 1.75% 0% < 0.001 −24 −62 44

Note: The single-step method is applied. The size of the clusters |S| and the voxel coordinates (x, y, z) are reported for each cluster.

T A B L E B2 Rhyme data: Clusters S identified with threshold t = 3.2 and 𝜋(S) computed using Simes family of critical vectors with
𝛿 ∈ {0, 1, 9}.

Cluster Size % active Voxel coordinates

S |S| 𝝅(S) x y z

𝜹 = 0 𝜹 = 1 𝜹 = 9

LOC/LG/OFG/PG/SFG/FOC/P/IFG/IC/CG 11,045 67.48% 84.23% 87.27% 4 12 48

Left SPL/PCG 1546 0% 1.55% 2.52% −24 −62 44

Note: The iterative method is applied. The size of the clusters |S| and the voxel coordinates (x, y, z) are reported for each cluster.

T A B L E B3 Rhyme data: Clusters S identified with threshold t = 3.2 and 𝜋(S) computed using AORC family of critical vectors with
𝛿 ∈ {0, 1, 9}.

Cluster Size % active Voxel coordinates

S |S| 𝝅(S) x y z

𝜹 = 0 𝜹 = 1 𝜹 = 9

LOC/LG/OFG/PG/SFG/FOC/P/IFG/IC/CG 3331 68.67% 84.66% 87.65% 4 12 48

Left SPL/PCG 1546 0% 1.68% 2.72% −24 −62 44

Note: The iterative method is applied. The size of the clusters |S| and the voxel coordinates (x, y, z) are reported for each cluster.
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ANDREELLA et al. 2333

T A B L E B4 Rhyme data: Clusters S identified with threshold t = 3.2 and 𝜋(S) computed using the family of critical vectors based on
the Higher Criticism.

Cluster Size % active Voxel coordinates

S |S| 𝝅(S) x y z

Higher Criticism

LOC/LG/OFG/PG/SFG/FOC/P/IFG/IC/CG 3331 84.1% 4 12 48

Left SPL/PCG 1546 0% −24 −62 44

Note: The single-step method is applied. The size of the clusters |S| and the voxel coordinates (x, y, z) are reported for each cluster.

T A B L E B5 Rhyme data: Clusters S identified by threshold-free cluster enhancement (TFCE) method20 and active proportion
percentage 𝜋(S) using Simes and AORC families (𝛿 = 27) and parametric ARI.

Cluster Size % active

S |S| 𝝅(S)

Perm Perm Parametric

Simes (B7) AORC (B8) Simes (B9)

LG/OP/P/SFG/FP/I/OFG/LO/PrG/PCG/PG 73,401 44.76% 45.57% 38.78%

Note: The size of the clusters |S| is reported for each cluster.

APPENDIX C. WORD OBJECT ANALYSIS

We analyze the dataset provided by Duncan et al.51 It consists of 48 subjects looking 4 different visual stimuli: writ-
ten words, pictures of objects, scrambled pictures of the same objects, and consonant letter strings. It is a block
design where each block contains 16 stimuli from a single category using a one-back task, that is, two runs are
performed. Therefore, in this case, a third-level analysis was carried out. Table C1 reports the results regarding the
contrast of the activation difference between word and consonant string stimuli, considering the single-step method
𝛼 equals 0.05 and 𝛿 = 1. We found activation in Intracalcarine Cortex (IC), Lingual Gyrus (LG), Precentral Gyrus
(PrG), Cuneal Cortex (CC), Planum Temporale (PT), Supramarginal Gyrus (SG), Amygdala (A), Superior Tempo-
ral Gyrus (STG), Insular Cortex (I), Lateral Occipital Cortex (LO), Middle Frontal Gyrus (MFG), Precuneous Cortex
(PrC), Cingulate Gyrus (CG), Accumbens (Ac), Central Opercular Cortex (CO), Thalamus (T), and Superior Frontal
Gyrus (SFG).

Figure C1 shows the TDP as a cluster brain map regarding the results using the Simes family confidence
bound.

If you are interested in analyzing other possible contrasts, for example, words versus scrambled pictures, you can find
the full dataset in https://github.com/angeella/fMRIdata.40
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2334 ANDREELLA et al.

T A B L E C1 Word-object data: Clusters S identified with threshold t = 3.2 and active proportion percentage 𝜋(S) using Simes and
AORC families (𝛿 = 1) and parametric ARI, and “drill down” clusters at t = 4.

Cluster Threshold Size % active RFT Voxel
P-values Coordinates

S t |S| 𝝅(S) pFWER x y z
Perm Perm Parametric
Simes AORC Simes

IC/LG/PrC/CC 3.2 17,431 94.52% 94.56% 84.31% < 0.0001 −2 −78 10
IC/LG/PrC 4 13,469 99.35% 99.35% 97.95% − −2 −78 10
Left PT/SG/A/STG/I/LO 3.2 3516 73.23% 73.43% 46.62% < 0.0001 −24 −14 −12
PT/SG 4 888 90.31% 90.32% 69.93% − −56 −44 14
A 4 382 78.27% 78.27% 54.19% − −24 −14 −12
STG 4 289 74.74% 74.74% 56.75% − −52 −12 −6
I 4 117 56.41% 56.41% 31.62% − −34 −16 16
LO 4 44 4.55% 4.55% 0% − −42 −64 48
Right MFT/PrG 3.2 2217 74.92% 74.97% 62.65% < 0.0001 26 6 48
— 4 1658 94.75% 94.75% 83.78% − 26 6 48
CG 3.2 1640 64.57% 64.57% 52.68% < 0.0001 −4 −44 32
— 4 1101 92.1% 92.1% 78.47% − −4 −44 32
Right STG/A/Ac 3.2 1354 55.1% 55.1% 38.47% < 0.0001 24 −14 −16
STG 4 345 77.97% 77.97% 54.2% − 58 −10 −8
A 4 258 66.67% 66.67% 41.47% − 24 −14 −16
Ac 4 168 66.67% 66.67% 45.23% − −4 8 −10
Right CO 3.2 792 29.17% 29.17% 7.2% < 0.0001 50 −6 8
— 4 270 67.78% 67.78% 21.11% − 50 −6 8
PG/CG 3.2 637 63.42% 63.42% 53.06% < 0.0001 4 24 36
— 4 480 84.17% 84.17% 70.42% − 4 24 36
Right LO 3.2 603 41.79% 41.79% 2.338% < 0.0001 46 −64 40
— 4 331 73.72% 73.72% 42.6% − 46 −64 40
Left SFG 3.2 449 41.2% 41.2% 28.06% < 0.0001 −24 4 46
— 4 266 69.55% 69.55% 47.37% − −24 4 46
Right T 3.2 197 17.26% 17.26% 8.63% 0.0003 −20 −26 6
— 4 86 39.53% 39.54% 19.77% − −20 −26 6
— 3.2 191 1.57% 1.57% 0% 0.0004 24 −40 20
— 4 47 2.13% 2.13% 0% − 24 −40 20
Left I 3.2 188 13.82% 13.83% 5.85% 0.0005 −28 16 4
— 4 62 41.94% 41.94% 17.74% − −28 16 4
IC 3.2 58 25.86% 25.86% 18.97% 0.084 −32 6 10

Note: The single-step method is applied. The size of the cluster |S| and the voxel coordinates (x, y, z) are reported for each cluster.

F I G U R E C1 Word-object data: True discovery proportion map using the Simes family of critical vectors with 𝛿 = 1. Colors express the
true discovery proportion for clusters corresponding to a threshold of 3.2 and “drilled” down at 4.
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ANDREELLA et al. 2335

APPENDIX D. ITERATIVE APPROACH

In this section, the iterative version, defined in Theorem 3, is examined following the simulation analysis proposed in
Section 9. The method is applied directly on S

𝜋1 the set of true discoveries, therefore 𝜋(S
𝜋1) = 1.

Figure D1 illustrates the behavior of the approximated iterative method using a different number of combinations.
The approximation version becomes exact when the number of combinations goes to infinity. However, as we can see in
Figure D1, the results using only 10 combinations are nearly equal to the results using 1000 combinations. In addition,
looking at Figure D2, we can see that the method is robust if a different number of variables are considered, that is, the
lines in Figure D2 are below 1 (true discovery proportion). In this case, we fix 𝜃 = 0.2.
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F I G U R E D1 Simulated true discovery lower bounds for S
𝜋1

over different values of 𝜃 ∈ {0.01, 0.05, 0.1, 0.5} and power using the
approximated iterative version with 10, 50, 100, and 1000 random combinations (ie, colored solid lines). The solid black line represents the
true discovery proportion 𝜋(S

𝜋1
) = 1.
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F I G U R E D2 Simulated true discovery lower bounds for S
𝜋1

over different values of m ∈ {27,125,343, 1000} variables using the
approximated iterative version with 10, … , 100 random combinations. The solid red line represents the true discovery proportion 𝜋(S

𝜋1
) = 1.
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2336 ANDREELLA et al.

APPENDIX E. PROOF OF THEOREM 1

Proof. In Lemma 6 by Goeman et al,18 define li∶n = li for every i ≥ 1 and n ≥ 0. This lemma then implies that:

max
1≤u≤|S|

1 − u + |{i ∈ S ∶ pi ≤ lu}| (E1)

are valid simultaneous bounds, as was to be shown. ▪

APPENDIX F. PROOF OF THEOREM 2

We do not report a formal proof of Theorem 2 since you can directly refer to Hemerik et al [p. 643].14 Indeed, the relation-
ship between the definition of the 𝜆

𝛼
calibration parameter and the power of the method is evident, that is, a large value

of 𝜆
𝛼

leads to more power. We mainly have rephrased Hemerik et al14 theorem based on the concept of upper bound for
the false discovery proportion in terms of the 𝜆

𝛼
calibration parameter. To sum up, Theorem 2 gets an improvement of 𝜆

𝛼
,

which gives an improved critical vector, and then using Theorem 1 we get an improved lower (1 − 𝛼) confidence bound
of a(S) simultaneously for all S ⊆ B.

APPENDIX G. VALIDATING PERMUTATION-BASED ARI

We propose here the results of performing the one-sample t-tests instead of the two-sample t-tests in the Oulu dataset3

following the same procedure as Section 8. Figure G1 is structured as Figure 7 presented in Section 8. Again, we can note
how the parametric-based ARI returns, in most cases, an estimated FWER equals 0, while the permutation-based ARI
gains power controlling the FWER at the same time.

*

*

*

*

*

boxcar30

boxcar10

E4

E3

E2

E1

0.00 0.05 0.10 0.15 0.20
Estimated FWER

D
es

ig
n

Family

Parametric Simes

Permutation−based Simes �=0

Permutation−based Simes �=1

Permutation−based Simes �=3

Permutation−based Simes �=9

Permutation−based Simes �=27

F I G U R E G1 Estimated FWER considering six different first level designs, that is, two-block activity paradigms: boxcar10 (10-s on-off),
boxcar30 (30-s on-off), and four event activity paradigms, that is, E1 (single event of 2-s activation, 6-s rest), E2 (single event 1- to 4-s
activation, 3- to 6-s rest, randomized), E3 (13 events of 3–6 s for each task), and E4 (13 events of 3–6 s for each task, randomized), and six
different methods to compute the TDP’s lower bound (parametric Simes and permutation-based Simes considering five different values of the
shift parameter, that is, 𝛿 ∈ {0, 1, 3, 9, 27}). The solid red line represents the estimated nominal FWER equals 0.05, while the star symbols
describe estimated FWER equals 0.
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ANDREELLA et al. 2337

APPENDIX H. SIMULATION STUDY

We simulate data considering the simple following model:

Dij = 𝜇i + 𝜖⋆ij

where Dj ∈ Rm, with j = 1, … , J, J is the number of independent observations (ie, subjects) and m is the total number of
voxels. The noise 𝜖⋆j ∈ Rm follows the multivariate normal distribution with mean 0 and equi-correlation variance struc-
ture, that is, 𝜖⋆j ∼ (0,Σ

𝜌
2 ), where 𝜌 is the level of equi-correlation between pairs of voxels. The signal 𝝁 is computed

considering the difference in means having power of the one-sample t-test equals 0.8, that is, 𝝁 = (z1−𝛼∕2 + z1−𝛽)∕
√

J,
where 𝛼 = 0.05 is the significance level, 𝛽 = 0.8 is the power level and za is the quantiles of the standard normal
distribution at level a. The signal 𝝁 is equal to 0 under the null hypothesis.

First of all, we want to understand how the improvement of the nonparametric TDP lower bound changes concerning
𝜌 and the proportion of null hypotheses 𝜋0. Let J = 50, m = 1000, 𝜌2 ∈ {0, 0.01, … , 0.99, 1} and 𝜋0 ∈ {0.6, 0.7, 0.8, 0.9},
we simulate data 1000 times and the mean of 𝜋(Sm) over simulation is represented. However, high values of 𝜌2 are unre-
alistic in real applications. For example, the mean correlation across 10,000 randomly sampled voxels equals 0.25 in the
case of Rhyme data. The Simes family of confidence bound without shift is taken into account to compare with the para-
metric approach directly. Having no prior knowledge about the structure of the set of hypotheses to analyze, we consider
the full set of hypotheses, that is, Sm. Figure H1 shows the difference of 𝜋(Sm) computed using the permutation and para-
metric methods over the 𝜌2 and 𝜋0 values. As expected, the permutation approach gets some power with respect to the
parametric one in the case of correlation between pairs of variables. It can handle any type of dependence structure of
the p-values.

Secondly, we want to examine why certain families of critical curves do not provide good results in Section 7. The
Higher Criticism critical vector (7), the Beta critical vector (8), and the Simes critical vector (5) are then used to compute
ā(Sm) using simulated data with 𝜋0 = 0.9, m = 1000 and J = 50. As previously, we repeat the simulations 1000 times for
each framework, and the mean value of ā(Sm) is computed. Figure H2 shows the behavior of these three families of critical
vectors with respect to 𝜌2 ∈ {0, 0.01, … , 0.99, 1}. In Section 5, we said that the Higher Criticism and Beta families could
be problematic in the case of a strong correlation between tests. As expected, the Beta critical vector does not work in the
case of a strong correlation between variables. This is also due to computational numerical difficulties, that is when the
dashed line in Figure H2 disappears. The Higher Criticism family seems to work, but it loses power with an increase in
correlation.

Thirdly, we want to analyze how the Simes family of critical curves (5) works if anti-conservative p-values distribution
is considered. Let J = 50, m = 1000, 𝜌 = 0 and 𝜋0 = 0.9, we compute ā(Sm) for every 1000 simulations, and once again

F I G U R E H1 Difference of lower bounds for the true discoveries proportion considering the permutation 𝜋(Sm)permutation and
parametric 𝜋(Sm)parametric methods using simulated data and considering the full set of hypotheses Sm over different values of
𝜌

2 ∈ {0, 0.01, … , 0.99, 1} and 𝜋0 ∈ {0.6, 0.7, 0.8, 0.9}.
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F I G U R E H2 Simulated true discovery lower bound over Sm and different values of 𝜌2 ∈ {0, 0.01, … , 0.99, 1} using the Higher
Criticism (dotted line), Beta (dashed line) and Simes critical vectors (dotted dashed line). The solid line represents the number of true
discoveries, which equals 100 considering 1000 variables and the proportion of null hypotheses 𝜋0 = 0.9.

F I G U R E H3 Left side: True discovery lower bound using simulated data. The full set of hypotheses Sm is considered over different
values of 𝛿. Right side: Empirical cumulative density Function of observed raw p-values, that is, F(pi).

the mean over simulations is reported. Figure H3 shows ā(Sm) considering the Simes family using 𝛿 ∈ {0, … , 30}. We
can note that the shifted version works well in the case of anti-conservative p-values if the corrected value for the tuning
parameter 𝛿 is chosen, described by the red dotted line, that is, 𝛿 = 8.

Therefore, we explore how the Simes family of critical curves (5) works with different values of 𝜌 and S size. The left
part of Figure H4 shows the mean of the lower bounds for the TDP considering the full set of hypotheses, that is, Sm, and
𝛿 ∈ {0, 5, 10, 15, 20} over 1000 simulations. We can note that in almost all scenarios, the shifted version outperforms the
unshifted ones. The difference gets smaller if 𝜌2 increases. However, the situation changes if we compute the TDP for a
smaller set of hypotheses than Sm as shown in the right part of Figure H4. In this case, we randomly sample 40 hypotheses
from the false null ones, that is, S40.

Then, the performance of the iterative approach proposed in Section 4 is compared with respect to the single-step one
presented in Section 3. Let consider directly S

𝜋1 the set of true discoveries, therefore 𝜋(S
𝜋1) = 1. Figure H5 shows the true

discovery proportion 𝜋(S
𝜋1) computed on 1000 simulated data with 𝜋0 equals 0.9, 𝜌2 ∈ {0, 0.2, 0.4} and different levels

of power used to simulate the data. In this case, we consider m = 50 so that we can use the exact iterative method. First
of all, we can see how the approximated iterative version equals the exact one and, more importantly, how both of them
uniformly improve the single-step approach.

Figure H6 illustrates the behavior of the approximated iterative method using a different number of combinations.
The method is applied directly on S

𝜋1 the set of true discoveries, therefore 𝜋(S
𝜋1) = 1. The approximation version becomes

exact when the number of combinations goes to infinity. However, as we can see in Figure H6, the results using only 10
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F I G U R E H4 Lower Bounds for the true discovery proportion using simulated data the level of equi-correlation 𝜌2 ∈ {0, 0.2, 0.4}. In
the left figure, the full set of hypotheses is considered, while in the right figure a random sample of 40 hypotheses is analyzed. The critical
vectors based on the Simes family with 𝛿 ∈ {0, 5, 10, 15, 20} are used in both situations.
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F I G U R E H5 Simulated true discovery lower bound for S
𝜋1

over different values of 𝜌2 and power using the single-step (dashed line),
iterative approximated version (dotted line) and iterative exact version (solid line). The dotted line is behind the solid line.

combinations are nearly equal to the results using 1000 combinations. In addition, looking at Figure H7, we can see that
the method is robust if a different number of variables are considered, that is, the lines in Figure H7 are below 1 (true
discovery proportion).

To sum up, we suggest using the higher criticism and beta families if the correlation across the variables is supposed
to be low. Besides, we recommend considering the shifted version of the Simes or AORC family if the interest is in large
sets of hypotheses rather than in small ones. and if the distribution of the p-value is expected to be anti-conservative, with
a reasonable prior value of 𝛿 with respect to the data analyzed.
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F I G U R E H6 Simulated true discovery lower bounds for S
𝜋1

over different values of 𝜌2 and power using the approximated iterative
version with 10, 50, 100, and 1000 random combinations (colored solid lines). The solid black line represents the true discovery proportion
𝜋(S

𝜋1
) = 1.
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F I G U R E H7 Simulated true discovery lower bounds for S
𝜋1

over different values of m ∈ {50,100, 1000, 2000} variables using the
approximated iterative version with 10, … , 100 random combinations. The solid red line represents the true discovery proportion 𝜋(S

𝜋1
) = 1.
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