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Abstract 

Background  Baseline outcome risk can be an important determinant of absolute treatment benefit and has been 
used in guidelines for “personalizing” medical decisions. We compared easily applicable risk-based methods for opti-
mal prediction of individualized treatment effects.

Methods  We simulated RCT data using diverse assumptions for the average treatment effect, a baseline prognostic 
index of risk, the shape of its interaction with treatment (none, linear, quadratic or non-monotonic), and the magni-
tude of treatment-related harms (none or constant independent of the prognostic index). We predicted absolute ben-
efit using: models with a constant relative treatment effect; stratification in quarters of the prognostic index; models 
including a linear interaction of treatment with the prognostic index; models including an interaction of treatment 
with a restricted cubic spline transformation of the prognostic index; an adaptive approach using Akaike’s Information 
Criterion. We evaluated predictive performance using root mean squared error and measures of discrimination and 
calibration for benefit.

Results  The linear-interaction model displayed optimal or close-to-optimal performance across many simulation 
scenarios with moderate sample size (N = 4,250; ~ 785 events). The restricted cubic splines model was optimal for 
strong non-linear deviations from a constant treatment effect, particularly when sample size was larger (N = 17,000). 
The adaptive approach also required larger sample sizes. These findings were illustrated in the GUSTO-I trial.

Conclusions  An interaction between baseline risk and treatment assignment should be considered to improve treat-
ment effect predictions.

Keywords  Treatment effect heterogeneity, Absolute benefit, Prediction models

Introduction
Predictive approaches to heterogeneity of treatment 
effects (HTE) aim at the development of models pre-
dicting either individualized effects or which of two (or 
more) treatments is better for an individual with regard 
to a specific outcome of interest [1]. These predictive 
approaches include both regression and machine learn-
ing techniques and are the subject of active research 
[2–5]. In prior work, we divided regression-based meth-
ods for the evaluation of treatment effect heterogeneity 
in three broader categories: risk modeling, treatment 
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effect modeling and optimal treatment regime methods 
[6]. Risk modeling methods use only prognostic factors 
to define patient subgroups, relying on the mathemati-
cal dependency between baseline risk and treatment 
effect [2, 7]. Treatment effect modeling methods use 
both prognostic factors and treatment effect modifiers 
to explore characteristics that interact with the effects 
of therapy. They can be applied in one stage by directly 
modeling treatment-covariate interactions, in which 
case penalization of the interaction effects is needed to 
reduce the effects of overfitting [8], or in two stages that 
rely on updating working absolute benefit models [9, 10]. 
Optimal treatment regime methods focus primarily on 
treatment effect modifiers in order to classify the trial 
population into those who benefit from treatment and 
those who do not [11–14].

In a previous simulation study, modeling treatment-
covariate interactions often led to poorly calibrated pre-
dictions of benefit on the absolute scale (risk difference 
between treatment arms), compared to risk-modeling 
methods [15]. In the presence of true treatment-covar-
iate interactions, however, effect modeling methods 
were better able to separate lower from higher benefit 
patients [15, 16]. By assuming treatment effect is a func-
tion of baseline risk, risk modeling methods impose a 
restriction on the shape of treatment effect heterogene-
ity. With smaller sample sizes or limited information on 
effect modification, risk modeling methods, because of 
their reduced complexity, can provide a good option for 
evaluating treatment effect heterogeneity. Conversely, 
with larger sample sizes and/or a limited set of well-stud-
ied strong effect modifiers, treatment effect modeling 
methods can potentially result in a better bias-variance 
tradeoff. Therefore, the setting in which treatment effect 
heterogeneity is evaluated is crucial for the selection of 
the optimal approach.

Risk modeling methods predict similar treatment ben-
efit for patients with similar baseline outcome risk, i.e. a 
similar probability of experiencing the outcome of inter-
est in the absence of treatment. These methods are not 
new and are quite intuitive to practitioners [6]. Often 
medical guidelines rely on a risk stratified approach to 
target treatments to different patients. In addition, re-
analyses of studies that only looked at overall results 
using risk stratification often resulted to important 
insight on how treatment effects varied for different 
patients. For example, a risk stratified analysis of patients 
with acute myocardial infarction (MI) based on the 
Thrombolysis in Myocardial Infarction (TIMI) risk score 
found no benefit for patients who underwent primary 
angioplasty compared to fibrinolysis. However, there was 
a significant benefit for patients with a high TIMI score 
[17]. Infants at lower risk of bronchopulmonary dysplasia 

benefit relatively more from vitamin A therapy than 
infants at higher risk [18]. Finally, higher risk prediabetic 
patients benefit relatively more from metformin than 
lower risk patients [19].

Most often, risk-modeling approaches are carried out 
in two steps: first a risk prediction model is developed 
externally or internally on the entire RCT population, 
“blinded” to treatment; then the RCT population is strati-
fied using this prediction model to evaluate risk-based 
treatment effect variation [7, 20, 21]. This approach iden-
tified substantial absolute treatment effect differences 
between low-risk and high-risk patients in a re-analysis 
of 32 large trials [22]. However, even though treatment 
effect estimates at the risk subgroup level may be accu-
rate, these estimates may not apply to individual patients, 
as homogeneity of treatment effects is assumed within 
risk strata. With stronger overall treatment effect and 
larger variability in predicted risks, patients assigned to 
the same risk subgroup may still differ substantially with 
regard to their benefits from treatment.

In the current simulation study, we aim to summarize 
and compare different risk-based models for predict-
ing treatment effects. We simulate different relations 
between baseline risk and treatment effects and also con-
sider potential harms of treatment. We illustrate the dif-
ferent models by a case study of predicting individualized 
effects of treatment for acute myocardial infarction in a 
large RCT.

Methods
Notation
We observe RCT data (Z,X ,Y ) , where for each patient 
Zi = 0, 1 is the treatment status, Yi = 0, 1 is the observed 
outcome and Xi is a set of measured covariates. Let 
{Yi(z), z = 0, 1} denote the unobservable potential out-
comes. We observe Yi = ZiYi(1)+ (1− Zi)Yi(0) . We are 
interested in predicting the conditional average treat-
ment effect (CATE),

Assuming that (Y (0),Y (1)) ⊥ Z|X , as we are in the 
RCT setting, we can predict CATE from

Simulation scenarios
We simulated a typical RCT, comparing equally-sized 
treatment and control arms in terms of a binary outcome. 
For each patient we generated 8 baseline covariates 
X1, . . . ,X4 ∼ N (0, 1) and X5, . . . ,X8 ∼ B(1, 0.2) . Out-
comes in the control arm were generated from Bernoulli 
variables with true probabilities following a logistic 

τ (x) = E{Y (0)− Y (1)|X = x}

τ (x) = E{Y (0) | X = x} − E{Y (1) | X = x}

= E{Y | X = x,Z = 0} − E{Y | X = x,Z = 1}
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regression model including all baseline covariates, 
i.e.  P(Y (0) = 1|X = x) = expit(lp0) = elp0/

(
1+ elp0

)
 , 

with lp0 = lp0(x) = xtβ . In the base scenarios coeffi-
cient values β were such, that the control event rate was 
20% and the discriminative ability of the true prediction 
model measured using Harrell’s c-statistic was 0.75. The 
c-statistic represents the probability that for a randomly 
selected discordant pair from the sample (patients with 
different outcomes) the prediction model assigns larger 
risk to the patient with the worse outcome. For the sim-
ulations this was achieved by selecting β values such 
that the true prediction model would achieve a c-sta-
tistic of 0.75 in a simulated control arm with 500,000 
patients. We achieved a true c-statistic of 0.75 by setting 
β = (−2.08, 0.49, . . . , 0.49)t.

Outcomes in the treatment arm were first generated 
using 3 simple scenarios for a true constant odds ratio 
(OR): absent (OR = 1), moderate (OR = 0.8) or strong 
(OR = 0.5) constant relative treatment effect. We then 
introduced linear, quadratic and non-monotonic devia-
tions from constant treatment effects using:

where lp1 is the true linear predictor in the treatment arm, 
so that P(Y (1) = 1|X = x) = expit(lp1) , γ = (γ0, γ1, γ2)

t 
controls the shape of the evolution of treatment effect as 
a function of baseline risk (type and strength of devia-
tions from the constant treatment effect setting), while c 
allows us to shift the proposed shape function to achieve 
the desired overall event rates. For example, to simulate 
a constant treatment effect with OR = 0.8 we would set 
γ = log(0.8), 1, 0

t and c = 0 . Finally, we incorporated 
constant absolute harms for all treated patients, such that 
P(Y (1) = 1|X = x) = expit(lp1)+ harm . The sample 
size for the base scenarios was set to 4,250 (80% power 
to find a statistically significant treatment effect at the 
5% significance level, when the true treatment effect is 
an odds ratio of 0.8). We evaluated the impact of smaller 
or larger sample sizes of 1,063 and 17,000, respectively. 
We also evaluated the impact of risk model discrimina-
tive ability, adjusting the baseline covariate coefficients, 
such that the c-statistic of the regression model in the 
control arm was 0.65 and 0.85, respectively. These set-
tings resulted in a simulation study of 648 scenarios 
covering the HTE observed in 32 large trials as well as 
many other potential variations of risk-based treatment 
effect (Supplement, Sects. 2 and 3) [22]. We analyzed the 
sensitivity of the results to correlation between baseline 
characteristics. We first sampled 8 continuous variables 
W1, . . . ,W8 ∼ N (0,�) . We then generated four con-
tinuous baseline covariates from X1 = W1, . . . ,X4 = W4 
and four binary covariates with 20% prevalence from 

lp1 = γ0 + γ1(lp0 − c)+ γ2(lp0 − c)2,

X5 = I(W5 > z0.8), . . . ,X8 = I(W8 > z0.8) , where I is 
the indicator function and P(U ≤ 0.8) = z0.8 for random 
variable U ∼ N (0, 1) . The covariance matrix � was such 
that cor

(
Xi,Xj

)
= 0.5 for any i  = j . To ensure that the 

outcome rate in the untreated subset was 20% and that 
true prediction c-statistic remained equal to the nominal 
values of the main simulation analyses, we adjusted the 
coefficients of the true outcome model. More details on 
the sensitivity analyses can be found in the Supplement, 
Sect. 9.

Individualized risk‑based benefit predictions
In each simulation run, we internally developed a pre-
diction model on the entire population, using a logistic 
regression model with main effects for all baseline covar-
iates and treatment assignment. Individual risk predic-
tions were derived by setting treatment assignment to 0. 
A more intuitive approach would be to derive the predic-
tion model solely on the control patients. However, this 
has been shown to lead to biased benefit predictions, 
because with limited sample size the model will be over-
fitted to the control arm and induce spurious treatment 
interactions [15, 23, 24].

We compared different methods for predicting abso-
lute treatment benefit, that is the risk difference between 
distinct treatment assignments. We use the term absolute 
treatment benefit to distinguish from relative treatment 
benefit that relies on the ratio of predicted risk under dif-
ferent treatment assignments.

A stratified HTE method has been suggested as an 
alternative to traditional subgroup analyses [20, 21]. 
Patients are stratified into equally-sized risk strata—in 
this case based on risk quartiles. Absolute treatment 
effects, within risk strata, expressed as absolute risk dif-
ferences, are estimated by the difference in event rate 
between control and treatment arm patients. We consid-
ered this approach as a reference, expecting it to perform 
worse than the other candidates, as its objective is to pro-
vide an illustration of HTE rather than to optimize indi-
vidualized benefit predictions.

Second, we fitted a logistic regression model which 
assumes constant relative treatment effect (constant odds 
ratio), that is, P

(

Y = 1|X = x,Z = z;�̂
)

= expit
(

l̂p0 + �1z
) . Hence, abso-

lute benefit is predicted from �
(

x;�̂
)

= expit
(

l̂p0

)

− expit
(

l̂p0 + �1

) , 
where δ1 is the log of the assumed constant odds ratio and 
l̂p0 = l̂p0

(
x; β̂

)
= xt β̂  the linear predictor of the esti-

mated baseline risk model.
Third, we fitted a logistic regression model including 

treatment, the risk linear predictor, and their linear inter-
action, that is, P

(

Y = 1|X = x,Z = z;�̂
)

= expit
(

�0 + �1z + �2 l̂p0 + �3zl̂p0

) . 
Absolute benefit is then estimated from 
�
(

x;�̂
)

= expit
(

�0 + �2 l̂p0

)

− expit
(

(�0 + �1) + (�2+�3)l̂p0

)

 . We 
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will refer to this method as the linear interaction 
approach.

Fourth, we used restricted cubic splines (RCS) to relax 
the linearity assumption on the effect of the linear pre-
dictor [25]. We considered splines with 3 (RCS-3), 4 
(RCS-4) and 5 (RCS-5) knots, together with their inter-
action with treatment, to compare models with different 
levels of flexibility (Supplement, Sect. 4).

Finally, we considered an adaptive approach using 
Akaike’s Information Criterion (AIC) for model selec-
tion. More specifically, we ranked the constant relative 
treatment effect model, the linear interaction model, and 
the RCS models with 3, 4, and 5 knots based on their 
AIC and selected the one with the lowest value. The extra 
degrees of freedom were 1 (linear interaction), 2, 3 and 4 
(RCS models) for these increasingly complex interactions 
with the treatment effect.

Evaluation metrics
We evaluated the predictive accuracy of the considered 
methods by the root mean squared error (RMSE):

We compared the discriminative ability of the meth-
ods under study using c-for-benefit and the integrated 
calibration index (ICI) for benefit (Supplement, Sect. 6). 
Since true patient-specific benefit is unobservable, we 
calculated observed benefit using the following approach: 
patients in each treatment arm are ranked based on their 
predicted benefit and then matched 1:1 on predicted ben-
efit across treatment arms. Observed treatment benefit is 
defined as the difference of observed outcomes between 
the untreated and the treated patient of each matched 
patient pair. Since matching may not be perfect, that is, 
predicted benefits for the patients of the pair may not 
be equal, pair-specific predicted benefit is defined as the 
average of predicted benefit within each matched patient 
pair [26]. Then, the c-for-benefit represents the prob-
ability that from two randomly chosen predicted bene-
fit-matched patient pairs with unequal observed benefit, 
the pair with greater observed benefit also has a higher 
predicted benefit. We evaluated calibration in a similar 
manner, using the integrated calibration index (ICI) for 
benefit [27]. The observed benefits are regressed on the 
predicted benefits using a locally weighted scatterplot 
smoother (loess). The ICI-for-benefit is the average abso-
lute difference between predicted and smooth observed 
benefit. Values closer to 0 represent better calibration. 
For each scenario we performed 500 replications, within 

RMSE =

√√√√1

n

n∑

i=1

(τ (xi)− τ̂ (xi))
2

which all the considered models were fitted. We simu-
lated a super-population of size 500,000 for each scenario 
within which we calculated RMSE and discrimina-
tion and calibration for benefit of all the models in each 
replication.

Empirical illustration
We demonstrated the different methods using 30,510 
patients with acute myocardial infarction (MI) included 
in the GUSTO-I trial. 10,348 patients were randomized 
to tissue plasminogen activator (tPA) treatment and 
20,162 were randomized to streptokinase. The outcome 
of interest was 30-day mortality (total of 2,128 events), 
recorded for all patients.

This dataset has been used extensively in prior studies 
[28, 29]. Therefore, we used the same set of seven covari-
ates that was previously used to fit a logistic regression 
model (age, Killip class, systolic blood pressure, heart 
rate, an indicator of previous MI, and the location of MI) 
along with a binary covariate for treatment indication, 
to predict 30-day mortality risk (Supplement, Sect.  10). 
Predicted baseline risk is derived by setting the treatment 
indicator to 0 for all patients.

Results
Simulations
The constant treatment effect approach outperformed 
other approaches in the base case scenario (N = 4,250; 
OR = 0.8; c-statistic = 0.75; no absolute treatment 
harm) with a true constant treatment effect (median 
RMSE: constant treatment effect 0.009; linear interac-
tion 0.014; RCS-3 0.018). The linear interaction model 
was optimal under true linear deviations (median 
RMSE: constant treatment effect 0.027; linear interac-
tion 0.015; RCS-3 0.018; Fig.  1 panels A-C) and even 
in the presence of true quadratic deviations (median 
RMSE: constant treatment effect 0.057; linear interac-
tion 0.020; RCS-3 0.021; Fig. 1 panels A-C) from a con-
stant relative treatment effect. With non-monotonic 
deviations, RCS-3 slightly outperformed the linear 
interaction model (median RMSE: linear interaction 
0.019; RCS-3 0.018; Fig. 1 panel D). With strong treat-
ment-related harms the results were very similar in 
most scenarios (Fig. 1 panels A-C). Under non-mono-
tonic deviations the optimal performance of RCS-3 
was more pronounced (median RMSE: linear interac-
tion 0.024; RCS-3 0.019; Fig.  1 panel D). A stronger 
average treatment effect (OR = 0.5) resulted in higher 
variability of the true treatment effects on the absolute 
scale (difference in true outcome probabilities between 
treatment arms) and consequently to larger RMSE 
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for all approaches. When we assumed a stronger rela-
tive treatment effect, the relative differences between 
approaches were similar to the base-case scenario 
(Supplement, Figure S10).

The adaptive approach had limited loss of performance 
in terms of the median RMSE to the best-performing 
method in each scenario. However, compared to the 
best-performing approach, its RMSE was more vari-
able in scenarios with linear and non-monotonic devia-
tions, especially when also including moderate or strong 
treatment-related harms. On closer inspection, we found 
that this behavior was caused by selecting the constant 

treatment effect model in a substantial proportion of the 
replications (Supplement, Figure S3).

Increasing the sample size to 17,000 favored RCS-3 the 
most (Fig. 2). The difference in performance with the lin-
ear interaction approach was more limited in settings with 
a constant treatment effect (median RMSE: linear interac-
tion 0.007; RCS-3 0.009) and with a true linear interaction 
(median RMSE: linear interaction 0.008; RCS-3 0.009) 
and more emphasized in settings with strong quadratic 
deviations (median RMSE: linear interaction 0.013; RCS-3 
0.011) and non-monotonic deviations (median RMSE: 
linear interaction 0.014; RCS-3 0.010). Due to the large 

Fig. 1  RMSE of the considered methods across 500 replications was calculated from a simulated super-population of size 500,000. The scenario 
with true constant relative treatment effect (panel A) had a true prediction c-statistic of 0.75 and sample size of 4250. The RMSE is also presented for 
strong linear (panel B), strong quadratic (panel C), and non-monotonic (panel D) deviations from constant relative treatment effects. Panels on the 
right side present the true relations between baseline risk (x-axis) and absolute treatment benefit (y-axis). The 2.5, 25, 50, 75, and 97.5 percentiles of 
the risk distribution are expressed by the boxplot on the top. The 2.5, 25, 50, 75, and 97.5 percentiles of the true benefit distributions are expressed 
by the boxplots on the side of the right-handside panel
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sample size, the RMSE of the adaptive approach was even 
more similar to the best-performing method, and the 
constant relative treatment effect model was less often 
wrongly selected (Supplement, Figure S4).

Similarly, when we increased the c-statistic of the 
true prediction model to 0.85 (OR = 0.8 and N = 4,250), 
RCS-3 had the lowest RMSE in the case of strong quad-
ratic or non-monotonic deviations and very comparable 
performance to the – optimal – linear interaction model 
in the case of strong linear deviations (median RMSE of 
0.016 for RCS-3 compared to 0.014 for the linear interac-
tion model; Fig.  3). Similar to the base case scenario the 
adaptive approach wrongly selected the constant treat-
ment effect model (23% and 25% of the replications in 
the strong linear and non-monotonic deviation scenarios 

without treatment-related harms, respectively), leading to 
increased variability of the RMSE (Supplement, Figure S5).

With a true constant relative treatment effect, dis-
crimination for benefit was only slightly lower for the 
linear interaction model, but substantially lower for the 
non-linear RCS approaches (Fig. 4; panel A). With strong 
linear or quadratic deviations from a constant relative 
treatment effect, all methods discriminated quite simi-
larly (Fig. 4 panels B-C). With non-monotonic deviations, 
the constant effect model had much lower discriminative 
ability compared to all other methods (median c-for-ben-
efit of 0.500 for the constant effects model, 0.528 for the 
linear interaction model and 0.530 Fig. 4; panel D). The 
adaptive approach was unstable in terms of discrimina-
tion for benefit, especially with treatment-related harms. 

Fig. 2  RMSE of the considered methods across 500 replications calculated in simulated samples of size 17,000 rather than 4,250 in Fig. 1. RMSE was 
calculated on a super-population of size 500,000
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With increasing number of RCS knots, we observed 
decreasing median values and increasing variability of 
the c-for-benefit in all scenarios. When we increased the 
sample size to 17,000 we observed similar trends, how-
ever the performance of all methods was more stable 
(Supplement, Figure S6). Finally, when we increased the 
true prediction c-statistic to 0.85 the adaptive approach 
was, again, more conservative, especially with non-
monotonic deviations and null or moderate treatment-
related harms (Supplement, Figure S7).

In terms of calibration for benefit, the constant effects 
model outperformed all other models in the scenario with 
true constant treatment effects, but was miscalibrated for 
all deviation scenarios (Fig. 5). The linear interaction model 
showed best or close to best calibration across all scenarios 

and was only outperformed by RCS-3 in the case of non-
monotonic deviations and treatment-related harms (Fig. 5 
panel D). The adaptive approach was worse calibrated 
under strong linear and non-monotonic deviations com-
pared to the linear interaction model and RCS-3. When we 
increased the sample size to 17,000 (Supplement, Figure 
S8) or the true prediction c-statistic to 0.85 (Supplement, 
Figure S9), RCS-3 was somewhat better calibrated than the 
linear interaction model with strong quadratic deviations.

Our main conclusions remained unchanged in the 
sensitivity analyses where correlations between base-
line characteristics were introduced (Supplement, Fig-
ures S16, S17, and S18).

The results from all individual scenarios can be 
explored online at https://​mi-​erasm​usmc.​shiny​apps.​io/​

Fig. 3  RMSE of the considered methods across 500 replications calculated in simulated samples 4,250. True prediction c-statistic of 0.85. RMSE was 
calculated on a super-population of size 500,000

https://mi-erasmusmc.shinyapps.io/HteSimulationRCT/
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HteSi​mulat​ionRCT/. Additionally, all the code for the 
simulations can be found at https://​github.​com/​mi-​erasm​
usmc/​HteSi​mulat​ionRCT

Empirical illustration
We used the derived prognostic index to fit a constant 
treatment effect, a linear interaction and an RCS-3 model 
individualizing absolute benefit predictions. Following 
our simulation results, RCS-4 and RCS-5 models were 
excluded. Finally, an adaptive approach with the 3 candi-
date models was applied.

Predicted absolute benefit was derived as the differ-
ence of predicted acute MI risk between treatment arms, 
if all other predictors remained unchanged. All consid-
ered methods provided similar fits, predicting increas-
ing absolute benefits for patients with higher baseline risk 

predictions, and followed the evolution of the stratified 
estimates closely (Fig.  6). The constant treatment effect 
model had somewhat lower AIC compared to the linear 
interaction model (AIC: versus 9,342), equal cross-vali-
dated discrimination (c-for-benefit: 0.525), and slightly 
better cross-validated calibration (ICI-for benefit: 0.010 
versus 0.012). In conclusion, although the sample size 
(30,510 patients; 2,128 events) allowed for flexible mode-
ling approaches, a simpler constant treatment effect model 
is adequate for predicting absolute 30-day mortality ben-
efits of treatment with tPA in patients with acute MI.

Discussion
The linear interaction and the RCS-3 models displayed 
very good performance under many of the considered 
simulation scenarios. The linear interaction model was 
optimal in cases with moderate sample sizes (4.250 

Fig. 4  Discrimination for benefit of the considered methods across 500 replications calculated in simulated samples of size 4,250 using the 
c-statistic for benefit. The c-statistic for benefit represents the probability that from two randomly chosen matched patient pairs with unequal 
observed benefit, the pair with greater observed benefit also has a higher predicted benefit. True prediction c-statistic of 0.75

https://mi-erasmusmc.shinyapps.io/HteSimulationRCT/
https://github.com/mi-erasmusmc/HteSimulationRCT
https://github.com/mi-erasmusmc/HteSimulationRCT
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patients; ~ 785 events) and moderately performing base-
line risk prediction models, that is, it had lower RMSE, 
was better calibrated for benefit and had better discrimi-
nation for benefit, even in scenarios with strong quad-
ratic deviations. In scenarios with true non-monotonic 
deviations, the linear interaction model was outper-
formed by RCS-3, especially in the presence of treat-
ment-related harms. Increasing the sample size or the 
prediction model’s discriminative ability favored RCS-3, 
especially in scenarios with strong non-linear deviations 
from a constant treatment effect.

Our simulation results clearly express the trade-off 
between the advantages of flexibly modeling the relation-
ship between baseline risk and treatment effect and the 
disadvantages of overfitting this relationship to the sam-
ple at hand. With infinite sample size, the more flexible 
approach (here RCS) will be optimal, but in practice, with 
limited sample size, parsimonious models may be pref-
erable. Even with the substantial sample size of our base 
case scenario, the (less flexible) linear interaction model 
performed better than the (more flexible) RCS approach 

for most simulation settings. The even less flexible con-
stant treatment effect model, however, was only optimal 
when the treatment effect was truly constant. Moreover, 
the assumption of a constant treatment effect may often 
be too strong [22, 30].

RCS-4 and RCS-5 were too flexible in all considered 
scenarios, as indicated by higher RMSE, increased vari-
ability of discrimination for benefit and worse calibra-
tion of benefit predictions. Even with larger sample sizes 
and strong quadratic or non-monotonic deviations, these 
more flexible methods did not outperform the simpler 
RCS-3 approach. Higher flexibility may only be helpful 
under more extreme patterns of HTE compared to the 
quadratic deviations considered here. Considering inter-
actions in RCS-3 models as the most complex approach 
often may be reasonable.

Our results can also be interpreted in terms of bias-
variance trade-off. The increasingly complex models con-
sidered allow for more degrees of freedom which, in turn, 
increase the variance of our absolute benefit estimates. 
However, as was clear in our simulations, this increased 

Fig. 5  Calibration for benefit of the considered methods across 500 replications calculated in a simulated sample of size 500,000. True prediction 
c-statistic of 0.75 and sample size of 4,250
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complexity did not always result in substantial decrease 
in bias, especially with lower sample sizes and weaker 
treatment effects. Consequently, in most scenarios the 
simpler linear interaction model achieved the best bias-
variance balance and outperformed the more complex 
RCS methods, even in the presence of non-linearity in 
the true underlying relationship between baseline risk 
and treatment effect. Conversely, the simpler constant 
treatment effect model was often heavily biased and, 
despite its lower variance, was outperformed by the other 
methods in the majority of the considered scenarios.

Increasing the discriminative ability of the risk model 
reduced RMSE for all methods. Higher discrimination 
translates in higher variability of predicted risks, which, 
in turn, allows the considered methods to better cap-
ture absolute treatment benefits. As a consequence, bet-
ter risk discrimination also led to higher discrimination 
between those with low or high benefit (as reflected in 
values of c-for-benefit).

The adaptive approach had adequate median perfor-
mance, following the “true” model in most scenarios. 
With smaller sample sizes it tended to miss the treat-
ment-baseline risk interaction and selected simpler 
models (Supplement Sect. 4). This conservative behavior 
resulted in increased RMSE variability in these scenar-
ios, especially with true strong linear or non-monotonic 

deviations. Therefore, with smaller sample sizes the sim-
pler linear interaction model may be a safer choice for 
predicting absolute benefits, especially in the presence of 
any suspected treatment-related harms.

A limitation of our simulation study is that we assumed 
treatment benefit to be a function of baseline risk in the 
majority of the simulation scenarios, thus ignoring any 
actual treatment effect modification of individual factors. 
We attempted to expand our scenarios by considering 
moderate and strong constant treatment-related harms, 
applied on the absolute scale, in line with previous work 
[31]. In a limited set of scenarios with true interactions 
between treatment assignment and covariates, our con-
clusions remained unchanged (Supplement, Sect. 8). Even 
though the average error rates increased for all the consid-
ered methods, due to the miss-specification of the outcome 
model, the linear interaction model had the lowest error 
rates. RCS-3 had very comparable performance. The con-
stant treatment effect model was often biased, especially 
with moderate or strong treatment-related harms. Future 
simulation studies could explore the effect of more exten-
sive deviations from risk-based treatment effects.

We only focused on risk-based methods, using base-
line risk as a reference in a two-stage approach to indi-
vidualizing benefit predictions. However, there is a 
plethora of different methods, ranging from treatment 

Fig. 6  Individualized absolute benefit predictions based on baseline risk when using a constant treatment effect approach, a linear interaction 
approach and RCS smoothing using 3 knots. Risk stratified estimates of absolute benefit are presented within quartiles of baseline risk as reference. 
95% confidence bands were generated using 10,000 bootstrap resamples, where the prediction model was refitted in each run to capture 
the uncertainty in baseline risk predictions. For the risk stratification approach, we also provide 95% confidence intervals for the baseline risk 
quarter-specific average predicted risk over the 10,000 bootstrap samples
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effect modeling to tree-based approaches available in 
more recent literature [4, 5, 8, 32–36]. Many of these 
methods rely on incorporating treatment-covariate 
interactions when predicting benefits. An important 
caveat of such approaches is their sensitivity to overfit-
ting, which may exaggerate the magnitude of predicted 
benefits. This can be mitigated using methods such as 
cross-validation or regularization to penalize the effect 
of treatment-covariate interactions. In the presence of 
a limited set of true strong treatment-covariate interac-
tions and adequate sample size, treatment effect mod-
eling methods may outperform risk modeling methods. 
However, often treatment effect modifiers are unknown 
and the available sample size does not allow for the 
exploration of a large number of interaction effects. 
In these cases, risk modeling approaches like the ones 
presented here can provide individualized benefit pre-
dictions that improve on the “one-size-fits-all” overall 
RCT result. In a previous simulation study, a simpler 
risk modeling approach was consistently better cali-
brated for benefit compared to more complex treatment 
effect modelling approaches [15]. Similarly, when SYN-
TAX score II, a model developed for identifying patients 
with complex coronary artery disease that benefit more 
from percutaneous coronary intervention or from coro-
nary artery bypass grafting was redeveloped using fewer 
treatment-covariate interactions had better external 
performance compared to its predecessor [37, 38].

Finally, in all our simulation scenarios we assumed all 
covariates to be statistically independent, the effect of 
continuous covariates to be linear, and no interaction 
effects between covariates to be present. This can be 
viewed as a limitation of our extensive simulation study. 
However, as all our methods are based on the same fit-
ted risk model, we do not expect these assumptions to 
significantly influence their relative performance.

In conclusion, the linear interaction approach is a 
viable option with moderate sample sizes and/or mod-
erately performing risk prediction models, assuming a 
non-constant relative treatment effect plausible. RCS-3 
is a better option with more abundant sample size 
and when non-monotonic deviations from a constant 
relative treatment effect and/or substantial treatment-
related harms are anticipated. Increasing the complex-
ity of the RCS models by increasing the number of 
knots does not improve benefit prediction. Using AIC 
for model selection is attractive with larger sample size.
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