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Abstract 

Background Clinical prediction models should be validated before implementation in clinical practice. But is favora-
ble performance at internal validation or one external validation sufficient to claim that a prediction model works well 
in the intended clinical context?

Main body We argue to the contrary because (1) patient populations vary, (2) measurement procedures vary, and (3) 
populations and measurements change over time. Hence, we have to expect heterogeneity in model performance 
between locations and settings, and across time. It follows that prediction models are never truly validated. This does 
not imply that validation is not important. Rather, the current focus on developing new models should shift to a focus 
on more extensive, well-conducted, and well-reported validation studies of promising models.

Conclusion Principled validation strategies are needed to understand and quantify heterogeneity, monitor perfor-
mance over time, and update prediction models when appropriate. Such strategies will help to ensure that prediction 
models stay up-to-date and safe to support clinical decision-making.

Keywords Risk prediction models, Predictive analytics, Internal validation, External validation, Heterogeneity, Model 
performance, Calibration, Discrimination

Background
Clinical prediction models combine multiple patient 
and disease characteristics to estimate diagnostic or 
prognostic outcomes. Such models emerge continu-
ously across a broad range of medical fields, often with 
the goal to guide patient risk stratification and to assist 
in making optimal decisions for individual patients. 

Prediction models need validation before implementa-
tion in clinical practice [1–3]. Internal validation refers 
to the validation of the model on the same patient pop-
ulation on which it has been developed, for example 
using a train-test split, cross-validation, or bootstrap-
ping [4]. Conversely, external validation  refers to the 
validation of the model on a new set of patients, usu-
ally collected at the same location at a different point 
in time (temporal validation) or collected at a different 
location (geographic validation) [5, 6].

Whereas internal validation focuses on reproducibil-
ity and overfitting, external validation focuses on trans-
portability. Although assessing transportability of model 
performance is vital, an external validation with favora-
ble performance does not prove universal applicability 
and does not justify the claim that the model is ‘exter-
nally valid’. Instead, the aim should be to assess perfor-
mance across many locations and over time, in order to 
maximize the understanding of model transportability. 

*Correspondence:
Maarten van Smeden
M.vanSmeden@umcutrecht.nl
1 Department of Development and Regeneration, KU Leuven, Leuven, 
Belgium
2 EPI-Center, KU Leuven, Leuven, Belgium
3 Department of Biomedical Data Sciences, Leiden University Medical 
Center, Leiden, Netherlands
4 Department of Epidemiology, CAPHRI Care and Public Health Research 
Institute, Maastricht University, Maastricht, Netherlands
5 Julius Center for Health Sciences and Primary Care, University Medical 
Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, 
Netherlands

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12916-023-02779-w&domain=pdf
http://orcid.org/0000-0003-1613-7450
http://orcid.org/0000-0002-7787-0122
http://orcid.org/0000-0002-3037-122X
http://orcid.org/0000-0002-5529-1541


Page 2 of 8Van Calster et al. BMC Medicine           (2023) 21:70 

Nevertheless, we argue that it is impossible to definitively 
claim that a model is ‘externally valid’, and that such ter-
minology should be avoided. We discuss three reasons 
for this argument.

Reason 1: patient populations vary
Description
When validating a prediction model on an external data-
set, patient characteristics are likely to be different than 
the characteristics of patients used for model develop-
ment, even if patients in the validation dataset satisfy the 
same inclusion and exclusion criteria. Healthcare sys-
tems include different types of hospitals or practices, 
and healthcare systems vary between countries or even 
regions. Therefore, notable differences in patient charac-
teristics (such as demographics, risk factors, and disease 
severity) between centers with similar inclusion and exclu-
sion criteria are the rule rather than the exception [7, 8]. 
Such differences tend to be larger between different types 
of centers (e.g., secondary versus tertiary care hospitals), 
or if the validation data uses different inclusion and exclu-
sion criteria. A prediction model that was developed in a 
tertiary care hospital may yield risk estimates that are inva-
lid for the typical population seen at a regional hospital, or 
even for tertiary care hospitals in another country [9].

Patient characteristics may not only vary on average, 
but also in their distribution. Populations with more 
homogeneous distributions (i.e., less dispersed) tend to 
have lower discrimination performance as measured 
for example by the c-statistic or area under the receiver 
operating characteristic curve. This is because in popula-
tions where patients are more alike, estimated risks from 
the model will also be more alike: it becomes harder to 
separate those at higher risk from those at lower risk [10].

Besides the discriminative performance, the calibra-
tion performance is a key factor in the validity of predic-
tion models. Calibration refers to the agreement between 
estimated risks from the prediction model and the cor-
responding observed proportions of events. A common 
miscalibration situation is that these estimated risks are 
too high or too low on average (poor “calibration in the 
large”). Furthermore, estimated risks may be too extreme 
(too close to 0 or 1) or not extreme enough (too far away 
from 0 or 1) compared to observed proportions [9]. Mis-
calibration can be detrimental to the medical decisions 
that are based on clinical prediction models [11, 12]. For 
example, if you would like to suggest biopsy when the risk 
of high-grade prostate cancer is at least 10%, you will per-
form many unnecessary biopsies when using a risk model 
that overestimates the risk. Hence, poor calibration is the 
Achilles heel for applicability of prediction models [9].

Examples
A recent multicenter cohort study externally validated 
prediction models to diagnose ovarian cancer [13]. 
Patients with an ovarian tumor were recruited at 17 
centers in 7 countries. Participating sites were classi-
fied as oncology centers (gynecologic oncology unit 
within a tertiary center) versus other centers. The mean 
patient age in the 9 largest centers (n ≥ 166) varied 
between 43 and 56  years, and the standard deviation 
varied between 14 and 19  years (Fig.  1). The median 
maximum lesion diameter varied between 49 and 
70 mm; the interquartile range varied between 38 and 
62 mm (Fig. 2). If we focus at oncology centers in Italy 
(top row in Figs.  1 and 2) in order to compare similar 
centers from the same country, we still observe differ-
ent distributions for these variables. Across the whole 
study sample, 26% of patients at oncology centers had a 
malignant tumor versus 10% at other centers. All mod-
els had higher c-statistics in oncology centers (c-statis-
tics varied between 0.90 and 0.95) versus other centers 
(0.85 and 0.93).

The Wang clinical model for in-hospital mortal-
ity in coronavirus disease 2019 patients was validated 
using individual participant data from 24 cohorts cov-
ering 16 countries [14]. Median cohort size was 283 
(range 25 to 25,056), mean patient age varied between 
45 and 71  years, the percentage of male patients var-
ied between 45 and 74%. Pooled performance estimates 
were 0.77 for the c-statistic, 0.65 for the observed over 
expected (O:E) ratio, and 0.50 for the calibration slope. 
The O:E ratio < 1 suggests that the model tends to over-
estimate the risk of in-hospital mortality. The calibra-
tion slope < 1 suggests that risk estimates also tend to 
be too extreme (i.e., too close to 0 or 1). Large hetero-
geneity in performance was observed, with 95% predic-
tion intervals of 0.63 to 0.87 for the c-statistic, of 0.23 
to 1.89 for the O:E ratio, and of 0.34 to 0.66 for the 
calibration slope. 95% prediction intervals indicate the 
performance that can be expected when evaluating the 
model in new clusters.

An external validation study of 104 prediction mod-
els for cardiovascular disease reported a median c-sta-
tistic of 0.76 for the models in their development data, 
compared to 0.64 at external validation [12]. When 
adjusting for differences in patient characteristics, 
the median c-statistic increased to 0.68. This suggests 
that about one third of the decrease in discrimination 
at external validation was due to more homogenous 
patient samples. This might be expected, given that 
clinical trial datasets were used for external validation, 
which often contain more homogeneous samples than 
observational datasets.
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Reason 2: measurements of predictors or outcomes 
vary
Description
Predictor and outcome measurements or definitions may 
vary for various reasons, distorting their meaning in a 
model. First, measurements may be done using equip-
ment from different manufacturers, with different speci-
fications and characteristics. Typical examples are assay 
kits to quantify biomarker expression, or scanners used 
to obtain medical images. Second, measurements may 
depend on a specific method or timing, such as the meas-
urement of blood pressure. Third, measurements may 
contain high degrees of subjectivity, such that the expe-
rience and background of the clinician plays a promi-
nent role. This may cause variable model performance 
depending on the individual doing the observation. 
Fourth, biomarker measurements may contain intra-
assay variation, analytical variation, and within-subject 
biological variation (including cyclical rhythms) [15, 16]. 
Fifth, clinical practice patterns, such as the timing and 

type of medication or laboratory test orders, tend to vary 
between clinicians and geographical locations [17, 18]. 
Such measurements are increasingly used in prediction 
modeling studies based on electronic health records.

Such heterogeneity in measurement procedures will 
affect model performance [19, 20]. Depending on how 
these measurements differ between development and val-
idation, the discriminative performance and in particular 
the calibration performance can be severely affected. In 
contrast to intuition, “better” measurements at valida-
tion, e.g., predictors measured under stricter protocols 
than in the development data, may not lead to improved, 
but instead to deteriorated performance of the prediction 
model [19, 20].

Examples
Using 17,587 hip radiographs collected from 6768 
patients at multiple sites, a deep learning model was 
trained to predict hip fracture [21]. The c-statistic on the 
test set (5970 radiographs from 2256 patients; random 

Fig. 1 Distribution of patient age in the 9 largest centers from the ovarian cancer study. Histograms, density estimates, and mean (standard 
deviation) are given per center
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train-test split) was 0.78. When non-fracture and frac-
ture test set cases were matched on patient variables (age, 
gender, body mass index, recent fall, and pain), the c-sta-
tistic for hip fracture decreased to 0.67. When matching 
also included hospital process variables (including scan-
ner model, scanner manufacturer, and order priority), 
the c-statistic for hip fracture was 0.52. This suggests that 
variables such as the type of scanner can inflate predic-
tions for hip fracture.

The Wells score calculates the pretest probability of 
pulmonary embolism in patients suspected to have the 
condition [22]. A variable in the model is “an alternative 
diagnosis is less likely than pulmonary embolism”. This 
variable is subjective, and is likely to have interobserver 
variability. Studies have indeed reported low kappa val-
ues for the Wells score (0.38, 0.47) and for the abovemen-
tioned subjective variable on its own (0.50) [23, 24].

A systematic review of prognostic models for delirium 
reported considerable variation in delirium assessment 
method and frequency across the 27 included studies 

[25]. Reported methods included the Confusion Assess-
ment Method (CAM), short CAM, Family CAM, Delir-
ium Rating Scale Revised 98, Nursing Delirium Screening 
Scale, Delirium Assessment Scale, Memorial Delirium 
Assessment Scale, Delirium Symptom Interview, ward 
nurse observation, and retrospective chart review. Fre-
quency varied between once to more than once per day. 
As a result, delirium incidence varied widely.

Seven expert radiologists were asked to label 100 chest 
x-ray images for the presence of pneumonia [26]. These 
images were randomly selected after stratification by 
classification given by a deep learning model (50 images 
labeled as positive for pneumonia, 50 labeled as negative). 
There was a complete agreement for 52 cases, 1 deviating 
label for 24 cases, 2 deviating labels for 13 cases, and 3 
deviating labels for 11 experts. Pairwise kappa statistics 
varied between 0.38 and 0.80, with a median of 0.59.

Wynants and colleagues evaluated the demographic 
and ultrasound measurements obtained from 2407 
patients with an ovarian tumor that underwent surgery 

Fig. 2 Distribution of maximum lesion diameter in the 9 largest centers from the ovarian cancer study. Histograms, density estimates, and median 
(interquartile range) are given per center
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[27]. Each patient was examined by one of 40 different 
clinicians across 19 hospitals. The researchers calcu-
lated the proportion of the variance in the measurements 
that is attributable to systematic differences between 
clinicians, after correcting for tumor histology. For the 
binary variable indicating whether the patient was using 
hormonal therapy, the analysis suggested that 20% of 
the variability was attributed to the clinician doing the 
assessment. The percentage of patients reporting the use 
of hormonal therapy roughly varied between 0 and 20%. 
A subsequent survey among clinicians revealed that cli-
nicians reporting high rates of hormonal therapy had 
assessed this more thoroughly, and that there was a disa-
greement of the definition of hormonal therapy.

In a retrospective study, 8 radiologists scored four 
binary magnetic resonance imaging (MRI) features that 
are predictive of microvascular invasion (MVI) on MRI 
scans of 100 patients with hepatocellular carcinoma [28]. 
In addition, the radiologists evaluated the risk of MVI on 
a five-point scale (definitely positive, probably positive, 
indeterminate, probably negative, definitely negative). 
Kappa values were between 0.42 and 0.47 for the features, 
and 0.24 for the risk of MVI. The c-statistic of the risk 
for MVI (with histopathology as the reference standard), 
varied between 0.60 and 0.74.

Reason 3: populations and measurements change 
over time
Description
Every prediction model is subject to an — usually implicit 
— expiration date [29]. In the fast-changing and develop-
ing world of medicine, patient populations, standards 
of care, available treatment options, and patient prefer-
ences, measurement and data registration procedures 
change over time [30]. Also, baseline risks for conditions 
are expected to change over time, for instance, because 
patient populations tend to become older due to longer 
life expectancies, or due to shifts in life style and die-
tary patterns, and the availability of more effective and 
tailored preventive measures and information. These 
changes in population characteristics over time are to be 
expected and may cause performance drifts of prediction 
models. For example, calibration drift has been well doc-
umented [31]. It is therefore increasingly recognized that 
prediction models need to be updated regularly [32].

A particularly difficult topic is that implementing a 
prognostic prediction model in clinical practice may 
invalidate model predictions [33]. The implementations 
of risk models often aim to identify patients in which 
interventions are most beneficial. If the implementation 
of the model leads to effective interventions in high-
risk patients, events will be prevented in a proportion 
of patients. The predictions of the model were derived 

under the absence of model-induced interventions, and 
may no longer be accurate; we never observe what could 
have happened without intervention. In addition, imple-
mentation of the model may improve the quality of the 
measurements of variables that are included as predictors 
in the model [34]. This should be beneficial as such, but 
the validity of predictions may be distorted.

Examples
Davis and colleagues developed prediction models for 
hospital-acquired acute kidney injury using data from 
patients who were admitted to Department of Veterans 
Affairs hospitals in the United States in 2003 [35]. The 
models were developed using different algorithms (e.g., 
logistic regression, random forest, neural networks), and 
were validated over time using similar data from patients 
admitted up to and including 2012. Although discrimi-
nation remained fairly stable, with c-statistics roughly 
around 0.75, there was clear evidence of calibration drift 
for all models: the risk of the event became increasingly 
overestimated over time. Accompanying shifts in the 
patient population were noted: for example, the inci-
dence of the event steadily decreased from 7.7 to 6.2%, 
age at admission increased, the proportion of patients 
with a history of cancer or diabetes increased, and the 
use of various medications increased.

EuroSCORE is a model that predicts in-hospital mor-
tality for patients undergoing cardiac surgery [36]. 
Using data on 317,292 cardiac surgeries performed in 
Great Britain and Ireland between 2001 and 2011, it was 
observed that EuroSCORE overestimated the risk of in-
hospital mortality, and that the overestimation aggra-
vated over time [36]. In the beginning of the study period, 
observed mortality was 4.1% whereas EuroSCORE had 
an average estimated risk of 5.6%. At the end, observed 
mortality was 2.8% but the average estimated risk was 
7.6%. The c-statistic showed no systematic deterioration, 
with values varying between 0.79 and 0.85. Furthermore, 
temporal changes were observed for several predictors 
(e.g., average age and prevalence of recent myocardial 
infarction increased) and surgical procedures (e.g., fewer 
isolated coronary artery bypass graft procedures). The 
authors further stated that surgeons may have been more 
willing to operate on patients due to improvements in 
anesthetic, surgical, and postoperative care.

Conclusions
We presented three reasons why prediction models are 
never truly validated. A single external validation study 
in a specific geographical location, in a single time frame, 
for a sample from a specific patient population is only a 
snapshot. Such a single study may provide relevant infor-
mation about the performance of the prediction model 
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in a specific setting with a particular measurement and 
time context, but cannot claim transportability beyond 
that setting. Based on such a study, it is inappropriate to 
conclude whether a model has been successfully ‘vali-
dated’. In addition, claims about validity are often based 
on simplistic criteria using the c-statistic as a measure of 
discrimination. For example, a model may be declared 
“validated” if the 95% confidence interval of the c-statistic 
at validation includes the point estimate of the c-statis-
tic that was originally reported, or if the obtained point 
estimate of the c-statistic exceeds a certain target value, 
such as > 0.7 or > 0.8 [37, 38]. Such criteria lack scientific 
underpinning.

The current focus on developing new models should 
shift to a focus on more extensive, well-conducted, and 
well-reported validation studies of promising models. We 
advise to embrace heterogeneity at model development 
and at external validation and provide the following gen-
eral recommendations [10, 39–45].

1) When developing a prediction model, consider the 
inclusion of multiple settings/locations such as by 
conducting a multicenter or an individual participant 
data study [40–42, 45]. Where possible, (a) quantify 
performance heterogeneity using internal–external 
cross-validation procedure, where each study is left 
out once [3, 46]; (b) standardize predictor variables 
in terms of definition or measurement protocol to 
reduce prediction measurement heterogeneity; (c) 
investigate operator-induced measurement variabil-
ity [27, 47]; and (d) consider to include an operational 
or population-level characteristic as a predictor (e.g., 
type of center [45]).

2) When validating a prediction model, inclusion of 
multiple settings or locations allows to study perfor-
mance heterogeneity across settings [10, 39, 43, 44].

3) Use appropriate statistical methodology and sample 
size for model development and/or validation stud-
ies, and report fully and transparently [48]. Follow the 
TRIPOD reporting guideline (Transparent Report-
ing of a multivariable prediction model for Individual 
Prognosis Or Diagnosis), including the newly avail-
able TRIPOD-Cluster extension where appropriate 
[49–52]. For example, all predictors should be defined, 
and the model itself should be made available to allow 
independent external validation studies [3].

4) Before implementing a model in a specific location, it 
is recommended to conduct a local validation study. 
Consider to monitor performance over time and to 
(dynamically) update the model, in particular when 
calibration is problematic [31, 32, 53].

We question the requirement from some journals 
that model development studies should include “an 
external validation”. Apart from the arguments pre-
sented above, this requirement may induce selective 
reporting of a favorable result in a single setting. But is 
it never good enough? Imagine a model that has been 
externally validated in tens of locations, representing a 
wide range of settings, using recent data. Discrimina-
tion and calibration results were good, with limited het-
erogeneity between locations. This would obviously be 
an important and reassuring finding. Even then, there 
is still no 100% guarantee that the prediction model will 
also work fine in a new  location. Moreover, it remains 
unclear how populations change in the future.

In practice, calibration is typically more vulnerable to 
geographic and temporal heterogeneity than discrimi-
nation [9, 12–14, 20, 35, 36, 44]. We stress that calibra-
tion assessment in the external validation sample is at 
least as important as discrimination [9]. If a calibration 
curve with a narrow 95% confidence interval is close to 
the ideal diagonal line, one may conclude that risk esti-
mates were appropriate at least for the specific context 
of the external validation study. For any performance 
criterion, a meaningful evaluation requires a sufficient 
sample size. Rules of thumb suggest that at least 100 to 
200 cases in the smallest outcome category are required 
for external validation studies [54, 55]. More refined 
sample size procedures for model validation have been 
proposed recently [48].

In conclusion, clinical prediction models are never 
truly validated due to expected heterogeneity in model 
performance between locations and settings, and over 
time. This calls for a stronger focus on validation stud-
ies, using principled validation strategies to quantify 
heterogeneity, regularly monitor model performance, 
and update models [31, 32]. Such strategies help to 
ensure that prediction models stay up-to-date to sup-
port medical decision-making.
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O:E  Observed over expected
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