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Abstract
Cluster inference based on spatial extent thresholding is a popular analysis method multiple testing in spatial 
data, and is frequently used for finding activated brain areas in neuroimaging. However, the method has 
several well-known issues. While powerful for finding regions with some activation, the method as 
currently defined does not allow any further quantification or localisation of signal. In this paper, we repair 
this gap. We show that cluster-extent inference can be used (1) to infer the presence of signal in any region 
of interest and (2) to quantify the percentage of activation in such regions. These additional inferences 
come for free, i.e. they do not require any further adjustment of the alpha-level of tests, while retaining full 
family-wise error control. We achieve this extension of the possibilities of cluster inference by embedding 
the method into a closed testing procedure, and solving the graph-theoretic k-separator problem that 
results from this embedding. We demonstrate the usefulness of the improved method in a large-scale 
application to neuroimaging data from the Neurovault database.
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1 Introduction
We consider large-scale multiple testing problems in which the hypotheses are structured in a 
d-dimensional rectangular grid. In such problems, the spatial organisation of the hypotheses 
can be important, as the signal can often be assumed to be spatially clustered.

Our primary motivation comes from functional magnetic resonance imaging (fMRI) studies, 
which study brain activation in response to a mental task (Ogawa et al., 1992). In such studies, brain 
activity is measured for around 200,000 of voxels, three-dimensional equivalents of pixels. This re-
sults in per-voxel null hypotheses of no activation that form a regular 3-d grid. Signal is expected to 
cluster, and researchers therefore aim to find regions (‘clusters’) of activation rather than individual 
active voxels. Regular grids of hypotheses arise in other contexts as well, for example 1-d structures in 
DNA methylation (Jaffe et al., 2012) and 2-d structures in climate science (Sommerfeld et al., 2018).

The state-of-the-art solution for inference on regions in fMRI is cluster inference by cluster ex-
tent thresholding (Forman et al., 1995; Friston et al., 1994; Nichols, 2012). In brief, starting from 
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a test statistic per voxel, this method finds all clusters of contiguous voxels for which the test stat-
istic exceeds a predefined threshold. Clusters are declared significant if their extent (number of 
voxels) exceeds the extent threshold, which is defined as the (1 − α)-quantile of the distribution 
of the maximal extent of such clusters under the global null hypothesis. This extent threshold 
can be determined either analytically, using the assumption that the z-scores come from a 
Gaussian random field (Eklund et al., 2016; Friston et al., 1994; Worsley et al., 1996), or more 
robustly by permutations (Hayasaka & Nichols, 2003).

Cluster inference has strong control of family-wise error rate (FWER) at the level of clusters 
(Worsley et al., 1992). This means that, regardless of the amount of signal present in the data, 
with probability at least 1 − α no cluster null hypothesis is falsely rejected. The cluster null hypoth-
esis is the hypothesis that none of the voxels in the cluster is truly active. The inferential statement 
that can be made from cluster inference is, therefore, that, with 1 − α simultaneous confidence, 
every significant cluster contains at least one active voxel.

However, cluster-level FWER control has been criticised as insufficient to support the conclu-
sions researchers would typically like to draw from neuroimaging experiments. For example, 
Woo et al. (2014) argued that, especially at low z thresholds, clusters can become too large and 
span multiple anatomical brain areas, challenging the interpretation of the results. The following 
three inferential conclusions are often (implicitly or explicitly) drawn from cluster inference result, 
though they are not supported by the theory (Woo et al., 2014). 

1. ‘A large significant cluster contains a substantial number of active voxels’. Cluster-level 
FWER control only supports the statement that at least one voxel in the cluster is confidently 
active, not that many, or let alone, all voxels are active.

2. ‘A large significant cluster is a more substantial scientific finding than a small significant clus-
ter’. In fact, the assertion that at least one voxel in a large cluster is active, is a less precise, and 
therefore weaker finding than the same assertion in a small cluster. This counter-intuitive 
property is known as the Spatial Specificity Paradox.

3. ‘Substantial overlap between a significant cluster and an anatomical brain area indicates evi-
dence for the presence of activity in that anatomical brain area’. A significant cluster confi-
dently contains at least one active voxel, but unless that cluster is completely contained in 
the anatomical area, such activity may lie outside the anatomical brain area.

Still, the three unsupported conclusions from cluster inference, sketched above, seem intuitively quite 
reasonable. If a cluster exceeds the minimal size k for a significant cluster by a large margin, it is nat-
ural to suppose that there is a substantial amount of signal in the cluster, and at least more than in 
another cluster with an extent just over k. If the large cluster largely overlaps with an anatomical re-
gion, it is reasonable to suppose that some of the signal in the cluster must be in the anatomical region.

This paper strengthens cluster inference by presenting an improvement of the method that al-
lows much stronger and more informative conclusions to be drawn, avoiding the problems 
sketched above. We construct this improvement of cluster inference by remarking that cluster in-
ference is a special case of a true discovery guarantee method, as defined by Goeman et al. (2021). 
This suggests a possibility for uniform improvement of the method, by embedding it into a closed 
testing procedure, which we will construct.

Rather than returning a p-value for each supra-threshold cluster, the new method returns a true 
discovery proportion (TDP) for every region, a simultaneous lower confidence bound for the pro-
portion of truly active voxels in the region (Genovese & Wasserman, 2006; Goeman & Solari, 
2011). By quantifying how widely spread a signal is within a brain region, TDP-based inference 
avoids the spatial specificity paradox (Rosenblatt et al., 2018). Moreover, TDP can be calculated 
for any brain region, not just for supra-threshold clusters; this way also the amount of signal in 
anatomical regions may be assessed. Being a uniform improvement of classic cluster inference, 
there is no power loss when switching from classic cluster-based inference to the method proposed 
in this paper; the new method will always yield TDP >0 for any cluster that is significant according 
to classic cluster-based inference. The new method retains strict FWER control over all reported 
findings: with probability at least 1 − α no reported TDP is greater than the proportion of truly 
active voxels in the corresponding region.
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There is a substantial literature on methods providing simultaneous lower bounds for TDP, or 
equivalently upper bounds for false discovery proportions (Blanchard et al., 2020; Goeman et al., 
2019; Katsevich & Ramdas, 2020), which have all been shown to be special cases of closed testing 
procedures (Goeman et al., 2021). TDP methods have also been applied to neuroimaging data be-
fore (Andreella et al., 2023; Blain et al., 2022; Rosenblatt et al., 2018; Vesely et al., in press). 
However, all methods proposed thus far treat the indices of hypotheses as exchangeable, neglect-
ing their spatial arrangement. In contrast, we build a closed testing procedure using local tests that 
take the spatial structure into account. This results in a non-exchangeable closed testing procedure 
with very different mathematical properties. In particular, an unexpected and interesting connec-
tion arises between graph theory and multiple testing procedures, as we shall see below.

A major challenge of constructing closed testing procedures is computational. We will show that 
calculating TDP for a brain region amounts to solving an instance of a graph-theoretic k-separator 
problem (Ben-Ameur et al., 2015). We propose two novel and fast algorithms to solve the 
k-separator problem in the lattice graph induced by brain connectivity, in order to find shortcuts 
for the closed testing procedure.

To illustrate the performance of the method, we will apply the novel lower bound on 818 data 
sets from the Neurovault database (Gorgolewski et al., 2015). We will first illustrate the intended 
workflow of the new method using an n-back working memory data set (Barch et al., 2013), which 
we will introduce in the next section as a motivating example.

Throughout the paper, we use the notational convention that, except for the probability distri-
bution P, all capitals are sets and all lower case variables are scalars or vectors. Random variables 
are in boldface. The proofs of all lemmas and theorems are in the online supplementary material, 
Section A.

2 Motivating example
We will first illustrate and preview the new method with a concrete motivating example, which is 
typical for fMRI cluster inference. Although the details are specific for the neuroimaging context, 
the example serves to illustrate the paradoxes researchers run into when inferring on spatial data 
in terms of clusters.

The Human Connectome Project (HCP; Van Essen et al., 2013) consists of neuroimaging data 
of over 5,000 subjects performing multiple cognitive tasks, of which brain activity is measured by 
the proxy of changes in blood oxygenation levels (BOLD). In our example, we will use fMRI data 
obtained from 80 unrelated individuals, each performing an n-back working memory task (Barch 
et al., 2013). During this task participants are sequentially shown a series of letters (e.g. ‘E’, ‘D’, 
‘Z’, ‘X’, ‘M’). After the sequence is shown, participants are asked to recall letters from a specific 
position in the sequence. For example, in the 0-back condition this is the last letter shown (‘M’), in 
the 2-back condition this is the letter in second-to-last position (‘Z’). In n-back tasks, higher values 
of n are theoretically associated with larger memory load for the participants. We focussed on the 
2-back vs. 0-back contrast, for which the null hypothesis of interest per voxel was that the BOLD 
signal was identically distributed between the 2-back and 0-back conditions. For the calculation of 
per-voxel test statistics, we followed a standard processing pipeline (Glasser et al., 2013) using 
FSL, a popular software package for cluster-extent inference (Woolrich et al., 2001). This is a two- 
stage analysis, in which the 2-back vs. 0-back contrast is first analysed for each subject separately 
and the results are subsequently aggregated across subjects into a group-level z-statistic for each of 
the 257,659 voxels in the brain, using standard methods described by Beckmann et al. (2003). 
Each of these z-statistics is standard normal under their respective per-voxel null hypothesis.

Before seeing the data, a cluster-forming threshold of z = 3.1 was chosen. Clusters were formed 
by all connected neighbouring supra-threshold voxels. Using standard theory, which we will re-
visit in Section 3, a permutation-based extent threshold of 72 was found, indicating that all clus-
ters consisting of more than 72 voxels are significant. This led to six significant clusters and several 
nonsignificant clusters. The details of the significant clusters are shown in Figure 1 and Table 1.

With classic cluster inference, the analysis ends here. The researchers may claim that some signal 
is present in each significant cluster, but the amount of signal is undetermined. This is especially 
tantalising for the biggest cluster A, that visually consists of several sub-regions. No statement 
can be made about the presence of signal in these sub-clusters. Cluster C overlaps for a large 
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part with the cerebellum, but since it is not fully contained in the cerebellum, the researcher may 
not confidently claim the presence of signal here from the overlap with Cluster C. In contrast, 
Cluster F, which is relatively small and would not attract the most attention in the publication, 
does substantiate a claim about the presence of signal in the cerebellum since it is completely con-
tained in it. Paradoxically, Cluster F is the most precise finding, since it localises the presence of 
signal to a precision of no more than 100 voxels.

The theory developed in this paper will allow much more informative statements to be made 
about clusters A to F. 

1. We calculate TDP per cluster, a lower bound to the number of truly active voxels. Clusters A, 
B, C, D, E, F get TDPs of 37%, 40%, 33%, 37%, 19%, and 10%, respectively. This indicates 
that clusters A to D are the main findings of the experiment, but shows that the localisation of 
the signal is only moderately precise.

2. We also find TDPs for any other (anatomical) brain regions of interest. We find, for example, 
significant evidence of signal in cerebellum, mostly from the overlap with cluster C, though 
with a small TDP of 5.8%.

The TDP values we find are guaranteed to be consistent with the cluster p-values in the sense that 
p ≤ 0.05 if and only if TDP is positive. Compared to the p-values, the TDP is more informative 
since it quantifies the pervasiveness of the signal within the cluster. The full analysis results are giv-
en in Section 9.

3 Classic cluster inference
We give a short recap of classic cluster inference to set the scene and introduce notation.

The brain is partitioned into hundreds of thousands of voxels, forming a rectangular grid in Zd. We 
will usually think of d = 3, but we will write our theory for general d ≥ 1. The brain B ⊂ Zd is an ir-
regularly shaped, finite collection of voxels. It is not always the entire brain that is of interest to the 
researcher, and a mask M ⊆ B is chosen, before seeing the data, limiting all inference to voxels in M.

We define a neighbour relationship between voxels, saying that voxels v, w ∈ Zd are neighbours 
if v − w ∈ {− 1, 0, 1}d. This neighbourhood definition is known as 26-connectivity in neuroimag-
ing since it gives each voxel 27 neighbours (26 plus itself) if d = 3. The voxels and the neighbour 
relation together induce an undirected graph when the voxels are seen as nodes and the neighbour 
relationships as edges. We call a voxel set V ⊆ Zd a cluster if its induced graph is connected. We call 
voxel sets V and W disconnected if no voxel of V is a neighbour of a voxel of W.

Let Ω be our statistical model and P ∈ Ω the unknown probability distribution of the data. For 
each voxel v ∈ B we define a voxel-wise null hypothesis Hv ⊆ Ω stating that the voxel v is not ac-
tive. Note that in general a hypothesis H is true if and only if P ∈ H. Researchers are usually not 
particularly interested in individual voxels, since these are considered too small to represent rele-
vant brain processes. Instead, researchers look at clusters of neighbouring voxels. For every voxel 

Figure 1. Task-related brain activation for the 2-back vs. 0-back contrast across all subjects. Six significant clusters 
A, B, C, D, E, F are indicated.
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set V ⊆ M, we define the voxel set null hypothesis as HV =


v∈V Hv. This hypothesis states that all 
of the voxel-wise null hypotheses for voxels in V are true, i.e. that none of the voxels in V are ac-
tive. The hypothesis H∅ = Ω is always true.

We assume that we have z-score test statistics (zv)v∈B for every voxel null hypothesis. The z-score 
zv is expected to be small in absolute value if Hv is true and large if Hv is false. We make no assump-
tions about the marginal or joint distribution of the z-scores at this point. Cluster inference uses 
these voxel z-scores to make inference at the cluster level. First, before seeing the data the research-
er selects a z-score cut-off z. Next, the researcher finds the set of all supra-threshold voxels in the 
mask, M ∩ Z, where

Z = {v ∈ B : zv > z} (1) 

is the collection of all supra-threshold voxels. Equation (1) uses one-sided tests. Two-sided tests 
can be done either using |zv| > z in equation (1) or by repeating the analysis twice: once with zv 

and once with −zv, using half the α-level.
The supra-threshold voxel set Z ∩ M is not in general a cluster, but it is always a union of clus-

ters. We can uniquely write Z ∩ M = C1 ∪ · · · ∪ Cn, where C1, . . . , Cn are disconnected clusters. 
Cluster inference now claims the presence of signal in every Ci for which |Ci| > kM, where | · | is the 
cardinality of a set, and kM is the cluster-extent threshold for mask M. The cluster-extent threshold 
is defined as the (1 − α)-quantile of the maximum size of a supra-threshold cluster under the global 
null. Formally, the size of the largest supra-threshold voxel is χM∩Z, where

χV = max {|C| : C ⊆ V is a cluster}.

This maximum is always defined since the empty set is a cluster. The cluster-extent threshold kM 

therefore has the property that, for every P ∈ HM,

P(χM∩Z > kM) ≤ α. (2) 

We remark that kM is allowed to be random, as it would be, e.g. in permutation approaches. We 
also remark that we deviate slightly from the usual definition of kM, which uses ≥ in the first in-
equality in equation (2).

To achieve equation (2), it is important to take both the marginal and the joint distribution of 
the z-scores into account. Various parametric and semi-parametric methods have been proposed. 
Friston et al. (1994) assume that (zv)v∈M follows a stationary Gaussian random field on M, and 
that each Hv, v ∈ B, is the hypothesis that zv has zero mean. In this case, kM can be approximated 
using the expected Euler characteristic of the field, and equation (2) holds as long as z is large 
enough and the field is sufficiently smooth (Eklund et al., 2016; Worsley et al., 1996). 
Alternatively, a kM achieving equation (2) may be calculated from other assumptions, e.g. t-fields, 
χ2-fields, or F-fields (Worsley et al., 1996). Permutation-based approaches (Hayasaka & Nichols, 
2003) can efficiently accommodate the joint distribution of the z-scores. In the rest of the paper, we 

Table 1. Task-related brain activation for the 2-back vs. 0-back contrast across all subjects

Cluster Size p-Value max (z) X Y Z

A 8,870 <0.001 8.87 44 72 60

B 8,526 <0.001 9.51 19 42 61

C 7,956 <0.001 9.20 63 33 20

D 6,652 <0.001 9.73 31 67 64

E 350 0.004 5.18 15 46 28

F 100 0.027 6.56 49 35 10

Note. Columns show the size, p-value, maximum z-statistic, and coordinates of the maximum for all clusters.
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will not use any specific set of distributional assumptions. We will simply assume kM can be calcu-
lated for every M ⊆ B such that equation (2) holds.

Larger masks allow larger supra-threshold clusters, and therefore larger cluster-extent thresh-
olds. We will assume that if M ⊆ N, then,

kM ≤ kN. (3) 

This relationship is natural since χM∩Z ≤ χN∩Z, surely. We may take k∅ = 0 without loss of 
generality.

4 Closed testing for cluster inference
Having described classic cluster inference, we can now construct its embedding into a closed test-
ing procedure. We will exploit theory of Goeman et al. (2021), who provide a general method to 
construct a closed testing procedure from an existing multiple testing procedure.

4.1 Local test and effective local test
A closed testing procedure is built from local tests, which are hypothesis tests for a voxel set null 
hypothesis HV. We will define such a local test for every voxel set V ⊆ M as the test that rejects 
when cluster inference with mask M = V rejects at least one voxel set null hypothesis. The resulting 
test rejects when ϕV = 1, where

ϕV = 1{χV∩Z > kV}. (4) 

This is a valid local test due to the assumption that equation (2) holds for every M ⊆ B, and there-
fore for M = V: we have for every P ∈ HV that P(ϕV = 1) ≤ α. If V = ∅, then ϕV = 0, so the test 
never rejects. We will use the local test (4) for every V ⊆ M as the building block for the new closed 
testing procedure.

The local test ϕV is a valid hypothesis test for the presence of signal in V if the researcher re-
stricted attention to V before seeing the data. If the researcher chooses V ⊆ M after seeing the 
data, a multiple testing correction needs to be performed over all 2|M| hypothesis choices 
(HV)V⊆M. This is what closed testing does.

Marcus et al. (1976) proved that such correction for multiple testing can be achieved by the 
effective local test, defined for any local test as

ψV = min {ϕW : V ⊆ W ⊆ M}.

The effective local test controls voxel set-level FWER over all (HV)V⊆M, having the property that 
for every P ∈ Ω,

P(ψV = 0 for all V ⊆ M with P ∈ HV) ≥ 1 − α. (5) 

Remembering that P ∈ HV if and only if HV is true, we see that with probability at least 1 − α no 
true voxel set null hypothesis is rejected even when ψV is applied on all V ⊆ M.

4.2 Shortcut
However, ψV is difficult to calculate, since it involves calculating ϕW , and therefore kW, for expo-
nentially many V ⊆ W ⊆ M. We propose to approximate ψV for every V ⊆ M by an alternative test 
that is easier to compute:

ψ
V

= 1{χV∩Z > kM}.

For every V ⊆ M, the test ψ
V 

rejects at most as often as ψV, as Lemma 1 states.

Lemma 1 For every V ⊆ M, we have ψ
V

≤ ψV.
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The alternative test ψ
V 

is a shortcut for the effective local test ψV : it sacrifices some power for 
ease of computation. By Lemma 1, ψ

V 
retains the error guarentees of ψV . Combining the lemma 

with equation (5), we obtain voxel set-level FWER for ψ
V

. For every P ∈ Ω,

P(ψ
V

= 0 for all V ⊆ M with P ∈ HV) ≥ 1 − α.

We can check that the test ψ
V 

reproduces the FWER guarantee of classic cluster inference. 
Classic cluster inference rejects all clusters C ⊆ M ∩ Z with |C| > kM. For such C, we have 
χC∩Z = χC = |C| > kM, so that ψ

C
= 1.

However, ψ
V 

allows useful additional conclusions that are not endorsed by classic cluster infer-
ence. If A ⊆ B is an anatomical region of interest, we may reject HA and claim the presence of ac-
tivity in A if χA∩Z > kM, that is when there are at least kM connected supra-threshold voxels within 
A. This provides a partial solution to the desired inference problem 3 in the Introduction to this 
paper, since it defines precisely how large a ‘substantial overlap’ between a significant cluster 
and an anatomical region must be to allow a claim of activity in the region: the overlap must con-
tain a connected area of size at least kM. Note that the region of interest A does not have to be chos-
en before seeing the data for such inference to be valid, since FWER control is over all V ⊆ M.

4.3 TDPs from closed testing
The major gain of the closed testing formulation is not in voxel set-level FWER control, but in sim-
ultaneous TDP lower bounds for every cluster (Genovese & Wasserman, 2006; Goeman & Solari, 
2011). When voxel-wise null hypotheses are point null hypotheses, upper bounds to TDP are im-
possible (Goeman & Solari, 2011). We will now construct such TDP bounds.

Let AP = {v ∈ B : P ∉ Hv} be the set of all truly active voxels in the brain. For voxel set V ⊆ B the 
number of truly active voxels in V is

aP(V) = |V ∩ AP|.

If the researcher would claim that voxel set V is active, the researcher would be right about aP(V) 
voxels, and wrong about |V| − aP(V) of them. We call

πP(V) =
aP(V)
|V|

, 

or 0 if V = ∅, the TDP of set V. This is our target of inference. We will infer on πP(V) through aP(V), 
which is easier to work with.

Goeman and Solari (2011) proved that, for any closed testing procedure with effective local tests 
(ψV)V⊆M, random variables defined, for all V ⊆ M, as

a(V) = min {|V \W| : W ⊆ V, ψW = 0}, (6) 

have the property that, for all P ∈ Ω,

P(a(V) ≤ aP(V) for all V ⊆ M) ≥ 1 − α. (7) 

A lower bound for the TDP follows immediately: π(V) = a(V)/|V|, or 0 if V = ∅, is a simultaneous 
lower bound for the TDP all V ⊆ M. By equation (7), for all P ∈ Ω, we have

P(π(V) ≤ πP(V) for all V ⊆ M) ≥ 1 − α.

The lower bound a(V), and its companion π(V) provide much stronger statements than the effect-
ive local test. Where ψV only gives confidence whether or not there is signal present in V, a(V) gives 
confidence for the amount of signal. There is no information lost in reporting a(V) rather than re-
jection or non-rejection ψV, since a(V) ≥ ψV, as follows immediately from the definition. The 
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simultaneity of equation (7) implies family-wise error control over all V ⊆ M considered or re-
ported: with probability at least 1 − α no reported a(V), V ⊆ M, overestimates the number of truly 
active voxels aP(V) in V, even if V was chosen after seeing the data.

Since a(V) involves the expression ψV, which is difficult to calculate, we use the shortcut ψ
V 

to 
get a partial shortcut for a(V). We write

ǎ(V) = min {|V \W| : W ⊆ V, ψ
W

= 0}.

By Lemma 1, ǎ(V) ≤ a(V), so ǎ(V) inherits the property (7). Moreover, ǎ(V) can be rewritten in a 
relatively simple form. The formulation of ǎ(V) and its property are our first main result. We for-
mulate it as a theorem.

Theorem 1 Let

ǎ(V) = skM
(V ∩ Z), (8) 

where sk(V) = min {|R| : χV\R ≤ k}. Then, for all P ∈ Ω,

P(ǎ(V) ≤ aP(V) for all V ⊆ M) ≥ 1 − α. (9) 

Although ǎ(V) may yield smaller TDP than a(V), the resulting TDP lower bounds are still at least 
as powerful as the statements of classic cluster inference, as the next theorem asserts: all clusters 
found by classic cluster inference have a strictly positive TDP bound.

Theorem 2 If C ⊆ (Z ∩ M), with |C| > kM, is a cluster, then ǎ(C) > 0.

5 Calculating TDPs
The shortcut (8) reduces a computation time of a(V) that is exponential in |M| to a computation time 
for ǎ(V) that is exponential in |V|. This is still prohibitive for most regions V. In this section, we dis-
cuss algorithms for ǎ(V). We show that this calculation is equivalent to solving a problem known as 
the k-separator problem in graph theory. For the specific case of that problem in the voxel graph 
with 26-connectivity, we obtain a lower bound to ǎ(V) that has computation time O(|V|1+1/d), 
and a fast heuristic algorithm, coupled with simulated annealing, that approaches ǎ(V) from above. 
Both the lower bound and the simulated annealing algorithm rely on a duality between our 
k-separator problem and tiling problem on a slightly larger object, which we will derive and explain.

5.1 The k-separator problem
From Theorem 1, we see that we have efficient computation of ǎ(V) whenever we can efficiently 
compute sk(V), for V ⊆ Z. The value of sk(V) is the minimum number of voxels that must be re-
moved from V in order that the remainder falls apart into disconnected components of size k. The 
quantity sk(V) can be defined for any graph, and is known in graph theory literature as the 
k-separator problem (Ben-Ameur et al., 2015). The k-separator problem is NP-hard, even for 
small fixed values of k. For example, with k = 1 we have a classic vertex cover problem 
(NP-hard), while for k = 2 the problem is equivalent to the computation of dissociation number 
which is NP-complete for a class of bipartite graphs (Yannakakis, 1981). Ben-Ameur et al. 
(2015) proposed polynomial time solutions to several constrained variants of the k-separator 
problem; however, none of them is applicable in our case. In the next few sections, we present nov-
el solutions tailored to the specific type of graph induced by the neuroimaging context.

5.2 Preliminaries
Any voxel set V can always be written as a union of disconnected clusters. The next lemma says 
that it is sufficient to calculate sk for these clusters.
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Lemma 2 If V = C1 ∪ · · · ∪ Cn, where C1 . . . , Cn are disconnected clusters, then

sk(V) =
n

i=1

sk(Ci).

Without loss of generality, therefore, we can focus on calculating sk(V) only for V ⊆ B that are 
clusters. However, the results in the remainder of this section are for general voxel sets V.

5.3 Positive neighbours
For our solutions to the k-separator problem we will exploit a duality between k-separating V and 
tiling a somewhat larger object. To construct this duality, we first need to introduce to Zd the 
directed relationship of being ‘positive neighbours’.

We say that w ∈ Zd is a positive neighbour of v ∈ Zd if w − v ∈ {0, 1}d. We write

{v}+ = {v + e : e ∈ {0, 1}d} 

for the voxel set of all positive neighbours of v. If w ∈ {v}+ we call v a negative neighbour of w, since 
v − w ∈ {− 1, 0}d. Note that the positive and negative neighbours do not partition the neighbours. 
For example, if d = 2, w = (− 1, 1), though a neighbour of v = (0, 0), is neither its positive or its 
negative neighbour. Moreover, every v is always both a positive and a negative neighbour of itself.

The concept of the positive neighbours allows the definition of three useful derived voxel sets 
from every finite voxel set V ⊂ Zd. We define the cover V+ of V as

V+ = {v + e : v ∈ V, e ∈ {0, 1}d} =


v∈V

{v}+ 

the set of all voxels in V and their positive neighbours. The interior V− of V is

V− = {v ∈ V : v + e ∈ V for all e ∈ {0, 1}d}.

the set of all v ∈ V that only have positive neighbours in V. Finally, the shave of V is V0 = V \ V−. 
This is the ‘positive edge’ of V, the set of voxels in V that have at least one positive neighbour out-
side V. These three derived voxel sets will allow us to rewrite the k-separator problem into a tiling 
problem.

5.4 Tiling
To calculate sk(V), we are interested in k-separators, defined as voxel sets R ⊆ V with the property 
that χV\R ≤ k. The value of sk(V) is the minimum |R| over all k-separators. In this section, we will 
show that minimising |R| over all k-separators is equivalent to minimising a function 
tk(T1, . . . , Tn) over all tilings T1, . . . , Tn of V+. The latter will turn out to be an easier problem 
formulation to work with.

Define a tiling of V+ as a collection of pair-wise disjoint voxel sets T1, . . . , Tn, called tiles, such 
that 

n
i=1 Ti = V+.Note that every two distinct tiles from a tilling are disjoint as sets but their vox-

els may induce a connected graph. Given a tiling T1, . . . , Tn of V+, we will be interested in the 
function

tk(T1, . . . , Tn) =
n

i=1

|T0
i ∩ V| +

n

i=1

(|T−
i ∩ V| − k)+, (10) 

where (·)+ is the positive part function. This function is the link between tilings and k-separators, 
as the following two lemmas state.
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Lemma 3 For every tiling T1, . . . , Tn of V+ there exists a k-separator R of V such that

|R| = tk(T1, . . . , Tn).

Lemma 4 For every k-separator R of V there exists a tiling T1, . . . , Tn of V+ such that 
T1, . . . , Tn are clusters, and

|R| ≥ tk(T1, . . . , Tn).

To get some intuition why these lemmas are true, it is helpful to consider a property of 
neighbours and positive neighbours proven as Lemma 9 in the online supplementary material, 
Section A: two voxels are neighbours if and only if they have a common positive neighbour. It fol-
lows that voxel sets V and W are disconnected if and only if V+ and W+ are disjoint. It is this con-
nection between disconnectedness of sets and simple disjointness of slightly larger sets that is 
exploited in Lemmas 3 and 4. Loosely, if R cuts V as V \ R = C1 ∪ . . . ∪ Cn, with C1, . . . , Cn pair- 
wise disconnected, then C+

1 , . . . , C+
n ⊆ V+ are pair-wise disjoint tiles. Vice versa if T1, . . . , Tn ⊆ 

V+ are pair-wise disjoint tiles, then their interiors T−
1 , . . . , T−

n ⊆ V are pair-wise disconnected; 
if these interiors are of size a most k, then R = (T0

1 ∪ . . . ∪ T0
n) ∩ V separates V. We illustrate 

the link between k-separator and tiling with an example in Figure 2.
Combining Lemmas 3 and 4, it follows that minimising |R| over all k-separators is equivalent to 

minimising tk(T1, . . . , Tn) over all tilings. We formulate this result as a theorem.

Theorem 3 We have

sk(V) = min {tk(T1, . . . , Tn) : T1, . . . , Tn is a tiling of V+}.

The minimum is attained for a tiling for which T1, . . . , Tn are all clusters.

Theorem 3 rewrites the k-separator problem but does not simplify it. There is no obvious way to 
minimise tk(T1, . . . , Tn) in polynomial time. However, we will exploit this theorem in the next 
three sections to construct a lower bound to sk(V), and a heuristic approximation to it.

Figure 2. Illustration of a k-separator and a corresponding tiling, with d = 2 and k = 10. The voxel set V comprises of 
all black voxels (open and filled). The set V + comprises of V and all the grey voxels (open and closed). The k-separator 
R is the set of all filled black voxels. The corresponding tiling is indicated by the lines. All filled voxels are part of the 
shave T 0 for their respective tile T; open voxels are part of the interior T −.
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5.5 A lower bound
First, we construct a lower bound to sk(V). Replacing sk(V) by its lower bound in Theorem 1 re-
tains the TDP guarantee implied by that theorem. As a consequence, the lower bound will be a 
shortcut to the closed testing procedure: it retains the guarantee on the TDP, but sacrifices some 
inferential power for computational reasons. We will derive this shortcut in two stages. First, in 
this section, we will calculate a shortcut with O(|V|) time complexity. Next, in Section 5.6, we 
will construct a more powerful shortcut in O(|V|1+1/d) time.

The rationale behind the shortcut is that to minimise the expression (10) we should favour tiles 
T with |T− ∩ V| ≤ k, since for such tiles the second term of equation (10) disappears. For such tiles, 
minimising t amounts to finding tiles T with as small as possible edge ratio |T0|/|T|. However, if 
|T−| ≤ k, the edge ratio is bounded from below by the most efficient such ratio possible. This op-
timal edge ratio rk can be used to bound sk(V). We formulate this result as Theorem 4.

Theorem 4

sk(V) ≥ rk · |V
+| − |V+ \ V|, 

where

rk = min {|V0| / |V| : ∅ ≠ V ⊂ Zd, |V−| ≤ k}. (11) 

Define sk(V) = rk · |V+| − |V+ \ V|. How can we interpret this lower bound? We see that sk(V) is 
large if its size |V| is large relative to the size |V+| of its cover. It takes large values therefore for 
large and compact V, and small values for smaller or irregular sets V. The calculation of rk is given 
in Lemma 5. We plot rk for k = 1, . . . , 100 and d = 2, 3, 4 in Figure 3.

Lemma 5 If k = 0, we have rk = 1. If k > 0, we have

rk = min
1≤j≤k

fd,j − j
fd,j

, 

where fd,k = 0 if d = 0 or k = 0, and, for d > 1, we have recursively

fd,k = b+
d,k + fd−1,k−bd,k

.

Here,

bd,k = ⌊k1/d⌋
 d−ld,k

⌊k1/d⌋ + 1
 ld,k

, 

and

b+
d,k = ⌊k1/d⌋ + 1

 d−ld,k

⌊k1/d⌋ + 2
 ld,k

, 

where

ld,k =
log (k) − d log (⌊k1/d⌋)

log (⌊k1/d⌋ + 1) − log (⌊k1/d⌋)

 

.

In the example object of Figure 2, we find from Lemma 5 that with d = 2 and k = 10 we have 
rk = 7/16. With |V| = 84 and |V+| = 118, we get sk(V) = 17.6, so sk(V) ≥ 18.
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5.6 Pruning
Irregularly shaped objects V have low sk(V). It can therefore pay to prune V to V′ ⊆ V in order to bound 
sk(V) from below by sk(V′) ≤ sk(V′) ≤ sk(V). We will use this to get an improved bound on sk(V).

Suitable choices are V′ = (V−)+, V′′ = (((V−)−)+)+, etc., which prune away increasingly broad ex-
tremities of V. We illustrate V′ in Figure 4. In this example, we have |V′| = 78, |(V′)+| = 106, and 
we find sk(V′) = 18.4, so sk(V) ≥ 19. Further pruning to V′′ leads to |V′′| = 69 and |(V′′)+| = 92 for 
sk(V′′) = 17.3 (see figures in the online supplementary material, Section C). Further pruning does not 
lead to better bounds. In any case, as Lemma 6 states, pruning more than |V|1/d times is never necessary.

Lemma 6 If i ≥ ⌊|V|1/d⌋, then V(i) = ∅.

Taking pruning into account, and using that sk(V) > 0 if |V| > k, we define the improved bound

šk(V) = 1{χV > k} ∨ max sk(V(i))
 

: i = 0, 1, . . . , |V|1/d
 

, 

where V(i) is obtained from V by performing the (·)− operation i times, followed by the (·)+ oper-
ation i times.

Taking everything together, the proposed procedure and its TDP guarantee property are sum-
marised in the following theorem, which proves that the lower bound is a shortcut to the closed 
testing procedure.

Theorem 5 For every V ⊆ M, let

a(V) =
n

i=1

škM
(Ci), 

where C1, . . . , Cn are disconnected clusters such that C1 ∪ · · · ∪ Cn = V ∩ Z. 
Then, for all P ∈ Ω,

P(a(V) ≤ aP(V) for all V ⊆ M) ≥ 1 − α.
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Figure 3. The thresholds rk and r̃ k , defined in Theorem 4 and Lemma 8, respectively, as a function of the extent 
threshold k for dimensions d = 2, 3, 4.
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Computational complexity for sk(V), ignoring constants in d, is O(|V|), and for š(V) is 
O(|V|1+1/d), so that is also the computational complexity of a(V) if V is a supra-threshold cluster. 
For general V, complexity is the sum of the complexity of its comprising clusters, which is 
O(|V|1+1/d) in the worst case that V is a supra-threshold cluster.

It is easy to verify that the shortcut of Theorem 5 also retains the property of Theorem 2 that it 
uniformly improves classic cluster inference. Still, it sacrifices some power, since the lower bound 
šk(V) may be (much) smaller than sk(V). The difference between sk(V) and š(V) can be expected to 
be relatively large especially if |V|/k is small and if V is irregularly shaped.

5.7 Heuristic algorithms to minimise k-separators
The strength of the shortcut of the previous paragraph is its guaranteed TDP control, as expressed 
in Theorem 5. To obtain this control the shortcut sacrifices power in exchange for computational 
efficiency. In this section we present an alternative computational approach that aims to approxi-
mate sk(V) heuristically as closely as possible, instead of bounding it from below. The algorithm 
has two parts. First, a heuristic algorithm finds a good separator. Next, an attempt is made to find a 
local improvement of the solution using simulated annealing. The second phase of the algorithm 
uses Theorem 3.

The first heuristic algorithm finds clusterings with acceptable sizes of separator sets. The algo-
rithm consists of two phases: inferring an initial clustering, and improving regions consisting of a 
small number of neighbouring clusters. In the first phase, the algorithm starts from an empty clus-
tering. It generates a small number of candidate clusters, where the number is a small integer, usu-
ally between 1 and 10. Each candidate cluster is created starting from a randomly chosen available 
voxel by a sequence of insertions of adjacent voxels such that the induced size of its separator 
is kept small. Then, the best candidate cluster, i.e. the cluster with the separator’s minimal size, 
is inserted into the current clustering. The procedure is repeated until there is no space to insert 
a new cluster. The second phase consists of repetitions of local improvements. The algorithm ran-
domly takes a small number of neighbouring clusters, removes them from the current clustering, 
and applies a procedure similar to the first phase to find a better setting of clusters.

We follow up on the optimal heuristic separator using a simulated annealing algorithm, as fol-
lows. The separator of V is translated to a tiling of V+ according to Lemma 4. In each step, the 
algorithm chooses a random voxel v ∈ V+ and a random neighbour w ∈ V+ of v. If v and w are 
part of the same tile T with interior size |T− ∩ V| > k, the algorithm proposes to start a new tile 

Figure 4. Illustration of the pruning V ′ of the voxel set V from Figure 2. The voxel set V consists of all black voxels 
(open and filled); the set V + additionally comprises of the grey voxels (open and filled). The pruned set V ′ = (V −)+ 

consists of the filled black voxels, and its cover (V ′)+ of all filled grey voxels. We see that each voxel removed to 
obtain V ′ nets a reduction in size of two voxels for (V ′)+, resulting in a net gain in sk (V ′) relative to sk (V ), since 
rk ≤ 1/2.

1140                                                                                                                                            Goeman et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/85/4/1128/7218928 by M
ediSurf user on 20 June 2024



{v}; otherwise it proposes to reassign v from its old tile to the tile of w. If the target function t′ of the 
proposed tiling is lower than or equal to the target function t of the previous step, the proposal is 
always accepted. Otherwise, the proposal is accepted with a probability that is a decreasing func-
tion of t′ − t and of the current iteration number. After a maximum number of iterations is 
reached, the algorithm returns the best solution it found during its travels through the search 
space.

The first algorithm was implemented in C and the simulated annealing in Python. The algo-
rithms are usually invoked with a time limit setting. Pseudo-code for both heuristic algorithms 
are given in the online supplementary material, Section B.

The heuristic algorithms are not guaranteed to find the global minimum with a finite running 
time. If the algorithm did not find the correct solution, the value found is larger than the actual 
minimum sk(V), so there is no formal guarantee of TDP control comparable to Theorem 5. 
Still, the overstatement of sk(V) may often be less than the understatement of sk(V) due to the low-
er bound (4). The heuristic approach may therefore be the preferred solution in practice if compu-
tation time is not an issue and a small overstatement of TDP is acceptable.

5.8 Heuristic algorithm performance
A heuristic algorithm for a computationally hard problem cannot guarantee to find the optimal so-
lution. Also estimating the error of such approaches is usually a difficult task. One way to proceed is 
to use exact solution approaches such as exhaustive enumeration, dynamic programming, or integer 
linear programming formulations. However, in the case of intractable problems, they can only be ap-
plied to small instances. Here, we propose a different approach. First, we show that some instances of 
the k-separator problem are tractable by showing their exact solution. Next, to estimate an error of 
the heuristic algorithm given the input consisting of multiple data sets, we generate a number of tract-
able instances matching properties of the input and jointly apply the heuristic algorithm under the 
same parameter setting. Finally, knowing the exact solution of tractable instances, we can estimate 
the solution error of the input data sets. The main result is formulated below in Lemma 7

Lemma 7 Let k = nd and c be a vector of d positive integers. If the dimensions of a hyper-
rectangle R are (n + 1)ci − 1 for i = 1, . . . , d, then the bound of Theorem 4 is 
exact, so that the optimal k-separator of R has |R| − ndΠci voxels.

Since our algorithm is not utilising the information on the shape of the input voxel sets, nor the 
clusters are formed as cubes in the sampling, we believe that the benchmark of correctness based 
on hyperrectangles is a good indicator of how scores from the heuristic differ from the optimal 
ones.

To estimate the error of the heuristic algorithm, we inferred a collection of hyperrectangle tests 
based on the three-dimensional data sets from the Neurovault repository (see Section 10). Our 
goal was to cover the whole range of k values and data sets sizes from the input repository. 
Therefore, we set k bounded above 1,000, and the hyperrectangle, i.e. cuboid, sizes to maximum 
18,000 voxels. Being consistent with the notation from Lemma 7, each test is uniquely determined 
by four integer parameters n, c1, c2, c3 ≤ 10, where k is n3, and the corresponding cuboid has di-
mensions (n + 1)ci − 1, for each i. After rejecting too large cuboids, we obtained 1,064 tests, which 
enlarged the input repository by nearly 9%.

The experiment indicated that nearly 50% of tests were completed with no error, and the worst 
errors of 5%–6% has only ∼ 5% of tests. A more detailed summary is depicted in Figure 5 with 
boxplots of errors for each value of k, where the 0% represents no error. The results obtained 
on cuboid tests indicate that the sizes of separators inferred by our heuristic algorithm are optimal 
in nearly half of the cases. For the rest of the cases, the error is usually below 4% with high con-
fidence and the median error is below 2%.

6 Choosing thresholds
6.1 Voxel-wise inference
An alternative to cluster-extent inference is classic voxel-wise inference. In voxel-wise inference, 
FWER is controlled over all voxel-wise null hypotheses. This is achieved by finding the 
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(1 − α)-quantile of the distribution of the maximal z-score under the global null hypothesis HM, 
and rejecting the null hypothesis whenever a voxel’s z-score exceeds this threshold. Although 
cluster-extent inference is often contrasted sharply with voxel-wise inference, suggesting that these 
are two very different modes of operation. It was noted by Poline et al. (1997) and Friston et al. 
(1994) that classic voxel-wise inference is simply a special case of cluster-extent inference, ob-
tained by choosing kM = 0. It follows that we can get a TDP per cluster from voxel-wise inference.

In classic voxel-wise inference, we reject Hv for all voxels v ∈ Z = {v ∈ M : zv ≥ z}, where z is 
chosen as the smallest value such that

P(|M ∩ Z| > 0) ≤ α (12) 

holds for all P ∈ HM. It has been shown (Friston et al., 1991; Worsley et al., 1992) that voxel-wise 
inference controls voxel-wise FWER, i.e. for all P ∈ Ω,

P(Z ⊈ AP) ≤ α.

We can embed voxel-wise inference into the closed testing procedure we have constructed by re-
marking that |M ∩ Z| > 0 if and only if χM∩Z > 0. Therefore, equation (12) is equivalent to

P(χM∩Z > 0) ≤ α, 

which is simply equation (2) with kM = 0, and the latter is a valid choice for kM. The closed testing 
procedure resulting from this choice is a relatively simple one, as the following theorem states.

Theorem 6 If kM = 0, then for all V ⊆ M we have

a(V) = ǎ(V) = a(V) = |V ∩ Z|.

The theorem says how to calculate TDP for clusters when doing voxel-wise inference: the TDP 
lower bound for a set V is simply the fraction of voxel-wise significant voxels among the voxels in 
V. Supra-threshold clusters obtained with kM = 0 always have a TDP of 100%.

6.2 Choosing kM

Cluster-extent inference assumes that z and kM are chosen in such a way that equation (2) holds. It 
is common in cluster-extent inference to fix the z-score threshold z, and to calculate kM as the 

Figure 5. Upper bound heuristic performance: a boxplots of errors as a percentage of the true k-separator. Note that 
all errors are overestimates by construction.
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smallest value such that equation (2) is satisfied (Friston et al., 1994). However, we saw in the pre-
vious section that the order is reversed in voxel-wise inference: there kM = 0 is fixed, and z is chosen 
as the smallest value of z satisfying equation (2). In this section, we argue that the order of fixing kM 

calculating z should be generally preferred, both from the perspective of power and obtaining a 
good TDP bound.

It is perfectly valid to choose kM first, and to find a value of z that corresponds to this kM, as 
previously proposed by Bullmore et al. (1999). The relationship between z and kM depends 
only on the null model HM, and not on the observed z-scores. For cluster inference based on ran-
dom field theory, the relationship between z and kM depends on the smoothness of the field, which 
is estimated from the independent residuals. For cluster inference based on permutations, kM is 
calculated from the matrix of all permutation z-scores, and can be calculated without knowing 
which permutation corresponds to the real data. We present a fast algorithm for finding z based 
on kM using permutations in the online supplementary material, Section E.

It is generally (slightly) more powerful to choose kM rather than z. The reason for this is that kM 

is discrete, while z is continuous. When fixing z and calculating kM there is almost always a smaller 
value of z that would result in the same value of kM. Using this value instead of the previously chos-
en z would result in a uniformly more powerful method but still controls TDP, since equation (2) 
still holds. We may therefore, after choosing z and finding kM, always re-calibrate our z.

Alternatively, we may simply choose kM and find z as the smallest value such that equation (2) 
holds, as is done in voxel-wise inference. This has the important advantage that the achievable 
TDP can be better controlled.

7 Upper bounds
In this section, we present two upper bound results that impose hard limits on the TDP that can be 
achieved with closed testing based on cluster-extent inference. The first bound, in Section 6.2, limits 
what can be achieved using the lower bound; this result helps to choose the settings of that method. 
The second bound, in Section 7, limits what can be achieved in terms of TDP by the full closed pro-
cedure (6). Since closed testing procedures can only be uniformly improved by improving their local 
tests (Goeman et al., 2021), and that the room for such improvements is limited if equation (2) is tight, 
this sets a limit on the potential of any method that is consistent with classic cluster extent inference.

The maximal achievable TDP from the shortcut can be calculated as a function of kM and cluster 
size |C| by the following theorem.

Theorem 7 For every cluster C ⊆ Z, we have

a(C) ≤
rkM

− r|C|
1 − r|C|

· |C|
 

∨ 1{|C| > kM}.

By Theorem 7, to achieve a TDP of γ, for some γ > 1/kM, we need a cluster C with

r|C| ≤
rkM

− γ
1 − γ

.

The maximal TDP according to a for different values of kM and different cluster size |C| is given in 
Figure 6. Since r|C| → 0 as |C| →∞, the TDP lower bound a(C)/|C| achieved by the shortcut of 
Theorem 5 is at most rkM 

for very large clusters, and much smaller than that for small and irregular 
clusters. The maximal TDP values converge to rk as the cluster size increases. Clusters may achieve 
the maximal TDP if they are highly compact. Irregular clusters tend to have (much) smaller TDP.

We see from Figure 6 that, with large values of kM, it is difficult or even impossible to achieve 
good TDP even for large clusters, so a small value of kM is recommended if large TDP is desired. 
Assuming that we are interested in finding clusters with TDP ≥ 1/2, a sweet spot with d = 3 seems 
to be kM = 14, for which rkM

= 2/3. To achieve TDP ≥ 1/2, clusters need to have r|V| ≤ 1/3, which 
implies |V| ≥ 339.
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For ǎ(V) we have a weaker bound ǎ(V) ≤ r̃kM
· |V|, from Lemma 8, below, that bounds TDP by 

r̃k ≈ rk. The value of r̃k is illustrated in Figure 3 in Section 5.5. This bound suggests that also when 
using the heuristic approximation to the k-separator problem, a researcher would want to use a 
value of kM that yields r̃kM 

substantially above the target TDP, e.g. getting a TDP over 0.5 is im-
possible if kM > 64, and remains unlikely unless kM is substantially smaller than 64, since the 
bound of Lemma 8 is not very tight.

Lemma 8 We have sk(V) ≤ r̃k · |V|, where r̃k = (b+
d,k − bd,k)/b+

d,k.

Note that bd,k and b+
d,k are defined in Lemma 5.

Theorem 7 and Lemma 8 give upper bounds for the shortcuts to the closed testing procedure. 
Such bounds are useful for researchers intending to use these shortcuts. We can also consider 
an upper bound to the full closed testing procedure (7) itself, given below in Theorem 8. This 
bound is of fundamental and practical interest, as we will explain.

Theorem 8 Let a(V) = skM\Z
(V ∩ Z), then, for every V ⊆ M,

a(V) ≤ a(V).

In the proof of this theorem in the online supplementary material (Section A), we will prove a 
slightly tighter bound. Note the similarity of a(V) with ǎ(V), the only difference being that kM 

is replaced by kM\Z. This difference will be small unless |Z| is large relative to |M|.
Practically, Theorem 8 can be used to bound the loss a(V) − a(V) of the shortcut a(V) relative to 

the full closed testing procedure a(V). It limits the potential for further computational improve-
ments. In practice, unless |Z| is large relative to |M| we will have kM ≈ kM\Z, so that 
ǎ(V) ≈ a(V), and ǎ(V) ≈ a(V).

More fundamentally, we can combine Theorem 8 with the insights from Goeman et al. (2021). 
We have constructed a(V) as the unique closed testing procedure induced by cluster-extent infer-
ence. By Goeman et al. (2021) closed testing procedures are optimal, so there is no room for im-
provement of the method outside the closed testing framework. Moreover, improvement within 
the closed testing framework is limited to improvement of the local test, and there is hardly 
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Figure 6. The maximal true discovery proportion (TDP) according to the shortcut a(V ), defined in Theorem 5, as a 
function of the extent threshold kM and cluster size, for dimensions d = 3.
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room for that if z and kM are optimised for equation (2). It follows that Theorem 8 gives a clear 
upper bound to the TDP arising from any method that is based on cluster-extent thresholding. 
Any method that achieves the result of Theorem 2 would also be constrained by the result of 
Theorem 8.

8 Simulation
In this section, Monte Carlo simulation is conducted to demonstrate the validity of our proposed 
methods, to investigate the tightness the TDP, and to see the gap between the upper and lower TDP 
bounds.

8.1 Set-up
Two-dimensional images, each with 128 × 128 pixels, were simulated. Two spatial signal config-
urations were considered, shown in Figure 7: (1) a focal configuration with a single large circle of 
signal in the middle and (2) a distributed configuration with nine small circular regions of signal 
spread out. The number of pixels with signal was 716 for both configurations. The simulated im-
ages were created by filling each pixel with spatially correlated noise, starting from i.i.d. standard 
Gaussian noise and smoothing with a spatial Gaussian smoothing kernel with full width at half 
maximum (FWHM) of four pixels, i.e. with σ = 1.7 pixels. Signal was added according to the chos-
en configuration at a fixed signal amplitude of d = 0.1 and d = 0.05, respectively. We considered 
20 sample sizes n between 10 and 200 with an increment of 10, and a total of 1,000 images were 
generated for each simulation setting. We calculated z-scores for each voxel using a one-sample 
t-test. Clusters of interest were defined as all connected components of Z as defined in 
Section 3, using z-score thresholds z = 0.348 ×

��
n
√

for each sample size n.
To calculate the kM threshold at α = 0.05 fulfilling equation (2), we simulated a second inde-

pendent null field without signal for each combination of each sample size and threshold, 
smoothed in the same way. We calculated kM as the 95% quantile of the empirical distribution 
of the maximum cluster size in this null field. Clusters of size kM or smaller were discarded in ac-
cordance with standard practice. Subsequently, the TDP bound was calculated using both the 
heuristic algorithm of Section 5.7 and the lower bound of Theorem 5.

8.2 Results
Figure 8 shows the average size of the clusters found as a function of sample size. To be precise, we 
calculate the total volume 


|Ci| for all significant clusters, i.e. clusters Ci ⊆ Z for which a(Ci) > 0. 

The figure displays this 100 times this volume divided by true signal volume |AP|.
The figure shows a qualitative difference between the two signal amplitudes. At the high amp-

litude (d = 0.1) the clusters are consistent for the signal, with clusters converging to the true signal 
as the sample size increases. In contrast, at the low amplitude the clusters capture a vanishing frac-
tion of the true signal.

Figure 9 shows the error rate of the method, which is well controlled at α = 0.05 for all settings. 
The lower bound is conservative for large and for small sample sizes, while the heuristic algorithm 
is only conservative for large sample size. We explain this for small sample size by the compactness 

Figure 7. Two-dimensional simulated signal illustration. Focal signal (left) with one large circle in the middle; 
distributed signal (right) with nine identical circular regions.
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of the chosen signal regions, for which the lower bound method tends to underestimate TDP. For 
large sample size, conservativeness is due to discreteness of kM, so that the α-level in equation (2) is 
not exhausted. The heuristic algorithm also controls its error rate quite well in this simulation, des-
pite the lack of a theoretical guarantee.

Figure 10 shows the TDP bounds found by the method. Displayed is the average value of the 
TDP over all significant clusters, i.e. over all clusters with TDP > 0. Note that the number of 
such clusters is much smaller for the low signal amplitude setting than for the high amplitude set-
ting, and much larger for the distributed configuration of signal than for the focal one. We see that 
in all settings the TDP of significant clusters goes to 1 as sample size increases. This is because the 
value of kM decreases with the sample size, eventually reaching kM = 0. The difference in TDP be-
tween the lower bound and the heuristic algorithm is appreciable but not overly large, almost 
never exceeding 10%.

9 Application: HCP n-back task revisited
We illustrate the use of the new method using a more extensive analysis of the data set introduced 
in Section 2.

A z-score threshold z and cluster-extent threshold kM can be defined in any way that satisfies 
equation (2); that is, fixing one threshold, the smallest value of the other still satisfying equation 
(2) can be calculated. We present the permutation-based thresholds in this section, using the fast 
algorithm for finding z as a function of kM using permutations given in the online supplementary 
material, Section E. For comparison, the analysis with thresholds based on random field theory is 
given in the online supplementary material, Section F.

We present two alternative permutation-based analyses. First, we fixed z = 3.1, which corre-
sponds to kM = 72 in these data (Table 2). Next, we fixed kM = 14 and calculated the correspond-
ing z-threshold z = 3.7 (Table 3). Nonsignificant supra-threshold clusters were not displayed. The 
TDP bounds for relevant overlapping anatomical regions are also displayed. The clusters A to F in 
Table 2 are the same as in Table 1 and are visualised in Figure 1. A visualisation of the clusters in 
Table 3 are given in the online supplementary material.

TDP was calculated both using heuristic algorithms and using the lower bound of Theorem 5. 
Our heuristic algorithms were run for several hours on a cluster to produce these results, and we 
believe that these results are sufficiently close to the true minimum. Shorter running times of 20– 
60 s would give TDP results up to only 5% higher than the reported values. Comparing the heur-
istic results and the lower bound, the lower bound was closest to the heuristic solution for large 
clusters and small kM, as expected from the theory.
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Figure 8. Average cluster sizes (expressed in percent of the true value) for focal (purple) and distributed (green) 
signals with the amplitudes of d = 0.1 (dashed line) and d = 0.05 (solid line).
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Comparing the z = 3.1 and kM = 14 settings, the results clearly show a trade-off between detec-
tion and TDP. The lower cluster-extent threshold kM, that corresponds to a higher z-threshold, 
returns smaller clusters with larger TDP, while the high kM results in larger clusters with smaller 
TDP. For anatomical regions it is not a priori clear whether larger TDP would be found with high 
or low values of kM. In this data set, increased TDP bounds were perceived when kM was small, i.e. 
when the z-threshold was large. Corresponding anatomical regions of the clusters were identified 
using the Harvard–Oxford cortical structural atlas and MNI structural atlas as available in FSL 
(Jenkinson et al., 2012).

10 Application: Neurovault
Next, we applied the new algorithm to a selection of 818 data sets from the Neurovault database 
(neurovault.org; Gorgolewski et al., 2015). The Neurovault database consists of unthresholded 
maps from neuroimaging studies. We selected 818 representative functional MRI data sets con-
taining group-level statistics maps. For the calculation of clusters we used two settings: a standard 
z-threshold of z = 3.1, and a k-threshold of kM = 14. The corresponding kM- and z-thresholds, re-
spectively, were estimated using Gaussian Random Field Theory (Forman et al., 1995). As residual 
data were unavailable, we estimated smoothness of the random field on the z-statistics image. The 
z = 3.1 setting produced values of kM ranging from 71 to 507 (1st and 9th decile). Details of the 
selected images and estimation procedures can be found in the online supplementary material, 
Section D.

For each data set we estimated the TDP of each supra-threshold cluster obtained using z = 3.1 
and kM = 14. We then calculated for each TDP value how many supra-threshold voxels with at 
least that TDP were significant on average across all data sets. This allows us to visualise the re-
lationship between the size of the clusters detected and the TDP of those clusters for different 
methods. We plot the theoretical lower bound of both methods (according to Theorem 5), and 
the solution as estimated using the heuristic methods. For reference we also calculated the number 
of voxels above the Gaussian random field voxel-wise threshold (equivalent to a kM = 0 setting).

Figure 11 shows the results of the analysis across all data sets. It displays, for each mimimal TDP 
γ, the total volume 


|Ci| for all clusters Ci ⊆ Z for which a(Ci) ≥ γ (‘lower’), and a(Ci) ≥ γ 

(‘upper’). As can be seen the z = 3.1 setting (purple) leads to larger cluster sizes but with low 
TDP’s. For kM = 14 (green), the size of the clusters with low TDP’s is smaller, but there are 
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Figure 9. Estimated family-wise error rates (FWERs) for focal (purple) and distributed (green) signals with the 
amplitudes of d = 0.1. The red dotted horizontal lines represent the binomial confidence intervals for FWER at α = 
0.05 (solid horizontal line). Shown are the results for lower bound (solid line) and upper bound (dashed line) based on 
the heuristic algorithm. The results for d = 0.05 (not shown) are almost identical, since the same realisation of the 
noise field was used for both simulations.
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more clusters with a more reasonable (albeit still relatively small) TDP. Both methods detect larger 
regions than voxel-wise inference (kM = 0, black line) at low TDP thresholds, but smaller regions 
at high TDP. The figure shows a clear trade-off between detection and TDP: at low kM settings, 
small regions are detected with large TDP; with high kM, larger regions are detected, but TDP is 
(much) lower.

We note that the estimation of the smoothness using the z-statistics rather than the residuals 
tends to overestimate the smoothness if there is much signal. As a result, it is likely that we 
have overestimated values of kM when z = 3.1 and overestimated z when kM = 14. The TDP results 
in Figure 11 are therefore likely an underestimate of what would be found if the full data sets 
would have been available.

11 Discussion
We have presented a uniform improvement of classic cluster inference that allows much more 
meaningful and informative inference to be obtained from that method. In the first place, the 
new method allows inference on anatomical regions of interest and data-driven supra-threshold 
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Figure 10. Average true discovery proportion (TDP) bounds for all significant clusters for focal (purple) and 
distributed (green) signals with the amplitudes of d = 0.1 (top) and d = 0.05 (bottom). Shown are the results for 
lower bound (solid line) and upper bound (dashed line) based on the heuristic algorithm.
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clusters within the same analysis. Moreover, regions of interest do not have to be specified before 
seeing the data. Secondly, rather than (only) a p-value, the new method provides a true discovery 
proportion for every brain region. By quantifying the spatial extent of activation within the brain 
region, the TDP is much more informative than the p-value, which only quantifies the evidence for 
the presence of any signal at all. TDP is also less prone to overinterpretation than the p-value. In 
the Neurovault analysis we have found many examples of brain regions with a seemingly impres-
sive p < 0.001 that had unremarkable TDPs of 20% or less. We recommend that TDP is always 
reported with (or even instead of) the p-value in fMRI cluster inference.

Despite making these additional inferences, error control remains as strict as with classic cluster 
inference: with probability at least 1 − α no regions get an estimated TDP that is larger than the 
true value. To guarantee this error control, the method does not require any additional model as-
sumptions. It can assume either that the z-scores of inactive voxels follow a Gaussian random field 
or that they are invariant under permutations.

Inference on brain regions in terms of TDP can be said to solve the Spatial Specificity Paradox 
(Woo et al., 2014), but by doing so it makes the same paradox painfully visible. At the usual setting 
with a cluster-forming threshold of z = 3.1 most significant brain regions have a TDP less than 
20%–30%. Our analyses have made it clear that there is a trade-off involved in choosing the 

Table 2. Results for supra-threshold clusters, defined by the cluster-forming z-threshold of Z > 3.1 and the resulting 
minimal cluster-extent threshold kM = 72 based on permutation

Cluster Anatomical region Location

ZmaxID Size TDP LB Region Size Overlap TDP LB x y z

A 8,870 0.368 0.265 MFG 18,250 4,049 0.082 0.061 44 72 60 8.87

FP 33,571 2,021 0.020 0.013

IC 6,591 564 0.025 0.016

B 8,526 0.402 0.307 sLOC 27121 5,142 0.069 0.049 19 42 61 9.51

AG 13,689 4,260 0.117 0.089

pSMG 14,829 3,804 0.097 0.074

Precuneous 18,119 2,491 0.051 0.037

C 7,956 0.332 0.201 Cerebellum 39,724 6,551 0.057 0.037 63 33 20 9.20

D 6,652 0.372 0.265 MFG 18,250 4,035 0.083 0.061 31 67 64 9.73

FP 33,571 2,587 0.026 0.018

IC 6,591 589 0.026 0.017

E 350 0.191 0.037 pMTG 11,420 310 0.006 0.001 15 46 28 5.18

tMTG 9,735 271 0.005 0.000

F 100 0.140 0.010 Cerebellum 39,724 100 0.000 0.000 49 35 10 6.56

Total 32,454 0.367 0.257 MFG 18,250 8,084 0.165 0.122

Cerebellum 39,724 6,651 0.058 0.037

sLOC 27,121 5,142 0.069 0.049

FP 33,571 4,608 0.046 0.031

AG 13,689 4,260 0.117 0.089

pSMG 14,829 3,804 0.097 0.074

Precuneous 18,119 2,491 0.051 0.037

IC 6,591 1,153 0.051 0.033

pMTG 11,420 310 0.006 0.001

tMTG 9,735 271 0.005 0.000

Note. The results from the heuristic algorithms are indicated by true discovery proportion (TDP), the lower bound of 
Theorem 5 by LB.
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cluster-forming threshold. Low thresholds result in many large clusters but with low TDP; higher 
thresholds have less detection power but much higher TDP. In the extreme, voxel-wise inference 
was shown to be a special case of cluster-extent inference that always returns a TDP of 100%. In 
order to obtain TDP substantially higher than a reasonably minimal threshold of 50%, we recom-
mend cluster thresholding with kM = 14 or less, resulting in much larger z-thresholds than usually 
recommended in the field (Eklund et al., 2016).

Computationally, the calculation of the TDP involves solving a k-separator problem. We pre-
sented two solutions to this problem: the lower bound retains the error control guarantee but is 
conservative; the heuristic solution is more accurate, but at the cost of losing error control if the 
method does not fully converge. Together, the two algorithms can be used to bracket the TDP 

Table 3. Results for supra-threshold clusters, defined by cluster-extent threshold kM = 14 and the resulting 
cluster-forming z-threshold of Z > 3.7, based on permutation

Cluster Anatomical region Location

ZmaxID Size TDP LB Region Size Overlap TDP LB x y z

1 7,231 0.606 0.532 sLOC 27,121 4,293 0.091 0.078 19 42 61 9.51

Precuneous 18,119 2,123 0.067 0.058

2 6,899 0.577 0.487 MFG 18,250 3,224 0.102 0.087 44 72 60 8.87

SFG 18,946 2,880 0.085 0.073

PCG 9,245 1,558 0.096 0.084

IC 6,591 494 0.040 0.034

3 5,345 0.546 0.438 Cerebellum 39,724 4,840 0.067 0.054 63 33 20 9.20

4 5,143 0.575 0.487 MFG 18,250 3,285 0.104 0.089 31 67 64 9.73

FP 33,571 1,893 0.031 0.026

SFG 18,946 1,745 0.052 0.043

5 202 0.391 0.158 OP 15,486 156 0.004 0.001 39 22 36 5.72

ICC 7,134 110 0.006 0.003

6 128 0.375 0.148 pMTG 11,420 128 0.004 0.002 15 46 28 5.18

7 66 0.379 0.182 Cerebellum 39,724 66 0.001 0.000 49 35 10 6.56

8 61 0.361 0.115 FP 33,571 61 0.001 0.000 31 86 29 5.77

9 56 0.321 0.143 FP 33,571 56 0.001 0.000 57 88 29 5.16

10 39 0.308 0.103 OP 15,486 39 0.001 0.000 51 15 42 5.35

11 22 0.182 0.045 Thalamus 4,602 17 0.000 0.000 43 53 43 4.55

12 21 0.095 0.048 Cerebellum 39,724 21 0.000 0.000 42 36 10 4.85

Total 25,213 0.573 0.482 MFG 18,250 6,509 0.206 0.176

Cerebellum 39,724 4,927 0.068 0.054

SFG 18,946 4,625 0.137 0.116

sLOC 27,121 4,293 0.091 0.078

Precuneous 18,119 2,123 0.067 0.058

FP 3,3571 2,010 0.032 0.026

PCG 9,245 1,558 0.096 0.084

IC 6,591 494 0.040 0.034

OP 15,486 195 0.004 0.001

pMTG 11,420 128 0.004 0.002

ICC 7,134 110 0.006 0.003

Thalamus 4,602 17 0.000 0.000

Note. The results from the heuristic algorithms are indicated by true discovery proportion (TDP), the lower bound of 
Theorem 5 by LB.
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lower confidence bound. We recommend the heuristic solution in practice provided enough com-
puting power is available.

Inference for neuroimaging in terms of TDP rather than p-values has been proposed by several 
authors before (Andreella et al., 2023; Blain et al., 2022; Rosenblatt et al., 2018; Vesely et al., in 
press). None of the proposed methods is expected to outperform any of the others uniformly 
(Goeman et al., 2021). A systematic and careful inventory should be performed to find out 
when to prefer which TDP methods with which tuning parameters. This large project is beyond 
the scope of this paper. In such a comparison, the method proposed in this paper will serve as 
an essential benchmark, representing the state-of-the-art of classic cluster analysis, which it is de-
signed to be consistent with.

Although motivated by brain imaging data and methods, the novel method we have proposed 
can easily be applied in any setting in which hypotheses are structured on a d-dimensional rect-
angular grid, and interest is on inference in regions rather than individual hypotheses.
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