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the most difficult areas in electrodiagnostic medicine [1].
In theory, a neuropathic EMG, with fibrillation potentials,
positive sharp waves, high-amplitude and long duration motor
unit potentials (MUPs) and a reduced interference pattern
should be clearly distinguishable from a myopathic EMG
containing smaller, short-duration polyphasic MUPs and a
full interference pattern. In practice, however, the diagnostic
yield of qualitative EMG analysis, for the distinction between
both abnormal/myopathic and between neuropathic/myopathic
is disappointingly low. In the past decades, several quantitative
EMG (qEMG) methods such as turns-amplitude analysis have
been developed in an attempt to increase the diagnostic yield
of the EMG, but so far sensitivity and specificity of various
qEMG techniques has remained similar to visual inspection
[2], [3]. Similarly, another quantitative technique called the
clustering index method yielded a sensitivity of 92% for
neurogenic and 61% for myopathic patients [4]. Interpretation
of the EMG in patients with Inclusion Body Myositis (IBM)
(a myopathy) is particularly challenging, as it may contain
both myopathic and neurogenic features [5]. As IBM may
also mimic motor neuron disease clinically, inappropriate
interpretation of the EMG can lead to an incorrect diagnosis.
A retrospective study of mislabeled IBM patients found that
routine EMG commonly pointed to a neurogenic disorder:
it showed fibrillations and positive sharp waves, as well as
excessive amounts of polyphasic long-duration neurogenic
MUPs in the majority of mislabeled patients [6]. This is highly
unfortunate as Amyotrophic Lateral Sclerosis (ALS), a neu-
ropathy, is a progressive fatal disease, whereas life expectancy
is not significantly affected in IBM [7]. Most qEMG methods
have been published several decades ago and are based on
assumptions with regards to MUP morphology and physiology.
Recent advances in computer processing power and machine
learning techniques enable a big data approach that processes a
large number of features without any underlying assumptions
about the nature of the signal. We have previously shown
that such an approach, developed for the automotive industry
but applied to electroencephalography (EEG) signals, could

Abstract—Needle electromyography (EMG) is a common tech-
nique used in clinical neurophysiology to record the electrical 
activity of muscles at different levels of activation. It can be used 
to diagnose various neurological/muscular disorders, as the EMG 
signals of patients with both nerve diseases (neuropathies) and 
muscle diseases (myopathies) differ from the signal in healthy 
controls. A major drawback of this examination is that it relies 
on visual inspection and as such, it is highly subjective and 
prone to errors. Based on EMG time series of 65 individuals 
(40 with ALS/IBM and 25 healthy), we aim to develop an 
automated machine-learning pipeline for the classification of 
EMG recordings of muscles in either disease or healthy (muscle-
level). The automated pipeline consists of feature extraction, 
feature selection, modelling algorithm, and optimization, in which 
the most significant features are automatically selected from 
the feature space and the hyperparameters of the model are 
optimized by a Bayesian technique as part of the automated 
approach. Aside from the muscle-level approach, we also explore 
a patient-level approach, which uses the output of the muscle-
level automated pipeline in a post-processing manner to classify 
patients in being either disease or healthy, based on their muscle 
recordings. The resulting two approaches yield an AUC score 
of 81.7% (muscle-level) and 81.5% (patient-level), indicating that 
such approaches can assist clinicians in diagnosing if a patient 
has a neuropathy/myopathy or is healthy.

Index Terms—Automated Machine Learning, EMG, ALS, 
IBM, Neuromuscular, Time Series Classification

I. INTRODUCTION

Needle or intramuscular electromyography (EMG) is a
common technique used in clinical neurophysiology to record
the electrical activity of muscles at different levels of activation
[1]. As the EMG signals of patients with both nerve dis-
eases (neuropathies) and muscle diseases (myopathies) differ
from the signal in healthy controls, EMG can be used to
diagnose various neurological disorders. The most commonly
used method to interpret the EMG is qualitative, based on
visual inspection of the signal in real time by an experi-
enced examiner. A major drawback of this method is that
it is highly subjective and prone to errors. In particular for
the diagnosis of myopathies, EMG has been called one of
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classify Parkinson Disease patients with good cognition from
those with poor cognition with an accuracy of 91% [8].

A first approach towards automatic classification of specific
diseases, either myopathic or neuropathic, is the differentiation
between a normal EMG assessment from a healthy individual,
and an abnormal EMG assessment from a patient with a
myopathic or neuropathic disease. Here, we aimed to evaluate
an automated time series classification algorithm for usage
in differentiating EMG time series from healthy individuals
and EMG time series from patients with either neuropathic or
myopathic diseases. Our approach is automated and limits as
much as possible arbitrary choices, providing at the same time
valuable diagnostic information without having to rely heavily
on clinical expertise.

The rest of the paper is organized as follows. In section II
we give an overview of the related work in the field and
limitations thereof. In section III we present our dataset used
in this study and in section IV we show the pre-processing to
transform the data. In section V we give a detailed explanation
of the automated machine-learning muscle-level pipeline and
in section VI we define and present our patient-level algorithm.
In section VII we discuss the performance evaluation metrics.
Finally, in section VIII we show the experimental results of
our methods and we conclude in section IX.

II. RELATED WORK

Electromyography (EMG) is the study of the electric activity
of the muscle, and assists in the diagnosis of neuromuscular
disorders. EMGs are used to detect and describe different
disease processes affecting the motor unit (MU), the smallest
functional unit of the muscle. During an EMG the motor unit
action potentials (MUPs) are recorded using a needle electrode
at slight voluntary contraction. The MUP reflects the electrical
activity of a single anatomical motor unit. It represents the
compound action potential of those muscle fibers within the
recording range of the electrode. EMGs can detect neuromus-
cular disorders due to the structural reorganization of the MU,
because of disorders affecting peripheral nerve and muscle [9].
Current clinical practice is based on expert visual inspection
of MUP traces and simultaneous assessment of their audio
characteristics in real time. This subjective assessment, even
if satisfactory, may not be sufficient to describe less apparent
deviations or mixed patterns of abnormalities [10]. Therefore,
for an automated EMG signal classification to be effective,
a systematic and thorough treatment of EMG signals must
be carried out. Because of this, a number of computer-based
quantitative EMG analysis algorithms have been developed
[11].

In this view, [12] developed an EMG-based clas-
sifier for neuromuscular disorders using a Multi-Layer
Perceptron (MLP). The authors compared the perfor-
mance of five different feature extraction techniques
from the EMG signals (autoregressive, root mean square,
mean absolute value, zero crossing and waveform length)
across five different classification tasks: healthy/unhealthy,
healthy/myopathy, healthy/neuropathy, myopathy/neuropathy,

healthy/myopathy/neuropathy. Their results showed that the
autoregressive feature extraction from the EMG signal re-
turned the best results in four out of five groups and
they achieved the highest accuracy (86.3%) when classifying
healthy/myopathy/neuropathy. In [13], a dataset of 50 healthy,
50 neurogenic, and 50 myopathic subjects is generated using
an EMG simulation software, while the feature set consists of
8 features regarding signal amplitude and phase alongside with
statistical metrics, such as mean and variance. The classifica-
tion utilizes four different algorithms with a 97.78% classifica-
tion accuracy using Support Vector Machines (SVM). In [14]
the authors use an openly available clinical database consisting
of recordings of ten healthy subjects, seven myopathic and
eight patients with ALS. They use five feature extraction tech-
niques (waveform length, zero crossings, slope sign changes,
Willison amplitude, and root mean square). The study reports
a 100% accuracy rate for normal subjects, 94% for myopathies
and 96% for patients with ALS using the Linear Discriminant
Analysis (LDA) classifier. In [15] the authors introduce a
novel method for an automatic classification of subjects with
or without neuromuscular disorders. This method is based
on multiscale entropy of recorded surface electromyograms
(sEMG) and Support Vector Classification. They achieved a
diagnostic yield of 81.5% for healthy/patient classification
and 70.4% for healthy/myopathy/neuropathy classification. In
[16] the authors describe a method for the classification
of neuromuscular disorders. The approach involves isolating
single motor unit action potentials (MUPs), computing their
scalograms, taking the maximum values of the scalograms
in five selected scales, and averaging across MUPs to give
a single 5-dimensional feature vector per subject. The SVM
analysis reduces the vector to a single decision parameter,
called the Wavelet Index, allowing the subject to be assigned to
one of three groups: myogenic, neurogenic or normal. In [14]
Naik et. al present an ensemble empirical mode decomposition
algorithm that decomposes a single-channel EMG into a set
of noise-canceled intrinsic mode functions, which are then
linearly separated by the FastICA algorithm. Five time-domain
features extracted from the separated components are then
classified using the LDA, and the classification results are fine-
tuned with a majority voting scheme. The authors achieved
a diagnostic yield of 98% on a clinical EMG database,
to discriminate between the normal, myopathic, and ALS
subjects. More recently, Subasi et. al [17] present a bagging
ensemble classifier for the automated classification of EMG
signals. They use statistical values of the discrete wavelet
transform coefficients and use those as features in a bagging
ensemble of SVM, achieving a 99% accuracy for the diagnosis
of neuromuscular disorders.

The work presented above is by no means exhaustive. To
the best of our knowledge though, there has not been much
research in hyperparameter tuning in the selected algorithms
in this context. The use of hyperparameter optimization tech-
niques would, for example, enhance the model performance
further [18]. What is more, it is evident that most of the
studies only consider a limited number of features as input
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to the classifiers (i.e., Hudgin’s set of features [19]). An
automatic approach to find relevant time series representations
would create and give insights to new features, or rather
biomarkers [8], and would assist in avoiding time-consuming
feature engineering processes. In addition most studies have
been done on a specific muscle (i.e., biceps brachii) and not on
an arbitrary set of muscles. This could affect the generalization
capability of the classification task if, for example, a different
muscle is put to the test.

In this study, we address such shortcomings by using
a fully automated pipeline to limit arbitrary choices. The
pipeline contains units for feature extraction, feature selection,
a machine learning model and hyperparameter optimization.
Furthermore, the data used are collected from routine clinical
practice, rather than an artificial research setting. Finally, we
focus on presenting the machine learning approach in detail.

III. DATA SET

The EMG data contain 380 muscle recordings from 65
muscles (at rest or at maximum contraction) based on 65
patients with IBM (n = 20), ALS (n = 20) and healthy
(control group) (n = 25). As IBM is relatively rare, we used all
available consecutive recordings from 2004-2019. As multiple
muscles were examined per patient, we have the EMG of 122
muscles of healthy subjects and 258 muscles of ALS/IBM
patients. All recordings were age-matched. These recordings
were made within routine clinical care.

The data were collected by the department of clinical
neurophysiology of the Leiden University Medical Center
(LUMC), a tertiary referral center for neuromuscular dis-
eases1. The EMGs were performed with concentric needle
electrodes and recorded using Medelec Synergy electromyo-
graphy equipment2. In general, the assessment takes place in
three phases: with the muscle at rest, during slight activation
and during (near-) maximal activation. Recording at maximal
muscle activation is commonly avoided when the EMG signal
appears to be normal at near-maximal activation levels, as
the EMG becomes increasingly painful when the muscle is
fully activated. The EMG machine routinely stores the last
40 seconds of the examination as 200 consecutive segments
of 0.2s (we shall refer it as a trace hereafter). From every
muscle recording the longest artefact-free series of consecutive
0.2s segments was selected rigorously by clinicians for this
study, through visual inspection. This means that for all pairs
of patient and muscle the number of traces varies and is at
most 200.

The diagnosis was based on established clinical criteria; in
brief: criteria for IBM were the presence of both typical clini-
cal features and muscle biopsy showing atrophy, inflammation
and rimmed vacuoles, criteria for ALS were typical clinical
features, EMG abnormalities and progressive neurological de-
cline, and criteria for healthy subjects were defined as subjects
with atypical complaints of muscles cramps, pain, or fear

1https://www.spierziektencentrum.nl/location/lumc/
2Oxford Instruments, Abingdon, Oxfordshire, UK

of a neuromuscular disease without clinical weakness upon
neurological examination and no signs of muscle weakness
during a follow-up period of at least two years.

For all the patients and muscles, the data were recorded with
two sampling rates; namely 4800Hz and 5000Hz comprising
of 16642 and 14279 traces, respectively.
Formally, let p ∈ {1, 2, .., 65} denote the patient, m ∈
{1, 2, .., 65} the muscle, and t ∈ {1, 2, .., T r(p,m)} the trace.
Here, Tr(p,m) stands for the number of traces for each
patient and muscle, which depends on the longest artefact-
free segment of the muscle recording.
An EMG trace can then be denoted as,

s
(p,m)
t := (st1, s

t
2, . . . , s

t
lt)

ᵀ ∈ R
lt ∀(p,m, t), (1)

where lt is variable and depends on the sampling rate and
duration of the trace. We can also denote the muscle recording
for the tuple (patient, muscle) (∀(p,m)) as

S(p,m) := [s
(p,m)
1 , s

(p,m)
2 , . . . , s

(p,m)
Tr(p,m)

]ᵀ ∈ R
N , (2)

where N = l1 + · · ·+ lTr(p,m)
.

As stated in section I, our approach is a binary classification
task. It aims to differentiate between a normal EMG assess-
ment from a healthy individual, and an abnormal EMG assess-
ment from a patient with a myopathic (IBM) or neuropathic
(ALS) disease. In this view, the classification targets, labeled
by experts, are for each patient p : T p = {DISEASE,CTRL},
where DISEASE includes both ALS and IBM and CTRL
represents healthy controls. It goes without saying that a
muscle recording of a patient belonging to a particular class,
receives the same class label. In the following Section IV the
data preprocessing is described.

IV. DATA PREPROCESSING

For data preprocessing, we first downsampled all 5000Hz
traces to 4800Hz3. This was done for consistency as well as
for computational purposes. In addition, we renamed certain
muscle groups for consistency between recordings (genioglos-
sus → tongue). These preprocessing steps can be considered
on a trace level and they transform equations (1) and (2) from
before to (3) and (4), respectively, as:

s
(p,m)
t := (st1, s

t
2, . . . , s

t
l)

ᵀ ∈ R
l ∀(p,m, t), (3)

where l = 960 at a trace duration of 0.2s and sampling rate
of 4800Hz, and ∀(p,m),

S(p,m) := [s
(p,m)
1 , s

(p,m)
2 , . . . , s

(p,m)
Tr(p,m)

]ᵀ ∈ R
l·Tr(p,m) , (4)

In the next steps we move from the trace level to the
muscle level. For this we designed a unique ID which takes
into account the patient identifier, the muscle examined, and
the side examined ({Left,Right}). With this unique ID we

3We used the resample function of the signal module of the scipy pack-
age https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.resample.
html
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grouped together traces belonging to the same patient identi-
fier, the muscle examined, and the side examined. We then
reconstructed a 5-second time series by stitching together
consecutive 0.2s segments of each unique ID, which at 4800Hz
results in 24000 data points per examined muscle. By creating
time series of equal length, we aimed to avoid bias caused
by differences in the sample length and reduce the amount
of processing time required. We used the last 5s available
from each recording, under the assumption that the part of
the recording from the muscle at near-maximal contraction is
the most likely to contain information useful for classification.
Nine (9) recordings had fewer than 24000 data points, in which
case the entire recording was used. Finally, we discarded 98
recordings with 960 data points in total, which correspond to
a duration of 0.2s (with 4800Hz).

Taking Eq. (3) and (4) into account, we denote EMG
traces for each patient p, muscle m, and examination side
s ∈ {Left,Right} as follows:

s
(p,m,s)
t := (st1, s

t
2, . . . , s

t
l)

ᵀ ∈ R
l. (5)

And the concatenation of all traces for each patient and muscle
is:

S(p,m,s) := [s
(p,m,s)
1 , . . . , s

(p,m,s)
Tr(p,m,s)

]ᵀ ∈ R
N , (6)

where N = l · Tr(p,m,s) and l = 960 is the trace length of
0.2s duration and 4800Hz sampling rate.

V. MACHINE LEARNING PIPELINE

The pipeline used in this paper was originally developed
for applications in the automotive industry for time series
classification problems with vehicle on-board data [20], [21].
Later it has been applied to EEG (electroencephalogram) data
to predict cognitive function in Parkinson’s disease patients
potentially eligible for DBS (deep brain stimulation) [8]. The
(automated) pipeline has been continuously developed further
and consists of the following steps:

1) Feature Extraction from Time Series,
2) Feature Selection,
3) Modeling, and
4) Hyperparameter Optimization of the Classifier.

The input of this fully automated pipeline are labeled time
series (here: EMG). The output are performance measures after
optimizing the hyperparameters.

A. Time Series Feature Extraction

The pipeline aims at being comprehensible, computationally
efficient, and applicable to different time series problems. To
ensure this, our pipeline uses features computed from the time
series. Such features are computationally efficient to use and
relatively easy to interpret.

In this paper, we propose to extract an excessive number
of features from the time series and subsequently select the
most significant ones for the problem at hand, based on some
pre-defined feature selection criterion. Since those numerous
features covers a broad range of time series characteristics,

this procedure allows the application of this pipeline to various
problems with very different relevant features.

In this study, the feature extraction F uses the EMG
recordings of each patient and muscle of each side (see
section IV) as input and constructs a k-dimensional (k is the
number of features) real-valued feature vector, F : RN → R

k:

∀(p,m, s), S(p,m,s) �→ F
(
S(p,m,s)

)
.

Thus, each tuple (p,m, s) results in a feature vector which
can be denoted as F (p,m,s). This feature vector represents the
input for the feature selection procedure.

Within the feature extraction phase, for each time series
(p,m, s) 63 time series characterization methods are utilized,
from which by default 794 features are computed by using
multiple parametrizations4. These features are pre-defined in
the tsfresh package [22], [23]. In this work, tsfresh has
been applied with its default settings. In the next step, from
this generated feature space the most significant features are
selected.

B. Feature Selection

The feature selection phase describes the selection of rel-
evant features from the massive number of extracted fea-
tures (from tsfresh) for the classification task. For each tuple
(p,m, s) of patient and muscle, we use F (p,m,s)

sel ∈ R
k′

to
represent the vector resulting from feature selection (sel stands
for “selected” and k′ is the number of selected features).
Numerous feature selection methods have been proposed like
the forward or backward selection. To even distinguish be-
tween relevant and non-relevant features the so-called feature
importance can be used as a measure. Feature importance
describes the mean decrease of accuracy or also the mean
decrease of impurity when modeling with random forests.
When in a forward selection features are added iteratively until
the feature importance stagnates or deteriorates, backward
elimination uses all features in the beginning and removes
less important features gradually.

In our pipeline, another feature selection algorithm called
boruta [24] is used since it has shown best performances
when compared to other methods [20]. The boruta algorithm
includes a random forest model which is build on real fea-
tures and shadow features. Shadow features are generated by
randomly shuffling the values of each real feature vector. As
soon as a real feature exposes a higher feature importance
than the maximal feature importance over all shadow features,
it is considered for selection. This procedure is repeated
to guarantee that the selected features have a statistically
significant meaning.

C. Modeling

In the phase of modeling, a random forest model is trained
with the selected features of the previous phase. We have
implemented a random forest model due to its simplicity

4Please see https://tsfresh.readthedocs.io/en/latest/text/list of features.html
for the detailed list of features
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TABLE I
OVERVIEW OF THE APPROACHES FOR AUTOMATED EMG ASSESSMENTS WITH MACHINE LEARNING.

Approach Description EMG cases Class 0 (healthy) Class 1 (disease) Length

1 DISEASE vs. CTRL, muscle-level 380 122 258 ≤ 24000

2 DISEASE vs. CTRL, over- and under-sampling, muscle-level 380 122 258 ≤ 24000

and its efficiency. Furthermore, random forests are known to
achieve good performances in different domains. However, any
other classifier can be implemented here. A random forest
is an ensemble learning method. It is the conglomeration
of several decision trees with the resulting decision being
the average outcome of all those decision trees [25] in the
case of regression or by taking the majority vote in case of
classification.

In this EMG study, we can summarize the input to the
random forest model as {(F (p,m,s)

sel , T (p))}, where p ∈
{1, . . . , 65}, m ∈ {1, . . . , 65}, s ∈ {Left,Right}.

We have 380 intramuscular EMG recordings, of which 258
belong to patients with a neuromuscular disorder and the
remaining 122 to healthy individuals. Evidently, this dataset
is not balanced. Thus, in addition to the previous modeling
approach we also performed a balanced approach. In detail,
we used a combination of over-sampling the minority class
(healthy) and under-sampling the majority class (disease), by
allowing the two classes to “meet” halfway (rounded down).
In other words, if the difference is 20 data-points (EMG
recordings), we under-sample the majority class by 10 and
over-sample the minority class by another 10. The under-
sampling of the majority class happens randomly, whereas
the oversampling of the minority class takes place using
the well known Synthetic Minority Over-Sampling Technique
(SMOTE) [26]. We should note here that the balancing is
applied only to the training set in each fold of the 10-fold
CV. The two modelling approaches will be called henceforth
approach 1 and approach 2. In addition, Table I shows an
overview of the modeling approaches.

D. Hyperparameter Optimization

The optimization of hyperparameters enhances the perfor-
mance of a machine learning algorithm. Table II shows the
search space of the hyperparameter optimization conducted in
this study. It is notable that the search space contains not only
integer variables but also categorical ones. Various methods
and algorithms are available for hyperparameter optimization
like Grid Search, Evolutionary Algorithms and Bayesian Op-
timization [27]. In this study, a state-of-the-art Bayesian Op-
timization algorithm, namely Mixed-integer Parallel Efficient
Global Optimization (MIP-EGO) [28], [29], is chosen due to
its efficiency for optimizing expensive problems. It can handle
mixed-integer categorical variables in an efficient way. MIP-
EGO suggests in each iteration a candidate hyperparameter
setting which is evaluated by measuring the performance of
the model on a test data set. We execute MIP-EGO for 200
iterations and we use the F1-score macro as our optimization

criterion, in order to take into account the class imbalance
during training.

TABLE II
HYPERPARAMETER SEARCH SPACE FOR OPTIMIZING THE RANDOM

FOREST CLASSIFIER.

Parameter Range
Max depth of each tree {None, 2, 4, 6, . . . , 100}
Number of trees {1, 2, . . . , 100}
Max number of features when splitting a node {auto,sqrt,log2}
Min number of samples required to split a node {2, 3, . . . , 20}
Min number of samples required in the leaf node {1, 2, . . . , 10}
Use bootstrap training samples? {True,False}

VI. PATIENT-LEVEL APPROACH

The pipeline we have proposed so far operates on the level
of muscles, meaning it predicts, for each muscle recording
(constructed from the same patient and the same side), the
probability of this muscle falling into the disease category. In
addition, we would like to give the same prediction on the
patient-level, which takes all prediction probabilities on the
muscles from the same patient and then aggregates them to
make an overall predictive decision for this patient. We will
call this approach patient-level approach.

Four different aggregation methods are proposed for the
patient-level prediction, which utilizes prediction probabilities
of the recorded muscles of all the patients:

1) Majority method: classify the patient as being in the
disease class if more than half of his examined muscles
have a score greater than 0.5. Otherwise, classify him as
being healthy.

2) Median method: classify the patient as being in the
disease class if the median of the scores of his examined
muscles is greater than 0.5. Otherwise, classify him as
being healthy.

3) Two-muscles method: classify the patient as being in the
disease class if at least two of his examined muscles have
a score larger than 0.5. Otherwise, classify him as being
healthy. The reason for using more than one muscle in
this approach is that by using two muscles we reduce the
impact of a potential outlier.

4) Two-muscles average method: classify the patient as
being in the disease class if the average of two of his
examined muscles with the highest score is larger than
0.5. Otherwise, classify him as being healthy.

The difference between methods 3 and 4 above can be
made clear with an example. If a patient has 0.80 and 0.49 as
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the highest two scores, then the two-muscles method would
classify him as healthy, whereas the two-muscles-average
method would classify him as being in the disease class. Thus,
this seems like an interesting alternative method.

VII. PERFORMANCE EVALUATION

As previously mentioned, the data set used in this paper
contains data of 40 patients with neuromuscular disorders
and 25 healthy patients. In detail we have 380 intramuscular
EMG recordings, of which 258 have a neuromuscular disorder
and the other 122 are healthy. Evidently, this dataset is not
balanced, and thus classification accuracy is not an appropriate
performance measure, as it will overestimate the performance.
We report it for approach 2, as the dataset is balanced there,
and for completeness we also report it for approach 1. In this
view, we have also included some other commonly employed
performance measures, namely, precision, recall, F1-score,
sensitivity, specificity, ROC (Receiver operating characteristic)
curve, and the Area Under the ROC (AUC). We explain these
performance measures briefly as follows:

• accuracy: the number of correct classifications divided
by the number of data points.

• positive class: DISEASE (i.e., the disease class).
• negative class: CTRL (i.e., the healthy class).
• true positive: correct classifications to class DISEASE.
• false positive: incorrect classifications to class DISEASE.
• precision: the number of true positive classifications

divided by the total number of positive classifications.
• recall/sensitivity: the number of true positive classifica-

tions divided by the total number of true positives (i.e.,
true positive rate).

• Specificity: the number of true negative classifications
divided by the total number of true negatives (i.e., true
negative rate).

• F1 = 2× precision × recall/(precision + recall).
• The ROC curve describes the trade-off between true

positive rate and false positive rate while the area under
the curve (AUC) quantifies such a trade-off.

We calculate the F1-score, the recall and precision with two
schemes, namely, macro and weighted. The former calculates
metrics for each label (DISEASE, CTRL), and finds their
unweighted mean. This does not take label imbalance into
account. The latter calculates metrics for each label (DIS-
EASE, CTRL), and finds their average weighted by the class’s
support (the number of true instances for each label). This
alters ”macro” to account for label imbalance.

Furthermore, confusion matrices or visualization methods
such as ROC can provide deeper performance insights. A
confusion matrix describes the frequency of cases that are
correctly or incorrectly classified [30] and is considered as
a useful illustration of the classification quality. Depending
on the data, the ROC additionally helps understanding the
performance of the model [27].

We clarify the two types of results presented in section VIII:
the ones obtained from the muscle-level approach and from
the patient-level approach. The former means that the results

underline the performance of the automatic machine learning
pipeline on the EMG recordings classification task (henceforth
known as muscle-level). The latter quantifies the performance
of the post-processing task which aims to classify the patients
(henceforth known as patient-level), using the output of the
muscle-level pipeline.

A. Muscle-Level

The resulting performance scores are based on a 10-fold
cross validation (CV). In a cross validation, the data set is
randomly split into K folds (here K = 10) and trained on
K−1 folds and tested on the remaining Kth fold. This process
is repeated until each fold has served as test set. The average
of performance scores from all K folds represents the final
score. In contrast to CV, when trained on all data, the models
with optimized hyperparameter settings for EMG assessment
achieve a final classification accuracy of 100%. This is a clear
indication of model overfitting, i.e., such models would not
generalize well for new patients.

We would also like to emphasize here that during the CV
in the pipeline, the folds are generated in a patient level way.
This means that the EMG recordings belonging to one patient
are all included in the training or testing fold and are never
separated between the training data and test data. This is
important in order to prevent data leakage, as two different
EMG recordings of one patient carry similar information
about the underlying process that generated them (i.e., same
pathophysiology). Each resulting performance score represents
the average of 5 independent runs of the automatic machine
learning pipeline.

B. Patient-Level

The resulting performance scores are based on the post-
processing of the scores returned by the pipeline. For the
patient-level approach we follow the procedure explained in
detail in section VI. Each resulting performance score of
the patient-level approach represents the average of the post-
processing of the 5 independent runs of the automatic machine
learning pipeline (muscle-level).

VIII. RESULTS

In this section, the results of the muscle-level and patient-
level classification tasks are presented.

A. Muscle-level results

The muscle-level approach aims at classifying intramuscular
EMG recordings as either disease (ALS/IBM) or healthy.
In Table III, we present the results for the muscle-level
approaches 1 and 2. For clarity, approach 1 refers to the
unbalanced muscle-level pipeline and approach 2 refers to
the balanced muscle-level pipeline (see Table I). Furthermore,
Figures 1 and 2 show the confusion matrices of both mod-
eling approaches 1 and 2 for the training and the test set,
respectively.

First of all, the achieved results indicate that a task like this
can be carried out by machine learning techniques. Comparing
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between approaches 1 and 2, Table III shows that approach
1 (AUC = 0.817) is generally better suited for this task
than approach 2 (AUC = 0.795), although the difference
between the two is minimal. Here, we take the AUC as the
major performance value since it quantifies the best potential
performance for both approaches while the other scores only
compare them with a fixed decision threshold (0.5 in this
paper). From Figures 1 and 2 we can see that the sensitivity
of approach 1 is greater than that of approach 2, however the
specificity of approach 2 is greater than that of approach 1.
This can also be backed-up from Table III where the sensitivity
of approach 1 and 2 is 0.896 and 0.816, respectively, whereas
the specificities are 0.546 for approach 1 and 0.604 for
approach 2. A reason for this behavior could be partially due
to the fact that for approach 2 we reduce in every fold the
training data of our positive class and increase the training
data of our negative class in order to balance the data-points
between the two labels.

Finally, in Table IV we can see the common features5 se-
lected in every fold of the 10-fold CV and in every single of the
5 independent runs. We show their aggregated impurity-based
importance values (averaged over a 10-fold cross validation,
and then averaged over all 5 repeated runs of the 10-fold
CV) and the standard deviation of the means over the 5 runs.
The standard deviation shows that the average importance of
these features has been consistent throughout the runs and
their ranking is quite reliable. These features should be further
investigated for their predictive power and clinical relevance
and interpretability.

B. Patient-level results

The patient-level approach aims at classifying patients as
either disease (ALS/IBM) or healthy, based on the prediction
scores of their intramuscular EMG recordings, from muscle-
level approaches 1 and 2. In Table VI we show the perfor-
mance scores of all the methods of the patient-level post-
processing on approach 1 and approach 2.

The achieved results indicate again that a task like this can
be carried out by machine learning techniques. Comparing
the methods and approaches within Table VI, we see that
the post-processing of approach 1 has higher diagnostic yield
than the patient-level post-processing of approach 2. This is
also backed up when comparing the AUC between the two
approaches. In more details, we see that the AUC of the
median and two-muscles average of the patient-level post
processing of approach 1 is 0.815 and 0.798, respectively,
compared to 0.786 and 0.777 of approach 2. A closer look at
Table VI suggests that generally for approach 1 the majority
method allows for the best results in terms of the F1 score
(for both “macro” and “weighted” averages), with the two-
muscles coming in the second rank, then the median method
for the “macro” average and the two-muscles average for the
“weighted” average. The two-muscles average method comes
last in the “macro” average and the median method for the

5Please see https://tsfresh.readthedocs.io/en/latest/text/list of features.html

“weighted” average. For approach 2 the two-muscles come in
the first place, then the two-muscles average, then the majority
method, and last the median method. Note that, the AUC score
is not used to compare all methods since it is not defined for
the majority and two-muscles methods. Figures 3 and 4 show
the ROC curves from all 5 repetitions of the median and two-
muscles average methods of the patient-level post-processing
of approach 1.

Finally, on Table V we see the average percentage of
improvement for each patient-level’s method, when using
hyperparameter optimization vs not using hyperparameter op-
timization in both approaches. We averaged the percentages of
improvement overall the performance metrics of each method.
The last row shows the average improvement overall these
methods. From the table we can see an average improvement
of 2.94% on the patient-level when using hyperparameter
optimization on approach 1, compared to using the default
values of the random forest algorithm6 (no hyperparameter
optimization) and 0.75% for the patient-level of approach 2.
These results directed us to apply hyperparameter optimization
on both approaches 1 and 2. We can also see that hyperpa-
rameter optimization can have a positive or negative impact
based on the experimental setup (approach 1 vs approach 2).

TABLE III
PERFORMANCE SCORES FOR THE MUSCLE-LEVEL APPROACH 1 AND

APPROACH 2. THE SCORES ARE CALCULATED ON THE TEST SET AND

AVERAGED OVER A 10-FOLD CROSS VALIDATION. THE MEAN AND

STANDARD DEVIATION ARE AGGREGATED FROM 5 REPEATED RUNS OF

THE 10-FOLD CV.

Score Approach 1 Approach 2

Accuracy 0.778±0.021 0.747±0.009
F1 (macro) 0.708±0.027 0.692±0.012
F1 (weighted) 0.759±0.021 0.740±0.008
Precision (macro) 0.767±0.032 0.723±0.013
Recall (macro) 0.721±0.025 0.710±0.011
Precision (weighted) 0.792±0.029 0.773±0.005
Recall (weighted) 0.778±0.021 0.747±0.009
Sensitivity 0.896±0.015 0.816±0.006
Specificity 0.546±0.037 0.604±0.025
AUC 0.817±0.023 0.795±0.031

Predicted
CTRL DIS

A
ct

ua
l CTRL 85.15 24.65

DIS 2.19 230.01

Predicted
CTRL DIS

A
ct

ua
l CTRL 6.52 5.69

DIS 2.79 23.01

Fig. 1. Confusion matrix of modeling approach 1 for the training data (left)
and test data (right). CTRL is the CTRL class, referring to healthy recordings
and DIS is the DISEASE class, referring to the disease recordings. The scores
are calculated and averaged over all folds of the 10-fold cross validation. The
values are averaged over 5 repetitions of the 10-fold CV.

IX. CONCLUSIONS AND OUTLOOK

This paper presents an automated method for classifying
electromyography (EMG) data on a muscle-level and a patient-

6See here for the default values https://scikit-learn.org/stable/modules/
generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.
RandomForestClassifier
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Predicted
CTRL DIS
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ct

ua
l CTRL 169.41 1.84

DIS 0.2 171.062

Predicted
CTRL DIS

A
ct

ua
l CTRL 7.38 4.82

DIS 5.1 20.75

Fig. 2. Confusion matrix of modeling approach 2 for the training data (left)
and test data (right). CTRL is the CTRL class, referring to healthy recordings
and DIS is the DISEASE class, referring to the disease recordings. The scores
are calculated and averaged over all folds of the 10-fold cross validation. The
values are averaged over 5 repetitions of the 10-fold CV.

TABLE IV
IMPURITY-BASED IMPORTANCE SCORES FOR THE MUSCLE-LEVEL

APPROACH 1. THESE ARE THE COMMON FEATURES SELECTED BY

BORUTA IN EVERY FOLD OF THE 10-FOLD CV AND IN EVERY REPETITION

OF THE 10-FOLD CV. THE IMPORTANCE SCORES ARE CALCULATED AND

AVERAGED OVER ALL FOLDS OF THR 10-FOLD CV. THE MEAN AND

STANDARD DEVIATION ARE AGGREGATED FROM 5 REPEATED RUNS OF

THE 10-FOLD CV.

Feature Importance Score

percentage of reoccurring values to all values 4.6± 0.12
fft coefficient coeff 34 attr ”abs” 4.43± 0.1
fft coefficient coeff 31 attr ”abs” 3.53± 0.13
ratio value number to time series length’ 3.48± 0.06
fft coefficient coeff 40 attr ”abs” 3.46± 0.12
percentage of reoccurring datapoints to all datapoints 2.91± 0.05

level method for classifying patients. Both tasks aim at classi-
fying between healthy and not healthy. Our data set contains 65
patients and 65 muscles. As multiple muscles were examined
per patient, we have the EMG of 122 muscles of healthy
subjects and 258 muscles of ALS/IBM patients. The data were
collected from routine clinical practice, rather than an artificial
research setting.

For the muscle-level classification task our method extracts
and selects the most significant features from the time series,
trains a random forest model and optimizes its hyperparam-
eters in an automated approach. For this classification task
we develop two approaches; one where the data labels are
kept imbalanced (approach 1) and one where we balance the
labels (approach 2). The achieved results indicate that a task
like this can be carried out by machine learning techniques.
Comparing between approaches 1 and 2, shows that approach
1 (AUC = 0.817) is generally better suited for this task than
approach 2 (AUC = 0.795), although the difference between

TABLE V
PERCENTAGE OF IMPROVEMENT OF THE PATIENT-LEVEL

POST-PROCESSING OF APPROACH 1 AND APPROACH 2, USING

HYPERPARAMETER OPTIMIZATION VS NO HYPERPARAMETER

OPTIMIZATION. EACH ROW SHOWS THE AVERAGE IMPROVEMENT FOR

THAT PATIENT-LEVEL’S METHOD PERFORMANCE METRICS. THE LAST

ROW SHOWS THE AVERAGE IMPROVEMENT OVERALL THESE METHODS.

Approach 1 Approach 2
Majority 4.73% 0.14%
Median 1.87% −1.13%
Two Muscles 2.55% 2.59%
Two Muscles Average 2.61% 1.41%

Average Improvement 2.94% 0.75%

Fig. 3. ROC curves of all 5 repetitions of the median method on the patient-
level post-processing of modeling approach 1.

Fig. 4. ROC curves of all 5 repetitions of the two-muscles average method
on the patient-level post-processing of modeling approach 1.

the two is minimal. Taking into consideration Figure 1 for
approach 1, we see that the test error is slightly higher than
the training error. The reason for this can be attributed to the
small sample size used in this study. For approach 2 (see
Figure 2) we argue that the testing result can not be compared
directly to that on the train set since the class-balancing
procedure is only applied on the training set. We also see
that in both approaches, sensitivity outweighs the specificity.
As a screening algorithm, a high sensitivity is preferable to
limit the amount of false-negatives. From a clinical point of
view, sensitivity is the more important metric in this algorithm.
What we should also emphasize here is that the automatically
computed features, allow for a high diagnostic yield. Since
EMG classification is routinely performed qualitatively, this
method allows for the identification of new EMG biomarkers.

For the patient-level classification task, the achieved results
indicate again that a task like this can be carried out by
machine learning techniques. We see that the post-processing
of approach 1 has higher diagnostic yield than the patient-level
post-processing of approach 2. This is also backed up when
comparing the AUC between the two approaches. In more
detail, we see that the AUC of the median and two-muscles
average of the patient-level post processing of approach 1 is
0.815 and 0.798, respectively, compared to 0.786 and 0.777

Authorized licensed use limited to: Universiteit Leiden. Downloaded on June 19,2024 at 07:44:13 UTC from IEEE Xplore.  Restrictions apply. 



1184

TABLE VI
PERFORMANCE SCORES OF ALL THE METHODS OF THE PATIENT-LEVEL POST-PROCESSING ON MODELLING APPROACHES 1 AND 2, TESTED IN THIS

PAPER. THE SCORE ARE CALCULATED ON THE TEST SET AND AVERAGED IN A 10-FOLD CROSS VALIDATION. THE MEAN AND STANDARD DEVIATION ARE

AGGREGATED FROM 5 REPEATED RUNS OF THE 10-FOLD CV. NOTE THAT FOR THE MAJORITY AND TWO-MUSCLE METHODS THE AUC SCORES ARE NOT

APPLICABLE. THE REASON BEHIND THAT IS THAT WE DECIDED TO USE A FIXED SCORE THRESHOLD.

Approach Method Accuracy F1 F1 Precision Recall Precision Recall Sensitivity Specificity AUC

macro weighted macro macro weighted weighted

Approach 1 Majority 0.782±0.028 0.753±0.032 0.772±0.029 0.789±0.035 0.743±0.03 0.786±0.031 0.782±0.028 0.91±0.034 0.576±0.054 —

Median 0.757±0.033 0.718±0.04 0.742±0.036 0.768±0.041 0.710±0.037 0.763±0.037 0.757±0.033 0.915±0.03 0.504±0.061 0.815±0.008

Two-Muscles 0.769±0.022 0.73±0.024 0.753±0.022 0.794±0.038 0.72±0.022 0.784±0.031 0.769±0.022 0.935±0.038 0.504±0.046 —

Two-Muscles Average 0.766±0.02 0.716±0.021 0.743±0.019 0.815±0.044 0.707±0.018 0.797±0.036 0.766±0.02 0.965±0.029 0.448±0.018 0.798±0.01

Approach 2 Majority 0.72±0.02 0.701±0.024 0.718±0.021 0.705±0.021 0.701±0.025 0.719±0.021 0.72±0.02 0.785±0.034 0.616±0.061 —

Median 0.717±0.018 0.696±0.023 0.714±0.02 0.7±0.019 0.694±0.025 0.714±0.021 0.717±0.018 0.795±0.011 0.592±0.059 0.786±0.021

Two-Muscles 0.738±0.022 0.707±0.021 0.729±0.021 0.732±0.03 0.701±0.019 0.736±0.025 0.738±0.022 0.865±0.034 0.536±0.022 —

Two-Muscles Average 0.742±0.013 0.704±0.018 0.728±0.015 0.742±0.015 0.697±0.016 0.742±0.013 0.742±0.013 0.890±0.014 0.504±0.036 0.777±0.02

(a) Predicted
CTRL DIS

A
ct

ua
l CTRL 12.6 12.4

DIS 3.4 36.6

(b) Predicted
CTRL DIS

A
ct

ua
l CTRL 14.4 10.6

DIS 3.6 36.4

(c) Predicted
CTRL DIS

A
ct

ua
l CTRL 12.6 12.4

DIS 2.6 37.4

(d) Predicted
CTRL DIS

A
ct

ua
l CTRL 11.2 13.8

DIS 1.4 38.6

Fig. 5. Confusion matrices of all the methods of the patient-level post-
processing of modelling approach 1. CTRL is the CTRL class, referring
to the healthy controls and DIS is the DISEASE class, referring to the
disease patients. (a): Median method, (b): Majority method, (c): Two-muscles
method, (d): Two-muscles-average method. The entries are averaged over all
5 repetitions.

of approach 2. The results further show that the majority
method yields the best results in terms of the F1 score (for
both “macro” and “weighted” averages), with the two-muscles
coming in the second rank, then the median method for
the “macro” average and the two-muscles average for the
“weighted” average. The two-muscles average method comes
last in the “macro” average and the median method for the
“weighted” average. Similarly, for approach 2 the two-muscles
come in the first place, then the two-muscles average, then
the majority method, and last the median method. Finally,
we saw an average improvement of 2.94% on the patient-
level when using hyperparameter optimization on approach 1,
compared to using the default values of the random forest
algorithm (no hyperparameter optimization) and 0.75% for
the patient-level of approach 2. These results directed us to
apply hyperparameter optimization on both approaches. It also
indicated to us, that hyperparameter optimization can have a
positive or negative impact based on the experimental setup
(approach 1 vs approach 2). This, however, is still to be
investigated.

To conclude, we see that the algorithms presented can
assist clinicians in diagnosing if a patient has a neuropa-

thy/myopathy or is healthy. In fact, the EMG in ALS patients
is likely to show neurogenic changes (e.g., increased MUP
amplitudes compared to healthy subjects), whereas the EMG
of IBM patients is more likely to show myopathic changes
(e.g., decreased MUP amplitudes). The fact that our approach
reaches a relatively high performance in spite of the hetero-
geneity of the diseased group shows its potential. Indeed,
performance may be higher when a similar approach is used
to distinguish healthy controls from ALS- or IBM-patients
as separate groups. In addition, both ALS and IBM can be
patchy diseases, meaning that only a proportion of muscles
may be affected at the time of the EMG recording. As the
EMG signal of non-affected other muscles is expected to be
similar to that of healthy controls, at least when using current
qualitative assessment, it is remarkable that the performance of
the muscle-level approach was relatively high. This suggests
that the EMG signal of these apparently normal muscles may
contain information that is used by the ML-based approach
but not during routine clinical assessment.

A major limitation of this study lies in the relatively small
dataset. This is unavoidable given the rarity of IBM in partic-
ular, which has a current population of less than 100 patients
in the Netherlands [31]. We specifically investigated IBM and
ALS patients because of the well-known clinical difficulties in
interpreting the EMG of these diseases. Whether our approach
works equally well for other myopathies/neuropathies remains
to be established. However, as these are usually easier to
classify using current clinical assessment, we would expect
the performance of our ML approach to be higher, rather than
lower, as well. An additional limitation of the current approach
is the random selection of the 5-second EMG segment for each
muscle. This selection was based on the absence of artefacts,
without using any information on the level of muscle activa-
tion, although we aimed to use the last 5s available, assuming
that this segment was more likely to contain information of the
muscle at (near-) maximal contraction. Longer recordings, in
which the clinical level of muscle activation is clearly marked,
may lead to further improvements in performance, as muscle
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activity at rest is different in both IBM and ALS patients
compared to healthy subjects.

As next steps, a more detailed analysis of the nature of these
features could point towards useful biomarkers for disease
progression. Furthermore, we intend to evaluate the pipeline
for IBM vs. ALS vs. healthy controls. Finally, we will explore
an integrated patient-level pipeline to directly classify patients
to a class.
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