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Mortality Prediction in Severe Traumatic Brain Injury
Using Traditional and Machine Learning Algorithms
Xiang Wu,1,** Yuyao Sun,2,** Xiao Xu,2 Ewout W. Steyerberg,3,4 Isabel R.A. Retel Helmrich,3 Fiona Lecky,5

Jianying Guo,2 Xiang Li,2 Junfeng Feng,6,7 Qing Mao,6,7 Guotong Xie,2,8,9,* Andrew I.R. Maas,10,11 Guoyi Gao,1,6,*
Jiyao Jiang6,7; and the CENTER-TBI Participants and Investigators

Abstract
Prognostic prediction of traumatic brain injury (TBI) in patients is crucial in clinical decision and health care
policy making. This study aimed to develop and validate prediction models for in-hospital mortality after
severe traumatic brain injury (sTBI). We developed and validated logistic regression (LR), LASSO regression,
and machine learning (ML) algorithms including support vector machines (SVM) and XGBoost models. Fifty-
four candidate predictors were included. Model performance was expressed in terms of discrimination
(C-statistic) and calibration (intercept and slope). For model development, 2804 patients with sTBI in the
Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI) China Registry study
were included. External validation was performed in 1113 patients with sTBI in the CENTER-TBI European
Registry study. XGBoost achieved high discrimination in mortality prediction, and it outperformed logistic
and LASSO regression. The XGBoost model established in this study also outperformed prediction models
currently available, including the International Mission for Prognosis and Analysis of Clinical Trials (IMPACT)
core and International Mission for Prognosis and Analysis of Clinical Trials (CRASH) basic models. When in-
cluding 54 variables, XGBoost and SVM reached C-statistics of 0.87 (95% confidence interval [CI]: 0.81-0.92)
and 0.85 (95% CI: 0.79-0.90) at internal validation, and 0.88 (95% CI: 0.87-0.88) and 0.86 (95% CI: 0.85-0.87) at
external validation, respectively. A simplified version of XGBoost and SVM using 26 variables selected by
recursive feature elimination (RFE) reached C-statistics of 0.87 (95% CI: 0.82-0.92) and 0.86 (95% CI: 0.80-
0.91) at internal validation, and 0.87 (95% CI: 0.87-0.88) and 0.87 (95% CI: 0.86-0.87) at external validation,
respectively. However, when the number of variables included decreased, the difference between ML and
LR diminished. All the prediction models can be accessed via a web-based calculator. Glasgow Coma Scale
(GCS) score, age, pupillary light reflex, Injury Severity Score (ISS) for brain region, and the presence of acute
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subdural hematoma were the five strongest predictors for mortality prediction. The study showed that ML
techniques such as XGBoost may capture information hidden in demographic and clinical predictors of pa-
tients with sTBI and yield more precise predictions compared with LR approaches.

Keywords: extreme gradient boosting; logistic regression; machine learning; prognostic model; traumatic brain
injury

Introduction
Traumatic brain injury (TBI) is the main cause of death

and disability in young adults worldwide, and it is reg-

arded as one of the conditions with the greatest health

care and economic impact in society.1 Prediction of out-

come in patients after TBI is crucial in clinical decision-

making and health care policy making. Patients with TBI

differ in demographic characteristics, pre-injury health,

cause of injury, injury severity, and clinical severity and

treatments; their outcomes are highly variable. The high het-

erogeneity of TBI poses challenges to outcome prediction.

Much effort has been applied to prediction modeling in

patients with TBI. The majority of previous models use

traditional statistical analyses, such as logistic regression

(LR). The two most widely validated prediction models

in TBI are the International Mission for Prognosis and

Analysis of Clinical Trials (CRASH) and the Inter-

national Mission for Prognosis and Analysis of Clinical

Trials (IMPACT) models.2 These models focus on mod-

eling a limited set of key predictors. However, they only

explain approximately 35% of variance in outcome.3

To improve the performance of the current models,

machine learning (ML) algorithms may be useful. ML

is a branch of artificial intelligence and is entering the

realm of clinical research at an increasing pace because

of a data explosion and increasing computational

power.4–7 It enables computer algorithms to learn from

experience, without explicitly being guided by humans.8

ML techniques provide new opportunities for better pre-

diction.9–12 However, when applied to patients with TBI,

no improvements were noted.13,14 Possible explanations

include that a rather limited set of key predictors was stud-

ied, and ML methods require large numbers of potential

predictors in large data sets to benefit from their greater

flexibility over traditional methods.

In this study we aimed to develop and validate models

to predict in-hospital mortality of patients with severe

TBI (sTBI). We compared with traditional LR model-

ing the performance of two commonly used ML models:

support vector machine (SVM) and extreme gradient

boosting (XGBoost).

Methods
Study population
This study included clinical data of 2804 patients with sTBI

(initial Glasgow Coma Scale [GCS] score £8) from the Col-

laborative European NeuroTrauma Effectiveness Research

in TBI (CENTER-TBI) China Registry and 1113 patients

with sTBI from the CENTER-TBI European Registry. In

total, 13,138 patients with TBI were recruited from 52 cen-

ters across China between December 22, 2014 and August

1, 2017 in the China Registry, and 22,849 patients with TBI

were recruited from 65 centers in 19 countries between

December 19, 2014 and December 17, 2017 in the Euro-

pean Registry.15,16 Both registries were prospective lon-

gitudinal observational studies. Data were collected for

patients with a clinical diagnosis of TBI and an indication

for computed tomography (CT).

Information was collected using a web-based elec-

tronic case report form (eCRF) and managed by the

QuesGen data management platform. Data were coded

in accordance with the Common Data Elements (CDE)

scheme. During the data uploading process, the system

ran data validation checks. All study data in the database

were de-identified and stored securely under the super-

vision of the Karolinska Institutet International Neuro-

informatics Coordinating Facility (KI-INCF).

Ethics approval and consent to participate
The China CENTER-TBI Registry has been conducted

in accordance with all relevant laws of the People’s

Republic of China, including but not limited to, the rele-

vant privacy and data protection laws and regulations (the

‘‘Privacy Law’’), the relevant laws and regulations on the

use of human materials, and all relevant guidance relating

to clinical studies from time to time in force including,

but not limited to, the ICH Harmonised Tripartite Guide-

line for Good Clinical Practice (CPMP/ICH/135/95)

(‘‘ICH GCP’’) and the World Medical Association Dec-

laration of Helsinki entitled ‘‘Ethical Principles for Med-

ical Research Involving Human Subjects.’’ Ethical

approval was obtained for all recruiting sites. The study

protocol was approved by the ethics committees of par-

ticipating centers, which waived the need for informed

consent as only routinely collected clinical data were

recorded. The CENTER-TBI study was registered with

ClinicalTrials.gov (NCT02210221).

Outcome and predictors
The primary outcome was mortality before discharge.

Fifty-four variables were available in the database, which

were included to predict in-hospital mortality, including
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baseline demographic characteristics, injury-related char-

acteristics, clinical severity, radiological findings, and

clinical interventions (Supplementary Table S1). Base-

line, injury-related characteristics, clinical severity, and

radiological findings were assessed at arrival, and clini-

cal interventions, immediately performed as emergency

procedures upon admission, were recorded at dis-

charge. Missing data were imputed with mean value.

The rate of missing data was 0.63% in the training and

internal validation set, and 1.15% in the external valida-

tion set.

Model development

Regression techniques. Standard LR and LASSO reg-

ression (a logistic regression with LASSO penalization)

were used. Standard LR is prone to overfitting, whereas

LASSO is expected to improve the performance of LR

models by shrinking some coefficients to zero.17,18 No

non-linear or interaction terms were included in the

regression models.

Machine learning algorithms. Two ML tools were

applied: XGBoost and SVM.19,20 These are widely used

in medical research.5,6,9–11,20 To simplify the XGBoost

model, recursive feature elimination (RFE) was applied

for feature selection.21 Briefly, this method removes the

weakest features until the specified number of features

is reached. Ten-fold cross-validation was used to find

the optimal feature number, by scoring and selecting

the best feature subsets, and to evaluate performance.

Moreover, Bayesian optimization was used to fine-tune

the parameters automatically for each of the ML models.

Traditional tuning is often a ‘‘black art’’ requiring expert

experience, rules of thumb, or sometimes brute force

search. Instead, we consider this problem through the

framework of Bayesian optimization, which therefore

has great appeal for automatic approaches that can opti-

mize the performance of any given learning algorithm

to the problem. All participants with sTBI were randomly

divided into 10 subsets. Models were trained in all but

one subset (Fig. 1). The 10-fold cross validation was

repeated 10 times with change in the randomization.

FIG. 1. Overall view of training and validation of prognostic prediction model for sTBI. There were 2804
samples that were divided into 10 subsets and used to perform 10-fold cross validation. Hyperparameters
were tuned based on the internal validation for the best performance. Then the model was externally
validated in 1113 samples. sTBI, severe traumatic brain injury.

1368 WU ET AL.

D
ow

nl
oa

de
d 

by
 L

ei
de

n 
U

ni
v 

M
ed

 C
tr

 W
al

ae
us

 L
ib

ra
ry

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
6/

20
/2

4.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



Sample weighting was added to solve label imbalances.

The codes of model training and hyperparameters of

final models were available in Github.

The Shapley Additive exPlanations (SHAP) method

was applied for better interpretability of XGBoost pre-

diction results. SHAP is a method to explain individual

predictions. The effect of each feature on outcome pre-

diction is summed in each patient according to the non-

linear XGBoost model. The impact of each feature on

the outcome can hence be interpreted from the SHAP

values.

Internal and external validation procedures. During

10-fold cross validation, the one subset that was not

included in the model training served as the internal val-

idation set. This process was repeated 10 times until each

subset was used to test the accuracy of the model, and the

performance was averaged. To capture the distributional

performance of trained models, the 10-fold cross vali-

dation was repeated 10 times with change in the ran-

domization. The hyperparameters were tuned for the

best discriminating power in internal validation sets.

Data of 1113 patients with sTBI from the CENTER-

TBI European Registry were used for external validation.

The two studies used for data development and external

validation included the same variables. The performance

of the prediction model was tested via the C-statistic, cal-

ibration slope, and intercept.

Model performance of the external validation set was

also compared with that of the CRASH basic model

and IMPACT core modeles.22,23

Statistical analysis
Continuous variables were reported as median and inter-

quartile ranges (IQRs), and categorical data as numbers

and percentages. A two-tailed p-value of 0.05 or less

was used to define statistical significance. The DeLong

method was used to compare C-statistics between mod-

els. A total of five comparisons were made with multiple

comparisons among XGBoost versus SVM, XGBoost

versus LASSO, XGBoost versus naı̈ve LR, SVM versus

LASSO, and SVM versus naı̈ve LR, and the p-value

was adjusted to 0.01 according to Bonferroni correction.

All the model training and validation was performed

using the ‘‘scikit-learn’’ module, and the XGboost pack-

age in Python (version 3.5). The hyperparameters and

coding of model training and testing are available at the

GitHub repository.24 The statistical analyses (including

statistical description and performance comparison)

were performed using R statistical software (version

3.5.0), with RStudio (version 1.1.447) used as the

implementation Integrated Development Environment

(IDE). The Delong test was performed using the ‘‘roc.t-

est’’ function of the pROC package (version 1.18.0). Mod-

eling results were reported in accordance with the

TRIPOD guidelines (Supplementary Appendix SA1).

To allow further validation, the XGBoost and SVM can

be accessed using a web-based calculator.25

Results
Study population
In total, 2804 patients with sTBI (GCS score £8) were

included for model development and internal validation,

of whom 552 (20%) had died in the hospital (Supplemen-

tary Fig. S1). Among them, 79% were male. The median

age was 49 (IQR: 36–61) years. Most of the sTBIs

occurred on the streets or highways (n = 1731; 62%),

and 18% (n = 511) occurred at home. The median GCS

score was 6 (IQR: 4–7) and the median Injury Severity

Score (ISS) was 25 (IQR: 17–32), respectively. Thirty-

nine percent of patients had at least one-side pupillary

light reflex absent and 99% (2785) showed abnormal

CT results. A total of 1113 patients with sTBI were inclu-

ded in the external validation data set, of whom 372

(33%) had died in the hospital. Compared with the train-

ing set, patients in the external validation set were

slightly older, had lower GCS scores, and more were in-

jured at home (Table 1).

Table 1. Baseline of Patients Included in the CENTER-TBI
China Registry and the CENTER-TBI EU Registry

China Registry sTBI,
n = 2804

EU Registry sTBI,
n = 1113

Male gender 2223 (79%) 810 (73%)
Age 49 (36-61) 50 (30-68)
Pre-injury ASA-PS

ASA I 2190 (78%) 461 (41%)
ASA II 439 (16%) 290 (26%)
ASA III 111 (4%) 234 (21%)
ASA IV 36 (1%) 23 (2%)
Unknown 28 (1%) 105 (9%)

Injury Place
Street/Highway 1731 (62%) 466 (42%)
Home 511 (18%) 381 (34%)
Public location (eg., bar,

station, nightclub)
264 (9%) 48 (4%)

Work/School 18 (1%) 16 (1%)
Sport/Recreation 266 (9%) 141 (13%)
Other 12 (0%) 34 (3%)
Unknown 2 (0%) 27 (2%)

GCS score 6 (4-7) 3 (3-6)
Total ISS 25 (17-32) 29 (24-50)
Pupillary reflex

Both exist 1703 (61%) 681 (61%)
One absent 370 (13%) 144 (13%)
Both absent 731 (26%) 288 (26%)

CT Result
Normal 19 (1%) 152 (14%)
Abnormal 2785 (99%) 961 (86%)

Systolic BP (mm Hg) 131 (115-150) 128 (110-147)
£ 90 mm Hg 161 (5.7%) 124 (11%)

Diastolic BP (mm Hg) 80 (70-89) 75 (60-90)
SPO2 (%) 98 (95-99) 99 (96-100)

£ 95% 829 (30%) 225 (20%)

ASA-PS, American Society of Anesthesiologists Physical Status; BP,
blood pressure; CT, computed tomography; GCS, Glasgow Coma Scale;
SPO2, oxygen saturation as measured by pulse oximetry; sTBI, severe trau-
matic brain injury.
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Prediction model construction using logistic
and LASSO regression
We considered 54 candidate predictors for model devel-

opment, including, age, gender, pre-injury status, ISS,

GCS score, injury causes, injury places, pupillary reflex,

oxygen saturation as measured by pulse oximetry (SpO2),

blood pressure, CT results, intensive care unit (ICU)

admission, and emergency interventions (Supplementary

Table S1). The LR model demonstrated overfitting when

it included a total of 54 variables, with an average

C-statistic of 0.88 (95% confidence interval [CI]: 0.86-

0.90) in training sets, 0.83 (95% CI: 0.79-0.86) in inter-

nal validation sets, and 0.79 (95% CI: 0.76-0.82) in the

external validation set. The calibration intercept and

slope were �0.05 and 0.15, respectively, at external val-

idation (Fig. 2A). A simplified LR model included 36

variables that showed significance ( p < 0.05). This

model had a higher C-statistic at external validation

(0.84, 95% CI: 0.81-0.86, Supplementary Table S2). Fur-

ther simplification using eight variables and six variables

(Supplementary Tables S3 and S4) showing significance

in the previous models demonstrated better performance

with a C-statistic of 0.85 (95% CI: 0.82-0.87) and 0.84

(95% CI: 0.82-0.87) at external validation, respectively.

With 54 candidate variables, LASSO regression per-

formed better than LR without penalization. The LASSO

model shrunk variables to zero, leaving 36 predictors in

the model. It reached a C-statistic of 0.85 (95%CI:

0.81-0.88) at internal validation and 0.86 (95%CI: 0.83-

0.88) at external validation. The calibration intercept

and slope were �0.48 and 1.03, respectively, at external

validation (Fig. 2B). A simplified model with 36, 8,

and 6, candidate variables showed similar C-statistics of

0.86 (95%CI: 0.83-0.88), 0.85 (95%: 0.83-0.88), and

0.85 (95%: 0.83-0.88) at external validation, respectively.

Prediction model construction using
ML algorithms
When including all 54 predictors, the SVM model

reached an average C-statistic of 0.85 (95% CI: 0.79-

0.90) in internal validation sets, and 0.86 (95% CI:

0.85-0.87) in the external validation set. Both SVM and

XGBoost achieved better calibration performance than

regression models. The calibration intercept and slope

were �0.21 and 1.19, respectively, at external validation

(Fig. 2C). XGBoost performed slightly better compared

with SVM, it and achieved 0.87 (95% CI: 0.81-0.92) in

internal validation sets, and 0.88 (95% CI: 0.87-0.88)

in the external validation set. Calibration intercept and

slope were �0.10 and 1.34, respectively, at external val-

idation (Fig. 2D). The emphasis on sensitivity and spec-

ificity will be determined by the users. At a cutoff value

of 0.27, the XGBoost model had a sensitivity of 90% and

a specificity of 62%; at a cutoff value of 0.57, the model

had a sensitivity of 64% and a specificity of 90%.

After RFE, which removed the weakest features until

the optimal number was reached, a simplified ML

model was built using the 26 variables selected by RFE

(Supplementary Table S5), which reached similar per-

formance compared with all 54 variables. The average

C-statistic was 0.87 (95% CI: 0.82-0.92) in the internal

and 0.87 (95% CI: 0.87-0.88) in the external validation

set for XGBoost, and 0.86 (95% CI: 0.80-0.91) in the

internal and 0.87 (95% CI: 0.86-0.87) in the external val-

idation set for SVM. The calibration intercept for external

validation was �0.33 for XGBoost and �0.52 for SVM.

The calibration slope for external validation was 1.22 for

XGBoost and 1.06 for SVM (Supplementary Fig. S2).

SHAP analysis for the XGBoost model revealed that

the five strongest predictors for mortality were: low GCS

score, elder age, absent pupillary light reflex, high ISS

for brain region (which is the quadratic of brain abbrevi-

ated injury scale (AIS), with a maximum of 75 assigned

when brain AIS was 6) and presence of acute subdural he-

matoma. Other important features included low oxygen

saturation, high total ISS, midline shift over 5 mm, pres-

ence of contusions, need for intensive care, too low or

too high systolic blood pressure, and low GCS motor

score. Secondary referral and cerebrospinal fluid (CSF)

drainage was associated with a lower mortality rate

(Fig. 3 and Supplementary Fig. S3).

Interaction analysis suggested that the impact of age on

outcome decreased at low GCS score. Besides, whether

GCS is low or high, the younger age (<48 years) tended

to decreased mortality, and the elder age (>48 years) tended

to increased mortality. It was also found that the impact of

brain injury ISS increased at low GCS score. In other words,

when the GCS score is low, the brain ISS can give us extra

information about mortality (Supplementary Fig. S4).

Besides, the SHAP model can better interpret the

XGBoost model, which, unlike LR, is difficult to explain

due to its non-linearity. Its application in explaining out-

come prediction of two individuals is demonstrated in

Supplementary Figure S5. In the first case, the predicted

mortality was above average because severe comorbidity,

severe injury with an ISS of 75 and GCS score of 3, low

oxygen saturation at the scene, and mass subdural hema-

toma increased the mortality, although normal pupillary

light reflex and CSF drainage lowered the mortality. In

the second case, the predicted mortality was below aver-

age because this patient needed no ICU treatment, the

brain ISS was relatively low, and the initial CT showed

only the minor contusion without midline shift or sub-

dural hematoma, although the age was high and the oxy-

gen saturation was relatively low.

Comparison between Linear regression, LASSO
regression, and machine learning algorithms
When including a total of 54 candidate variables,

XGBoost outperformed naı̈ve LR and LASSO regression
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in C-statistic ( p < 0.0001 and p < 0.001, respectively;

Fig. 4 and Supplementary Fig. S6), and SVM outper-

formed naı̈ve LR ( p < 0.0001). As the selected features

reduced to 26, the performance of LR increased, but

XGBoost still performed better than naı̈ve LR and

LASSO regression ( p < 0.0001 and p = 0.0016, res-

pectively), and SVM still outperformed naı̈ve LR

( p = 0.00019). However, when the number of features

was further reduced, the performance of both SVM and

XGBoost reduced significantly and showed a similar dis-

criminating power with naı̈ve LR ( p = 0.23 and 0.20,

respectively) and LASSO regression ( p = 0.24 and

0.22, respectively) when it only included six variables.

XGBoost showed high robustness and the best perfor-

mance in discriminating hospital mortality throughout

different numbers of variables included. The compari-

son of performance between each model is presented in

Supplementary Tables S6 and S7, and the detailed perfor-

mance of 10 randomization repetition is shown in Sup-

plementary Figure S7.

Comparison with IMPACT and CRASH models
The XGBoost model (both original and simplified ver-

sion) outperformed the currently widely accepted

IMPACT core and CRASH basic prognostic models. In

the external validation set, the CRASH basic model

achieved C-statistic of 0.82 (95%CI: 0.79-0.84) and the

IMPACT core model reached 0.80 (95%: 0.78-0.83). Cal-

ibration slopes were 0.92 and 1.17 for the CRASH and

the IMPACT models, respectively, and calibration inter-

cepts were �0.49 and �0.02 for the CRASH and the

IMPACT models, respectively. Due to limitations of the

database, variables required for the IMPACT core+CT

and the CRASH-CT model were not available.

Model presentation
To facilitate external validation by independent research,

all models including XGBoost, SVM, and LR can be

accessed using a web-based calculator.25 Both the

54-variable model and the simplified versions are avail-

able online by clicking corresponding labels (Supplemen-

tary Fig. S8). The risk percentage calculated implies the

predicted mortality rate at discharge.

Discussion
The current study developed and compared strategies for

prediction modeling of in-hospital mortality in patients

FIG. 3. Impact of features in the XGBoost model for sTBI mortality prediction using SHAP. The SHAP
values were derived from the results of internal validation. The five strongest predictors for mortality were:
low GCS score, elder age, absent pupillary light reflex, high ISS for brain region, and presence of acute
subdural hematoma. GCS, Glasgow Coma Scale; ISS, Injury Severity Index; SHAP, Shapley Additive
exPlanations; sTBI, severe traumatic brain injury.
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after sTBI based on commonly available demographic

and clinical data. A total of 2804 patients with sTBI in

the CENTER-TBI China Registry were included in

model development and 1113 in the CENTER-TBI Euro-

pean Registry were used for external validation. The

XGBoost model achieved high discrimination and cali-

bration performance in predicting in-hospital mortality,

and it outperformed established prediction models for

outcome prediction in TBI.

Compared with other ML algorithms, the current

model included more clinical scales and medical interven-

tions.13 It did not require laboratory indicators, including

serum glucose level, C-reactive protein, sodium level,

etc.13,26,27 Thus, the model might be used for early pre-

diction in the emergency room.

Because 20% of patients with sTBI died before dis-

charge, early determination of prognosis is a priority for

both the physicians and relatives involved.15,28 Reliable

assessment of prognosis in patients with TBI is critical

for clinical decision-making, health care policy mak-

ing, family counseling, allocation of resources, research,

and assessment of the quality of health care.3 Of note, this

model included emergency clinical interventions, so it

is specific to current practice and indications for starting

these interventions. The effectiveness of the treatments,

however, cannot be derived from the current modeling

and requires further study.

To predict the outcome of patients with TBI, many

prediction models have been developed. Some of the

prediction models have been validated and showed high

accuracy, for example, the IMPACT prognostic models

and the CRASH prognostic models.29–31 Most predictors

identified in the current model are in line with estab-

lished models including the IMPACT and the CRASH

models. The IMPACT model includes age, GCS motor

score, pupil reactivity hypoxia, hypotension, and CT

findings to predict mortality or unfavorable outcome at

6 months.23 The CRASH model includes age, GCS score,

pupil reactivity, major extracranial injury, and CT find-

ings to predict mortality at 14 days or unfavorable out-

come at 6 months.22

Compared with these established models, the current

XGBoost model achieved higher discriminative accu-

racy. Consistent with previous studies, the current

XGBoost model revealed that low GCS score, elder

age, absent pupillary light reflex, and presence of acute

subdural hematoma were among the most important fea-

tures for mortality. However, this study found a non-

linear association between some variables (e.g., GCS

score, age, and ISS) and outcome. In addition, some

predictors including head ISS, secondary referral, and

emergency interventions were found to be relevant for

prediction of in-hospital mortality by XGBoost and were

rarely explored in previous models. This may underlie the

performance improvement of the XGBoost model.

Currently, ML is ubiquitous and indispensable for

solving complex problems of unstructured data in most

sciences, due to its ability to handle large numbers of

FIG. 4. Performance comparison based on the area under the curve of different algorithms when
including a different amount of predictors. XGBoost showed the best performance in discriminating
hospital mortality in a training set, internal validation set, and external validation set throughout different
numbers of variables included. SVM, support vector machines.
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predictors.12 However, only a few studies have investi-

gated the application of ML in outcome prediction of

TBI, and they have achieved quite contradictory conclu-

sions. Gravesteijn and colleagues found that ML may not

outperform LR for outcome prediction after moderate or

sTBI.13 Whereas studies by Lu, Matsuo, Feng, and their

colleagues indicated a relatively good predictive perfor-

mance of modern ML for TBI outcome compared with

the regression approach.26,27,32 The current study indi-

cates that one source of contradiction may be the numbers

and types of predictors included in each model, and the

balance of large numbers of predictors to large sample

size.

The results of our study reveal that the number of

variables affected the performance of ML and LR con-

versely in TBI prognostic prediction. When including

only a small number of predictors, ML didn’t show better

performance compared with LR, and some ML algo-

rithms even perform more poorly than LR. As the inclu-

ded number of variables increased, the performance of

XGBoost and SVM improved, and they reached higher

discrimination and calibration performance than regres-

sion models, because more information, including sig-

nals and noises, was contained in the predictors, and

ML can eliminate redundant noise and better capture fea-

tures of the patient before making predictions. The LR

performance decreased when including more predictors,

indicating low robustness for high-dimensional settings.

LR is more suitable for low-dimensional data, whereas

ML shows more potential in large-scale, multi-modality

settings. Currently, continuous long-term multi-modality

monitoring is commonly applied in critical care patients,

and together with increasing biomarkers and radiological

images, it may promote the use of ML for TBI outcome

prediction.

The main strengths of this study are the large scale of

the cohort, the prospective recording of patient data, and

the external validation of models in the CENTER-TBI

EU Registry study with an identical data collection pro-

tocol to CENTER-TBI China. Limitations of this study

include a lack of lab and detailed radiological findings.

The limited number of features included may hamper

the performance of ML algorithms and led to a minimal

increase in discrimination power compared with tradi-

tional regression algorithms. Further studies are needed

to provide any clinically meaningful decision. In addi-

tion, there is no fixed time for outcome evaluation

(death).

Conclusions
We developed and compared prediction models for

in-hospital mortality in patients after sTBI based on

demographic and clinical data in the CENTER-TBI

China and EU Registries. The result demonstrated that

the simplified XGBoost model achieved both accuracy

and clinical usability. In addition, XGBoost was promis-

ing as a ML tool, which revealed superior performance

by capturing information hidden in demographic and

clinical predictors in large data sets of patients after sTBI.
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