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Chapter 5

General discussion

In this thesis, risk bounds for deep learning have been established in various settings.
The central aim was to use statistical theory to obtain new insights into the performance
of deep neural networks. Chapter 2 showed that deep neural networks can achieve
optimal convergence rates under the (truncated) cross-entropy risk for the conditional
class probabilities in the classification model. Furthermore, this chapter includes
approaches to deal with the unboundedness of the cross-entropy loss for conditional
class probabilities near zero. The used approaches are truncation and the small-value
bound assumption. This last bound controls the probability that the conditional
probabilities are close to zero. In Chapter 3 a method was studied that transforms
the unsupervised density estimation problem into a supervised regression problem.
In this way, convergence rates were obtained using existing results for regression.
These rates show that deep neural networks can exploit a compositional structure
to partly circumvent the curse of dimensionality. Furthermore, it was demonstrated
that different existing density models indeed satisfy the compositional structure
assumption. Chapter 4 considered an optimization method motivated by biological
networks: forward gradient descent. It was shown that the extra randomness in
forward gradient descent leads to a convergence rate in the linear regression model
that is a dimension-dependent factor d log(d) slower than the optimal rate that can
be achieved by gradient descent.

These findings rely on certain assumptions. This chapter discusses some of these
underlying assumptions in more detail, relates them to existing literature on neural
networks and discusses whether and how these assumptions can be adapted to extend
the results in this thesis.
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5.1 Statistical theory and training of neural net-
works

In Chapters 2 and 3 the risk bounds depend on the assumption that the estimator
has empirical risk close to the risk of an empirical risk minimizer. The analysis
of empirical risk minimizers without specifying how to obtain them is standard in
statistical literature on risk bounds for deep neural networks. Examples of this
approach include [67, 74, 76, 134]. In practice it is non-trivial to compute such an
estimator. One additional issue is that the constraints on the deep neural network
classes in Chapters 2 and 3 do not necessarily match the network structures considered
in the deep learning literature. Most importantly, overparametrized neural networks
are studied in practice because they can be trained relatively easily and successfully
by simple gradient methods [10, 15]. But such overparametrized neural networks do
not match the neural network classes studied in this thesis.

On the other hand, Chapter 4 considers forward gradient descent in the linear
regression model. In this case the training method is the focus of the analysis, including
an explicit (theoretical) learning rate. When the relevant properties of the covariance
matrix Σ are known, the theory provides all the information required to run the
method. This in contrast to the training of neural networks, as done in the simulation
study in Chapter 3, where various (training) parameters must be chosen before the
neural networks can be trained properly. The limitation here is that the results
of Chapter 4 are for the linear regression model, a setting that is much easier to
deal with than deep neural networks. There exists (optimization) literature on the
complexity of stochastic gradient descent and zero-order methods that expands results
for those methods to more general strongly convex-optimization problems, [115, 133].
This suggests the possibility for further research extending the results in Chapter 4
to general convex problems. The key challenge is to deal simultaneously with the
randomness from the data and the additional randomness introduced by forward
gradient descent. As training deep neural networks is a non-convex optimization
problem it remains unclear if it is feasible to extend the analysis to the deep neural
networks considered in Chapters 2 and 3.

5.2 Model assumptions

In this thesis various assumptions on the target function are imposed. In Chapter 2 it
is assumed that the conditional class probabilities are β-Hölder smooth. In Chapter 3
it is assumed that the densities have a compositional structure, where each function
in the composition is in some Hölder-smoothness class. The main motivation behind
the choice for these smoothness assumptions is that this makes comparison with
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existing risk bounds in the literature possible, as convergence of the risk under these
assumptions has been widely studied. The compositional structure in Chapter 3, as
well as the possible inclusion of a compositional structure as discussed in Chapter 2,
are motivated by existing results for regression [62, 72, 11, 127, 75]. In these works,
it is shown that deep neural networks can circumvent the curse of dimensionality
under compositional structure assumptions. This provides a possible explanation for
the observed good performance on high-dimensional input problems of deep neural
networks in practice.

For image classification there exists a related assumption, the hierarchical max-
pooling model considered in [74, 76]. This compositional model is tailored to the image
classification task in combination with convolutional neural networks. The principal
idea behind this model is that the question: “contains the image a prespecified object?”,
can be answered by estimating the probability that this is true for subparts of the
image and then taking the maximum of the probabilities over the subparts.

A different kind of model assumption is based on the observation that in many
practical datasets the data seem to lie around a low dimensional manifold. In [103]
it is shown for the regression problem that if the data are scattered around a lower
dimensional manifold, then deep neural networks can exploit this to obtain convergence
rates that depend on the intrinsic manifold dimension instead of the full dimension of
the input space. For this result it is also assumed that the regression function is Hölder-
smooth. This paper includes a numerical estimation of the intrinsic dimension of the
MNIST and CIFAR-10 benchmark datasets, showing that these datasets indeed have
an intrinsic dimension that is much smaller than their full dimension. An assumption
that is closer related to the composition structure assumption in this thesis is the
assumption of local low dimensionality studied in [73]. The idea of the local low
dimensionality assumption is that the function locally only depends on very few of its
components. Under this assumption it is shown that in the regression problem the
bounds depend on the local dimensionality instead of the full input dimension. These
works [103, 73] suggest that it should be possible to combine the idea of the data
lying around a lower dimensional manifold with the results for the classification and
density estimation models studied in this thesis. How to combine the composition and
manifold assumptions in a manner that is realistic for practical datasets and the exact
effects of such a combination on the risk bounds is an avenue for further research.




