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ARTICLE OPEN

Mining the contribution of intensive care clinical course to
outcome after traumatic brain injury
Shubhayu Bhattacharyay 1,2,3✉, Pier Francesco Caruso 1,4, Cecilia Åkerlund 5, Lindsay Wilson6, Robert D. Stevens3,7,
David K. Menon 1, Ewout W. Steyerberg 8, David W. Nelson5, Ari Ercole 1,9 and the CENTER-TBI investigators and participants

Existing methods to characterise the evolving condition of traumatic brain injury (TBI) patients in the intensive care unit (ICU) do
not capture the context necessary for individualising treatment. Here, we integrate all heterogenous data stored in medical records
(1166 pre-ICU and ICU variables) to model the individualised contribution of clinical course to 6-month functional outcome on the
Glasgow Outcome Scale -Extended (GOSE). On a prospective cohort (n= 1550, 65 centres) of TBI patients, we train recurrent neural
network models to map a token-embedded time series representation of all variables (including missing values) to an ordinal GOSE
prognosis every 2 h. The full range of variables explains up to 52% (95% CI: 50–54%) of the ordinal variance in functional outcome.
Up to 91% (95% CI: 90–91%) of this explanation is derived from pre-ICU and admission information (i.e., static variables).
Information collected in the ICU (i.e., dynamic variables) increases explanation (by up to 5% [95% CI: 4–6%]), though not enough to
counter poorer overall performance in longer-stay (>5.75 days) patients. Highest-contributing variables include physician-based
prognoses, CT features, and markers of neurological function. Whilst static information currently accounts for the majority of
functional outcome explanation after TBI, data-driven analysis highlights investigative avenues to improve the dynamic
characterisation of longer-stay patients. Moreover, our modelling strategy proves useful for converting large patient records into
interpretable time series with missing data integration and minimal processing.

npj Digital Medicine           (2023) 6:154 ; https://doi.org/10.1038/s41746-023-00895-8

INTRODUCTION
Traumatic brain injury (TBI) is the most frequently occurring
neurological disorder and imposes a substantial public health
burden1,2. Whilst TBI is increasingly appreciated as a progressive
condition rather than a single event, the disease course of TBI
patients in the intensive care unit (ICU) has not been well-
characterised. As a result, existing ICU treatments are based on
limited evidence and do not target the heterogeneous
mechanisms of an individual’s TBI3. Answering the call for
patient-tailored treatments (i.e., precision medicine), issued by
The Lancet Neurology Commissions on TBI1,2, must start with an
evidence-based understanding of individual patient trajectories
in the ICU.
The main instrument for characterising TBI severity in the ICU is

the Glasgow Coma Scale (GCS), for which a patient’s best motor,
verbal, and eye responses are assessed4. The GCS, however, is not
sufficient for precision medicine as it does not capture a patient’s
pathophysiological profile and is confounded by external factors
(e.g., drug use, medications, and tracheal intubation)5. An
alternative approach is to characterise severity through functional
outcome prognosis. Functional outcome after TBI is typically
evaluated on the ordinal, eight-point Glasgow Outcome Scale-
Extended (GOSE)6, and currently, the best validated prognostic
tools for moderate-to-severe TBI (GCS ≤ 12) are the International
Mission for Prognosis and Analysis of Clinical Trials in TBI (IMPACT)
models7. The IMPACT extended model estimates the probability of
either survival (GOSE > 1) or functional independence (GOSE > 4)

at 6 months post-injury from ten static predictors collected from
the first 24 h of ICU stay and explains approximately 35% of the
pseudo-variance in dichotomised GOSE7. Considering a patient’s
full, dynamic clinical course and increasing model output
granularity (i.e., ordinal GOSE prognosis8) would further enable
clinical characterisation through prognosis whilst uncovering the
outcome contribution of ICU events and treatments.
In this work, we take a full-context, data-driven approach to

assess the limits of dynamic ICU characterisation after TBI. The
Collaborative European NeuroTrauma Effectiveness Research in
TBI (CENTER-TBI) project represents the most comprehensive set
of pre-ICU and ICU data for TBI patients across Europe5,9. Mining
clinical trajectories from this data—which comprises a complex
combination of modalities with varying structure, sampling, and
missingness—is not straightforward. We therefore develop a
regularised disease course modelling strategy which integrates all
this heterogenous information and returns an interpretable,
detailed proxy for severity over each patient’s ICU stay.
Upon developing our TBI modelling strategy, our central aims

were to: (1) evaluate the additive prognostic significance of
incorporating the most complete description of ICU stay available
and (2) uncover clinical events most strongly associated with
transitions in an individual’s trajectory. We also assess the
reliability (i.e., calibration) and information content of our
explanatory modelling approach to validate its application in
deriving insight from medical data.
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RESULTS
Study population
Of the 2138 CENTER-TBI patients available for analysis in the ICU
stratum of the core study, 1550 met the additional inclusion
criteria of this work (Supplementary Fig. 1). Since the regularity of
bihourly assessments collected for CENTER-TBI decreased after a
week (Supplementary Fig. 2), and since over half the population
remained at this point (Supplementary Fig. 3), we focused our
analysis on the first week after ICU admission and the last week
before ICU discharge. The summary characteristics of our study
population are detailed in Table 1. Additional characteristics (e.g.,
race, comorbidities, and vitals) of our study population have been
previously published5, and distributions of all study variables are
available online (https://www.center-tbi.eu/data/dictionary).

Disease course modelling
We developed a modelling strategy to map all 738 static (i.e., fixed
at ICU admission) and 428 dynamic (i.e., collected during ICU stay)
variables in CENTER-TBI (Supplementary Note 1) to a multi-
dimensional, evolving prognostic trajectory over each patient’s
ICU stay. Through supervised learning, our optimised models were
trained with three main components: (1) a token-embedding
encoder to integrate all variable types and missing values (Fig. 1a),
(2) a recurrent neural network (RNN), and (3) an ordinal outcome
decoder (Fig. 1b). Since model performance was independent of
time window length (Supplementary Fig. 4), we focused on
models with 2-h time windows to offer the greatest possible
trajectory resolution. With both calibration slope (averaged across
the GOSE thresholds, Fig. 1c) and smoothed calibration curves
(Fig. 1d), we observed that our modelling strategy required 8 h of
information to achieve sufficient calibration for analysis (Fig. 1c).
However, after three days post-admission, the calibration slope of
both the dynamic and baseline comparison models began
decreasing, indicating a slight overfitting for TBI patients with
longer ICU stays.

Explanation of functional outcome
At best, the entire set of 1166 core CENTER-TBI variables combined
with our modelling strategy explained 51.3% (95% CI: 49.1–53.3%)
of the ordinal variance in 6-month GOSE at 32 h post-admission
and 52.2% (95% CI: 50.2–54.3%) at discharge (Fig. 2a). Whilst
overall explanation performance consistently decreased after
approximately three days post-admission, the added explanation
over both baseline comparison models increased over time
(Fig. 2b). The additional explanation of the full CENTER-TBI set
over the ten IMPACT variables (Supplementary Table 1) increased
from 7.0% (95% CI: 5.2–8.7%) at 24 h to 11.5% (95% CI: 8.5–14.5%)
at 1 week, and the additional explanation of ICU information
increased from 2.1% (95% CI: 1.6–2.5%) at admission to 5.2% (95%
CI: 4.2–6.2%) at 1 week. Therefore, at 1 week after admission, the
ten IMPACT variables accounted for 73.9% of the explanation of
functional outcome achieved by all 1166 CENTER-TBI variables and
82.9% of that achieved by the 738 static variables.
In addition, functional outcome explanation was, on average,

11.4% (95% CI: 6.6–16.9%) greater in patients who stayed in the
ICU for 5.75 days or less (n= 619) than in those who stayed longer
(n= 931) (Fig. 2c). Explanation performance was significantly
better in shorter-stay patients from ICU admission, but the
difference was not significant closer to discharge (Fig. 2d).
Longer-stay patients were more likely to have presented with
severe TBI, received more intense treatment, and remained alive
but severely disabled at 6 months post-injury (Supplementary
Fig. 5). Patients who died in the ICU were significantly more likely
to have shorter stays (Supplementary Fig. 6).

Contributions of clinical events to transitions in outcome
In the calibrated analysis region (10 h to 1 week after admission),
we found a median of one (IQR: zero–three) high-magnitude
transition (as defined in “Methods” and Supplementary Table 2)
per patient’s ICU stay. The majority of identified transitions
occurred within two days of ICU admission, but clinical worsening
transitions occurred earlier than improvement transitions, on
average (Fig. 2e).
According to the TimeSHAP values10 associated with high-

magnitude transitions across the population (Fig. 3a), physician-
based prognostic estimates at emergency room (ER) discharge
had the highest contribution to model trajectories. However,
when we retrained the dynamic models without physician-based
impressions (Supplementary Note 2), we found no statistically
significant drop (95% confidence) in explanation percentage until
1 week after admission: −4.7% (95% CI: −0.2 to −9.2%)
(Supplementary Fig. 7). Of the remaining static variables, certain
demographic (i.e., employment, age, education, and living
situation), CT (i.e., subarachnoid haemorrhage, intraventricular
haemorrhage, and epidural haematoma), and clinical presentation
(i.e., loss of consciousness and amnesia) variables ranked highest
in terms of contribution to model output. For dynamic variables,
markers of raised intracranial pressure, neurological function (i.e.,
pupillary, motor, and verbal reactivity), and administered medica-
tion contributed the most. The highest-contributing variables
were largely consistent across the 6-month GOSE thresholds
(Supplementary Fig. 8), but TimeSHAP amplitudes generally
decreased at higher thresholds, and the incidence of mechanical
ventilation had a strong negative association with achieving full
functional recovery (GOSE > 7). Observing the TimeSHAP values of
top-contributing variables per category (Supplementary Fig. 9), we
found that whilst certain ER lab measurements (e.g., glucose) had
significant contributions, the same lab measurements taken in the
ICU did not. When comparing patients receiving withdrawal of
life-sustaining treatment (WLST, n= 203) with those who did not,
TimeSHAP values for models trained with and without physician-
based impressions did not reveal a significant difference in clinical
events associated with high-magnitude transitions (Supplemen-
tary Fig. 10). The TimeSHAP values of missing variables
(Supplementary Fig. 11) demonstrated that missingness of a
variable could have a significant negative (e.g., missing level of
education) or positive (e.g., missing heart rate value at ER
admission) effect on model output. Absolute TimeSHAP values
of timepoints leading up to a high-magnitude transition (Fig. 3b)
suggested that only ICU events that occurred within 10 h before a
high-magnitude transition offered considerable contribution to
the change in model output.

Individualised trajectories
In Fig. 4, we show the prognostic trajectories for a typical
individual in our population. The patient, an approximately 50-
year-old male, was admitted to the ICU after a moderate TBI (GCS
10) caused by a traffic collision. The patient survived for at least 6
months after the injury but became severely disabled and
completely functionally dependent (GOSE 2 or 3). The models
correctly returned low probabilities for all 6-month GOSE thresh-
olds but GOSE > 1, for which the prognostic trajectory oscillates
above and below 50% with high-magnitude transitions. In the
highlighted positive high-magnitude transition (centre of Fig. 4),
we found improvements from the last day’s GCS and the start of
pharmacological thromboprophylaxis to be most strongly asso-
ciated with the improvement in the patient’s condition. The
penultimate time window before the transition contributed the
most towards the model output. In Supplementary Fig. 12, we also
show similarly dynamic individual trajectories for patient cases at
each remaining 6-month GOSE score.
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DISCUSSION
In this work, we develop a dynamic, data-driven approach to
exploit the full clinical context available in the CENTER-TBI dataset
and produce individual trajectories of TBI disease course. Notably,
our modelling strategy required minimal data processing for a
large set of variables and imposed no constraints on the number or
type of variables per patients (Fig. 1a)11. Moreover, by including
missing value tokens, models discovered meaningful patterns of
missingness (Supplementary Fig. 11)12. Finally, our approach
detailed clinical events in terms of prognostic transitions on

ordinal levels of functional recovery (Fig. 1b), which is an
improvement in statistical power and clinical information over
using a dichotomised outcome (e.g., mortality)8. Our modelling
strategy can potentially be valuable in other heterogenous data-
intensive domains in medicine to: (1) qualify information in a
dataset, (2) explore high-magnitude transitions in individuals, or (3)
automate state-space characterisation for applications in reinforce-
ment learning13 and individualised treatment effect estimation14.
Our principal finding is that the full range of 1,166 core CENTER-

TBI variables explained up to 52.2% (95% CI: 50.2–54.3%) of the
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variance in ordinal, 6-month functional outcome (Fig. 2a). Up to
90.9% (95% CI: 90.3–91.3%) of this explanation was derived from
static (i.e., pre-ICU or admission) information, which constituted
~80% of the variables in the average patient time window
(Supplementary Fig. 2). Over time, the dynamic (i.e., collected
during ICU stay) information increased explanation over the
baseline (Fig. 2b), though not enough to compensate for poorer
overall performance in longer-stay (>5.75 days in ICU) patients.
These patients more likely experienced severe TBI and received
intense treatment without early discharge (Supplementary Figs. 5
and 6 and as described previously15), and our results suggest
greater, unexplained variation in recovery for this subpopulation.
Remarkably, the ten IMPACT variables covered 86.3% of the
explanation achieved by all 1166 CENTER-TBI variables at 24 h
post-admission.
The greater outcome influence of static over dynamic informa-

tion has several plausible explanations which could guide future
TBI research and clinical management. Amongst high-resource
ICUs, the variation in TBI treatment strategies has previously been
shown not to result in a commensurate variation in functional
outcome15. Since ICU treatments for TBI are mostly effective in
mitigating secondary insults3, primary injury severity and pre-ICU
circumstances may account for greater outcome differences
amongst ICU patients. These explanations support both the
continued use of baseline prognosis to guide treatment planning
in existing practice8 and a paradigm shift in future practice
towards targeted treatment of primary injury mechanisms2.
Moreover, the information currently collected in the ICU may
not sufficiently capture pathophysiological changes that take
place from the acute stage of TBI1. This motivates the develop-
ment of more precise ICU metrics inspired by scientific discoveries
of longitudinal TBI effects. Furthermore, 6-month GOSE may not
reflect the full contribution of ICU clinical course towards
functional recovery. Upper levels of GOSE have been shown not
to discriminate cognitive function well16, and GOSE may require
repeated measurements to account adequately for day-to-day
variation in questionnaire responses during recovery6. A multi-
dimensional measure of TBI outcome, which integrates assess-
ments of mental, cognitive, and physical health over time, may be
preferable to 6-month GOSE in revealing specific contributions of
ICU events17. Finally, a fraction of functional outcome is likely to
be explained by variations in rehabilitative care and longer-term
sequalae of TBI18. Therefore, extending data collection past ICU
discharge may reveal outcome contributions of dynamic informa-
tion overlooked in our study.
The data-driven results also highlight several avenues to help

account for the remaining half of functional outcome explanation.

Amongst potential static variables for inclusion, genetic factors
(not available for this study) are the most promising as they have
been shown to explain up to 26% of the variation in dichotomised
GOSE19. Whilst the exclusion of physician-based impressions did
not significantly worsen GOSE explanation until 1 week post-
admission (Supplementary Fig. 7), the relatively high contribution
of these impressions (Fig. 3a) merits an investigation into the
extent to which they affect self-fulfilling prophecies20 or simply
summarise other clinical variables21. For dynamic variables, the
logical first step would be to test the inclusion of high-resolution
time series—both routinely collected (e.g., cerebral perfusion
pressure22) and experimental (e.g., accelerometry23)—that have
been shown to correlate with pathophysiological changes after
TBI. The fact that clinical assessments of pupillary reactivity and
the GCS rank amongst the highest-contributing dynamic variables
(Fig. 3a) may encourage the development of methods that more
precisely characterise neurological mechanisms underpinning
reactivity. At the same time, the relatively high information
coverage of the ten IMPACT variables may suggest that the
existing CENTER-TBI set could be made more concise for
prognosis-based characterisation.
There are two important considerations when understanding

the results of this study. First, TimeSHAP values on observational
data are merely associative and cannot be interpreted for causal
inference. For example, the consistently positive contribution of
pharmacological thromboprophylaxis (Fig. 3a) is likely explained
more by the clinical selection of patients with reduced risk of
intracranial bleeding for such treatment than by the effect of the
treatment itself24. Moreover, TimeSHAP is not sufficient for
developing clinical rules as it does not reveal important variable
interactions25. We used TimeSHAP in this work not to derive
claims but rather to highlight potential areas of investigation from
a wider, data-driven approach, even if many of these associations
may be confounded. For instance, employment status had a
strong model contribution in this (Fig. 3a) and prior work;8

whether that is due to an indication of frailty (shown to be
associated with lower GOSE, regardless of age26) or a spurious
association may be worth exploring. Second, we strongly advise
against using our models for clinical outcome prediction. Our
explanatory modelling strategy was designed for mining patient
trajectories from observational datasets and is not deployable for
real-time prediction due to concerns of self-fulfilling prophecies,
generalisability, and variable robustness. We refer readers inter-
ested in dynamic TBI prediction model development to the
following studies22,27,28.
We recognise several additional limitations in this study. Our

modelling strategy discretised both numerical variables into binned

Fig. 1 Illustration and reliability of disease course modelling strategy. Unless otherwise specified, all shaded regions surrounding curves
are 95% confidence intervals derived using bias-corrected bootstrapping (1000 resamples) to represent the variation across 20 repeated
fivefold cross-validation partitions. a Tokenisation and embedding of the variables in a sample patient’s ICU stay into a single, low-dimensional
vector (xt) per time window. The patient’s ICU stay (sample timeline) was first discretised into non-overlapping, 2-h time windows. From each
time window, values for up to 428 dynamic variables were combined with values for up to 738 static variables to form the variable set
(Supplementary Note 1). The variable values were converted to tokens by discretising numerical values (e.g., intracranial pressure [ICP] and
neurofilament light chain [NF-L]) into 20-quantile bins from the training set and removing special formatting from text-based entries. Through
an embedding layer, a vector was learned for each token encountered in the training set, and tokens were replaced with these vectors. Finally,
a positive relevance weight, also learned for each token, was used to weight-average the vectors of a time window into a single, low-
dimensional vector. The patient stock image is accredited to iStock.com/SiberianArt and was purchased under Standard License. b The
sequence of low-dimensional vectors (xt) representing a patient’s ICU stay were fed into a recurrent neural network (RNN) with either long
short-term memory (LSTM) or gated recurrent unit (GRU) cells. The RNN outputs were then decoded at each time window into an ordinal
prognosis of 6-month functional outcome. The level of recovery associated with each threshold of 6-month GOSE is decoded in the heading
of Table 1 (e.g., GOSE > 1 represents survival at 6 months post-injury). c Probability calibration slope, averaged across the six functional
outcome thresholds, in the first (top) and last (bottom) week of ICU stay for models trained on the full variable set (blue) and on the static
IMPACT extended set from the first 24 h of ICU stay (red). The ideal calibration slope of one is marked with a horizontal orange line. d Ordinal
probability calibration curves at four different timepoints after ICU admission. The diagonal dashed line represents the line of perfect
calibration. The values in each panel correspond to the mean absolute error (95% confidence interval) between the curve and the perfect
calibration line.
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tokens and time into windows, which caused some loss of
information. To bypass the discretisation of time, neural differential
equations29 may be a suitable alternative to RNNs but still require
greater validation in medical problems. In addition, our definition of
high-magnitude transitions based on a percentile cut-off of model
outputs was ultimately arbitrary. We encourage investigators either
to try other percentiles or assess TimeSHAP values at known clinical
events and transitions. Finally, our results may encode recruitment,
collection, and clinical biases native to our European patient set and
may not generalise to other populations30. We encourage investiga-
tors to apply our modelling strategy to other longitudinal, granular
datasets of critically ill TBI patients—particularly in low- and middle-

income countries where the burden of TBI is disproportionately
higher31—and compare their results.

METHODS
Study design and participants
CENTER-TBI is a longitudinal, observational cohort study
(NCT02210221) involving 65 medical centres across 19 European
countries5,9. TBI patients were prospectively recruited between
December 19, 2014 and December 17, 2017 if they met the
following criteria: (1) presentation within 24 h of a TBI, (2) clinical

Fig. 2 Explanation of outcome by modelling strategy and distribution of high-magnitude transitions. Unless otherwise specified, all
shaded regions surrounding curves are 95% confidence intervals derived using bias-corrected bootstrapping (1000 resamples) to represent
the variation across 20 repeated fivefold cross-validation partitions. a Explanation of ordinal 6-month functional outcome—measured by
Somers’ Dxy —in the first (top) and last (bottom) week of ICU stay by models trained on the full variable set (blue) and on the static IMPACT
extended set from the first 24 h of ICU stay (red). b Added explanation of ordinal 6-month functional outcome—measured by the difference in
Somers’ Dxy—in the first (top) and last (bottom) week of ICU stay achieved by the full variable model over baseline models trained on all static
variables (blue) and on the static IMPACT extended set from the first 24 h of ICU stay (red). cMean difference in full variable model explanation
—measured by difference in Somers’ Dxy—between subpopulation with ICU stay less than or equal to cut-off and subpopulation with ICU stay
greater than the same cut-off. Positive values designate greater explanation in shorter-stay subpopulation, and the horizontal orange line
designates no difference. d Explanation of ordinal 6-month functional outcome —measured by Somers’ Dxy—in the first (top) and last
(bottom) week of ICU stay by the full variable model on the subpopulation with ICU stay less than or equal to 5.75 days (blue) and on the
subpopulation with ICU greater than 5.75 days (red). e Scaled histograms (bin width equals a 2-h time window) and density curves of high-
magnitude transitions identified by model trajectories. A high-magnitude transition is defined as a change of output probability that is in the
99th percentile of changes for a specific threshold of 6-month functional outcome. The blue histogram/density represents positive (i.e.,
improvement) transitions whilst the purple histogram/density represents negative (i.e., worsening) transitions. The dashed orange lines mark
the median time since ICU admission for each type of transition.
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indication for a CT scan, and (3) no severe pre-existing neurological
disorder. In accordance with relevant laws of the European Union
and the local country, ethical approval was obtained for each site,
and written informed consent by the patient or legal representa-
tive was documented electronically. The study sites, ethical

committees, approval numbers, and approval dates are listed in
Supplementary Table 3. The project objectives and design of
CENTER-TBI have been described in detail previously5,9.
In this work, we apply the following inclusion criteria in addition

to those of CENTER-TBI: (1) primary admission to the ICU for at

Fig. 3 Population-level variable and time window contributions to expected 6-month functional outcome output at high-magnitude
transitions. TimeSHAP values are interpreted as contributions of variables or time windows towards the difference in a patient’s expected
6-month functional outcome output from that of the average patient (Supplementary Fig. 13). a TimeSHAP values of the 20 highest-
contribution static (left) and 20 highest-contribution dynamic (right) variables. The variables were selected by first identifying the ten variables
with non-missing value tokens with the most negative median TimeSHAP values across the population (above the ellipses) and then, amongst
the remaining variables, selecting the ten with non-missing value tokens with the most positive median TimeSHAP values (below the ellipses).
Each point represents the mean TimeSHAP value for a token across an individual patient’s high-magnitude transitions. The colour of the point
represents the relative ordered value of a token within a variable, and for unordered variables (e.g., employment status before injury), tokens
were sorted alphanumerically (the sort index per possible unordered variable token is provided in the Supplementary Note 1). Green points
represent variable tokens that are not missing but explicitly encode an unknown value (i.e., GCS motor score untestable due to sedation). New
variable abbreviations include deep vein thrombosis (DVT), the fraction of inspired oxygen (FiO2), partial pressure of oxygen (PaO2), and
unfavourable outcome (UO) as defined by GOSE ≤4 at 6 months post-injury. b TimeSHAP amplitude distributions of 2-h time windows leading
up to high-magnitude transitions. The width of violin plots is scaled for each time window, but the width of the points inside them
demonstrates relative frequency across the windows.
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least 24 h, (2) at least 16 years old and (3) availability of functional
outcome assessment at 6 months post-injury.

Variables and functional outcome
We extracted all variables collected before and during ICU stays for
the CENTER-TBI core study9 (v3.0, ICU stratum) using Opal database
software32. These variables were sourced from medical records and
online test results and include structured (i.e., numerical, binary, or
categorical), unstructured (i.e., free text), and missing values. We
manually excluded variables which explicitly indicate death or
withdrawal of life-sustaining treatment (Supplementary Note 3). In
total, we included 1166 variables (Supplementary Note 1): 738 static
(i.e., fixed at ICU admission) variables and 428 dynamic variables (i.e.,
collected during ICU stay). We organised the variables into the nine
categories listed in Table 2 and further indicated whether the
variables represented an ICU intervention or a physician-based
impression. The highest resolution amongst regularly collected
variables was once every 2 h.
In addition, we extracted the eight-point, ordinal GOSE

functional outcome score at 6 months post-injury (heading of
Table 1). Since CENTER-TBI does not distinguish vegetative
patients (GOSE= 2) into a separate category, GOSE scores 2 and
3 (lower severe disability) were combined to one category
(GOSE∈{2,3}). For 12.8% of our study patients, 6-month GOSE
scores were previously imputed by CENTER-TBI using a Markov
multi-state model based on the observed GOSE scores recorded at
different timepoints between 2 weeks to 1 year post-injury33.

Modelling strategy
We created 100 partitions of our patient population for repeated
k-fold cross-validation (20 repeats, fivefold), stratified by 6-month
GOSE, with validation sets nested within training sets.
Our explanatory modelling strategy is outlined in Fig. 1 and

builds upon our previous work8,11. We started by partitioning ICU
stays into non-overlapping time windows of either 2, 8, 12 or 24 h.
Static variables were carried forward across all windows (Fig. 1a).
All variables were tokenised through one of the following
methods: (1) for categorical variables, appending the value to
the variable name, (2) for numerical variables, learning the training
set distribution and discretising into either 3, 4, 5, 7, 10 or 20-
quantile bins, (3) for text-based entries, removing all special
characters, spaces, and capitalisation from the text and appending
to the variable name, and (4) for missing values, creating a
separate token to designate missingness (Fig. 1a). By labelling
missing values with separate tokens instead of imputing them, the
models could learn potentially significant patterns of missingness
and integrate a diverse range of missing data without needing to
validate the assumptions of imputation methods on each variable.
During training, the models learned a low-dimensional vector (of
either 16, 32, 64 or 128 units) and a “relevance” weight for each
token in the training set. Therefore, models would take the unique
tokens from each time window of a patient, replace them with the
corresponding vectors, and average the vectors—weighted by
relevance—into a single vector per time window (Fig. 1a).
Each patient’s sequence of low-dimensional vectors then fed

into a RNN—either long short-term memory (LSTM) or gated
recurrent unit (GRU)—to output another vector per time window.

Fig. 4 Example of individual ICU disease course with explanations for high-magnitude transition. TimeSHAP values are interpreted as
contributions of variables or time windows towards the difference in this patient’s expected 6-month functional outcome output from that of
the average patient (Supplementary Fig. 13). The patient was an approximately 50-year-old male, admitted to the ICU after a moderate
traumatic brain injury (GCS 10), who became severely disabled (SD) with full functional dependency by 6 months post-injury (GOSE 2 or 3).
The patient presented with a subarachnoid haemorrhage (SAH) and received emergency intracranial surgery (IC) and a decompressive
craniectomy (DC). New variable abbreviations include deep vein thrombosis (DVT), eye component score of GCS (GCSe), left (L), and right (R).
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In this manner, the models learned temporal patterns of variable
interactions from training set ICU records and updated outputs
with each new time window of data. Finally, each RNN output
vector was decoded—either with a multinomial (i.e., softmax) or
ordinal (i.e., constrained sigmoid) output layer—to return a
probability at each threshold of 6-month GOSE over time (Fig. 1b).
The combinations of hyperparameters—in addition to those

already mentioned (time window length, quantile bin count,
embedding vector dimension, RNN type, and output layer)—and
their optimisation results are reported in the Supplementary Methods.

Model and information evaluation
All metrics, curves, and associated confidence intervals (CIs) were
calculated on the testing sets using the repeated Bootstrap Bias
Corrected Cross-Validation (BBC-CV) method34. We calculated
metrics and CIs at each timepoint after ICU admission as well as
at each timepoint leading up to ICU discharge.
The reliability of model-generated trajectories was assessed

through the calibration of output probabilities at each threshold
of 6-month GOSE. Using the logistic recalibration framework35, we
first measured calibration slope. Calibration slope less(/greater)
than one indicates overfitting(/underfitting)35. In addition, we
examined smoothed probability calibration curves to detect
miscalibrations that might have been overlooked by the logistic
recalibration framework35.
We also assessed the information quality achieved by the

combination of our modelling strategy and the CENTER-TBI variables
by calculating Somers’ Dxy

36. In our context, Somers’ Dxy is interpreted
as the proportion of ordinal variation in 6-month GOSE that is
explained by the variation in model output37. The calculation of
Somers’ Dxy is detailed in the Supplementary Methods.
We compared the performance of our modelling strategy with

that of two baseline models on the same remaining patients over
time. The first was a multinomial logistic regression model trained
on the ten, static IMPACT extended variables (Supplementary
Table 1) from the first 24 h of ICU stay (i.e., the validated standard
for static prognosis)8. The second was our developed modelling
strategy but trained only on the 738 static variables in CENTER-TBI
to measure added explanation by ICU information.

High-magnitude transition identification and explanation
Within the calibrated region of testing set model outputs, we
found high-magnitude transitions, both negative (i.e., worsening)
and positive (i.e., improvement), of model-generated probabilities

at each threshold of 6-month GOSE. High-magnitude transitions
were arbitrarily defined by a consecutive time window difference
in probability that:

1. for negative transitions, was less than or equal to the 1st
percentile of negative differences for a given GOSE thresh-
old across the population,

2. for positive transitions, was greater than or equal to the 99th
percentile of positive differences for a given GOSE threshold
across the population.

The cut-offs for high-magnitude transitions are listed in
Supplementary Table 2.
To uncover the variables associated with high-magnitude

transitions, we applied the TimeSHAP algorithm10. TimeSHAP
estimates the relative contribution of both tokens and time
windows towards an individual’s model output by perturbing the
clinical events leading up to a high-magnitude transition. Time-
SHAP applies a temporal coalition pruning algorithm which
groups low-contributing time windows in the distant past
together as a single feature (otherwise, the calculation would be
computationally intractable given the number of tokens).
At the timepoints of high-magnitude transition, we calculated

TimeSHAP for contributions towards both the threshold prob-
ability of 6-month GOSE and the expected 6-month GOSE index
(Supplementary Fig. 13 and the Supplementary Methods). For the
TimeSHAP baseline, we defined an “average patient” to be one
with tokens that are in 50+% of training set time windows.
Therefore, TimeSHAP values were interpreted as associative
contributions of tokens or timesteps towards the difference in a
patient’s model output from that of the average patient.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
Individual participant data, including data dictionary, the study protocol and analysis
scripts are available online, conditional to the approved study proposal, with no end
date. Interested investigators must submit a study proposal to the management
committee at https://www.center-tbi.eu/data. Signed confirmation of a data access
agreement is required, and all access must comply with regulatory restrictions
imposed on the original study.

Table 2. Variable count per category and subtype.

Category Example variable Count by subtypes

All Static Dynamic Interventions Physician impressions

Demographics and socioeconomic status Lives with parents 22 22 0 0 0

Medical and behavioural history Takes beta blockers 188 188 0 0 0

Injury characteristics and severity Helmet on during accident 84 84 0 0 0

Emergency care and ICU admission Physician prognosis at ER discharge 246 246 0 0 16

Brain imaging reports Midline shift 186 108 78 0 25

Laboratory measurements Glial fibrillary acidic protein 228 81 147 0 1

ICU medications and management Fluid loading 108 3 105 75 17

ICU vitals and assessments Bihourly systolic blood pressure 67 0 67 0 0

Surgery and neuromonitoring Decompressive craniectomy 37 6 31 7 18

Total 1166 738 428 82 77

Data represent the number of subtype (column) variables per category (row).
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CODE AVAILABILITY
All code used in this project can be found at the following online repository: https://
github.com/sbhattacharyay/dynamic_GOSE_model (https://doi.org/10.5281/
zenodo.7668551).
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