Universiteit

w4 Leiden
The Netherlands

Risk bounds for deep learning
Bos,].M.

Citation
Bos, J. M. (2024, June 19). Risk bounds for deep learning. Retrieved from
https://hdl.handle.net/1887/3763887

Version: Publisher's Version
Licence agreement concerning inclusion of doctoral
License: thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3763887

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3763887

125

Chapter 4

Convergence guarantees for
forward gradient descent in
the linear regression model

Abstract

Renewed interest in the relationship between artificial and biological neural
networks motivates the study of gradient-free methods. Considering the linear
regression model with random design, we theoretically analyze in this chapter
the biologically motivated (weight-perturbed) forward gradient scheme that is
based on random linear combination of the gradient. If d denotes the number of
parameters and k£ the number of samples, we prove that the mean squared error
of this method converges for k > d?log(d) with rate d*log(d)/k. Compared to
the dimension dependence d for stochastic gradient descent, an additional factor
dlog(d) occurs.

4.1 Introduction

Looking at the past developments, it is apparent that artificial neural networks (ANNs)
became more powerful the more they resembled the brain. It is therefore anticipated
that the future of Al is even more biologically inspired. As in the past, the bottlenecks
towards more biologically inspired learning are computational barriers. For instance,
shallow networks only became computationally feasible after the backpropagation
algorithm was proposed. Deep neural networks were proposed for a longer time
but deep learning became implementable after the development of large scale GPU

This chapter is based on: Thijs Bos and Johannes Schmidt-Hieber. Convergence guarantees
for forward gradient descent in the linear regression model. To appear in Journal of
Statistical Planning and Inference, Volume 233. The research has been supported by the
NWO/STAR grant 613.009.034b and the NWO Vidi grant VI.Vidi.192.021.

126 Chapter 4. forward gradient descent

computing. Neuromorphic computing aims to imitate the brain on computer chips,
but is currently not fully scalable.

The mathematics of Al has focused on explaining the state-of-the-art performance
of modern machine learning methods and empirically observed phenomena such as the
good generalization properties of extreme overparametrization. To shape the future
of Al, statistical theory needs more emphasis on anticipating future developments
and proposing biologically motivated methods already at a stage before scalable
implementations exist.

This chapter aims to analyze a biologically motivated learning rule building on
the renewed interest of the differences and similarities between ANNs and biological
neural networks (BNNs) [89, 128, 155] which are rooted in the foundational literature
from the 1980s [53, 33]. A key difference between ANNs and BNNs is that ANNs are
usually trained based on a version of (stochastic) gradient descent, while this seems
prohibitive for BNNs. Indeed, to compute the gradient, knowledge of all parameters in
the network is required, but biological networks do not posses the capacity to transport
this information to each neuron. This suggests that biological networks cannot directly
use the gradient to update their parameters [33, 89, 142].

The brain still performs well without gradient descent and can learn tasks with
much fewer examples than ANNs. This sparks interest in biologically plausible learning
methods that do not require (full) access of the gradient. Such methods are called
derivative-free. A simple example of a derivative-free method is to randomly sample
in each step a new parameter. If this decreases the loss one keeps the parameter and
otherwise discards it. There is a wide variety of derivative-free strategies [32, 83, 135].
Among those, so-called zero-order methods use evaluations of the loss function to build
a noisy estimate of the gradient. This substitute is then used to replace the gradient
in the gradient descent routine [92, 41]. [128] establishes a connection between the
Hebbian learning underlying the local learning of the brain (see e.g. Chapter 6 of
[142]) and a specific zero-order method. A statistical analysis of this zero-order scheme
is provided in the companion article [129].

In this chapter, we study (weight-perturbed) forward gradient descent. This method
is motivated by biological neural networks [13, 117] and lies between full gradient
descent methods and derivative-free methods, as only random linear combination of
the gradient are required. The form of the random linear combination is related to
zero-order estimators, see Section 4.2. Settings with partial access to the gradient
have been studied before. For example, [105] proposes a learning method based on
directional derivatives for convex functions. In this chapter we specifically derive
theoretical guarantees for forward gradient descent in the linear regression model with
random design. Theorem 4.3.1 establishes an expression for the expectation. A bound
on the mean squared error is provided in Theorem 4.3.3.

The structure of this chapter is as follows. In Section 4.2 we describe the forward

4.2. Weight-perturbed forward gradient descent 127

gradient descent update rule in the linear regression model. Results are in Section 4.3
and the corresponding proofs can be found in Section 4.4.

Notation

Vectors are denoted by bold letters and we write || - ||2 for the Euclidean norm. We
denote the largest and smallest eigenvalue of a matrix A by the respective expressions
Amax(4) and Apin(A4). The spectral norm is ||Alls := \/Amax(ATA). The condition
number of a positive semi-definite matrix B is k(B) := Amax(B)/Amin(B).

For a random variable U we denote the expectation with respect to U by Ey. The
symbol E stands for an expectation taken with respect to all random variables that
are inside that expectation. The (multivariate) normal distribution with mean vector
u and covariance matrix ¥ is denoted by N (u, X).

4.2 Weight-perturbed forward gradient descent

Suppose we want to learn a parameter vector 8 from training data (X1, Y1), (X2, Ya2),. ..
€ RY x R. Stochastic gradient descent (SGD) is based on the iterative update rule

0r11 =0, —ap VL), k=0,1,... (4.2.1)

with 8y some initial value and L(0y) := L(0, Xk, Y%) a loss that depends on the data
only through the k-th sample (X, Yy).

For a standard normal random vector £x1 ~ AN (0,1;) that is independent of all the
other randomness, the quantity (VL(0:)) &€xr1€r41 is called the (weight-perturbed)
forward gradient [13, 117]. (Weight-perturbed) forward gradient descent is then given
by the update rule

Ori1 = Ok — a1 (VL(O))) €xr1&rrn, k=0,1,... (4.2.2)

Assuming that the exogenous noise has unit variance is sufficient. Indeed, general-
izing to €41 ~ N(0,021,;) with variance parameter o2 has the same effect as rescaling
the learning rate a1 — 0'_2Ozk+1.

Since for a deterministic d-dimensional vector v, one has E[v!&€,11€x+1] = v, taking
the expectation of the weight-perturbed forward gradient descent scheme with respect
to the exogenous randomness induced by &1, &3, ... gives

E(€1)1‘21 [Or11] = E(ﬁzﬂ)iz1 [0k] — ak+1E(€i)i21 [VL(6r)], (4.2.3)

resembling the SGD dynamic (4.2.1). If VL(6;) depends on 6 linearly then also
E(Ei)izl [VL(BIV)] = VL(]E(Ei)izl [ek])

128 Chapter 4. forward gradient descent

While in expectation, forward gradient descent is related to SGD, the induced
randomness of the d-dimensional random vectors xj1 induces a large amount of noise.
To control the high noise level in the dynamic is the main obstacle in the mathematical
analysis. One of the implications is that one has to make small steps by choosing a
small learning rate to avoid completely erratic behavior. This particularly effects the
first phase of the learning.

First order multivariate Taylor expansion shows that L(6 + &) — L(0%) and
(VL(6y))"€)41 are close. Therefore, forward gradient descent is related to the zero-
order method

Or+1 = O — apy1 (L(Ok + &k) — L(Or)) &k, (4.2.4)

[92]. Consequently, forward gradient descent can be viewed as an intermediate step
between gradient descent, with full access to the gradient, and zero-order methods
that are solely based on (randomly) perturbed function evaluations.

‘ 92 }—)‘ U9 = X292 ‘

uz = Y Uy — U

‘ 0, }—)‘ u; = X161

Figure 4.2.1: Computional graphs for computing in a forward pass L(0) = %(Y —
X101 — X265)? (upper half) and (VL(0))"v (lower half).

We now comment on the biological plausibility of forward gradient descent. As
mentioned in the introduction, it is widely accepted that the brain cannot perform (full)
gradient descent. The backpropagation algorithm decomposes the computation of the
gradient in a forward pass and a backward pass. The forward pass evaluates the loss for
a training sample by sending signal through the network. This is biologically plausible.
For a given vector v, it is even possible to compute both L(60}) and (VL(Ok))Tv in
one forward pass, [13, 117, 12]. The construction can be conveniently explained for two
variables @ = (61,02) ", see Figure 4.2.1. The loss function L(0) = %(Y—Xﬁl —X105)?

4.8. Convergence rates in the linear regression model 129

is implemented by first computing u; = X161 and uy = X265 in parallel. Subsequently,
one can infer us =Y —u; —us =Y — X10; — X305 and uq = %(u?,)2 = L(0). For
a given vector v = (v1,v2) ", the update value (VL(0))v in the forward gradient
descent routine can be computed from vy, vs, and uz3 = Y — X107 — X5605. Indeed,
after computing X;v; and Xovs in a first step, one can compute uj = —Xjv; — Xovy
and finally u} = uguf = (Y — X161 — Xo62)(—X1v1 — Xovg) = —(V = XT0)X v =
(VL(0))"v. For more background on the implementation, see for instance [12].

In [128], it has been shown that under appropriate conditions, Hebbian learning of
excitatory neurons in biological neural networks leads to a zeroth-order learning rule
that has the same structure as (4.2.4).

To complete this section, we briefly compare forward gradient descent with feedback
alignment as both methods are motivated by biological learning and are based on
additional randomness. Inspired by biological learning, feedback alignment proposes
to replace the learned weights in the backward pass by random weights chosen at
the start of the training procedure [88, 89]. The so-called direct feedback alignment
method goes even further: instead of back-propagating the gradient through all the
layers of the network by the chain-rule, layers are updated with the gradient of the
output layer multiplied with a fixed random weight matrix [106, 84]. (Direct) feedback
alignment causes the forward weights to change in such a way that the true gradient of
the network weights and the substitutes used in the update rule become more aligned
[88, 106, 89]. The linear model can be viewed as neural network without hidden
layers. The absence of layers means that in the backward step, no weight information
is transported between different layers. As a consequence, both feedback alignment
and direct feedback alignment collapse in the linear model into standard gradient
descent. The conclusion is that feedback alignment and forward gradient descent
are not comparable. The argument also shows that to unveil nontrivial statistical
properties of feedback alignment, one has to go beyond the linear model. We leave
the statistical analysis as an open problem.

4.3 Convergence rates in the linear regression model

We analyze weight-perturbed forward gradient descent for data generated from the
d-dimensional linear regression with Gaussian random design. In this framework, we
observe i.i.d. pairs (X;,Y;) € R x R, i = 1,2,... satisfying

X;~N(0,Y), Vi=X[0,+¢, i=12,... (4.3.1)

with 6, the unknown d-dimensional regression vector, ¥ an unknown covariance matrix,
and independent noise variables ¢; with mean zero and variance one.

130 Chapter 4. forward gradient descent

For the analysis, we consider the squared loss L(0, Xy, Y:) = %(Yk — X;Bk)g.
The gradient is given by

VL(6y) = — (Y3, — X 0)) X (4.3.2)

We now analyze the forward gradient estimator assuming that the initial value 6,
can be random or deterministic but should be independent of the data. We employ a
similar proving strategy as in the recent analysis of dropout in the linear model in
[31]. In particular, we will derive a recursive formula for E [(6x — 6,)(6r —6.)"] . In
contrast to this work, we consider a different form of noise and non-constant learning
rates.

The first result shows that forward gradient descent does gradient descent in
expectation.

Theorem 4.3.1. We have E[0;] — 0, = (Id — akE) (E[Gk,l] — 0*) and thus

k

E[0] = 6, + <H(Id — Ong)) (E[GO] — 0*). (4.3.3)

(=1

The proof does not exploit the Gaussian design and only requires that X; is
centered and has covariance matrix ¥. The exogenous randomness induced by &1, &o, ...
disappears in the expected values but heavily influences the recursive expressions for
the squared expectations.

Theorem 4.3.2. Consider forward gradient descent (4.2.2). If A, =
E[(6x — 6.)(6r — 6,) "], then
Ak :(Id — OékE)Ak-_l(Id — Osz)
+ 3075 A5 18 + 207E[(05—1 — 0,) "2(0k_1 — 0,)]Z + 2072
+ 207 tr (A1 D)y + fE[(0k—1 — 0,) T2(0k—1 — 0,)] tr (2)Iy
+ a2 tr(2)1,.
Since Ay depends on 67, the fourth moments of the design vectors X; and the

exogenous random vectors & play a role in this equation.
The risk E[[|6), — 0.]]3] is the trace of the matrix Aj. Setting

1Zs
Amin(z)

for the condition number and building on Theorem 4.3.2, we can establish the following
risk bound for forward gradient descent.

Kk(X) =

4.8. Convergence rates in the linear regression model 131

Theorem 4.3.3 (Mean squared error). Consider forward gradient descent (4.2.2) and
assume that X is positive definite. For constant a > 2, choosing the learning rate

— CL)‘min(z) .
=) faSE@ 2 P hEe (4.3.4)
yields
2 1+ ar?(D)(d+2)2\")
E[||6x — 6.]|3] < <k+an2(2)(d+2)2 E[||60 — 6.]|2]
2eak(X)(d + 2)?

+

Amin (2)(k + ar?(2)(d + 2)?)"

Alternatively, the upper bound of Theorem 4.3.3 can be written as
2 ~1 “ 2 2
E[[6y — 6.]3] < (1 ™ D (2) (k — 1)0%) E[|60 — 6,]2] + 2ex(2)(d + 2)%ay.

In the upper bound, the risk E[HOO - 0*||§] of the initial estimate 6, appears. A
realistic scenario is that the entries of 8, and 6y are all of order one. In this case, the
inequality ||@y — 0,3 < d||@y — 6.||%, shows that the risk of the initial estimate will
scale with the number of parameters d. Taking a = log(d) (for d > 8 > e? such that
a > log(e?) = 2), Theorem 4.3.3 implies that

1og(d) | " d2log(d)
o 0
E[]6x - 6.]3] < d(,f) E[[160 — 6./1%] + —>—

For k, = e2d?log(d), d*log(d)/k, = e~2 and d(d? log(d)/k,)"*8(?) = 1/d. Since d > €2,
this means that d(d? log(d)/k*)log(d) < d?log(d)/k,. Moreover, k~'°8(4) tends faster

to zero than k= as k — oo. So, for k > k, = e2d? log(d),

log(d)
d*log(d d*log(d d*log(d
d(8)) 1600, 2] + L 105(g(d)

A

! e = (1+IE[H00—0*||§OD. (4.3.5)
The rate for k > e2d?log(d) is thus d?log(d)/k. This means that forward gradient
descent has dimension dependence d?log(d). This is by a factor dlog(d) worse than
the minimax rate for the linear regression problem, [144, 63, 98]. In contrast, methods
that have access to the gradient can achieve optimal dimension dependence in the
rate, [114, 82]. The obtained convergence rate is in line with results for zero-order
methods, which show that for convex optimization problems these methods have a
higher dimension dependence, [41, 92, 105].

132 Chapter 4. forward gradient descent

We believe that faster convergence rates are obtainable if the same datapoint is
assessed several times. This means that each data point is used for several updates of
the forward gradient G411 = 0 — a1 (VL(@k))T&H_lé'kH, for instance by running
multiple epochs. However, in every iteration a new random direction &1 is sampled.
We expect that if every data point is used m < d times, one should be able to achieve
the convergence rate d?/(km), up to some logarithmic terms. If this is true and
if m is of the order of d, one could even recover the minimax rate d/k. Using the
same datapoints multiple times induces additional dependence among the parameter
updates. To deal with this dependence is the key challenge to establish the convergence
rate d?/(km).

Assuming that the covariance matrix ¥ is positive definite is standard for linear
regression with random design [63, 98, 132].

For k 2 d?, the decrease of the learning rate oy, is of the order 1/k, which is the
standard choice [81, 55, 17]. A constant learning rate is used for Ruppert-Polyak
averaging in [114, 55]. For least squares linear regression, it is possible to achieve
(near) optimal convergence with a constant (universal) stepsize [6]. Conditions under
which a constant (universal) stepsize in more general settings than linear least squares
works or fails are investigated in [82].

105 r
102 ::\\
103 \\\\\\\
o o N
g 10° g
(7] wn
o o 10
— —
8102 g
W w 107!
[%2] [%2]
=) =
-4
10 10-3
100 10' 102 103 10* 105 10° 100 10' 102 10® 10° 105 10°
Iterations log 10 scale Iterations log 10 scale
(a) d =10 (b) d = 100

Figure 4.3.1: Comparison of the MSE of forward gradient descent (blue) and SGD
(red) for dimensions d = 10 and d = 100. The upper dashed line is k ~ d?log(d)/k,
the middle dashed line is k + d?/k, and the lower dashed line is k — d/k.

In a small simulation study, we investigated whether there is a discrepancy between
the derived convergence rates and the empirical decay of the risk. For dimensions
d =10 and d = 100, data according to (4.3.1) with ¥ = I; are generated. On these

4.4. Proofs 133

data, we run ten times weight perturbed forward gradient descent (4.2.2), and compare
the mean squared errors (MSEs) to one realization of SGD (4.2.1). For all simulations
of forward gradient descent and SGD, we use the same initialization 6y, drawn from
a N(0,1;) distribution, and the learning rate oy specified in (4.3.4) with a = log(d).
Thus, only the random perturbation vectors & in the forward gradient descent schemes
differ across different runs. The outcomes are reported in Figure 4.3.1. For each of
the 10+1 simulations, we report on a log-log scale the MSE for the first one million
iterations. The upper dashed line gives the derived convergence rate k — d? log(d)/k,
the middle dashed line is d?/k, and the lower dashed line is d/k. The ten paths from
the ten forward gradient descent runs are shown in blue. The path from the SGD is
displayed in red. We see three regimes. In the first regime, the risk remains nearly
constant. For dimension d = 100, this is true up to the first ten thousand of iterations.
Afterwards there is a sudden decrease of the risk. Eventually, for large number of
iterations k, the MSE of forward gradient descent concentrates near the line k — d?/k,
while the MSE of SGD concentrates around k +— d/k. This suggest that up to the
log(d)-factor, the derived theory does in fact describe the rate of the MSE. Equation
(4.3.5) predicts that the rate d?log(d)/k will occur for k > k, = e?d?log(d). For
d =10, k, ~ 1.7 x 10% and for d = 100, k, ~ 3.4 x 10°. Thus, in terms of orders of
magnitude, there is a close agreement between theory and simulations.

Starting with a good initializer that lies already in the neighborhood of the true
parameter, one can avoid the long burn-in time in the beginning. Otherwise, it remains
an open problem, whether one can modify the procedure such that also for smaller
values of k, the risk behaves more like d? log(d)/k.

Python code is available on Github [24].

4.4 Proofs

Proof of Theorem 4.3.1. By (4.3.2) and the linear regression model Yj,_; = X;—_IG* +
€x_1, we have
VL(Op—1) = —(Yie1 — Xj_10k-1)Xk1
= —(Xz,l(e* — 0]@71) + Ekfl)kal (441)
= —ep1Xp1 — Xp_1X,_1 (05 — O_1).
Since E[X,ng_l] =Y, Elex—1] =0, and Xj_1,€x_1, 051 are jointly independent,
we obtain
E[VL(0;-1) | Or—1] =E[— epo1Xpo1 — X 1 X (0 —6,_1) | 0r—1]

568,) (4.4.2)

134 Chapter 4. forward gradient descent

Combined with (4.2.3), we find
]E[Ok] == E[Ok_l} - OékE [VL(Qk_l)] = E[Gk_l] + asz [0* - Gk_l].

The true parameter 6, is deterministic. Subtracting 8, on both sides, yields the
claimed identity]E[Ok} -0, = (Id — Osz) (E[Ok_l] — 0*)
O

4.4.1 Proof of Theorem 4.3.2

Lemma 4.4.1. If Z ~ N(0,T) is a d-dimensional random vector and U is a d-
dimensional random vector that is independent of Z, then

E[(U'Z)?ZZ"] = 2TE[UUT|T + E[UTU]T.

Proof. Because U and Z are independent, the (4,7)-th entry of the d x d matrix
E[(UTZ)QZZT} is
d
> E[UUn|E[Z0Zm2:Z;).
Lm=1

Since Z ~ N(0,T"),
E(Z¢ZmZ:iZ;] =Timlij +Teilmj + Lo T,
see for instance the example at the end of Section 2 in [143]. Thus

d d
> EUUWE[ZZmZiZ;] = Y E[UUn] (TomTij +Teilm + e Tmi)-

Lm=1 Lm=1

Because of
d d
> E[UUn]Temlij= Y E[ULmUn|l:; =E[UTTUL,],
Lm=1 Lm=1
d d
> E[Uln|Teilmi = > E[UleiUnlm;] =E |[(UTT),(UTT) |,
l,m=1 ¢,m=1
and
d d

> E[UUn]TeiTmi = > E[UnlnUile] =E[(UTT),(UTT) |,

Lm=1 Lm=1

4.4. Proofs 135

the (i,)-th entry of the matrix E [(UTZ)?ZZ"] is

2E[(UTT),(UTT),| +E[UTTUT, .

i J
For a vector a = (ai,...,aq) ', the scalar a;a; is the (i, j)-th entry of the matrix aa’.
Combined with the previous display, the result follows. O

Proof of Theorem 4.3.2. As Theorem 4.3.2 only involves one update step, we can
simplify the notation by dropping the index k and analyzing 68" = 6’ — a(VL(G’))T££
for one data point (X,Y) and independent & ~ N(0, I;). With A" :=E[(6' — 6,)(6' —
6.)"] and A" :=E[(0" —0.)(8” — 6,)"], we then have to prove that

A" =I5 — aD)A' (I — a¥) + 3a’TA'S + 20°E[(6' — 0,) TS(0' — 60,)]S + 22°%
+ 202 tr (SA'E)Iy + *E[(0' — 6,)'S(0' — 6,)] tr (£)I + o tr (D)L,

Substituting the update rule (4.2.2) in Ay gives by the linearity of the transpose that
A” _ E[(H// _ 0*)(0// _ 0*)1']
-
—E [(9’ —a(VL()) €€ - 0*) (9’ —a(VL(®)) et - 0*) }

A oE {(9 _ 9*) ((vL(e’))ng) T} —oE [((VL(H’))T&) (0’ - 0*)T]

T T N\T
+ E[(a(VL(H’)) 66) (a(VL(H’)) Eé)]
(4.4.3)
First, consider the terms with the minus sign in the above expression. The random

vector £ is independent of all other randomness and hence E, [(VL(O’)) ng} =VL(#).
Moreover, together with (4.4.2),

T
E[((VL(e’))ng) (9/ - 9*) ’ o/} —E[VL(©®) |66 —6,)"
=%(0 -6, -6,".
Taking the transpose and tower rule, we find

oE [(9 ~6.)((VL®)) "¢¢) T] —oE [((VL(O’))T&) (6 - &)T]

=—aE[(0 —6,)(6' —0,)T]S —aZE[(6' —0,)(0' —6,)"].

(4.4.4)

136 Chapter 4. forward gradient descent

T T.N\T
In a next step, we derive an expression for E Ka (VL(B')) ££> (a(VL(O’)) fﬁ)] .
Since € ~ N(0,1,) is independent of VL(0’) we can apply Lemma 4.4.1 to derive

E[(a(w(e')fsg) (o L(0’>)T55)T}
= o’ {((VL(O’))TQQ

— 20%E[(VL(0) (VL)) | + a*E[(VL(©)) " (VL)] Ly

Y
33
(4.4.5)

20°E|(VL(6) (VL(O)) | +a?tr (E[(VL(B’))(VL(@’))TDId.
Arguing as for (4.4.1) gives VL(0') = —eX — XX (0, — 0') and this yields
E[(VL(8))(VL(©)) | =E {Ee (X + XXT (0, — 0)) (X + XX (6, - 0/))TH :

Because € has mean zero and variance one and is independent of (X, 8"), we conclude
that

E[(VL(©))(VL©) | = E[(XXT (6, - 0)) (XX (6.~ 8)) " +XX]
, (4.4.6)
—E[(X7(6, - 0))"XX"] + %,

where for the last equality we used that X T (0, —8') is a scalar and that X ~ N(0,%).
Since X ~ N(0,Y) is independent of 8" we get by Lemma 4.4.1 that

E[(XT(G* - 0’))2XXT] — 2SE[(6' - 6,)(0' — 0,)]S +E[(0' — 0,) (6 — 6,)]5.

Substituting this in (4.4.6) and (4.4.5) yields

E [(a(ww’))%e) (a(VL(o’»Tss)T]
= 4a’SE[(0' — 0,)(0' — 0,) | + 2a°E[(0' — 6,)'2(8' — 0,)]T + 20°%
+ 202 tr (21@[(0’ —0,)(0 - 9*)T]2>Id +atr (E[(e’ —0,)T3(0 - 90]2)1,1

+ o tr(D)1,.
(4.4.7)
Combining (4.4.3) with (4.4.4) and (4.4.7) yields the statement of the theorem. [

4.4. Proofs 137

4.4.2 Proof of Theorem 4.3.3

For two vectors u,v of the same length, tr(uv') = u'v. Thus, E[||6, — 6.[3] =
tr (E[(6) — 6.)(6), — 6.)"]). Together with Theorem 4.3.2, tr(I4) = d and tr(AB) =
tr(BA) for square matrices A and B of the same size, this yields

E[6x — 0,]2] = tr ((Id — W SD)E[(Bk_1 — 0.)(0r_1 — 0,) "] (I — akE))
+3a2tr (2114:[(49,%1 —0,)(0r 1 —6,)7]%
+2a2 tr (E[(@,c,1 ~60,)T5(6, 1 — 6,)]%
+ 202 tr (zuz[(ek,1 ~0,)(0r1—0,)7]S
+ OlkE [(Gk 1 —) (Hk 1 — 0*)] tr (Z) tr (Id)
+ o tr(2) tr (1)
=E[(0r-1—0.) (Is —20;,2) " (61 — 6.)]
+2(d+2)ad tr (m (61— 0,)(01 — e*ﬂz)
+ (d+2)ag (E[(qu —0.) S(6k_1 — 6,)] tr (Z) + tr (Z))
(4.4.8)
If X is an eigenvalue of ¥ then (1 —2ay\) is an eigenvalue of I; — 2, X. By assumption,
0 < ar < Amin(2)/(2I1Z]1%) < 1/(2Amax(E)) and therefore the matrix Iy — 20, is
positive semi-definite and (1 — 2axAmin(2)) is the largest eigenvalue.

For a positive semi-definite matrix A and a vector v, the min-max theorem states
that vIAv < Apax(A)|[V]3 = ||Al|ls||v]|3. Using that for a vector x it holds that
tr(xx") = x"x, with x = 3(0;_1 — 6,) in (4.4.8) and applying v' Av < ||A|s|v]|3
with v =0;_1 — 0, and A € {,1; — 20,2, X2}, yields

E[[16x — 60.[12] < (1 — 26 Anin (2)) E[[|01—1 — 64]3]

+ @+ D} wDIEIE(I6-1 - 6.1F] + 2IZBE(I6-1 - 6.1F] + ().

The spectral norm of a positive semi-definite matrix is equal to the largest eigenvalue
and 5o tr(2) = 3% \i < dAmax = d||%|s. Therefore,

E[16: — 0:13] < (1= 206 Amin(®) + ISII3(d +2)%03) E[641 — 6,13
+[2ls(d + 2)*e.

138 Chapter 4. forward gradient descent

Using that ap < Amin(2)/([[Z]1%(d + 2)?) yields

E[165 — 6.18] < (1~ i dumin (5)E[[05-1 —]3] + [Z]5(d +2)%0

Rewritten in non-recursive, we obtain

k
E[”Ok_G*H%} ”00_ *H H 1_O‘€>‘m1n))
/=1
el i (4.4.9)
HIZs(@+2)° > ai [T (1= cdmn(®)),
m=0 l=k—m+1

where we use the convention that the (empty) product over zero terms is assigned the
value 1. For ease of notation define ¢4 := ax?(3)(d+2)?, with condition number x(3) =
IZ|ls/Amin(2). From the definition of ay, (4.3.4), it follows that ay = pwens it ﬁ
Using that for all real numbers z it holds that 1 + x < e®, we get that for all integers
k* <k,

i k
H (1 *O[ZAmin(Z)) < exp (Amin(z) Z @) - oxp (a Z é—:cd>

=k =k =k
(4.4.10)
The function z — 1/(z + ¢) is monotone decreasing for > 0 and ¢ > 0 and thus,

k 1 k {41 1
ez ds
et S e
k+1 1
= d
/* o (4.4.11)

=log(k+ 1+ cq) —log(k* + cq)
k4+1+cq
=1).
Og(k* + cq)

Using (4.4.10) and (4.4.11) with k* = 1 gives

k a
k+1+cq 14 ¢q
I | IIlln < - 1 (7) - I ——— . 4412
=1)) _eXp(o8 I+ca) <k+1+cd) ()

4.4. Proofs 139

Using (4.4.10) and (4.4.11) with k* =k —m + 1 gives

k-1 k
Z ai_m H (1 — ozg/\min(Z))
m=0 l=k—m+1
a? At 1 k—m+1+c¢q
*)\ilm() [2 k+14cq
m=o (U =m) + ca) (4.4.13)
a? kol k: m4+ 1+ cd)

M

T RO+ 1+ & ((k —m) +cq)”

a? k (m+1+cd)

T2 OE T) = (g e)

Observe that cq = ax?(X)(d +2)? > a. This gives us that ¢g+1 < (1+1/a)cq and
thus m 4+ 1+ c¢q < (14 1/a)(m + ¢q). For all real numbers z, (14 z) < e* and thus
(1+1/a)* < e. Therefore,

k
LJFCZ) <e Z (m+ca) (4.4.14)
(m + ca)

i

For p > 0, the function = — (x 4 ¢)P is monotone increasing for x, ¢ > 0, Hence,

k k 041

ZE—i—c SZ (x4 ¢)Pdx
=1 =1

/ c)Pdx

(k+1+c)Ptt (1+4c)ptt
p+1 p+1
< (k+1+c)P*!

p+1

Since a > 2, we can apply this with p =a — 2 > 0 to find

k a—1
3 (e 2 Bt e

a—1
m=1

140 Chapter 4. forward gradient descent

Combining (4.4.9), (4.4.12), (4.4.13) and (4.4.14) finally gives

1+ ar?()(d + 2)? ‘ 5
E[||6y — 6.

k+1+ax2(2)(d+2)2 160 12}

ea’k(X)(d + 2)?
Amin(X) (a = 1) (k + 1+ ar?(2)(d + 2)?)

E[|6: — 6.]I3] < <

+

Using that 0 < a/(a — 1) < 2 for a > 2, now yields the result. O

