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Abstract
Sum-based global tests are highly popular in multiple hypothesis testing. In this paper, we propose a general 
closed testing procedure for sum tests, which provides lower confidence bounds for the proportion of true 
discoveries (TDPs), simultaneously over all subsets of hypotheses. These simultaneous inferences come 
for free, i.e., without any adjustment of the α-level, whenever a global test is used. Our method allows for 
an exploratory approach, as simultaneity ensures control of the TDP even when the subset of interest is 
selected post hoc. It adapts to the unknown joint distribution of the data through permutation testing. Any 
sum test may be employed, depending on the desired power properties. We present an iterative shortcut 
for the closed testing procedure, based on the branch and bound algorithm, which converges to the full 
closed testing results, often after few iterations; even if it is stopped early, it controls the TDP. We 
compare the properties of different choices for the sum test through simulations, then we illustrate the 
feasibility of the method for high-dimensional data on brain imaging and genomics data.
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1 Introduction
In high-dimensional data analysis, researchers are often interested in detecting subsets of features 
that are associated with a given outcome. For instance, in functional magnetic resonance imaging 
(fMRI) data, the objective may be to identify a brain region that is activated by a stimulus; in gen
omics data one may want to find a biological pathway that is differentially expressed. In this con
text, global tests allow to aggregate signal from multiple features and make meaningful statements 
at the set level. A diverse range of global tests has been proposed in the literature: well-known ex
amples are p-value combinations, described and compared in Pesarin (2001), Loughin (2004), 
Won et al. (2009), and Pesarin and Salmaso (2010); other popular methods are Simes test 
(Simes, 1986), the global test of Goeman et al. (2006), the sequence kernel association test (Wu 
et al., 2011), and higher criticism (Donoho & Jin, 2015). A substantial proportion, including 
many of the above-mentioned methods, is sum-based, meaning that the global test statistic may 
be written as a sum of contributions per feature. In this paper, we restrict to such sum-based tests.

The probability distribution of a global statistic depends not only on the marginal distributions 
of the data but also on the joint distribution; for this reason, many sum tests only have a known 
null distribution under independence. Approaches that deal with the a priori unknown joint dis
tribution are worst-case distributions, defined either generally or under restrictive assumptions 
(Vovk & Wang, 2020), and nonparametric permutation testing (Ernst, 2004; Fisher, 1936). As 
worst-case distributions tend to be very conservative, the latter approach is preferable; it relies 
on minimal assumptions (Hemerik & Goeman, 2018a) and generally offers an improvement in 
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power over the parametric approach, especially when multiple hypotheses are considered 
(Hemerik & Goeman, 2018b; Hemerik et al., 2019; Pesarin, 2001; Westfall & Young, 1993).

Rejecting a null hypothesis, however, gives little information on the corresponding set. A signifi
cant p-value only indicates that there is at least one true discovery, i.e., one feature associated with 
the outcome, but does not give any information on the proportion of true discoveries (TDP) nor 
their localization. This becomes problematic especially for large sets (Woo et al., 2014). Moreover, 
since interest is usually not just in the set of all features, but in several subsets, a multiple testing 
procedure is necessary (Meijer & Goeman, 2016; Nichols, 2012). Finally, when researchers do not 
know a priori which subsets they are interested in, they may want to test many and then make the 
selection post hoc. The case for the use of TDPs in large-scale testing problems was argued by 
Rosenblatt et al. (2018) in neuroimaging and by Ebrahimpoor et al. (2020) in genomics.

This paper presents a general approach for inference on the TDP. The method allows any sum- 
based test, requiring only that critical values are determined by permutations. It provides TDPs not 
only for the full testing problem but also simultaneously for all subsets, allowing subsets of interest 
to be chosen post hoc.

We will rely on the closed testing framework (Marcus et al., 1976), which allows to construct 
confidence sets for the TDP simultaneously over all possible subsets (Genovese & Wasserman, 
2006; Goeman et al., 2019; Goeman & Solari, 2011). These additional simultaneous inferences 
on all subsets come for free, i.e., without any adjustment of the α-level, whenever a global test 
is applied. Simultaneity ensures that the procedure is not compromised by post hoc selection, 
therefore researchers can postpone the choice of the subset until after seeing the data, while still 
obtaining valid confidence sets; used in this way, closed testing allows a form of post hoc inference. 
Furthermore, closed testing has been proven to be the optimal way to construct multiple testing 
procedures, as all family-wise error rate (FWER), TDP, and related methods are either equivalent 
to or can be improved by it (Goeman et al., 2021). The main challenge is the computational com
plexity, which is extremely high when considering many hypotheses, and when using many per
mutations. Permutation-based closed testing for the TDP so far mostly focused on Simes-based 
test procedures, while sum tests were approached under independence or with worst-case distri
butions (Tian et al., 2022; Vovk & Wang, 2020; Wilson, 2019), that are simpler as critical values 
depend only on the size of the subset.

We propose a general closed testing procedure for sum-based permutation tests, which pro
vides simultaneous confidence sets for the TDP of all subsets of the testing problem. We develop 
two shortcuts to make this procedure feasible for large-scale problems. First, we develop a quick 
shortcut that approximates closed testing and has worst-case complexity of order m log2 m in 
the number m of individual hypotheses, and linearithmic in the number of permutations. 
Next, we embed this shortcut within a branch and bound algorithm, obtaining an iterative pro
cedure that converges to full closed testing, often after few iterations; even if it is stopped early, it 
still controls the TDP. This procedure is exact and extremely flexible, as it applies to any sum test 
and adapts to the correlation structure of the data. It can be scaled up to high-dimensional prob
lems, such as fMRI data, whose typical dimension is of order 105. Finally, we show that particu
lar choices of the sum test statistic, namely, statistics based on truncation, result in faster 
procedures.

The structure of the paper is as follows. First, we briefly discuss related works in Section 2. Then 
we introduce sum tests in Section 3, and we review the properties of permutation testing and closed 
testing in Sections 4 and 5. We derive the single-step shortcut in Section 6, and characterize when it 
is equivalent to closed testing in Section 7. In Section 8, we define the iterative shortcut, and finally 
in Section 9 we introduce refinements that improve the computational complexity. In the remain
ing section, we compare the properties of different sum tests through simulations, and explore an 
application to fMRI data. Proofs and some additional results are postponed to the online 
supplementary material; the corresponding sections are referred to with an additional S- in the 
numbering.

2 Related work
In this section, we discuss related work, highlighting the contribution of the proposed method and 
its relevance in applications. As argued in Section 1, in this paper, we focus on permutation-based 
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tests. Here we justify the choice of closed testing procedures that give lower (1 − α)-confidence 
bounds for the TDP simultaneously over all subsets of hypotheses, which we will refer to as pro
cedures with true discovery guarantee as in Goeman et al. (2021). Then we argue that it is worth
while to construct such procedures for global tests that are frequently used, many of which are 
sum-based.

Genovese and Wasserman (2006) and Goeman and Solari (2011) showed that all global tests 
automatically come with an inbuilt selective inference method; they can be embedded in the closed 
testing framework to obtain procedures with true discovery guarantee without any adjustment of 
the α-level. Furthermore, a great number of multiple testing methods, including all those control
ling FWER, generalized FWER (k-FWER), false discovery proportion, false discovery exceedance, 
and joint error rate, can be written as procedures with true discovery guarantee. Among these, 
however, only closed testing procedures are admissible, i.e., cannot be uniformly improved 
(Goeman et al., 2021). This motivates the study of closed testing procedures for popular global 
tests.

So far, most procedures that explicitly give true discovery guarantee (Andreella et al., 2023; 
Blain et al., 2022; Blanchard et al., 2020; Ebrahimpoor et al., 2020; Hemerik et al., 2019; 
Meinshausen, 2006; Rosenblatt et al., 2018) were constructed using critical vectors for or
dered p-values, e.g., based on variants of Simes (1986) or higher criticism (Donoho & Jin, 
2015). With the exception of higher criticism, the global tests implicit in these procedures 
have seldom been considered as global tests in application contexts, and their popularity in 
multiple testing procedures is partly motivated by mathematical convenience. In contrast, tests 
based on sums are natural and popular as global tests. This broad class includes many popular 
p-value combination tests, such as the classical Fisher combination (Fisher, 1925), as well as 
recent proposals such as Wilson (2019) and Liu and Xie (2020), the global test of Goeman 
et al. (2006), sequence kernel association test (Wu et al., 2011), and e-value combinations 
(Vovk & Wang, 2021). Though closed testing procedures for sum-based tests were proposed 
in general in the parametric approach (Tian et al., 2022) and for some particular cases 
(Blanchard et al., 2020; Goeman & Solari, 2011), general scalable procedures in the permu
tation framework were lacking. In this paper, we fill this gap, providing a procedure that 
can be applied to any sum-based test, as long as permutations are used to calculate the critical 
values.

Among permutation-based procedures, we mention especially the methods of Blanchard et al. 
(2020) and Andreella et al. (2023), using tests based on critical vectors of ordered p-values. 
First, we remark that our proposed method is not a competitor but complementary, as it deals 
with a different choice of the underlying test with different power properties. Subsequently, we 
observe that these methods do not perform full closed testing, and thus may be conservative. 
Blanchard et al. (2020) and the single-step version in Andreella et al. (2023) have computation 
times primarily related to computing and sorting permutation test statistics; we will show that 
the computation time of our single-step shortcut is comparable. The iterative method of 
Andreella et al. (2023) uniformly improves the corresponding single-step version and Blanchard 
et al. (2020), but requires a high computational time and is still not guaranteed to converge to 
closed testing. On the contrary, the proposed iterative shortcut converges to closed testing and 
so cannot be uniformly improved.

3 Sum tests
We start with a general definition of a sum test statistic. Throughout the paper, we will refer to null 
hypotheses simply as hypotheses, and we will denote both variables and sets with capital letters, 
leaving the distinction to context. Let X = (X1, . . . , Xm) be a collection of observable variables 
from m testing units, having indices in M = {1, . . . , m} and taking values in a sample space X . 
We are interested in studying m corresponding univariate hypotheses H1, . . . , Hm with confidence 
1 − α, where α ∈ [0, 1). Let N ⊆ M be the unknown subset of true hypotheses. A generic subset 
S ⊆ M, with size |S| = s, defines an intersection hypothesis HS =

􏽔
i∈S Hi, which is true if and 

only if S ⊆ N. In the particular case of S = ∅, we take H∅ as usual to be a hypothesis that is always 
true.
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For each univariate hypothesis Hi, let Ti :X → R be a test statistic. The general form of a sum 
test statistic for HS is

TS = g
􏽘

i∈S

fi(Ti)

􏼠 􏼡

where fi : R→ R are generic functions, and g : R→ R is strictly monotone. Usually, the func
tions fi are also taken as monotone, so that high values of TS give evidence against HS. 
Moreover, as fi may depend on i, the contributions fi(Ti) may have different distributions, as 
in the case of weighted sums. Examples include p-value combinations such as Fisher (1925), 
Pearson (1933), Liptak/Stouffer (Edgington, 1972; Lancaster, 1961; Liptak, 1958), and 
Cauchy (Liu & Xie, 2020). We mention especially the generalized mean family (Vovk & 
Wang, 2020) with fi(y) = yr and g(z) = z1/r, where r ∈ R, for which Wilson (2019) studied 
the harmonic mean (r = −1).

Since we can always re-write T̃i = fi(Ti) and T̃S = g−1(TS), without loss of generality we can 
assume that fi and g are the identity, so that TS =

􏽐
i∈S Ti. In particular, for the empty set we 

obtain T∅ = 0. Furthermore, we assume that the signs of the statistics Ti are chosen in such a 
way that high values of Ti, and therefore TS, correspond to evidence against Hi and HS, 
respectively.

4 Permutation testing
To test HS with significance level α, we will use permutations. Let Π be a collection of transforma
tions π :X → X of the sample space; these may be permutations, and also other transformations 
such as rotations (Langsrud, 2005; Solari et al., 2014) and sign flipping (Hemerik et al., 2020). We 
assume that Π is an algebraic group with respect to the operation of composition of functions. The 
group structure is important as, without it, the resulting test may be highly conservative or anti- 
conservative (Hoeffding, 1952; Southworth et al., 2009).

Denote with Ti = Ti(X) and Tπ
i = Ti(πX), with π ∈ Π, the statistics for the original and trans

formed variables, respectively, and with ti and tπ
i the values computed on the observed and trans

formed data. The main assumption of permutation testing is the following.

Assumption 1 The joint distribution of the statistics Tπ
i , with i ∈ N and π ∈ Π, is invariant 

under all transformations in Π of X: (Ti)i∈N =d (Tπ
i )i∈N for each π ∈ Π, where 

=d 
denotes equality in distribution.

This assumption is common to most permutation-based multiple testing methods, such as 
maxT-method (Goeman & Solari, 2010; Hemerik et al., 2019; Meinshausen, 2006; Westfall & 
Young, 1993). For some choices of the group Π, the assumption holds only asymptotically 
(Hemerik et al., 2020; Solari et al., 2014; Winkler et al., 2014). Detailed illustration and examples 
can be found in Pesarin (2001), Huang et al. (2006), and Hemerik and Goeman (2018a). Even if 
the invariance assumption is common and reasonable in many contexts, in applications an argu
ment must be given for it; in some cases, it is violated even asymptotically (e.g., for Behrens-Fisher 
problem, Schildknecht et al., 2015).

A slightly stronger assumption, that is easier to check, is that the statistic TS = TS(XS) is a 
function of XS = (Xi : i ∈ S) only, and XN =d πXN for each π. Note that the assumption holds 
also when the distributions of the individual statistics Ti are different, as in the case of 
weighted sums. Moreover, it holds in the particular case when HS true implies that XS =d πXS 

for each π.
If the cardinality of Π is large, a valid α-level test may use B randomly chosen elements (Hemerik 

& Goeman, 2018b). The value of B does not need to grow with m or s; to have non-zero power we 
must only have B ≥ 1/α, though larger values of B give more power. For α = 0.05, B ≥ 200 is gen
erally sufficient (see Section 10.2). Consider a vector π = (π1, . . . , πB), where π1 = id is the identity 
in Π, and π2, . . . , πB are random elements drawn with replacement from a uniform distribution on 
Π. A test for HS may be defined taking as critical value the ⌈(1 − α)B⌉th quantile, where ⌈·⌉ repre
sents the ceiling function, and t(1)

S ≤ · · · ≤ t(B)
S are the sorted values tπ

S, with π ∈ π.
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Lemma 1 Under Assumption 1, the test that rejects HS when tS > t(⌈(1−α)B⌉)
S is an α-level 

test.

The test is defined conditionally on X, but it becomes unconditional if we take the expected val
ue on both sides of the inequality. Note that both the test statistic and the critical value are random 
variables. For our method, it will be convenient to use an equivalent characterization of the test 
with a non-random critical value. Therefore, for each π we define the centred statistic 
Cπ

S = TS − Tπ
S , so that the observed value cS = cid

S is always zero, and so no longer random. We 
give a permutation test based on these new statistics, using ω = ⌊αB⌋ + 1 to obtain the quantile, 
where ⌊·⌋ is the floor function.

Theorem 1 Under Assumption 1, the test that rejects HS when c(⌊αB⌋+1)
S > 0 is an α-level 

test.

For illustration, we introduce a recurring toy example with m = 5 univariate hypotheses and 
B = 6 transformations (Table 1). Given the subset S = {1, 2}, we are interested in testing HS 

with significance level α = 0.4. The statistics tπ
S and cπ

S are obtained summing columns 1 and 2 
by row. Since ω = 3 and c(ω)

S = 2, the test of Theorem 1 rejects HS.

5 True discovery guarantee
Based on the notation introduced above, consider the number of true discoveries δ(S) = |S \N|
made when rejecting HS. We are interested in deriving simultaneous (1 − α)-confidence sets for 
this number, so that the simultaneity makes their coverage robust against post hoc selection. 
This way, the rejected hypothesis can be selected after reviewing all confidence sets, while still 
keeping correct (1 − α)-coverage of the corresponding confidence set (Goeman & Solari, 
2011).

Let d : 2M → R be a random function, where 2M is the power set of M. We say that d has true 
discovery guarantee if d(S) are simultaneous lower (1 − α)-confidence bounds for δ(S), i.e.,

P δ(S) ≥ d(S) for each S ⊆ M
( 􏼁

≥ 1 − α 

An equivalent condition is that {d(S), . . . , s} is a (1 − α)-confidence set for δ(S), simultaneously for 
all S ⊆ M. Notice that the resulting confidence sets are one-sided, since hypothesis testing is fo
cused on rejecting, not accepting. From d(S), simultaneous (1 − α)-confidence sets can be immedi
ately derived for other quantities of interest such as the TDP and the number or proportion of false 
discoveries (Goeman & Solari, 2011).

A general way to construct procedures with true discovery guarantee is provided by closed test
ing, based on the principle of testing different subsets by means of a valid α-level local test, which in 
this case is the permutation test. Throughout this paper, we will loosely say that a set S is rejected 
when the corresponding hypothesis HS is. Hence denote the collection of sets rejected by the per
mutation test of Theorem 1 by

R = S ⊆ M : c(ω)
S > 0

􏽮 􏽯

Genovese and Wasserman (2006) and Goeman and Solari (2011) equivalently define a procedure 
d with true discovery guarantee as d(S) = s − q(S), where

q(S) = max |V ∩ S| : V ⊆ M, V ∉ R{ } (1) 

is the maximum intersection between S and a set not rejected by the permutation test. The equiva
lence of the two methods is shown in Goeman et al. (2021).

The main challenge of this method is its exponential complexity in the number of hypotheses. 
Indeed, the number of tests that must be evaluated to determine d(S) may be up to order 2m. In 
the toy example, where m = 5, this number is 32; it is immediate that it quickly grows to an infeas
ible size as m increases.
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6 Shortcut
Fix the set of interest S, so that any dependence on it may be omitted in the notation. We propose a 
shortcut that quickly evaluates whether q < z for any value z. This will allow to approximate q, 
and eventually define a procedure with true discovery guarantee. First, we will re-write q as the 
unique change point of an increasing function:

ϕ : {0, . . . , s + 1} −→ {0, 1}, ϕ(z) = 1 if and only if q < z (2) 

q = max z ∈ {0, . . . , s + 1} : ϕ(z) = 0
􏼈 􏼉

(3) 

Then we will approximate q from above with the change point q(0) of a second increasing function:

ϕ : {0, . . . , s + 1} −→ {0, 1}, ϕ(z) ≤ ϕ(z) (4) 

q(0) = max z ∈ {0, . . . , s + 1} : ϕ(z) = 0
􏽮 􏽯

(5) 

We start by giving an equivalent characterization of the quantity of interest q. For any 
z ∈ {0, . . . , s + 1}, we define the collection Vz = {V ⊆ M : |V ∩ S| ≥ z} of sets that have at least 
size z overlap with S, and investigate whether all its elements are rejected. We define ϕ so that it 
represents such rejection, taking

ϕ(z) = 1{Vz ⊆ R} (z ∈ {0, . . . , s + 1}) (6) 

where 1{ · } denotes the indicator function. The following lemma shows that q can be written as 
in (3).

Lemma 2 ϕ(0) = 0 and ϕ(s + 1) = 1. Moreover, ϕ(z) = 0 if and only if z ∈ {0, . . . , q}.

Now we fix a value z ∈ {1, . . . , s} and derive the shortcut to make statements on ϕ(z) without 
testing all the sets contained in Vz. We do this by partitioning Vz by the size of its elements, obtain
ing

Vz =
􏽜m

v=z

Vz(v), Vz(v) = {V ∈ Vz : |V| = v} (7) 

Each Vz(v) is the sub-collection of all sets of size v that have at least size z overlap with S. We can 
analyse these sub-collections separately and combine the results, noting that ϕ(z) = 1 if and only if 
Vz(v) ⊆ R for all v ∈ {z, . . . , m}.

Table 1. Toy example: original and centred test statistics

Original tπ
i Centred cπ

i

H1 H2 H3 H4 H5 H1 H2 H3 H4 H5

id 6 5 4 1 1 0 0 0 0 0

π2 1 2 1 0 4 5 3 3 1 −3

π3 8 3 0 2 1 −2 2 4 −1 0

π4 8 1 0 1 0 −2 4 4 0 1

π5 0 6 1 1 2 6 −1 3 0 −1

π6 7 0 1 2 1 −1 5 3 −1 0
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By definition, Vz(v) ⊆ R when all sets in the sub-collection have positive quantiles, i.e., c(ω)
V > 0 

for each V ∈ Vz(v). The main idea of the shortcut is to obtain information on each sub-collection 
Vz(v) by bounding the corresponding quantiles from below. In particular, we will construct a 
bound

ℓz : {z, . . . , m} −→ R, ℓz(v) ≤ c(ω)
V for each V ∈ Vz(v) (8) 

This way, if ℓz(v) > 0, we know that all sets in Vz(v) have positive quantiles. If ℓz is positive in its 
entire domain, then Vz(v) ⊆ R for each v, and so ϕ(z) = 1. Figure 1 displays the bound, which we 
will define in the following paragraphs, in the toy example for z = 1 and z = 2. Note that indeed all 
quantiles lie on it or above; the bound can be loose, as seen with ℓ1(3). Since ℓ2 lies entirely in the 
positive half-space, we know that ϕ(2) = 1. In contrast, we cannot make a statement on ϕ(1) based 
on ℓ1.

Fix a size v ∈ {z, . . . , m}. To define an ℓz(v) that does not exceed the minimum quantile over all 
sets in Vz(v), as required in (8), we approximate the minimum quantile from below with the quan
tile of the minimum. We do this by taking the smallest centred statistics for each transformation π, 
with some constraints from the structure of Vz(v).

In the toy example, choose z = 1, and let V be any set in the sub-collection V1(v) of interest. Note 
that V must contain v indices, at least z = 1 of which is in S. Consider the centred statistics cπ2

i for 
transformation π2 (second row in Table 1, right). First, we select the lowest value in S, then we sort 
the remaining values in ascending order, as in the second row of Table 2. If bπ2

v is the sum of the first 
v elements of the row, we know that bπ2

v ≤ cπ2
V . After constructing the other rows of Table 2 accord

ing to the same principle, we define ℓ1(v) = b(ω)
v . Since bπ

v ≤ cπ
V for each π, we obtain ℓ1(v) ≤ c(ω)

V .
In general, for each π ∈ π, we select the z smallest centred statistics in S, and then the v − z re

maining smallest statistics. We define two permutations of the indices:

S = {i1(π), . . . , is(π)} : cπ
i1(π) ≤ · · · ≤ cπ

is(π) (9) 

M \ {i1(π), . . . , iz(π)} = {j1(π), . . . , jm−z(π)} : cπ
j1(π) ≤ · · · ≤ cπ

jm−z(π) (10) 

The set {i1(π), . . . , iz(π)} is a subset of S, containing the indices of the z smallest values in S (for 
transformation π). For instance, in the toy example we have S = {2, 1} and M \ {2} = {5, 4, 3, 1}. 

Figure 1. Toy example with S = {1, 2}: shortcut to evaluate ϕ(z) in z = 1 and z = 2. Points denote the quantiles for the 
sets in Vz . The dashed and solid lines represent the bound ℓz (8) and the path uz (15), respectively.
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Then the value of the bound is defined as

ℓz(v) = b(ω)
v where bπ

v =
􏽘z

h=1

cπ
ih

+
􏽘v−z

h=1

cπ
jh

(π ∈ π) (11) 

Lemma 3 ℓz(v) ≤ c(ω)
V for all V ∈ Vz(v). Hence, minv ℓz(v) > 0 implies ϕ(z) = 1.

Now we use the bound to define a function ϕ as in (4). In the extremes, where the value of ϕ is 
known, we set ϕ(0) = ϕ(0) = 0 and ϕ(s + 1) = ϕ(s + 1) = 1 (see Lemma 2). Elsewhere, we set

ϕ(z) = 1 min
v
ℓz(v) > 0

􏽮 􏽯
(z ∈ {1, . . . , s}) (12) 

This function may not be monotone, but we are only interested in its smallest change point; indeed, 
if ϕ(z) = 1 for a value z, we know that q < z. We make it increasing and obtain a single change point 

in q(0), as defined in (5), by imposing

ϕ(z) = 1 if ϕ(z∗) = 1 for some z∗ ≤ z (z ∈ {1, . . . , s}) (13) 

Proposition 1 As ϕ(z) ≤ ϕ(z) for each z ∈ {0, . . . , s + 1}, q(0) ≥ q.

For instance, in the toy example of Figure 1, ϕ(1) = 0 and ϕ(2) = 1, and so q(0) = 1. Finally, from 
this result we can approximate d from below with d(0) = s − q(0).

Theorem 2 d(0) ≤ d.

To summarize, Proposition 1 represents the basis of the shortcut. For any value z, it allows to 
make statements on the value of ϕ(z) by constructing ϕ(z) ≤ ϕ(z); it requires to evaluate a number 
of tests which is linear in the total number m of hypotheses, in contrast to the exponential number 
required by closed testing. Theorem 2 employs the shortcut to provide a lower (1 − α)-confidence 
bound d(0) for the number of true discoveries δ. The theorem holds for all S ⊆ M, hence the pro
cedure d(0) has true discovery guarantee. In online supplementary material, Section S-1, we pro
pose an algorithm for the shortcut, then we embed it into a binary search to approximate q 
with reduced complexity. We prove that in the worst case, the computational complexity is of or
der mB( log2 m + log B). Moreover, we show how the method can be combined with an algorithm 
of Tian et al. (2022) to find the largest set with given TDP among a collection of incremental sets.

Table 2. Toy example with S = {1, 2}: matrix of the sorted centred statistics to compute the bound ℓ1

Selected in S Remaining

i1(π) j1(π) j2(π) j3(π) j4(π)

id 0 (H1) 0 (H2) 0 (H3) 0 (H4) 0 (H5)

π2 3 (H2) −3 (H5) 1 (H4) 3 (H3) 5 (H1)

π3 −2 (H1) −1 (H4) 0 (H5) 2 (H2) 4 (H3)

π4 −2 (H1) 0 (H4) 1 (H5) 4 (H2) 4 (H3)

π5 −1 (H2) −1 (H5) 0 (H4) 3 (H3) 6 (H1)

π6 −1 (H1) −1 (H4) 0 (H5) 3 (H3) 5 (H2)

Note. The value ℓ1(v) is obtained summing the first v columns by row, and then taking the quantile.
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7 Equivalence to closed testing
The shortcut of Proposition 1 defines ϕ(z) ≤ ϕ(z) for any z. For those values of z for which ϕ(z) = 1, 
we know that also ϕ(z) = 1. Where ϕ(z) = 0, however, there are two distinct cases. If ϕ(z) = 0, the 
shortcut is equivalent to closed testing; otherwise, if ϕ(z) = 1, it is conservative, as it does not reject 
all sets in Vz while closed testing does. In the toy example with z = 1, we are in the first case 
(Figure 1, left), but we cannot see that from the bound only. Now we propose a sufficient condition 
to state that ϕ(z) = ϕ(z). This will play an important role in the iterative shortcut of Section 8. We 
will define an increasing function

ϕ : {0, . . . , s + 1} −→ {0, 1}, ϕ(z) ≤ ϕ(z) ≤ ϕ(z) (14) 

This way, if ϕ(z) = ϕ(z) for a value z, we know that ϕ(z) = ϕ(z). Note that this holds in particular 

when either ϕ(z) = 1 or ϕ(z) = 0.
Fix z ∈ {1, . . . , s}. Based on partition (7) of Vz, the main idea is to construct a greedy path of sets 

Vz ⊂ · · · ⊂ Vm, with Vv ∈ Vz(v) for each v, and check whether their quantiles are all strictly posi
tive. If we find a non-positive quantile, then we have established that Vz ∕⊆R, and so 
ϕ(z) = ϕ(z) = 0; the shortcut is equivalent to closed testing for this value of z. We will define the 
path

uz : {z, . . . , m} −→ R, uz(v) = c(ω)
Vv

with Vv ∈ Vz(v) (15) 

that connects these quantiles. This way, if uz(v) ≤ 0, we know that Vz(v) contains a non-rejected 
set, and so ϕ(z) = 0. Figure 1 displays the bound ℓz and the path uz, which we will define in the next 
paragraphs, for the toy example. The path connects some of the quantiles, one for each size v, and 
so is never smaller than the bound. From ℓ2 we already had ϕ(2) = 1; as u1 is entirely positive, re
sults on ϕ(1) are still unsure.

Fix a size v ∈ {z, . . . , m}. We define uz(v) as the quantile of a set Vv ∈ Vz(v), as required in (15), 
choosing Vv such that it is unlikely to be rejected. We take Vv as the set containing the smallest 
observed non-centred statistics, with the constraint that Vv is an element of Vz(v). This is a heur
istic choice: ti by itself does not give full information on the rejection of Hi; still, if ti is small, gen
erally Hi is less likely to be rejected.

In the toy example, choose z = 1. The set Vv ∈ V1(v) must contain v indices, at least z = 1 of 
which is in S. Consider the observed statistics ti (first row in Table 1, left). First, we select the col
umn of the smallest value in S, then sort the remaining columns so that their values are in ascending 
order. Table 3 presents the centred statistics cπ

i according to this new order. We define Vv as the set 
of the indices of the first v columns, obtaining V1 = {2}, V2 = {2, 4}, V3 = {2, 4, 5}, 
V4 = {2, 4, 5, 3}, and V5 = M.

In general, we select the z smallest observed non-centred statistics in S, and then the v − z re
maining smallest statistics. We define two permutations of the indices:

S = {i1, . . . , is} : ti1 ≤ · · · ≤ tis (16) 

M \ {i1, . . . , iz} = {j1, . . . , jm−z} : t j1 ≤ · · · ≤ t jm−z (17) 

The set {i1, . . . , iz} is a subset of S, containing the indices of the z smallest values in S. For instance, 
in the toy example, we have S = {2, 1} and M \ {2} = {4, 5, 3, 1}. The value of the path is then de
fined as

uz(v) = c(ω)
Vv

where Vv = {i1, . . . , iz} ∪ {j1, . . . , jv−z} (18) 

It is immediate that Vv ∈ Vz(v) and uz(v) ≥ ℓz(v).

Lemma 4 minv uz(v) ≤ 0 implies ϕ(z) = 0.
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The path is used to define a function ϕ as in (14). Similarly to the definition of ϕ in the previous 
section, first we set ϕ(0) = ϕ(0) = 0, ϕ(s + 1) = ϕ(s + 1) = 1, and

ϕ(z) = 1 min
v

uz(v) > 0
􏽮 􏽯

(z ∈ {1, . . . , s}) (19) 

Then we make the function increasing by taking only its largest change point, imposing

ϕ(z) = 0 if ϕ(z∗) = 0 for some z∗ ≥ z (z ∈ {1, . . . , s}) (20) 

Proposition 2 ϕ(z) ≤ ϕ(z) ≤ ϕ(z) for each z ∈ {0, . . . , s + 1}. Hence ϕ(z) = ϕ(z) implies 
ϕ(z) = ϕ(z), i.e., equivalence between the shortcut and closed testing.

For instance, in the toy example of Figure 1, we obtain ϕ(1) = 0 < ϕ(1) = 1 and ϕ(2) = ϕ(2) = 1. 
Hence the shortcut is equivalent to closed testing for z = 2, as we already observed, but we cannot 
establish equivalence for z = 1.

8 Iterative shortcut
The shortcut we have described in Section 6 approximates closed testing and efficiently computes 
q(0) ≥ q; however, as seen in Section 7, it may be conservative. In this section, we improve this 
single-step shortcut by embedding it into a branch and bound algorithm. We obtain an iterative 
shortcut which defines closer approximations of q, and thus smaller confidence sets for δ, as the 
number of steps increases. Eventually, after a finite number of steps, it reaches the same results 
as full closed testing.

At each step n ∈ N, we will define two increasing functions

ϕ(n), ϕ(n)
: {0, . . . , s + 1} −→ {0, 1}, ϕ(n)(z) ≤ ϕ(z) ≤ ϕ(n)

(z) (21) 

We will approximate q from above with the change point of the first function:

q(n) = max z ∈ {0, . . . , s + 1} : ϕ(n)(z) = 0
􏽮 􏽯

(22) 

Then we will use the second to assess possible equivalence to closed testing. If ϕ(n)(z) = ϕ(n)
(z) for a 

value z, then ϕ(n)(z) = ϕ(z) and so results cannot be further improved. Moreover, these functions 

Table 3. Toy example with S = {1, 2}: matrix of the sorted centred statistics to compute the path u1

Selected in S Remaining

i1 (H2) j1 (H4) j2 (H5) j3 (H3) j4 (H1)

id 0 0 0 0 0

π2 3 1 −3 3 5

π3 2 −1 0 4 −2

π4 4 0 1 4 −2

π5 −1 0 −1 3 6

π6 5 −1 0 3 −1

Note. The value u1(v) is obtained summing the first v columns by row, and then taking the quantile.
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will be defined so that q(n) becomes a better approximation of q as n increases, and finally con
verges to it after at most m steps:

q(n) ≥ q(n+1) ≥ q(m) = q (n ∈ N) (23) 

In the next sections, we introduce the structure of the branch and bound algorithm, then use it to 

construct the functions ϕ(n) and ϕ(n) 
with the desired properties.

8.1 Branch and bound
The branch and bound algorithm (Land & Doig, 1960; Mitten, 1970) is used when exploring a space 
of elements in search of a solution, and is based on the following principle. The space is partitioned into 
two subspaces, and each subspace is systematically evaluated; the procedure can be iterated until the 
best solution is found. Hence, the algorithm consists of a branching rule, which defines how to gener
ate subspaces, and a bounding rule, which gives bounds on the solution. This way, one can discard 
entire subspaces that, according to the bounding rule, cannot contain the solution.

Here, we want to evaluate ϕ(z) for any value z, i.e., determine whether the space Vz contains a 
non-rejected set (see Definition (6)). The bounding rule that allows to make statements on the ex
istence of such a set is the single-step shortcut of Propositions 1 and 2. If the shortcut is equivalent 
to closed testing, meaning that we are able to determine ϕ(z), the procedure stops; otherwise, we 
partition Vz and apply the shortcut within each resulting subspace. This procedure may be iterated 
as needed.

For instance, in the toy example, the single-step shortcut gives ϕ(2) = 1 but cannot determine 
ϕ(1) (Figure 1). At step n = 1, we partition V1 into two subspaces V−

1 and V+
1 , according to the in

clusion of index j∗ = 1: V−
1 contains all sets that do not include j∗, and V+

1 contains the others. We 
choose j∗ ∈ M as the index of the hypothesis that we believe we have most evidence against, i.e., 
having the greatest value ti (first row in Table 1, left). Subsequently, we use the shortcut to examine 
each subspace. Figure 2 shows the bound ℓ1 and the path u1 in the two subspaces; the path indi
cates that V+

1 contains a non-rejected set, therefore we conclude that ϕ(1) = 0.
In general, the branching rule is chosen to find an eventual non-rejected set with the smallest 

number of steps. Fix z ∈ {1, . . . , s}, as by Lemma 2 there is no need to partition V0 or Vs+1. The 
space Vz of interest is partitioned into

V−
z = {V ∈ Vz : j∗ ∉ V}, V+

z = {V ∈ Vz : j∗ ∈ V} 

where j∗ is the index of the greatest observed non-centred statistic, with the constraint that the pro
cedure cannot generate empty subspaces. Recall that any set V ∈ Vz has at least size z overlap with 
S. Hence, with the notation of (16) and (17), we fix the indices {i1, . . . , iz} of the z smallest ob
served statistics in S, then we take j∗ = jm−z as the index of the greatest remaining observed statistic. 
The same principle may be applied to partition any subspace.

At any step n ∈ N, the procedure partitions Vz into Kn,z subspaces V1
z , . . . , VKn,z

z without any 
successors, where Kn,z ∈ {1, . . . , 2n}. Suppose to apply the single-step shortcut within a subspace 
Vk

z . If the result is ϕ(z) = 0, then Vk
z contains a non-rejected set, and we stop with ϕ(z) = 0. In con

trast, if the shortcut determines that ϕ(z) = 1, all sets in Vk
z are rejected, and we may explore other 

subspaces. Finally, if the shortcut produces an unsure outcome, i.e., ϕ(z) is still unknown, Vk
z can be 

partitioned again.

8.2 Structure of the iterative shortcut
Fix a step n ∈ N. For every z, the branching rule partitions Vz into Kn,z subspaces V1

z , . . . , VKn,z
z , 

and the bounding rule applies the shortcut within them. We use this structure to define the func

tions ϕ(n) and ϕ(n) 
introduced in (21). We consider the point-wise minimums of ϕ and ϕ within the 

different subspaces, and so we take

ϕ(n)(z) = min
k

ϕ(z) in Vk
z

􏽮 􏽯
, ϕ(n)

(z) = min
k

ϕ(z) in Vk
z

􏽮 􏽯
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Since ϕ and ϕ are increasing functions, also ϕ(n) and ϕ(n) 
are increasing. The following proposition 

shows that property (21) holds, so that we can approximate q from above with q(n), and we can 
assess possible equivalence to closed testing for any z. Moreover, the proposition gives property 

(23) by showing that ϕ(n) and ϕ(n) 
become closer to ϕ as n increases, and finally converge to it after 

at most m steps.

Proposition 3 For any n ∈ N and any z ∈ {0, . . . , s + 1},

ϕ(n)(z) ≤ ϕ(n+1)(z) ≤ ϕ(m)(z) = ϕ(z) = ϕ(m)
(z) ≤ ϕ(n+1)

(z) ≤ ϕ(n)
(z) 

Hence ϕ(n)(z) = ϕ(n)
(z) implies ϕ(n)(z) = ϕ(z), i.e., equivalence between the it

erative shortcut and closed testing. Moreover, q(n) ≥ q(n+1) ≥ q(m) = q.

In the toy example, consider step n = 1 of the iterative shortcut. For z = 2, from results of the 

single-step shortcut we have ϕ(1)(2) = ϕ(1)
(2) = ϕ(2) = 1 without partitioning V2. For z = 1, from 

Figure 2 we have ϕ(1)(1) = ϕ(1)
(1) = ϕ(1) = 0. After one step, we obtain the same results as full 

closed testing, with q(1) = q = 1. Then, similarly to Theorem 2, at each step n we may approximate 
d from below with d(n) = s − q(n).

Theorem 3 d(n) ≤ d(n+1) ≤ d(m) = d for each n ∈ N.

Proposition 3 is the basis of the iterative shortcut. At any step n and for any z, it allows to make 
statements on the value of ϕ(z) by applying the single-step shortcut within at most 2n subspaces. 
Then Theorem 3 gives lower (1 − α)-confidence bounds for the number of true discoveries δ. Even 
if the iterative shortcut is stopped early, before reaching convergence, d(n) is always a valid lower 
confidence bound; we have increasingly better approximations of d as n increases, and obtain full 
closed testing results after at most m steps. As the theorem may be applied to any S ⊆ M, the pro
cedure d(n) has true discovery guarantee. In online supplementary material, Section S-1, we provide 
an algorithm for the iterative shortcut. In the worst case, the complexity of each iteration, i.e., each 
application of the shortcut in a subspace, is of order mB log (mB). The algorithm converges to full 
closed testing results after a number of iterations of order 2m.

Figure 2. Toy example with S = {1, 2}: iterative shortcut at step n = 1 to evaluate ϕ(z) in z = 1. Points denote the 
quantiles for the sets in V−

1 and V+
1 . The dashed and solid lines represent the bound and the path, respectively.
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9 Refinements
In this section, we show two strategies that reduce the computational time of the shortcut. First we 
modify the ordering of the statistics used to define the path in Section 7 and the branching in 
Section 8.1; then we introduce truncated test statistics.

Both the path and the branching are constructed sorting the indices as in (16) and (17), with the 
intuition that a small observed value ti corresponds to a hypothesis that is less likely to be rejected. 
This heuristic choice may be improved if we relate the observed value with all the permuted ones, 
i.e., if we sort ti − mean(tπ

i ) instead of ti. This modification proved to be slightly more efficient.
Subsequently, recall that the computational complexity of the shortcut increases with m. We 

argue that this complexity is much reduced if the method is applied to truncated statistics, as it 
allows to shrink the effective total number of hypotheses from m to m′ ∈ {s, . . . , m}. In practice, 
with large B, m′ is obtained by taking all statistics in S, and only the non-truncated observed sta
tistics in M \ S.

Truncation-based statistics were advocated in the truncation product method of Zaykin et al. 
(2002), in the context of p-value combinations. The main idea was to emphasize smaller p-values 
by taking into account only p-values smaller than a certain threshold, and setting to 1 the others; a 
natural, common choice for the threshold is the significance level α. A similar procedure, the rank 
truncation product (Dudbridge & Koeleman, 2003; Kuo & Zaykin, 2011), takes into account 
only the kth smallest p-values, for a given k. Eventually, weights can be incorporated into both 
analyses. Such procedures provide an increased power in many scenarios, and in particular for sig
nal detection, when there is a predominance of near-null effects. They have been widely applied in 
the literature (Biernacka et al., 2012; Dai et al., 2014; Li & Tseng, 2011; Yu et al., 2009); refer to 
Zaykin et al. (2007), Finos (2003), and Zhang et al. (2020) for a review of the methods and their 
applications.

With our notation, we can define a truncation-based statistic for HS as follows. For each hypoth
esis Hi, we set to a common ground value γ all statistics Tπ

i smaller than a threshold τi. The thresh
old τi may depend on i, or be a prefixed value, or be the kth greatest statistic Tπ

i (i ∈ M, π ∈ π) for a 
given k. The ground value must be γ ≤ mini τi; it may be chosen, for instance, as the minimum pos
sible value of the test statistics, or set equal to the smallest threshold mini τi. Then,

TS =
􏽘

i∈S

fi(Ti), fi(Ti) = γ · 1{Ti < τi} + Ti · 1{Ti ≥ τi} 

For simplicity of notation, let τi = τ, and so fi = f , be independent of i. Table 4 shows the values f (ti) 
in the toy example after truncation with τ = 2 and γ = 0. Here, τ is set as the kth greatest statistic, 
where k = ⌈Bmα⌉ is chosen so that the proportion of non-null contributions f (tπ

i ) is approximately 
α. Observe that H3 is such that the observed truncated statistic is the greatest over all permuta
tions, i.e., f (t3) = maxπ f (tπ

3); as a consequence, adding {3} to any set V can only increase the num
ber of rejections. On the contrary, H4 and H5 are such that the observed statistics are the smallest 
over all permutations, and so adding {4} or {5} to any set can only decrease rejections. Truncation 
makes those two particular cases more common as well as easier to check, through the following 
conditions:

f (tπ
i ) = γ for all π ∈ π \ {id} (24) 

f (ti) = γ (25) 

Proposition 4 Let V ⊆ M and i ∈ M. If i satisfies condition (24), then V ∈ R implies 
(V ∪ {i}) ∈ R. If i satisfies condition (25), then (V ∪ {i}) ∈ R implies 
V ∈ R.

The shortcut examines the collection Vz of sets that have at least size z overlap with S, searching 
for a set V ∉ R. In this case, the focus is on the number of indices in S, hence we may reduce the 
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dimensionality of the problem by applying Proposition 4 to the remaining indices. If an index 
i ∈ M \ S satisfies condition (24), then it is not useful for finding a non-rejected set, and so can 
be removed from M. If two indices i, j ∈ M \ S satisfy condition (25), they may be collapsed 
into a new index h, so that Hh = H{i,j} can only decrease the number of rejections. This allows 
to reduce the total number of hypotheses from m for computational purposes to a substantially 
lower m′ ∈ {s, . . . , m}. In the toy example, column 3 is removed, while columns 4 and 5 are col
lapsed into a single column, reducing the number of hypotheses from m = 5 to m′ = 3.

10 Applications
In this section, we use the iterative shortcut of Section 8 to analyse simulated and real fMRI data, 
while in online supplementary material, Section S-2.3, we analyse differential gene expression 
data. We use the sumSome package (Vesely, 2021) developed in R (R Core Team, 2017), with 
underlying code in C++.

10.1 Simulations
We use the shortcut to compare the performance of different p-value combinations through sim
ulations. When using p-value combinations, the unknown joint distribution of the data is often 
managed through worst-case distributions, defined either generally or under restrictive assump
tions (Vovk & Wang, 2020). However, this approach makes comparisons difficult, since different 
tests have different worst cases. In contrast, our method adapts to the unknown distribution 
through permutations, and thus allows to compare the tests on equal footing. Determining which 
test has the highest power in different settings is a major issue, for which a full treatment is out of 
the scope of the paper; we present a first exploration.

We simulate n independent observations from a multivariate normal distribution with m vari
ables: X = μ + ε, with X, μ, ε ∈ Rm and ε ∼ MVN(0, Σρ). Here Σρ is an equicorrelation matrix with 
off-diagonal elements equal to ρ. The mean μ has a proportion a of non-null entries, with value 
computed so that the two-sided one-sample t-test with significance level α has a given power β. 
From the resulting data, we obtain p-values applying a two-sided one-sample t-test for each vari
able i, with null hypothesis Hi : μi ≠ 0. p-values are computed for B random permutations. 
Moreover, we employ truncation, setting to a common ground value γ any p-value greater than 
a threshold τ.

We analyse the subset S of false hypotheses (active variables), and the complementary subset 
M \ S of true hypotheses (inactive variables), by means of different p-value combinations: 
Pearson (1933), Liptak (1958), Cauchy (Liu & Xie, 2020), and generalized means with parameter 
r ∈ { − 2, − 1, − 0.5, 0, 1, 2} (Vovk & Wang, 2020). The latter will be denoted by VW(r). Notice 
that VW(−1) corresponds to the harmonic mean (Wilson, 2019), VW(0) to Fisher (1925), and 
VW(1) to Edgington (1972). As a comparison, we also apply the maxT-method of Westfall and 
Young (1993), corresponding to the limit of VW(r) when r tends to −∞; we apply the usual algo
rithm for the maxT.

Table 4. Toy example with S = {1, 2}: test statistics after truncation of elements smaller than τ = 2 to the ground value 
γ = 0, and after dimensionality reduction

Truncated f (tπ
i ) Dim. reduction

H1 H2 H3 H4 H5 H1 H2 H4,5

id 6 5 4 0 0 6 5 0

π2 0 2 0 0 4 0 2 4

π3 8 3 0 2 0 8 3 2

π4 8 0 0 0 0 8 0 0

π5 0 6 0 0 2 0 6 2

π6 7 0 0 2 0 7 0 2
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We fix n = 50, m = 1000, α = 0.05, B = 200, and γ = 0.5, then we consider 
a ∈ {0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 0.9}, β ∈ {0.5, 0.8, 0.95}, ρ ∈ {0, 0.3, 0.6, 0.9}, and 
τ ∈ {0.005, 0.01, 0.05, 0.1, 1}, where τ = 1 leads to no truncation. For each setting, we simulate 
data 1,000 times, and compute the TDP lower confidence bound for the set S as the mean of 
d(S)/s over the simulations. Furthermore, we compute the FWER as the proportion of simulations 
where d(M \ S) > 0, meaning that the method finds at least one discovery among the true hypoth
eses. The algorithm is run for a maximum of 1,000 iterations.

Figure 3 shows the average TDP lower confidence bounds obtained in different scenarios for 
β = 0.95 and τ ∈ {0.005, 0.05, 1}. Certain groups of tests have similar performances: (a) VW(1), 
VW(2), and Pearson; (b) VW(−1) and Cauchy. For clarity, among these tests, only VW(1) and 
VW(−1) are displayed in the plots. Results indicate that the intensity of the signal, determined 
by the parameter β, does not significantly affect the behaviour of the tests; nevertheless, differences 
between tests are amplified when the signal is high. Furthermore, results suggest that truncation is 
generally advisable, unless the signal is very dense, i.e., a is high. Indeed, in most cases tests tend to 
be more powerful when τ is low, and thus more statistics are truncated; the improvement is stron
ger for sparse signal, and when considering VW(0), VW(1), and Liptak.

When the signal is sparse, VW(r) with r < 0 performs best; the most powerful test is VW(−1) for 
low correlation, and VW(−2) for high correlation. The remaining tests perform well when the sig
nal is dense; among those, in the considered scenarios VW(0) is the most powerful, but the powers 
of these tests become more similar as the signal becomes denser. These results confirm that the test 
is more directed towards sparse alternatives when the individual contributions, i.e., the trans
formed p-values, have heavy-tailed distributions, and towards dense alternatives otherwise 
(Vovk & Wang, 2020). Computation time is between 0.04 and 20 s. Moreover, simulations con
firm that the method controls the FWER. Plots for the computation time, rates of convergence, and 
the FWER are provided in online supplementary material, Section S-2.1.

Finally, online supplementary material, Section S-2.1 contains a comparison with closed testing 
based on worst-case distributions (Tian et al., 2022) for generalized means VW(r) (Vovk & Wang, 
2020). As expected, worst-case distributions tend to be very conservative and are never more 
powerful than the shortcut. The difference in power varies according to the choice of r and the set
ting. The largest differences are observed for r = 1 in settings with dense signal and medium-low 
correlation, for which only the shortcut has non-zero power.

10.2 fMRI data
In this section, we apply the shortcut to fMRI brain imaging data, demonstrating feasibility of the 
method on large datasets, adaptation to the correlation structure and post hoc flexibility. In fMRI 
imaging, blood oxygen level dependent response is measured, i.e., changes in blood flow in the 
brain induced by a sequence of stimuli, at the level of small volume units called voxels. Brain ac
tivation is then inferred as correlation between the stimuli and the blood oxygen level dependent 
response. Researchers are interested in studying this activation within different clusters, brain re
gions of connected voxels.

Typically, voxels are highly correlated. This is usually taken into account by means of cluster 
extent thresholding (Nichols, 2012; Rosenblatt et al., 2018; Woo et al., 2014). However, when 
the method finds activation in a given cluster, it only indicates that the cluster contains at least 
one active voxel, but does not provide any information on the proportion of active voxels 
(TDP) nor their spatial location. This leads to the spatial specificity paradox, the counter-intuitive 
property that activation in a large cluster is a weaker finding than in a small cluster (Woo et al., 
2014). Moreover, follow-up inference inside a cluster leads to inflated type I error rates 
(Kriegeskorte et al., 2009). In contrast, our approach not only adapts to the high correlation 
but also provides confidence sets for the TDP, and allows for post hoc selection and follow-up in
ference inside clusters.

We analyse data collected by Pernet et al. (2019), which compares subjects examined while lis
tening to vocal and non-vocal sounds. Data consist of brain images for 140 subjects, each com
posed of 168, 211 voxels. As for any standard fMRI analysis (Lindquist, 2008), as first-level 
analysis for each subject we estimate the contrast map that describes the difference in activation 
during vocal and non-vocal stimuli, with the same procedure of Andreella et al. (2023). Then these 
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contrast maps are used to run the second-level analysis; for each voxel, we compute a test statistic 
by means of a two-sided one-sample t-test, with the null hypothesis that the voxel’s mean contrast 
between subjects is zero. Finally, we define the global test statistic for a cluster as the sum of its 
voxels’ t-statistics.

We examine supra-threshold clusters with threshold 3.2, chosen by convention, and then we 
make follow-up inference inside those by studying clusters with threshold 4. The significance level 
is taken as α = 0.05. We construct statistics for the permutation test by using B elements from the 
group of sign-flipping transformations, which satisfies Assumption 1 (Winkler et al., 2014). 
Moreover, we employ truncation as in Section 9 by setting to γ = 0 any statistic smaller than 
τ = 3.2; this way, we take into account only statistics at least as extreme as the cluster-defining 
threshold. We use two settings. First, we apply a ‘quick’ analysis, fast and feasible on a standard 
machine, by using B = 200 transformations and stopping after 50 iterations of the single-step 
shortcut. Subsequently, we consider a ‘long’ analysis, run on the platform CAPRI (University of 
Padua, 2017), that employs B = 1,000 transformations and stops after 1,000 iterations. 
Computation time for the ‘quick’ setting is less than 8 min on a standard PC, while the ‘long’ set
ting requires around 9 hr for clusters with threshold 3.2, and 36 hr for follow-up inference on clus
ters with threshold 4.

Results, shown in online supplementary material, Section S-2.2, indicate that the setting of the 
‘long’ analysis does not provide larger TDP values than the ‘quick’. Notice that the method pro
vides valid (1 − α)-confidence bounds for the TDP in all settings. In online supplementary material, 
Section S-2.2, we further investigate the role of the numbers of iterations and permutations, con
firming that even though larger values give greater mean power and less variability, the ‘quick’ set
ting provides suitable power. Moreover, our method finds activation in concordance with 
previous studies. An extensive comparison with other methods is beyond the scope of this paper, 
however our results can be immediately compared to those in Andreella et al. (2023), since the 
same data were used. For the particular settings used in the analyses, the proposed method is 
more powerful in detecting signal in bigger clusters, while loses power in smaller ones. In general, 
however, results strongly depend on the choice of the tests: the sum test in the proposed method, 

Figure 3. Simulated data: proportion of true discovery lower confidence bounds for the set S of active variables, by 
active proportion a (log scale) and for different p-value combinations. Variables have equicorrelation ρ. p-values 
greater than τ are truncated.
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and the critical vector in Andreella et al. (2023). A preliminary study is shown in Vesely et al. 
(2021).

11 Discussion
We have proposed a new perspective on the age-old subject of global testing, arguing that all glo
bal tests automatically come with an inbuilt selective inference method, allowing many additional 
inferences to be made without paying a price in terms of the global test’s α-level. Our proposed 
approach provides not just p-values but gives a confidence bound for the TDP, which is consider
ably more informative; indeed, reporting a p-value only infers the presence of some discoveries, 
while the TDP allows to quantify the proportion of these discoveries. Such TDP confidence bounds 
come not just for the full testing problem but also simultaneously for all subsets of hypotheses; this 
way, subsets of interest may be chosen post hoc, without compromising the validity of the method.

To construct simultaneous confidence bounds for the TDP of all subsets, we have provided a 
general closed testing procedure for sum tests, a broad class of global tests that includes many 
p-value combinations and other popular multiple testing methods. The procedure uses permuta
tion testing to adapt to the unknown joint distribution of the data, avoiding strong assumptions or 
potential loss of power due to worst-case distributions. We have presented an iterative shortcut for 
this procedure, where the complexity of each iteration is linearithmic both in the numbers m of 
hypotheses and B of permutations. Moreover, we have argued that B = 200 permutations are gen
erally sufficient for the usual significance level α = 0.05. The shortcut converges to full closed test
ing results after a finite, but possibly exponential in m, number of iterations; furthermore, it may 
be stopped at any time while still providing control of the TDP. As shown in simulations, when 
studying 1,000 hypotheses, in many cases the procedure converges to closed testing in seconds. 
Moreover, the method is feasible in high-dimensional settings, as shown in applications on 
fMRI data and differential gene expression data. An implementation is available in the 
sumSome package (Vesely, 2021) in R, with underlying code in C++.

Our method is extremely flexible, allowing any sum test of choice; different choices of the sum 
test have very different power properties, as we have illustrated. More research is needed on the 
performance of different sum tests in different scenarios. Notice that the test statistic, including 
the eventual truncation, needs to be chosen a priori, before performing the analysis. Moreover, 
permutations are known to have a better performance than worst-case distributions under general 
dependence structure, but we have performed only a preliminary investigation to quantify the im
provement given by permutations in the case of sum tests. Finally, a comparison with other 
permutation-based procedures that rely on bounding functions (Andreella et al., 2023; Blain 
et al., 2022; Blanchard et al., 2020) would be of great interest, but would be extensive for two 
main reasons. First, all these procedures do not represent single methods but families of methods, 
allowing different choices for the test (i.e., sum test statistic in our case, and critical vector in the 
others); where and how the signal is distributed strongly influences the power of each method. 
Hence, a fair study would require to first choose a proper test within each family, depending on 
many different characteristics of the problem, and only then compare results. Furthermore, the 
methods give statements for each of the 2m possible subsets of hypotheses. Depending on the 
loss function chosen to summarize these statements, different methods could result to be prefer
able. In consequence, such an analysis is left for future work.
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