
Risk bounds for deep learning
Bos, J.M.

Citation
Bos, J. M. (2024, June 19). Risk bounds for deep learning. Retrieved from
https://hdl.handle.net/1887/3763887

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3763887

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3763887

19

Chapter 2

Convergence rates of deep
ReLU networks for multiclass
classification

Abstract

For classification problems, trained deep neural networks return probabilities
of class memberships. In this chapter we study convergence of the learned
probabilities to the true conditional class probabilities. More specifically we
consider sparse deep ReLU network reconstructions minimizing cross-entropy
loss in the multiclass classification setup. Interesting phenomena occur when the
class membership probabilities are close to zero. Convergence rates are derived
that depend on the near-zero behaviour via a margin-type condition.

2.1 Introduction

The classification performance of a procedure is often evaluated by considering the
percentage of test samples that is assigned to the correct class. The corresponding
loss for this performance criterion is called the 0-1 loss. Theoretical results for this
loss are often related to the the margin condition [94, 145, 5], which allows for fast
convergence rates. Empirical risk minimization with respect to the non-convex 0-1 loss
is computationally hard and convex surrogate losses are used instead, see for example
[9, 140]. More recently, similar results have been obtained for deep neural networks
in the binary classification setting. This includes results for standard deep neural
networks in combination with the hinge and logistic loss as surrogate losses [67], as

This chapter is based on: Thijs Bos and Johannes Schmidt-Hieber (2022). Convergence rates
of deep ReLU networks for multiclass classification. In Electronic Journal of Statistics 16,
2724-2773. The research has been supported by the NWO/STAR grant 613.009.034b and the
NWO Vidi grant VI.Vidi.192.021.

20 Chapter 2. multiclass classification

well as results for deep convolutional neural networks with the least squares loss [74]
and logistic loss [76] as surrogate losses. More details can be found in the discussion
following Theorem 2.3.3.

Trained neural networks provide more information than just a guess of the class
membership. For each class and each input, they return an estimate for the probability
that the true label is in this class. For an illustration, see for example Figure 4 in
the seminal work [80]. In applications it is often important how certain a network is
about class memberships, especially in safety-critical systems where a wrong decision
can have serious consequences such as automated driving [22] and AI based disease
detection [87, 52]. In fact, the conditional class probabilities provide us with a notion
of confidence. If the probability of the largest class is nearly one, it is likely that this
class is indeed the true one. On the other hand, if there is no clear largest class and
the conditional class probabilities of several classes are close to each other, it might be
advisable to let a human examine the case instead of basing the decision only on the
outcome of the algorithm.

To evaluate how fast the estimated conditional class probabilities of deep ReLU
networks approach the true conditional class probabilities, we consider in this chapter
convergence with respect to the cross-entropy (CE) loss. If the conditional class
probabilities are bounded away from zero or one, the problem is related to regression
and density estimation. Therefore, it seems that one could simply modify the existing
proofs on convergence rates for deep ReLU networks in the regression context under
the least squares loss [127, 11]. This does, however, not work since the behaviour of the
CE loss differs fundamentally from that of the least squares loss for small conditional
class probabilities. The risk associated with the CE loss is the expectation with respect
to the input distribution of the Kullback-Leibler divergence of the conditional class
probabilities. If an estimator becomes zero for one of the conditional class probabilities
while the underlying conditional class probability is positive, the risk can even become
infinite, see Section 2.2. In many applications where deep learning is state-of-the-art,
the covariates contain nearly all information about the label and hence the conditional
class probabilities are close to zero or one. For example in image classification it is
often clear which object is shown on a picture. To deal with the behaviour near zero,
we introduce a truncation of the CE loss function. This allows us to obtain convergence
rates without bounding either the true underlying conditional class probabilities or
the estimators away from zero. Instead our rates depend on an index quantifying the
behaviour of the conditional class probabilities near zero. Convergence rates and the
condition on the conditional class probabilities can be found in Section 2.3.

Notation: We denote vectors and vector valued functions by bold letters. For
two vector valued functions f = (f1, . . . , fd) and g = (g1, . . . , gd) mapping D to
Rd, we set ∥f − g∥D,∞ :=

∥∥maxj=1,...,d |fj(x)− gj(x)|
∥∥
L∞(D)

. If it is clear to which

2.2. The multiclass classification model 21

domain D we refer to, we also simply write ∥f − g∥∞. For a vector v = (v1, . . . , vm)
and a matrix W = (Wi,j)i=1,...,n;j=1,...,m we define the maximum entry norms as
∥v∥∞ := maxi=1,...,m |vi| and ∥W∥∞ := maxi=1,...,n maxj=1,...,m |Wi,j |. The counting
‘norm’ ∥v∥0, ∥W∥0 is the number of nonzero entries in the vector v and matrix W,
respectively. For a vector v = (v1, . . . , vr)

⊤ and g a univariate function, we write
g(v) := (g(v1), . . . , g(vr))

⊤. We often apply this to the activation function or the
logarithm g(u) = log(u). Similarly, we define for two vectors of the same length v,v′,
log(v/v′) = log(v)− log(v′). For any natural number γ, we set 0 logγ(0) := 0. For a
real number x ∈ R, ⌊x⌋ is the largest integer strictly smaller than x and ⌈x⌉ is the
smallest integer ≥ x. A K-dimensional standard basis vector is a vector of length
K that can be written as (0, . . . , 0, 1, 0, . . . , 0)⊤. We use SK to denote the (K − 1)-

simplex in RK , that is, SK = {v ∈ RK :
∑K

k=1 vk = 1, vk ≥ 0, k = 1, . . . ,K}. For two
probability measures P and Q, the Kullback-Leibler divergence KL(P,Q) is defined
as KL(P,Q) :=

∫
log(dP/dQ) dP if P is dominated by Q and as KL(P,Q) := ∞

otherwise.

2.2 The multiclass classification model

In multiclass classification withK ≥ 2 classes and design on [0, 1]d, we observe a dataset
Dn =

{
(Xi,Yi) : i = 1, . . . , n

}
of n i.i.d. copies of pairs (X,Y) with design/input

vector X taking values in [0, 1]d and the corresponding response vector Y being one of
the K-dimensional standard basis vectors. The response decodes the label of the class:
the output Y is the k-th standard basis vector if the label of the k-th class is observed.
As a special case, for binary classification the output is decoded as (1, 0)T if the first
class is observed and as (0, 1)T if the second class is observed. We write P for the joint
distribution of the random vector (X,Y) and PX for the marginal distribution of X.
The conditional probability PY|X exists since Y is supported on finitely many points.

An alternative model is to assume that each of the K classes is observed roughly
n/K times. To derive statistical risk bounds, there is hardly any difference and the
fact that the i.i.d. model generates with small probability highly unbalanced designs
will not change the analysis.

The task is now to estimate/learn from the dataset Dn the probability that a
new input vector X is in class k. If Y = (Y1, . . . , YK)⊤, the true conditional class
probabilities are

p0k(x) := P(Yk = 1|X = x), k = 1, . . . ,K.

For any x this gives a probability vector, that is,
∑K

k=1 p
0
k(x) = 1. For notational

convenience, we also define the vector of conditional class probabilities p0(x) :=
(p01(x), · · · , p0K(x))⊤.

22 Chapter 2. multiclass classification

To learn the conditional class probabilities from data, the commonly employed
strategy in deep learning is to minimize the log-likelihood over the free parameters
of a deep neural network using (stochastic) gradient descent. The likelihood for the
conditional class probability vector p(x) := (p1(x), · · · , pK(x))⊤ is given by

L(p|Dn) =

n∏

i=1

K∏

k=1

(pk(Xi))
Yik ,

with Yik the k-th entry of Yi. The negative log-likelihood or cross-entropy loss is then

p 7→ ℓ
(
p,Dn

)
:= − 1

n

n∑

i=1

K∑

k=1

Yik log(pk(Xi)) = − 1

n

n∑

i=1

Y⊤
i log

(
p(Xi)

)
, (2.2.1)

where the logarithm in the last expression is taken component-wise as explained in
the notation section above and YT log(p(Xi)) is understood as the scalar product of
the vectors Y and log(p(Xi)). The response vectors Yi are standard basis vectors
and in particular have nonnegative entries. The cross-entropy loss is thus always
nonnegative and consequently defines indeed a proper statistical loss function. The
cross-entropy loss is also convex, but not strictly convex and thus also not strongly
convex, see [149], Chapter III-B for a proof. For binary classification (K = 2), the
cross-entropy loss coincides with the logistic loss. Throughout this chapter, we consider
estimators/learners p̂(X) with the property that p̂(x) is a probability vector for all
x, or equivalently, p̂(x) lies in the simplex SK for all x. This is in particular true for
neural networks with softmax activation function in the output layer. Recall that p0(x)
is the vector of true class probabilities. If (X,Y) has the same distribution as each of
the observations and is independent of the dataset Dn, the statistical estimation risk
associated with the CE loss is

EDn,(X,Y)

[
Y⊤ log

(p0(X)

p̂(X)

)]
= EDn,X

[
p0(X)⊤ log

(p0(X)

p̂(X)

)]

= EDn,X

[
KL
(
p0(X), p̂(X)

)]
,

where the first equality follows from conditioning on the design vector X and
KL(p0(X), p̂(X)) is understood as the Kullback-Leibler divergence of the discrete
distributions with probability mass functions p0(X)|X and p̂(X)|(X,Dn).

(Stochastic) gradient descent methods aim to minimize the CE loss (2.2.1) over a
function class F induced by the method. In the context of neural networks, this class
is generated by all network functions with a pre-specified network architecture. In
particular, the class is parametrized through the network parameters. The maximum
likelihood estimator (MLE) is by definition any global minimizer of (2.2.1). For

2.2. The multiclass classification model 23

some function classes the MLE can be given explicitly. In the extreme case that
x 7→ p(x) is constraint to constant functions, the problem is equivalent to estimation
of the probability vector of a multinomial distribution and the MLE is the average
p̂MLE = 1

n

∑n
i=1 Yi. The other extreme is the case of training error zero. If the

observed design vectors are all different, training error zero is achieved whenever
there exists p ∈ F such that Yi = p(Xi) for all i = 1, . . . , n. This follows from
0 log(0) = 1 log(1) = 0. To achieve training error zero, we therefore need to interpolate
all data points. Notice that misclassification error zero does not necessarily require
interpolation of the data points.

Already for small function classes, the MLE has infinite risk if the statistical risk
is as defined above. The next lemma makes this precise.

Lemma 2.2.1. Consider binary classification (K = 2) with uniform design X ∼
Unif([0, 1]d) and p0(x) := (1/2, 1/2)⊤ for all x ∈ [0, 1]d. Suppose that the function class
F contains an element p(x) = (p1(x), p2(x))

⊤ such that p1(x) = 0 for all x ∈ [0, 1/3]d

and p1(x) = 1 for all x ∈ [2/3, 1]d. Then, there exists a MLE p̂ with

EDn,X

[
p0(X)⊤ log

(p0(X)

p̂(X)

)]
= ∞.

The assumption on the function class F in the previous statement is quite weak
and is satisfied if F contains all piecewise constant conditional class probabilities with
at most two pieces or all piecewise linear conditional class probabilities with at most
three pieces. A large statistical risk occurs also in the case of zero training error or if
the estimator p̂ severely underestimates the true probabilities.

To overcome the shortcomings of the Kullback-Leibler risk, one possibility is
to regularize the Kullback-Leibler divergence and to consider for some B > 0 the
truncated Kullback-Leibler risk

RB(p0, p̂) := EDn,X

[
KLB

(
p0(X), p̂(X)

)]
,

where

KLB

(
p0(X), p̂(X)

)
:= p0(X)⊤

(
B ∧ log

(
p0(X)

p̂(X)

))
.

The loss can be shown to be nonnegative whenever B ≥ 2, see Lemma 2.3.4 below.
The threshold B becomes void if the estimator p̂ is constrained to be in [e−B , 1]K .
If the estimator underestimates one of the true conditional class probabilities by a
large factor, the logarithm becomes large and the threshold B kicks in. For B = ∞,
we recover the Kullback-Leibler risk.

24 Chapter 2. multiclass classification

The idea of truncation is not new. [158] truncates the log-likelihood ratio to avoid
problems with this ratio becoming infinite. Their risk rates, however, are in terms of
the Hellinger distance and the truncation does not appear in the statement of their
results. For the truncated Kullback-Leibler risk the truncation plays a much more
prominent role and appears as a multiplicative factor in the risk bounds. Lemma 2.3.4
provides insight in this difference: it shows that any upper bound for any B-truncated
Kullback-Leibler divergence with B ≥ 2 provides an upper bound for the Hellinger
distance.

As we are interested in the multiclass classification problem in the context of
neural networks, the function class F is not convex. Due to this non-convexity, the
training of neural networks does typically not yield a neural network achieving the
global minimum. We therefore do not assume that the estimator is the MLE and use
a parameter to quantify the difference between the achieved empirical risk and the
global minimum: For any estimator p̂ taking values in a function class F , we denote
the difference between p̂ and the global minimum of the empirical risk over that entire
class by

∆n(p0, p̂) := EDn

[
− 1

n

n∑

i=1

Y⊤
i log(p̂(Xi))−min

p∈F
− 1

n

n∑

i=1

Y⊤
i log(p(Xi))

]
. (2.2.2)

2.2.1 Deep ReLU networks

In this chapter we study deep ReLU networks with softmax output layer. Recall that the
rectified linear unit (ReLU) activation function is σ(x) := max{x, 0}. For any vectors
v = (v1, · · · , vr)⊤,y = (y1, · · · , yr)⊤ ∈ Rr, write σvy := (σ(y1− v1), . . . , σ(yr − vr))⊤.
To ensure that the output of the network is a probability vector over the K classes, it
is standard to apply the softmax function

Φ =

(
ex1

∑K
j=1 e

xj

, . . . ,
exK

∑K
j=1 e

xj

)
: RK → SK

in the last layer. We use L to denote the number of hidden layers or depth of the
neural network, and m = (m0, · · · ,mL+1) ∈ NL+2 to denote the widths, that is, the
number of nodes in each layer of the network. A (ReLU) network architecture with
output function ψ : RmL+1 → RmL+1 is a pair (L,m)ψ and a network with network
architecture (L,m)ψ is any function of the form

f : Rm0 → RmL+1 , x 7→ f(x) = ψWLσvL
WL−1σvL−1

· · ·W1σv1
W0x, (2.2.3)

where Wj is a mj ×mj+1 weight matrix and vj ∈ Rmj is a shift vector. Throughout
this chapter we use the convention that v0 := (0, . . . , 0)⊤ ∈ Rm0 .

2.3. Main Results 25

First we define neural network classes with the additional property that all network
parameters are bounded in absolute value by one via

Fψ(L,m) :=

{
f is of the form of (2.2.3) : max

j∈{0,··· ,L}
(∥Wj∥∞ ∨ ∥vj∥∞) ≤ 1

}
,

with the maximum entry norm ∥ · ∥∞ as defined in the notation section above. As in
previous work, we study estimation over s-sparse ReLU networks. Those are function
classes of the form

Fψ(L,m, s) :=

{
f ∈ F(L,m) :

L∑

j=0

∥Wj∥0 + ∥vj∥0 ≤ s

}
,

where the counting norm ∥ · ∥0 denotes the number of nonzero vector/matrix entries.
All neural network classes in this chapter have either softmax output activation

ψ = Φ or identity output activation ψ = id .

2.3 Main Results

Interesting phenomena occur if the conditional class probabilities are close to zero or
one. We now introduce a notion measuring the size of the set on which the conditional
class probabilities are small. The index α will later appear in the convergence rate.

Definition 2.3.1. (Small Value Bound) Let α ≥ 0 and H be a function class. We say
that H is α-small value bounded (or α-SVB) if there exists a constant C > 0, such
that for all p = (p1, . . . , pK) ∈ H it holds that

PX(pk(X) ≤ t) ≤ Ctα, for all t ∈ (0, 1] and all k ∈ {1, . . . ,K}.

The condition always holds for α = 0 and C = 1. If PX(pk(X) = 0) > 0, the
condition does not hold for α > 0. If all functions in a class are lower bounded by a
constant B0, the class is α-SVB for any α with constant C = B−α

0 . More generally,
the index α is completely determined by the behaviour near zero: If for some function
class there exists some 0 < τ ≪ 1, so that the bound holds for α and for all t ∈ (0, τ],
then replacing C by C ′ = max{C, τ−α} guarantees that C ′τα ≥ 1, which in turn
implies that the function class is α-SVB. Moreover, if a function class is α-SVB, then
it is also α∗-SVB for all α∗ ≤ α. This follows immediately by noticing that tα

∗ ≥ tα

for all t ∈ (0, 1]. Increasing the index makes the small value bound condition thus
more restrictive.

To show that the definition of the small value bound makes sense, we have to check
that for any α > 0, there exist conditional class probabilities that are α-SVB for that

26 Chapter 2. multiclass classification

α, but are not α∗-SVB for any larger α∗ > α. To see this, consider the case that X
is uniformly distributed on [0, 1], and that there are three classes K = 3. For given
α > 0, define the function pα : [0, 1] → S3 as p1(x) = min{x1/α, 1/3}, p2(x) = 1/3
and p3(x) = 1− p1(x)− p2(x) = 2/3−min{x1/α, 1/3}. Since p2(x), p3(x) ≥ 1/3, we
have for k = 2, 3 that PX(pk(X) ≤ t) ≤ (3t)α. When k = 1, it holds for t ≤ 1/3 that
PX(p1(X) ≤ t) = PX(X1/α ≤ t) = PX(X ≤ tα) = tα. Hence PX(pk(X) ≤ t) ≤ (3t)α

for k = 1, 2, 3, so pα is α-SVB with constant 3α. Now we show that this function is
not α∗-SVB for any α∗ > α. Let α∗ > α, then for every constant C > 0, there exists
a τC ∈ (0, 1/3) such that C(τC)

α∗
< (τC)

α = PX(p1(X) ≤ τC). Since C is arbitrary,
pα is not α∗-SVB.

The following example provides some insights into the relation between the condi-
tional class probabilities and the distribution of X. Consider the binary case K = 2,
with input domain [0, 1]2, p1(x) = (3|x1+x2−1|8)/4, and p2(x) = 1−p1(x), see Figure
2.1. Observe that 0 ≤ p1(x) ≤ 3/4 for all x ∈ [0, 1]2, so p1(x) and p2(x) indeed define
conditional class probabilities. Furthermore, p2(x) ≥ 1/4, in other words, p2(x) is
bounded away from zero. Thus, to determine the SVB index α, it remains to consider
p1(x). If X is the uniform distribution on [0, 1]2, Proposition 2.C.7 tells us that

PX (p1(X) ≤ t) = 2

(
4t

3

) 1
8

−
(
4t

3

) 1
4

and hence the small value bound is satisfied for α at most 1/8. Now suppose that
instead of the uniform design, the distribution of X is given by the density (x1, x2) 7→
3|x1 + x2 − 1|, see Figure 2.1 for a plot. Thus, the design density is zero if p1(x) is
zero. In this case, Proposition 2.C.7 gives

PX (p1(X) ≤ t) = 3

(
4t

3

) 1
4

− 2

(
4t

3

) 3
8

,

and the SVB index α is at most 1/4.
The following theorem shows the influence of the index α in the small value bound

on the approximation rates.

Theorem 2.3.2. If the function class is α-SVB with constant C, then, for any
approximating function p = (p1, . . . , pk) : [0, 1]

d → SK satisfying ∥p− p0∥∞ ≤ C1/M,
and mink infx∈[0,1]d pk(x) ≥ 1/M, for some constant C1, it holds that

EX

[
(p0(X))⊤ log

(
p0(X)

p(X)

)]
≤ CK

(C1 + 1)2+(α∧1)

M1+(α∧1)

(
1 +

1{α<1}
1− α

+ log(M)
)
.

The proof for this result bounds the Kullback-Leibler divergence by the χ2-
divergence and then distinguishes the cases where the conditional class probabilities are

2.3. Main Results 27

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1 0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) Conditional class probability

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1 0

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

2

2.5

3

(b) Density

Figure 2.1: Plot of the conditional class probability p1(x) = (3|x1 + x2 − 1|8)/4 on the
left and of the density (x1, x2) 7→ 3|x1 + x2 − 1| on the right.

smaller and larger than 1/M. Both terms can be controlled via the α-SVB condition.
The convergence rate becomes faster in M up to α = 1 and is log(M)/M2 for all
α ≥ 1.

The small value bound provides a flexible framework that allows the conditional
class probabilities to be close to zero and therefore generalizes the standard assumption
in the nonparametric classification literature that the conditional class probabilities
are bounded away from zero. Here, we argue that the regime of small conditional
class probabilities is of particular relevance for classification tasks where most of
the information about the class label is contained in the covariates. Indeed, if X
contains all information about the class label Y, then Y |X is deterministic and the
conditional class probability is either zero or one. On the contrary, in situations where
the covariates/input variable X does not contain the full information about the class
label, Y |X is random, and the conditional class probabilities are bounded away from
zero or one. The case of small conditional class probabilities corresponds to a scenario
where the covariates contain most of the information about the class label. These
are classification tasks for which small misclassification errors can be achieved, but
perfect classification is impossible. This is also the regime for which the SVB index α
should be strictly larger than zero. For instance, for the widely used Breast Cancer
Wisconsin (Diagnostic) dataset and Heart Disease dataset from the UCI machine
learning repository [40] the covariates do not contain the full relevant information
about the disease but small misclassification can be achieved. It is therefore conceivable

28 Chapter 2. multiclass classification

that these are prototypical examples for the case α > 0.
The small value bound has a similar flavor as Tsybakov’s margin condition, which

can be stated as PX(0 < |p0(X)− 1/2| ≤ t) ≤ Ctγ for binary classification [5]. The
margin condition provides a control on the number of data points that are close to the
decision boundary {x : p0(x) = 1/2} and that are therefore hard to classify correctly.
Differently speaking, the problem becomes easier if the conditional class probabilities
are either close to zero or one. This is in contrast with the small value bound, which
will lead to faster convergence rates when the true conditional class probabilities are
mostly away from zero. This difference is due to the loss: the 0-1 loss only cares about
predicting the class membership, while the CE loss measures how well the conditional
class probabilities are estimated and puts additional emphasis on small conditional
class probabilities by considering the ratio between prediction and truth.

To obtain estimation rates, we further assume that the underlying true conditional
class probability function p0 belongs to the class of Hölder-smooth functions. For
β > 0 and D ⊂ Rm, the ball of β-Hölder functions with radius Q is defined as

Cβ(D,Q) :=

{
f : D → R :

∑

γ:∥γ∥1<β

∥∂γf∥∞ +
∑

γ:∥γ∥1=⌊β⌋
sup

x,y∈D,x̸=y

|∂γf(x)− ∂γf(y)|
∥x− y∥β−⌊β⌋

∞
≤ Q

}
,

where ∂γ = ∂γ1 . . . ∂γm , with γ = (γ1, . . . , γm) ∈ Nm. The function class G(β,Q) of
β-smooth conditional class probabilities is then defined as

G(β,Q) =
{
p = (p1, · · · , pK)⊤ : [0, 1]d → SK :

pk ∈ Cβ([0, 1]d, Q), k = 1, . . . ,K
}
.

If Q < 1/K, then, ∥p∥∞ ≤ Q implies
∑K

k=1 pk ≤ KQ < 1, so we need Hölder radius
Q ≥ 1/K for this class to be non-empty. Combining the smoothness and the small
value bound, we write Gα(β,Q) = Gα(β,Q,C) for all functions in G(β,Q) that satisfy
the α-SVB condition with constant C. For large enough radius Q and constant C, the
class Gα(β,Q) is non-empty. For example, the constant function p = (1/K, . . . , 1/K)
is in Gα(β,Q) for any β > 0 and α > 0 when Q ≥ 1/K and C ≥ Kα.

For 0 ≤ α ≤ 1 the index from the SVB condition and β the smoothness index, we
introduce the rate

ϕn = K
(1+α)β+(3+α)d

(1+α)β+d n−
(1+α)β

(1+α)β+d .

2.3. Main Results 29

Theorem 2.3.3 (Main Risk Bound). Consider the multiclass classification model
with p0 ∈ Gα(β,Q), 0 ≤ α ≤ 1, and n > 1. Let p̂ be an estimator taking values in the
network class FΦ(L,m, s) satisfying
(i) A(d, β) log2(n) ≤ L ≲ nϕn,
(ii) mini=1,··· ,Lmi ≳ nϕn,
(iii) s ≍ nϕn log(n)
for a suitable constant A(d, β). If n is sufficiently large, then, there exist constants
C ′, C ′′ only depending on α,C, β, d, such that whenever ∆n(p̂,p0) ≤ C ′′BϕnL log2(n)
then

RB(p0, p̂) ≤ C ′BϕnL log2(n).

An explicit expression for the constant A(d, β) can be derived from the proof. The
risk bound depends linearly on B. Choosing, for instance, B = O(log(n)) leads only
to an additional logarithmic factor in the convergence rate. The risk bound grows

with K
(1+α)β+(3+α)d

(1+α)β+d in the number of classes. Thus for large β, we obtain a near
linear dependence on K. The worst behavior occurs for α = 1 and d large. Then the
dependence on the number of classes is essentially of the order K4.

When the estimator p̂ is guaranteed to have output in [e−B , 1]K , the truncation
parameter B in the risk has no effect. The proof of the approximation properties
is done by the construction of a softmax-network ĝ with the property that ĝ(x) ≳

K
−(2+α)β
(1+α)β+dn−

β
(1+α)β+d , for all x ∈ [0, 1]d. This means that we can pick B ≍ log(n) such

that ĝ(x) ≥ e−B and restrict the class FΦ(L,m, s) to networks that are guaranteed to
have output in [e−B , 1]K . The proof of Theorem 2.3.3 can be extended for this setting
and implies a risk bound for the Kullback-Leibler risk of the form

EDn,X

[
KL
(
p0(X), p̂(X)

)]
≤ C ′′′ϕnL log3(n),

for some constant C ′′′. Thus Theorem 2.3.3 provides us with rates for the Kullback-
Leibler risk when the networks outputs are guaranteed to be sufficiently large, while
still providing a bound for the truncated Kullback-Leibler risk when no such guarantee
can be given.

When the input dimension d is large, the obtained convergence rates become
slow. A possibility to circumvent this curse of dimensionality is to assume additional
structure on p0. For nonparametric regression, [62, 72, 11, 127, 75] show that under
a composition assumption on the regression function, neural networks can exploit
this structure to obtain fast convergence rates that are unaffected by the curse of
dimensionality. It is conceivable that for various classification problems, such an
underlying composition structure is present. For instance to classify an email as
spam, the hierarchical structure is important and decision trees that are adapted to
such structures work well, see Section 9.2.5 in [56]. In image classification it is often

30 Chapter 2. multiclass classification

assumed that an image can be constructed from compositions of simpler features; for
example a square is built from lines and can itself be used as component of more
complicated shapes.

It is possible to incorporate a composition assumption on the conditional class
probabilities within the considered framework. As our approximation result already
depends on Theorem 5 of [127] it is relatively straightforward to sketch how the
additional composition assumption can help to deal with the curse of dimensionality.
Consider the class of functions that satisfy the composition assumption in [127]

Gcomp(r,d, t,β, Q) :=
{
f = gr ◦ · · · ◦ g0 : gi = (gij)j : [ai, bi]

di → [ai+1, bi+1]
di+1 ,

gij ∈ Cβi([ai, bi]
ti , Q) for some |ai|, |bi| ≤ Q

}
.

Here ti is the maximal number of variables on which each of the component functions
gij may depend on. For specific structural assumptions, such as generalized additive
models and sparse tensor decompositions, ti can be much smaller than the input
dimension d, [127].

In our setting the composition constraint can be incorporated by assuming that
each of the conditional class probabilities p1, . . . , pK lies in the class Gcomp(r,d, t,β, Q).
Define the effective smoothness indices as β∗

i := βi
∏r

ℓ=i+1(βℓ ∧ 1). By approximating
these composition functions by neural networks as in the proof of Theorem 1 of [127]
in place of Theorem 5 of the same article, one can then obtain the rate

ϕn = max
i=0,··· ,r

K
(1+α)β∗

i +(3+α)ti
(1+α)β∗

i
ti n

− (1+α)β∗
i

(1+α)β∗
i
+ti .

Let us briefly summarize the related literature. Convergence rates for neural
networks in (binary) classification have recently been studied in [67, 74, 76, 134, 111]
in various settings. [67] derives convergence rates for the 0− 1 loss based on different
surrogate losses and assumptions. For the hinge loss as surrogate loss, the margin
condition in combination with smoothness conditions on the decision boundary as well
as smoothness conditions on the conditional class probabilities are studied. Moreover,
the logistic loss is analyzed under a condition that requires the conditional class
probabilities to be near zero or one combined with smoothness conditions on the
decision boundary. Convergence rates for the 0 − 1 loss for convolutional neural
networks are studied in [74, 76]. Both papers assume smoothness conditions on the
conditional class probabilities and impose a max-pooling structure assumption for the
conditional class probability that is related to the structure of convolutional networks.
In [74] the least squares loss is used as a surrogate loss, while [76] uses the logistic loss as
surrogate loss. More recently, [134] studied the convergence rates for convex Lipschitz

2.3. Main Results 31

losses of convolutional neural networks in binary classification under a submanifold
condition. The framework includes least squares loss, hinge loss, truncated logistic
loss and truncated exponential loss. In the truncated cases, the minimizers are also
truncated. Furthermore, [111] studies convergence rates for the 0 − 1 loss with the
hinge loss as surrogate loss, in the case that the model is deterministic and that the
decision boundary is Barron regular.

2.3.1 Relationship with Hellinger distance

The multiclass classification problem can be written as statistical model (Qp,p ∈
F), where F is the parameter space, p is the unknown vector of conditional class
probabilities and Qp denotes the data distribution if the data are generated from
the conditional class probabilities p. The squared Hellinger distance H(P,Q)2 =
1
2

∫
(
√
dP −√

dQ)2, with P and Q probability measures on the same probability space,
induces in a natural way a loss function on such a statistical model by associating
to the two parameters p and p′ the loss H(Qp, Qp′). The Hellinger loss function
has been widely studied in the context of nonparametric variations of the maximum
likelihood principle, mainly for the related nonparametric density estimation problem,
[158, 147, 148]. The log-likelihood is closely related to the Kullback-Leibler divergence,
which in turn is related to the Hellinger distance by the inequality H(P,Q)2 ≤
KL(P,Q), see for example [146]. The Kullback-Leibler divergence cannot be upper
bounded by the squared Hellinger distance in general, although there exists conditions
under which such a bound can be established, see for example Theorem 5 of [158] and
Lemma 2.3.4 below.

In density estimation, the nonparametric MLE achieves in some regimes optimal
rates with respect to the Hellinger distance for convex estimator classes or if the
densities (or sieve estimators) are uniformly bounded away from zero, see [157, 158]
and Chapters 7 and 10 in [147]. Neural network function classes are not convex and,
as argued before, there are many applications in the deep learning literature, where
the conditional class probabilities are very small or even zero. Thus, these general
results are not applicable in our setting.

On the contrary, the convergence rates established above for the truncated Kullback-
Leibler divergence imply convergence with respect to the Hellinger loss. This relation-
ship is made precise in the next result.

Lemma 2.3.4. Let P and Q be two probability measures defined on the same measur-
able space. For any B ≥ 2,

H2(P,Q) ≤ 1

2
KL2(P,Q) ≤ 1

2
KLB(P,Q) ≤ 2eB/2H2(P,Q).

32 Chapter 2. multiclass classification

For the proof see Appendix 2.C. The upper bound on the truncated Kullback-Leibler
divergence is related to the inequalities that bound the Kullback-Leibler divergence
by the squared Hellinger distance under the assumption of a bounded likelihood ratio,
such as (7.6) in [20] or Lemma 4 in [57].

Combining the previous lemma and Theorem 2.3.3 with B = 2 gives

EDn

[∫

[0,1]d

K∑

j=1

(√
p0j (x)−

√
p̂j(x)

)2
dPX(x)

]
≤ 2C ′ϕnL log2(n), (2.3.1)

whenever ∆n(p̂,p0) ≤ C ′′BϕnL log2(n).
We can also use the relation with the Hellinger distance to show that for α = 1, we

obtain a near minimax optimal convergence rate. Indeed n−
2β

2β+d is the optimal rate
for the squared Hellinger distance. For references see for instance Example 7.4.1 of
[147] for univariate densities bounded away from zero; the entropy bounds in Theorem
2.7.1. together with Proposition 1 of [159] for densities bounded away from zero; or
the entropy bounds in Theorem 2.7.1. and Equation (3.4.5) of [148] together with
Chapter 2.3. of [159] for densities p for which

∫
1
p is bounded. Since the squared

Hellinger distance can be upper bounded by the Kullback-Leibler divergence, the rate

n−
2β

2β+d is also a lower bound for the Kullback-Leibler risk. Since this rate is achieved
for α = 1, it is clear that no further gain in the convergence rate can be expected
for α > 1. For α ≥ 1, the rate of convergence is up to log(n)-factors the same as in
Theorem 5 of [158] and also the conditions are comparable.

It is instructive to relate the global convergence rates to pointwise convergence.
Recall that for real numbers a, b, we have (

√
a−

√
b)2 = (a− b)2/(

√
a+

√
b)2. If PX

has a Lebesgue density that is bounded on [0, 1]d from below and above and if we
choose L of the order O(log n), (2.3.1) indicates that on a large subset of [0, 1]d, we
can expect a pointwise distance

∣∣∣p0j (x)− p̂j(x)
∣∣∣ ≲

∣∣∣
√
p0j (x) +

√
p̂j(x)

∣∣∣K
(1+α/2)d
(1+α)β+dn−

(1+α)β
2(1+α)β+2d log3/2(n).

The pointwise convergence rate gets therefore faster if the conditional class probabilities
are small. In the most extreme case, p0j (x) = 0, the previous bound becomes

∣∣∣p0j (x)− p̂j(x)
∣∣∣ ≲ K

(2+α)d
(1+α)β+dn−

(1+α)β
(1+α)β+d log3(n).

Since n−(1+α)β/((1+α)β+d) ≪ n−β/(2β+d), this rate can be much faster than the classical
nonparametric rate for pointwise estimation n−β/(2β+d). The gain gets accentuated
as the index α increases. A large index α in the SVB bound can be chosen if the
conditional class probabilities are rarely small or zero. Hence there is a trade-off and
the regions on which a faster rate can be obtained are thus smaller.

2.3. Main Results 33

2.3.2 Oracle Inequality

The risk bound of Theorem 2.3.3 relies on an oracle-type inequality. Before we can
state this inequality we first need some definitions. Given a function class of conditional
class probabilities F , we denote by log(F) the function class containing all functions
that can be obtained by applying the logarithm coefficient-wise to functions from F ,
that is,

log(F) =
{
g = log(f) : f ∈ F

}
.

Next we define a family of pseudometrics. Recall that a pseudometric is a metric
without the condition that d(f, g) = 0 implies f = g. For a real number τ and
f ,g : D → RK , set

dτ (f ,g) := sup
x∈D

max
k=1,··· ,K

|(τ ∨ fk(x))− (τ ∨ gk(x))|.

Lemma 2.C.3 in the appendix verifies that this indeed defines a pseudometric. For
τ = −∞, dτ (f ,g) coincides with the L∞-norm as defined in the notation section.

Denote by N (δ,F , d(·, ·)) the δ interior covering number of a function class F with
respect to a (pseudo)metric d(., .). For interior coverings, the centers of the balls of
any cover are required to be inside the function class F . Triangle inequality shows
that any (exterior) δ-cover can be used to construct an interior cover with the same
number of balls, but with radius 2δ instead of δ.

Theorem 2.3.5 (Oracle Inequality). Let F be a class of conditional class probabilities
and p̂ be any estimator taking values in F . If B ≥ 2 and Nn = N (δ, log(F), dτ (·, ·)) ≥ 3
for τ = log(Cne

−B/n), then

RB(p0, p̂) ≤ (1 + ϵ)

(
inf
p∈F

R(p0,p) + ∆n(p0, p̂) + 3δ

)

+
(1 + ϵ)2

ϵ
·
68B log(Nn) + 272B + (3/2)CnK

(
log
(

n
Cn

)
+B

)

n
,

for all δ, ϵ ∈ (0, 1], 0 < Cn ≤ ne−1 and ∆n(p0, p̂) as defined in (2.2.2).

The proof of this oracle inequality is a non-trivial variation of the proof for the
oracle inequality in the regression model [127]. The statement seems to suggest to pick
a small Cn. Then, however, also τ will be small, and dτ becomes a stronger metric
possibly leading to an increase of the covering number Nn.

We can also replace the covering number of log(F) by the covering number of F
in the oracle inequality:

34 Chapter 2. multiclass classification

Corollary 2.3.6. Denote Ñn := N (δCne
−B/n,F , dτ (·, ·)), with τ = Cne

−B/n. Un-
der the conditions of Theorem 2.3.5, it holds that

RB(p0, p̂) ≤ (1 + ϵ)

(
inf
p∈F

R(p0,p) + ∆n(p0, p̂) + 3δ

)

+
(1 + ϵ)2

ϵ
· 68B log(Ñn) + 272B + (3/2)CnK(log(n/Cn) +B)

n
,

for all δ, ϵ ∈ (0, 1], 0 < Cn ≤ ne−1 and ∆n(p0, p̂) as defined in (2.2.2).

Let us briefly discuss some ideas underlying the proof of the oracle inequality. For
simplicity, assume that p̂ is the MLE over a class F and that p0 ∈ F . By the definition
of the MLE p̂, we have that − 1

n

∑n
i=1 Y

⊤
i log(p̂(Xi)) ≤ − 1

n

∑n
i=1 Y

⊤
i log(p0(Xi)).

Taking expectation on both sides, one can then show that for any B ≥ 0,

EDn

[1
n

n∑

i=1

p0(Xi)
⊤
(
B ∧ log

(p0(Xi)

p̂(Xi)

))]

≤ EDn

[1
n

n∑

i=1

(
p0(Xi)−Yi

)⊤(
B ∧ log

(p0(Xi)

p̂(Xi)

))]
.

Using standard empirical process arguments, the right hand side can be roughly upper
bounded by EDn

[maxj
1
n

∑n
i=1(p0(Xi)−Yi)

⊤(B ∧ log(p0(Xi)/pj(Xi)))], where the
maximum is over all centers of an ε-covering of F for a sufficiently small ε. Since
EDn

[Yi|Xi] = p0(Xi), this is the maximum over a centered process. Using empirical
process theory a second time, the left hand side of the previous display can be shown
to converge to the statistical risk RB(p0, p̂) = EDn,X[KLB(p0(X), p̂(X))].

To apply Bernstein’s inequality we need to bound the moments of the random
variables in the empirical process. For that we have derived the following inequality
that relates the m-th moment to the truncated Kullback-Leibler divergence and also
shows the effect of the truncation level B.

Lemma 2.3.7. If B > 1 and m = 2, 3, . . . , then, for any two probability vectors
(p1, . . . , pK) and (q1, . . . , qK), we have

K∑

k=1

pk

∣∣∣∣B ∧ log

(
pk
qk

)∣∣∣∣
m

≤ max

{
m!,

Bm

B − 1

} K∑

k=1

pk

(
B ∧ log

(
pk
qk

))
.

In order to use the oracle inequality for deep ReLU networks with softmax activation
in the output layer, we now state a bound on the covering number of these classes.
The bound and its proof are a slight modification of Lemma 5 in [127].

2.4. Proofs 35

Lemma 2.3.8. If V :=
∏L+1

ℓ=0 (mℓ + 1), then for every δ > 0,

N (δ, log(FΦ(L,m, s)), ∥ · ∥∞) ≤
(
4δ−1K(L+ 1)V 2

)s+1
,

and

logN (δ, log(FΦ(L,m, s)), ∥ · ∥∞) ≤ (s+ 1) log(22L+6δ−1(L+ 1)K3d2sL).

The second bound follows from the first by removing inactive nodes, Proposition
2.A.1, and taking the logarithm. The full proof can be found in Appendix 2.C.

The proof of the main risk bound in Theorem 2.3.3 is based on the oracle inequality
derived above. To bound the individual error terms, we apply the approximation
theory developed in Theorem 2.3.2 and Lemma 2.4.3 as well as the previous bound on
the metric entropy. This shows that for any M > 1, the truncated Kullback-Leibler
risk for a network class with depth L, width ≳ KMd/β and sparsity s ≲ KMd/β can
be bounded by

RB(p0, p̂) ≲ K3+α log(M)

M1+α
+KMd/βL

log2(n)

n
+∆n(p̂,p0).

Balancing the terms K3+α/M1+α and KMd/β leads to M ≍ K
(2+α)β

(1+α)β+dn
β

(1+α)β+d and
for small ∆n(p̂,p0), we get the rate

RB(p0, p̂) ≲ K
(1+α)β+(3+α)d

(1+α)β+d n−
(1+α)β

(1+α)β+dL log2(n)

in Theorem 2.3.3.

2.4 Proofs

Proof of Lemma 2.2.1. Consider the event An := {(Xi,Yi) ∈ ([0, 1/3]d × (1, 0)⊤) ∪
([2/3, 1]d × (0, 1)⊤), for all i = 1, . . . , n}. Recall that 0 log(0) = 0. On the event An,
for any p(x) = (p1(x), p2(x))

⊤ such that p1(x) = 0 for all x ∈ [0, 1/3]d and p1(x) = 1
for all x ∈ [2/3, 1]d, we have that ℓ(p,Dn) = 0, where ℓ(p,Dn) is the negative log-
likelihood as defined in (2.2.1). Since the CE loss is nonnegative, any such p in the
class F is a MLE on this event. Since P(An) > 0, it follows that

EDn,X

[
p0(X)⊤ log

(p0(X)

p̂(X)

)]
≥ EDn

[
1(An)

∫

[0,1]d
p0(u)

⊤ log
(p0(u)

p̂(u)

)
du

]

= ∞ · P(An)

= ∞.

36 Chapter 2. multiclass classification

2.4.1 Approximation related results

This section is devoted to the proof of Theorem 2.3.3. First we construct a neural
network that approximates p0 in terms of the L∞-norm and is bounded away from zero.
Afterwards we prove Theorem 2.3.2 relating the previously derived approximation
theory to a bound on the approximation error in terms of the expected Kullback-Leibler
divergence. We finish the proof combining this network with the new oracle inequality
(Theorem 2.3.5) and an entropy bound for classes of neural networks with a softmax
function in the output layer, Lemma 2.3.8. Recall that Fid(L,m, s) denotes the neural
network class with L hidden layers, width vector m, network sparsity s and identity
activation function in the output layer.

Theorem 2.4.1. For all M ≥ 2 and β > 0 there exists a neural network G ∈
Fid(L,m, s), with
(i) L = ⌊40(β + 2)2 log2(M)⌋,
(ii) m = (1, ⌊48⌈β⌉32βM1/β⌋, · · · , ⌊48⌈β⌉32βM1/β⌋, 1),
(iii) s ≤ 4284(β + 2)52βM1/β log2(M),
such that for any x ∈ [0, 1],

∣∣eG(x) − x
∣∣ ≤ 4

M
and G(x) ≥ log

(4

M

)
.

The proof of this theorem can be found in Appendix 2.B. To approximate Hölder
functions we use Theorem 5 from [127] with m equal to ⌈log2(M))(d/β + 1)⌉. We
state here a variation of that theorem in our notation using weaker upper bounds to
simplify the expressions for the network size. These upper bounds can be deduced
directly from the depth-synchronization and network enlarging properties of neural
networks stated in Section 2.A.1. Set

CQ,β,d := (2Q+ 1)(1 + d2 + β2)6d +Q3β .

Theorem 2.4.2. For every function f ∈ G(β,Q) and everyM > (β+1)β∨(Q+1)β/deβ ,
there exist neural networks Hk ∈ Fid(L,m, s) with
(i) L = 3⌈log2(M)(d/β + 1)⌉(1 + ⌈log2(d ∨ β)⌉),
(ii) m = (d, 6(d+ ⌈β⌉)⌊Md/β⌋, · · · , 6(d+ ⌈β⌉)⌊Md/β⌋, 1),
(iii) s ≤ 423(d+ β + 1)3+dMd/β log2(M))(d/β + 1),
such that ∥∥Hk − f0k

∥∥
∞ ≤ CQ,β,d

M
, ∀k ∈ {1, · · · ,K}.

Here the M is chosen such that Md/β ≍ N, where N is as defined in Theorem 5 of
[127].

2.4. Proofs 37

Without loss of generality we can assume that the output of the Hk networks lies
in [0, 1]. Indeed if this would not be the case, then the projection-layer that we use
later on in our proof will guarantee that it is in this interval. This will not increase
the error since the functions f0k only take values in [0, 1].

To obtain a neural network with softmax output, the next lemma combines the
neural network constructions from the previous two theorems and replaces the output
with a softmax function.

Lemma 2.4.3. For every function f ∈ G(β,Q) and every M > K(4 + CQ,β,d) ∨ (β +
1)β ∨ (Q+ 1)β/deβ, there exists a neural network q̃ ∈ FΦ(L,m, s), with

(i) L = 3⌈log2(M)(d/β + 1)⌉(1 + ⌈log2(d+ β)⌉) + ⌊40(β + 2)2 log2(M)⌋+ 2,

(ii) m =
(
d, ⌊48K(d+ ⌈β⌉3)2βMd/β⌋, · · · , ⌊48K(d+ ⌈β⌉3)2βMd/β⌋,K

)
,

(iii) s ≤ 4707K(d+ β + 1)4+d2βMd/β log2(M))(d/β + 1),

such that,

∥q̃k − p0∥∞ ≤ 2K(4 + CQ,β,d)

M
,

and

q̃k(x) ≥
1

M
, ∀ k ∈ {1, · · · ,K}, ∀x ∈ [0, 1]d.

Proof. Composing the neural networks in Theorem 2.4.1 and Theorem 2.4.2 results in
a neural network G = (G(H1), · · · , G(HK)) such that for any k = 1, · · · ,K,

∥∥eG(Hk) − p0k
∥∥
∞ ≤

∥∥eG(Hk) −Hk

∥∥
∞ +

∥∥Hk − p0k
∥∥
∞ ≤ 4 + CQ,β,d

M
.

Define now the vector valued function q̃ component-wise by

q̃k(x) =
eG(Hk(x))

∑K
j=1 e

G(Hj(x))
, k = 1, · · · ,K.

Applying the composition (2.A.2), depth synchronization (2.A.3) and parallelization
rules (2.A.4) it follows that q̃ ∈ FΦ(L,m, s). To bound ∥q̃k − p0k∥∞, we use that
p0 = (p01, · · · , p0K) is a probability vector, eG(Hj) ≥ 0 for j = 1, · · · , k and triangle

38 Chapter 2. multiclass classification

inequality, to obtain

∥∥q̃k − p0k
∥∥
∞ ≤

∥∥∥∥∥e
G(Hk)

(
1

∑K
j=1 e

G(Hj)
− 1

)∥∥∥∥∥
∞

+
∥∥∥eG(Hk) − p0k

∥∥∥
∞

=

∥∥∥∥∥e
G(Hk)

(∑K
ℓ=1 p

0
ℓ∑K

j=1 e
G(Hj)

−
∑K

ℓ=1 e
G(Hℓ)

∑K
j=1 e

G(Hj)

)∥∥∥∥∥
∞

+
∥∥∥eG(Hk) − p0k

∥∥∥
∞

≤
(K∑

ℓ=1

∥∥∥p0ℓ − eG(Hℓ)
∥∥∥
∞

)∥∥∥∥∥
eG(Hk(·))

∑K
j=1 e

G(Hj)

∥∥∥∥∥
∞

+
∥∥∥eG(Hk) − p0k

∥∥∥
∞

≤ (K + 1)(4 + CQ,β,d)

M
≤ 2K(4 + CQ,β,d)

M
.

For the second bound of the lemma, notice that from the first bound of the lemma
and the second bound of Theorem 2.4.1 it follows that

q̃k(x) ≥
4
M∑K

j=1 e
G(Hj(x))

≥
4
M

1 +K
(4+CQ,β,d)

M

=
4

M +K(4 + CQ,β,d)
≥ 1

M
,

where for the second inequality we used that pj(x) ≤ 1, so eG(Hj(x)) ≤ p0j(x) + (4 +
CQ,β,d)/M and for the last inequality we used that M ≥ K(4 + CQ,β,d).

The Kullback-Leibler divergence can be upper bounded by the χ2-divergence, see
for instance Lemma 2.7 in [146]. Thus,

EX

[
(p0(X))⊤ log

(
p0(X)

q̃(X)

)]
≤ EX

[
K∑

k=1

(p0k(X)− q̃k(X))2

q̃k(X)

]
.

To control the approximation error, we can combine this bound with the first bound
of Lemma 2.4.3 to conclude that if p0k(X) > 2K(4 + CQ,β,d)/M, then

(p0k(X)− q̃k(X))2

q̃k(X)
≤ 4K2(4 + CQ,β,d)

2

M2

(
p0k(X)− 2K(4 + CQ,β,d)

M

)−1

.

On the other hand, combining the bound with the second inequality from the same
lemma yields

(p0k(X)− q̃k(X))2

q̃k(X)

≤
K∑

k=1

4K2(4 + CQ,β,d)
2

M2

(
max

{
p0k(X)− 2K(4 + CQ,β,d)

M
,
1

M

})−1

,

2.4. Proofs 39

which is valid for all possible values of p0(x) ∈ [0, 1]k. As M tends to infinity,
p0k(x) − 2K(4 + CQ,β,d)/M tends to p0k(x), while 1/M tends to zero. Without any
further conditions on p0k(X) this bound is thus of order M−1. The small value bound,
however, allows us to obtain an upper bound with better behaviour inM. The following
proposition employs the small value bound to control the expectation of (p0k(x))

−1 on
the set that p0k(x) exceeds some threshold value H.

Proposition 2.4.4. Assume there exists an α ≥ 0 and a finite constant C <∞, such
that for p = (p1, . . . , pK) : D → SK we have PX(pk(X) ≤ t) ≤ Ctα for all t ≥ 0 and
k ∈ {1, . . . ,K}. Let H ∈ [0, 1]. Then it holds that

∫

{pk(x)≥H}

1

pk(x)
dPX(x) ≤

{
CHα−1

1−α , if α ∈ [0, 1),

C(1− log(H)), if α ≥ 1.

Proof. Observe that pk(X) is a probability. Therefore, pk(X) ≤ 1 and consequently
C ≥ 1. For any nonnegative function h and random variable Z ∼ PZ , we have∫
h(Z) dPZ = E[h(Z)] =

∫∞
0

PZ(h(Z) ≥ u) du. Hence

∫

{pk(x)≥H}

1

pk(x)
dPX(x) =

∫ ∞

0

PX

(
1

pk(X)
1{pk(X)≥H} ≥ u

)
du

≤
∫ 1

H

0

PX

(
pk(X) ≤ 1

u

)
du,

where the inequality follows from observing that 1
pk(X)1{pk(X)≥H} ≥ u implies H ≤

pk(X) ≤ 1
u and u ≤ 1/H.

If α = 0, we use the trivial bound PX(pk(x) ≤ t) ≤ 1, for all t ∈ [0, 1], and obtain

∫ 1
H

0

PX

(
pk(X) ≤ 1

u

)
du ≤

∫ 1
H

0

1 du =
1

H
.

If 0 < α < 1, we can invoke the assumption of this proposition to obtain

∫ 1
H

0

PX

(
pk(X) ≤ 1

u

)
du ≤ C

∫ 1
H

0

u−α du =
CHα−1

1− α
.

For α ≥ 1, we have PX(pk(X) ≤ t) ≤ Ct for all 0 ≤ t ≤ 1. If moreover C ≤ H−1, the
inequality PX(pk(X) ≤ t) ≤ min{1, Ct} leads to

∫ 1
H

0

PX

(
pk(X) ≤ 1

u

)
du ≤

∫ C

0

1 du+ C

∫ 1
H

C

1

u
du

= C + C(− log(H)− log(C)).

40 Chapter 2. multiclass classification

If α ≥ 1 and C ≥ H−1, we can upper bound the integral by
∫ C

0
1 du = C. The result

of the proposition now follows from simplifying the expressions using that C ≥ 1.

We can now state and prove the main approximation bound.

Proof of Theorem 2.3.2. The condition ∥p − p0∥∞ ≤ C1/M implies that pk(x) ≥
p0k(x)− C1/M. Combined with pk(x) ≥ 1/M, this gives

pk(x) ≥
(
p0k(x)−

C1

M

)
∨ 1

M
≥ p0k(x)

C1 + 1
∨ 1

M
,

where we used that p0k(x) ≥ (C1 + 1)/M = ((C1 + 1)/C1) · (C1/M) implies

p0k(x)−
C1

M
≥ p0k(x)

(
1− C1

C1 + 1

)
=

p0k(x)

C1 + 1
.

This gives rise to the upper bound

(p0k(X)− pk(X))2

pk(X)
≤ C2

1

M
1{p0

k(x)≤
C1+1

M } +
C2

1

M2
· C1 + 1

p0k(x)
1{p0

k(x)≥
C1+1

M }.

Taking the expectation over the right hand side yields

C2
1

M
PX

(
p0k(x) ≤

C1 + 1

M

)
+
C2

1 (C1 + 1)

M2

∫

{p0
k(x)≥

C1+1
M }

1

p0k(x)
dPX(x)

By the α-SVB condition the first term is upper bounded by

C2
1

M
PX

(
p0k(x) ≤

C1 + 1

M

)
≤ C2

1C

M

(
C1 + 1

M

)α∧1

≤ C
(C1 + 1)2+(α∧1)

M1+(α∧1)
.

Applying Proposition 2.4.4 with H = (C1 + 1)/M to the second term yields the
result.

Now we have all the ingredients to complete the proof of the main theorem.

Proof of Theorem 2.3.3. Take δ = n−1 and ϵ = Cn = 1 in Theorem 2.3.5. Using that
dτ is upper bounded by the sup-norm distance together with Lemma 2.3.8 gives

RB(p0, p̂) ≤ 2

(
inf
p∈F

R(p0,p) + ∆n(p0, p̂) +
3

n

)

+ 4 · 68B(s+ 1) log(22L+6n(L+ 1)K3d2sL) + 272B + (3/2)K(log(n) +B)

n
. (2.4.1)

2.4. Proofs 41

Recall that 0 ≤ α ≤ 1 is the index from the SVB condition. We now choose M =

⌊cK
(2+α)β

(1+α)β+dn
β

(1+α)β+d ⌋ for a small constant c chosen below. To apply Lemma 2.4.3, we
need to show that M ≫ K. To see this, observe that RB(p0, p̂) ≤ B and therefore the

convergence rate becomes trivial if ϕn ≥ 1. Using that ϕn = K
(1+α)β+(3+α)d

(1+α)β+d n−
(1+α)β

(1+α)β+d ,

this implies K ≤ n
(1+α)β

(1+α)β+(3+α)d ≤ n
β

β+2d ≤ n
β
2d . Hence, Kd−β ≪ nβ and thus also

M ≫ K.
For this choice of M, the network q̃ from Lemma 2.4.3 is in the network class

FΦ(L,m, s), where L = 3⌈log2(M)(d/β + 1)⌉(1+⌈log2(d+ β)⌉)+⌊40(β + 2)2 log2(M)⌋
+ 2, the maximum width of the hidden layers is bounded by ≲ Kcd/βMd/β = cd/βnϕn
and similarly s ≲ Kcd/βMd/β log2(M) = cd/βnϕn log2(M). In particular, by tak-
ing c sufficiently small and using the depth synchronization property (2.A.3), q̃ ∈
FΦ(L,m, s), whenever A(d, β) log2(n) ≤ L ≲ nϕn, for a suitable constant A(d, β), the
maximum width is ≳ nϕn and s ≍ nϕn log(n). We now apply Theorem 2.3.2 with
C1 = 2K(4 + CQ,β,d). Using that C1 + 1 = 2K(4 + CQ,β,d) + 1 ≤ 2K(5 + CQ,β,d), we
find

inf
p∈F

R(p0,p) ≤ 8CK3+α (5 + CQ,β,d)
3

M1+α

(
1 +

1{α<1}
1− α

+ log(M)
)
≲ ϕn log(n).

Together with (2.4.1) and s ≍ nϕn log(n), the statement of Theorem 2.3.3 follows.

2.4.2 Oracle inequality related results

In this section we prove Theorem 2.3.5. For B > 0, consider

RB,n(p0, p̂) := EDn

[1
n

n∑

i=1

Y⊤
i

(
B ∧ log

(p0(Xi)

p̂(Xi)

)]
.

The next proposition shows how this risk is related to the approximation error and the
quantity ∆n(p0, p̂) defined in (2.2.2) that measures the empirical distance between an
arbitrary estimator and an empirical risk minimizer.

Proposition 2.4.5. For any estimator p̂ ∈ F ,

RB,n(p0, p̂) ≤ R∞,n(p0, p̂) ≤ inf
p∈F

R(p0,p) + ∆n(p0, p̂).

Proof. The first inequality follows from a ≥ min(a, b), for all a, b ∈ R. To prove the
second inequality, fix a p∗ ∈ F . Using that ∆n(p0,p

∗) ≥ 0 and

EDn

[
Y⊤

i log(p∗(Xi))
]
= EDn

[
EDn [Y

⊤
i |Xi] log(p

∗(Xi))
]

= EDn

[
p0(Xi)

⊤ log(p∗(Xi))
]
,

42 Chapter 2. multiclass classification

we get

EDn

[
− 1

n

n∑

i=1

Y⊤
i log(p̂(Xi))

]
≤ EDn

[
− 1

n

n∑

i=1

Y⊤
i log(p̂(Xi))

]
+∆n(p0,p

∗)

= EDn

[
− 1

n

n∑

i=1

Y⊤
i log(p∗(Xi))

]
+∆n(p0, p̂)

= EX

[
− p⊤

0 (X) log(p∗(X))
]
+∆n(p0, p̂).

As this holds for all p∗ ∈ F , we can take on the right hand side also the infimum
over all p∗ ∈ F . To complete the proof for the second inequality, we add to both sides
EDn [Y

⊤
i log(p0(Xi))] = EDn [p0(Xi)

⊤ log(p0(Xi))].

The truncation level B allows us to split the statistical risk into multiple parts
that can be controlled separately. The following lemma provides a bound on the event
that p0k(X) is small.

Lemma 2.4.6. Let F be a class of conditional class probabilities, p̂ be any estimator
taking values in F , (X,Y) be a random pair with the same distribution as (X1,Y1)
and Cn ∈ (0, n/e]. Then, for any i ∈ {1, · · · , n}, and any k ∈ {1, · · · ,K}, we have

∣∣∣∣EDn,(X,Y)

[
Y k1{p0

k(X)≤Cn
n }

(
B ∧ log

(p0k(X)

p̂k(X)

))]∣∣∣∣ ≤
Cn

(
log
(

n
Cn

)
+B

)

n
.

Proof. Since p0, p̂ ∈ [0, 1]K , we have

log(p0k(X)) ≤ B ∧ log
(p0k(X)

p̂k(X)

)
≤ B. (2.4.2)

Using that a ≤ x ≤ b implies |x| ≤ max{|a|, |b|} ≤ |a|+ |b| and Yk ≥ 0, we can get an
upper bound that does not depend on p̂

∣∣∣∣EDn,(X,Y)

[
Y k1{p0

k(X)≤Cn
n }

(
B ∧ log

(p0k(X)

p̂k(X)

))]∣∣∣∣

≤ E(X,Y)

[
Y k1{p0

k(X)≤Cn
n }
∣∣log(p0k(X))

∣∣
]
+ E(X,Y)

[
Y k1{p0

k(X)≤Cn
n }B

]

= EX

[
p0k(X)1{p0

k(X)≤Cn
n }
∣∣log(p0k(X))

∣∣
]
+ EX

[
p0k(X)1{p0

k(X)≤Cn
n }B

]
,

where the last equality follows from conditioning on X. Using that the function
u 7→ u| log(u)| is monotone increasing on (0, e−1) and n ≥ eCn, yields

∣∣∣∣EDn,(X,Y)

[
Y k1{p0

k(X)≤Cn
n }

(
B ∧ log

(p0k(X)

p̂k(X)

))]∣∣∣∣ ≤
Cn

(
log
(

n
Cn

)
+B

)

n
.

2.4. Proofs 43

Corollary 2.4.7. Under the conditions of Lemma 2.4.6 it holds that

−Cn log(n/Cn)

n
≤ EDn,(X,Y)

[
Y k1{p0

k(X)≤Cn
n }

(
B ∧ log

(p0k(X)

p̂k(X)

))]
≤ CnB

n
.

Proof. The lower and upper bound can be obtained from (2.4.2), Y k ≥ 0 and the fact
that u 7→ u log(u) is monotone decreasing on (0, e−1).

Both Lemma 2.4.6 and Corollary 2.4.7 do not require that the random pair (X,Y) is
independent of the data. Specifically, they also hold in the case that (X,Y) = (Xi,Yi)
for some i ∈ {1, · · · , n}.

Proof of Theorem 2.3.5. For ease of notation set

(
B ∧ log

(p0(Xi)

p̂(Xi)

))
≥Cn/n

to denote the vector with coefficients

1{p0
k(Xi)≥Cn

n }

(
B ∧ log

(p0k(Xi)

p̂k(Xi)

))
, k = 1, . . . ,K.

For i.i.d. random pairs (X̃i, Ỹi), i = 1, · · · , n with joint distribution P that are

generated independently of the data sample define D′
n := {(Xi,Yi)i, (X̃i, Ỹi)i}. Then,

for any Cn > 0,

|RB(p0, p̂)−RB,n(p0, p̂)|

=

∣∣∣∣∣ED′
n

[
1

n

n∑

i=1

K∑

k=1

Ỹi,k

(
B ∧ log

(p0k(X̃i)

p̂k(X̃i)

))

− 1

n

n∑

i=1

K∑

k=1

Yi,k

(
B ∧ log

(p0k(Xi)

p̂k(Xi)

))]∣∣∣∣∣
≤ (I) + (II) + (III),

(2.4.3)

where

(I) =

∣∣∣∣∣ED′
n

[
1

n

n∑

i=1

(
Ỹ⊤

i

(
B ∧ log

(p0(X̃i)

p̂(X̃i)

))
≥Cn/n

44 Chapter 2. multiclass classification

−Y⊤
i

(
B ∧ log

(p0(Xi)

p̂(Xi)

))
≥Cn/n

)]∣∣∣∣∣

(II) =

∣∣∣∣∣ED′
n

[
1

n

n∑

i=1

K∑

k=1

Ỹi,k1{p0
k(X̃i)≤Cn

n }

(
B ∧ log

(p0k(X̃i)

p̂k(X̃i)

))]∣∣∣∣∣

(III) =

∣∣∣∣∣ED′
n

[
1

n

n∑

i=1

K∑

k=1

Yi,k1{p0
k(Xi)≤Cn

n }

(
B ∧ log

(p0k(Xi)

p̂k(Xi)

))]∣∣∣∣∣ .

First we bound the terms (II) and (III). Applying Lemma 2.4.6 in total nK times

with (X,Y) = (X̃i, Ỹi), yields

(II) ≤ 1

n

n∑

i=1

K∑

k=1

Cn

(
log
(

n
Cn

)
+B

)

n
=
CnK

(
log
(

n
Cn

)
+B

)

n
, (2.4.4)

while taking (X,Y) = (Xi,Yi) in Lemma 2.4.6 yields

(III) ≤ 1

n

n∑

i=1

K∑

k=1

Cn

(
log
(

n
Cn

)
+B

)
+B)

n
=
CnK

(
log
(

n
Cn

)
+B

)

n
. (2.4.5)

Now we deal with the term (I). Due to the bound B and the indicator function

1{p0
k(Xi)≥Cn

n }

(
B ∧ log

(p0k(Xi)

p̂k(Xi)

))

= 1{p0
k(Xi)≥Cn

n }

(
B ∧ log

(p0k(Xi)

(Cne−B/n) ∨ p̂k(Xi)

))
. (2.4.6)

Given a minimal (internal) δ-covering of log(F) with respect to the pseudometric dτ ,
with τ = log(Cne

−B/n), denote the centers of the balls by pℓ. Then there exists a
random ℓ∗ such that

∥∥∥ log
(Cne

−B

n

)
∨ log(p̂)− log

(Cne
−B

n

)
∨ log(pℓ∗)

∥∥∥
∞

≤ δ.

This together with (2.4.6) and using that Y is one of the K-dimensional standard
basis vectors yields

(I) ≤ ED′
n

[∣∣∣∣∣
1

n

n∑

i=1

Gℓ∗(X̃i, Ỹi,Xi,Yi)

∣∣∣∣∣

]
+ 2δ, (2.4.7)

2.4. Proofs 45

where

Gℓ∗(X̃i, Ỹi,Xi,Yi) :=

Ỹ⊤
i

(
B ∧ log

(p0(X̃i)

pℓ∗(X̃i)

))
≥Cn/n

−Y⊤
i

(
B ∧ log

(p0(Xi)

pℓ∗(Xi)

))
≥Cn/n

. (2.4.8)

For all ℓ ∈ {1, · · · ,Nn} define Gℓ in the same way. Moreover, write

Zi := (X̃i, Ỹi,Xi,Yi).

In a next step, we apply Bernstein’s inequality (Proposition 2.C.1) to (Gℓ(Zi))
n
i=1.

Using that (Xi,Yi) and (X̃i, Ỹi) have the same distribution, we get for the expectation
of Gℓ that

ED′
n
[Gℓ(Zi)] = 0.

To verify the assumptions of Bernstein’s inequality, it remains to prove that

E|Gℓ(Zi)|m ≤ m!(2B)m−2RB(p0,pℓ)32B2−1, ∀m ∈ N≥2, (2.4.9)

such that, in the notation of Proposition 2.C.1, we have vi = RB(p0,pℓ)32B and
U = 2B. To show this moment bound, observe that any real numbers a, b satisfy
|a+ b|m ≤ 2m(|a|m + |b|m). Using moreover that (Xi,Yi) and (X̃i, Ỹi) have the same
distribution, the m-th absolute moment of Gℓ is given by

ED′
n

[
|Gℓ(Zi)|m

]

= ED′
n

[∣∣∣∣∣Ỹ
⊤
i

(
B ∧ log

(
p0(X̃i)

pℓ(X̃i)

))

≥Cn/n

−Y⊤
i

(
B ∧ log

(
p0(Xi)

pℓ(Xi)

))

≥Cn/n

∣∣∣∣∣

m]

≤ 2m+1EDn

[∣∣∣∣∣Y
⊤
i

(
B ∧ log

(
p0(Xi)

pℓ(Xi)

))

≥Cn/n

∣∣∣∣∣

m]
.

Triangle inequality gives

EDn

[∣∣∣∣∣Y
⊤
i

(
B ∧ log

(
p0(Xi)

pℓ(Xi)

))

≥Cn/n

∣∣∣∣∣

m]

≤ EDn

[(
Y⊤

i

∣∣∣∣∣

(
B ∧ log

(
p0(Xi)

pℓ(Xi)

))

≥Cn/n

∣∣∣∣∣

)m]
,

46 Chapter 2. multiclass classification

where for a vector v, |v| denotes the absolute value coefficient-wise. Since Y is one
of the standard basis vectors, it holds that Yk ∈ {0, 1}, and YkYj is equal to 0 when
j ̸= k and equal to Yk when k = j. Using this observation together with conditioning
on Xi yields

EDn

[(
Y⊤

i

∣∣∣∣∣

(
B ∧ log

(
p0(Xi)

pℓ(Xi)

))

≥Cn/n

∣∣∣∣∣

)m]

= EDn

[
Y⊤

i

∣∣∣∣∣

(
B ∧ log

(
p0(Xi)

pℓ(Xi)

))

≥Cn/n

∣∣∣∣∣

m]

= EXi

[
p⊤
0 (Xi)

∣∣∣∣∣

(
B ∧ log

(
p0(Xi)

pℓ(Xi)

))

≥Cn/n

∣∣∣∣∣

m]

≤ EXi

[
p⊤
0 (Xi)

∣∣∣∣B ∧ log

(
p0(Xi)

pℓ(Xi)

)∣∣∣∣
m]

,

where we used for the last inequality that for every set Ω, each A ⊆ Ω, every function
θ : Ω → R and every m ∈ N≥2 it holds that |1Aθ|m = (1A)

m|θ|m = 1A|θ|m ≤ |θ|m.
Combining the previous displays and applying Lemma 2.3.7, we get that

ED′
n
[|Gℓ(Zi)|m]

≤ 2m+1EXi

[
p⊤
0 (Xi)

∣∣∣∣B ∧ log

(
p0(Xi)

pℓ(Xi)

)∣∣∣∣
m]

≤ 2m+1Cm,BEXi

[
p⊤
0 (Xi)

(
B ∧ log

(
p0(Xi)

pℓ(Xi)

))]
= 2m+1Cm,BRB(p0,pℓ),

(2.4.10)
where Cm,B is given by

Cm,B = max

{
m!,

Bm

B − 1

}
.

Since B ≥ 2, we get that B/(B − 1) ≤ 2 and Cm,B ≤ max
{
m!, 2Bm−1

}
≤ 2m!Bm−1.

Together with (2.4.10) this yields

ED′
n
[|Gℓ(Zi)|m] ≤ 2m+1Cm,BRB(p0,pℓ) ≤ m!(2B)m−2RB(p0,pℓ)32B2−1,

completing the proof for the moment bound (2.4.9).

Now define zℓ :=
√
n−168B log(Nn)∨

√
E(X,Y)[Y⊤(B ∧ log(p0(X)/pℓ(X)))]. Since

B ≥ 2, Lemma 2.3.4 guarantees that the truncated Kullback-Leibler risk is always
nonnegative, so zℓ is well defined. Define z∗ = zℓ∗ , that is,

z∗ =

√
68B log(Nn)

n
∨

√√√√EDN ,(X,Y)

[
Y⊤

(
B ∧ log

(
p0(X)

pℓ∗(X)

))∣∣∣∣∣Dn

]
,

2.4. Proofs 47

where we also condition on the dataset Dn. To upper bound z∗, we split the truncated
empirical risk

EDN ,(X,Y)

[
Y⊤
(
B ∧ log

(
p0(X)

pℓ∗(X)

))∣∣∣∣∣Dn

]

= EDN ,(X,Y)

[
K∑

k=1

Yk1{p0
k(X)≤Cn

n }

(
B ∧ log

(
p0k(X)

pℓ∗,k(X)

))∣∣∣∣∣Dn

]

+ EDN ,(X,Y)

[
K∑

k=1

Yk1{p0
k(X)≥Cn

n }

(
B ∧ log

(
p0k(X)

pℓ∗,k(X)

))∣∣∣∣∣Dn

]
.

Using the property of the δ-cover, Equation (2.4.6) and the fact that Y is a standard
basis vector, it holds that

EDN ,(X,Y)

[
K∑

k=1

Yk1{p0
k(X)≥Cn

n }

(
B ∧ log

(
p0k(X)

pℓ∗,k(X)

))∣∣∣∣∣Dn

]

≤ EDN ,(X,Y)

[
K∑

k=1

Yk1{p0
k(X)≥Cn

n }

(
B ∧ log

(
p0k(X)

p̂k(X)

))∣∣∣∣∣Dn

]
+ δ.

On the other hand, applying Corollary 2.4.7, with (X,Y) = (X,Y), K times for p̂
and K times with p̂ replaced by pℓ∗ , yields

EDN ,(X,Y)

[
K∑

k=1

Yk1{p0
k(X)≤Cn

n }

(
B ∧ log

(
p0k(X)

pℓ∗,k(X)

))∣∣∣∣∣Dn

]

≤ EDN ,(X,Y)

[
K∑

k=1

Yk1{p0
k(X)≤Cn

n }

(
B ∧ log

(
p0k(X)

p̂k(X)

))∣∣∣∣∣Dn

]

+
CnK

(
log
(

n
Cn

)
+B

)

n
.

Define

V :=

√√√√EDN ,(X,Y)

[
Y⊤

(
B ∧ log

(
p0(X)

p̂(X)

))∣∣∣∣∣Dn

]
.

Combining the previous inequalities, we get that
√√√√EDN ,(X,Y)

[
Y⊤(B ∧ log

(
p0(X)

pℓ∗(X)

))∣∣∣∣∣Dn

]
≤ V +

√

δ +
CnK

(
log
(

n
Cn

)
+B

)

n
,

48 Chapter 2. multiclass classification

where we also used the elementary inequality
√
a+ b ≤ √

a +
√
b for all a, b ≥ 0.

Hence,

z∗ ≤
√

68B log(Nn)

n
+ V +

√

δ +
CnK

(
log
(

n
Cn

)
+B

)

n
. (2.4.11)

The term
√
n−168B log(Nn) is chosen such that in (2.4.13) and (2.4.14) below the

equations balance out. Now define

T := max
ℓ

∣∣∣∣∣
n∑

i=1

Gℓ(Zi)

zℓ

∣∣∣∣∣ .

The Cauchy-Schwarz inequality gives us that ED′
n
[V T] ≤

√
ED′

n
[V 2]ED′

n
[T 2]. Noticing

that ED′
n
[V 2] = RB(p0, p̂), we get from (2.4.3), (2.4.4), (2.4.5), (2.4.7) and (2.4.11)

that

|RB(p0, p̂)−RB,n(p0, p̂)|

≤ 1

n

√
RB(p0, p̂)

√
ED′

n
[T 2]

+
1

n

(√
68B log(Nn)

n
+

√

δ +
CnK

(
log
(

n
Cn

)
+B

)

n

)
ED′

n
[T]

+ 2δ +
2CnK

(
log
(

n
Cn

)
+B

)

n
.

(2.4.12)

The next step in the proof derives bounds on ED′
n
[T] and ED′

n
[T 2]. Using an union

bound it holds that

P (T ≥ t) = P

(
max

ℓ

∣∣∣∣∣
n∑

i=1

Gℓ(Zi)

zℓ

∣∣∣∣∣ ≥ t

)
= P

(Nn⋃

ℓ=1

(∣∣∣∣∣
n∑

i=1

Gℓ(Zi)

zℓ

∣∣∣∣∣ ≥ t

))

≤
Nn∑

ℓ=1

P

(∣∣∣∣∣
n∑

i=1

Gℓ(Zi)

∣∣∣∣∣ ≥ tzℓ

)
.

We already showed that Gℓ(Zi) satisfies the conditions of Bernstein’s inequality
(Proposition 2.C.1) with vi = RB(p0,pℓ)32B and U = 2B. Bernstein’s inequality

2.4. Proofs 49

applied to the last term gives

P (T ≥ t) ≤
Nn∑

ℓ=1

P

(∣∣∣∣∣
n∑

i=1

Gℓ(Zi)

∣∣∣∣∣ ≥ tzℓ

)

≤
Nn∑

ℓ=1

2 exp

(
− (tzℓ)

2

2nRB(p0,pℓ)32B + 4Btzℓ

)

= 2Nn exp

− t2

2nRB(p0,pℓ)32B
z2
ℓ

+ 4B t
zℓ

 .

Since zℓ ≥
√
RB(p0,pℓ) it holds that z2ℓ ≥ RB(p0,pℓ). As probabilities are in the

interval [0, 1], this gives us that

P (T ≥ t) ≤ 1 ∧ 2Nn exp

(
− t2

64Bn+ 4B t
zℓ

)
.

If t ≥
√
68Bn log(Nn), then since zℓ ≥

√
n−168B log(Nn) it holds that

exp

(
− t2

64Bn+ 4B t
zℓ

)
≤ exp

(
− t
√
log(Nn)√
68Bn

)
.

For every nonnegative random variable X with finite expectation one has E[X] =∫∞
0

P(X ≥ t) dt. Therefore,

ED′
n
[T] ≤

√
68Bn log(Nn) +

∫ ∞
√

68Bn log(Nn)

2Nn exp

(
− t
√
log(Nn)√
68Bn

)
dt

=
√

68Bn log(Nn) +

√
272Bn

log(Nn)
.

(2.4.13)

Since T is nonnegative, P(T 2 ≥ u) = P(T ≥ √
u), so using the same arguments as

before we get that

ED′
n
[T 2] ≤ 68Bn log(Nn) +

∫ ∞

68Bn log(Nn)

2Nn exp

(
−
√
u log(Nn)

68Bn

)
du.

Substitution s =
√
u and integration by parts gives us that (1/2)

∫∞
a
e−

√
ub du =∫∞√

a
se−sb ds = (

√
ab+ 1)e−

√
ab/b2 and consequently

ED′
n
[T 2] ≤ 68Bn log(Nn) + 544Bn, (2.4.14)

50 Chapter 2. multiclass classification

where we also used that Nn ≥ e and thus (log(Nn) + 1)/ log(Nn) ≥ 2.
Combining (2.4.13), (2.4.14) with (2.4.12), using twice that 2xy ≤ x2 + y2 for all

real numbers x, y, and using that log(Nn) ≥ 1, we get that

|RB(p0, p̂)−RB,n(p0, p̂)| ≤
√
RB(p0, p̂)

√
68B log(Nn) + 544B

n
+ 3δ

+
102B log(Nn) + 272B

n
+

3CnK
(
log
(

n
Cn

)
+B

)

n
.

(2.4.15)
Setting a = RB(p0, p̂), b = RB,n(p0, p̂),

c =

√
17B log(Nn) + 134B

n
,

and

d =
102B log(Nn) + 272B + 3CnK

(
log
(

n
Cn

)
+B

)

n
+ 3δ,

we get from (2.4.15) that |a−b| ≤ 2
√
ac+d. Since the excess risk is always nonnegative

we can apply Proposition 2.C.2. This gives us for any 0 < ϵ ≤ 1

RB(p0, p̂) ≤ (1 + ϵ) (RB,n(p0, p̂) + 3δ)

+ (1 + ϵ)

(
102B log(Nn) + 272B + 3CnK

(
log
(

n
Cn

)
+B

)

n

)

+
(1 + ϵ)2

ϵ
· 17B log(Nn) + 136B

n
.

Proposition 2.4.5 gives RB,n(p0, p̂) ≤ infp∈F R(p0,p) + ∆n(p0, p̂). Substituting this
in the previous equation and observing that (1 + ϵ)/ϵ ≥ 2, 1/ϵ ≥ 1 and 0 < 1− ϵ ≤ 1
for ϵ ∈ (0, 1] yields the assertion of the theorem.

51

Appendix Chapter 2

2.A Basic network properties and operations

In this section we state elementary properties of network classes and introduce small
networks that are capable of approximating multiplication operations based on similar
results in [127].

2.A.1 Embedding properties of neural network function classes

This section extends the results in [127] to arbitrary output activation function.
Enlarging: Let m and m′ be two width-vectors of the same length and let s, s′ > 0.

If m ≤ m′ component-wise, mL+1 = m′
L+1 and s ≤ s′, then

Fψ(L,m, s) ⊆ Fψ(L,m′, s′). (2.A.1)

This rule allows us to simplify the neural network architectures. For example we
can simplify a network class by embedding it in a class for which all hidden layers
have the same width.

Composition: Let f ∈ Fid(L,m, s1) and let g be a network in Fψ(L′,m′, s2), with
mL+1 = m′

0. For a vector v ∈ RmL+1 , define the composed network g ◦ σv(f). Then

g ◦ σv(f) ∈ Fψ
(
L+ L′ + 1, (m0, · · · ,mL+1,m

′
1, · · · ,m′

L′+1), s1 + s2 + |v|0
)
. (2.A.2)

The following rule allows us to synchronize the depths of neural networks.
Depth synchronization: For any positive integer a,

Fψ(L,m, s) ⊂ Fψ(L+ a, (m0, · · · ,m0︸ ︷︷ ︸
a times

,m), s+ am0). (2.A.3)

To identify simple neural network architectures, we can combine the depth synchro-
nization and enlarging properties. When there exist c ≥ m0 and b > 0, such that

52 Chapter 2. multiclass classification

s = cL+ b, and L∗ is an upper bound on L, combining the previous two properties
yields

Fψ(L,m, s) ⊂ Fψ(L∗,m′, cL+m0(L
∗ − L) + b) ⊂ Fψ(L∗,m′, cL∗ + b),

where the width vector m′ has length L∗ + 2 and can be chosen as (m0,m
′,m′,

· · · m′,mL+1) with m
′ equal to the largest coefficient of m.

Parallelization: Let m, m′ be two width vectors such that m0 = m′
0 and let

f ∈ Fid(L,m) and g ∈ Fid(L,m
′). Define the parallelized network h as h := (f ,g).

Then
h ∈ Fid(L, (m0,m1 +m′

1, · · · ,mL+1 +m′
L+1). (2.A.4)

Proposition 2.A.1 (Removal of inactive nodes). It holds that

Fψ(L,m, s) = Fψ(L, (m0,m1 ∧ s, · · · ,mL ∧ s,mL+1), s).

For this property, the output function plays no role and the proof in [127] carries
over.

The following equation gives the number of parameters in a fully connected network
in Fψ(L,m):

L∑

j=0

(mj + 1)mj+1 −mL+1. (2.A.5)

This will be used further on as an upper bound on the number of active parameters in
sub-networks.

2.A.2 Scaling numbers

We constraint all neural network parameters to be bounded in absolute value by
one. To build neural networks with large output values we construct small rescaling
networks.

Proposition 2.A.2. For any real number C there exists a network
ScaleC ∈ Fid(⌈log2(|C|)⌉+(⌈log2(|C|)⌉−1), (1, 2, 1, 2, 1, · · · , 1, 2, 1), 4⌈log2(|C|)⌉) such
that ScaleC(x) = C(x)+.

Proof. Set

W0 =

(
1
1

)
, v1 =

(
0
0

)
, and W1 = (1, 1).

The network W1σv1
W0x computes x 7→ 2(x)+. This network has exactly one hidden

layer, one input node, one output node and two nodes in the hidden layer. It

2.B. Neural networks approximating the logarithm 53

uses four nonzero-parameters. Composing ⌈log2(|C|)⌉ of these networks, using the
composition rule (2.A.2), where we take the output layer of one network to be the
input layer of the next one with shift vector zero, yields a network in the right
network class computing x 7→ 2⌈log2(|C|)⌉(x)+. Replacing the last weight matrix by
(C2−⌈log2(|C|)⌉, C2−⌈log2(|C|)⌉) yields the result.

2.A.3 Negative numbers

For negative input, the ReLU activation without shift returns zero. As a result, many
network constructions output zero for negative input. Using that x = σ(x)− σ(−x),
the next result shows existence of a neural network function that extends the original
network function as an even (or odd) function to negative input values.

Proposition 2.A.3. Assume f ∈ Fid(L, (m0,m1, · · · ,mL, 1), s) and f(x) = 0 when-
ever xj ≤ 0 for some index j ∈ {1, · · · ,m0}. Then there exist neural networks

f± ∈ Fid(L, (m0, 2m2, · · · , 2mL, 1), 2s),

such that xj 7→ f+(x) is an even function, xj 7→ f−(x) is an odd function and
f±(x) = f(x) for all x with xj ≥ 0.

Proof. Take two neural networks in the class Fid(L, (m0,m1, · · · ,mL, 1), s) in parallel:
The original network f to deal with the positive part and the second network to deal
with the negative part. This second network can be build from the first network f by
multiplying the j-th column vector of W0 by −1 and multiplying the output of the
network by ±1. The parallelized network computes then f±.

The extension to more than one output is straightforward. Following the same
construction as in the previous section, all that has to be done is multiplying the
corresponding rows of the weight matrix in the output layer of the neural network by
either −1, 1 of 0 depending on how we wish to extend the function. More precisely, if
we have m−

0 ≤ m0 input coefficients xj for which xj ≤ 0 implies f(x) = 0, we can find
neural networks

f± ∈ Fid(L, (m0, 2
m−

0 m2, · · · , 2m
−
0 mL,mL+1), 2

m−
0 s),

such that xj 7→ f+(x) is an even function and xj 7→ f−(x) is an odd function for all of

the m−
0 indices j. This network can be constructed using 2m

−
0 parallel networks.

2.B Neural networks approximating the logarithm

Theorem 2.4.1 assumes M ≥ 2. We use this throughout the proof without further
mentioning.

54 Chapter 2. multiclass classification

2.B.1 Taylor approximation

Set

Tκ
c (x) = log(c) +

κ∑

γ=0

xγ
κ∑

α=γ∨1

(
α

γ

)
c−γ(−1)1−γ

α
=

κ∑

γ=0

xγcγ .

Proposition 2.B.1. For all κ = 0, 1, . . . and every c > 0, we have that

∣∣ log(x)− Tκ
c (x)

∣∣ ≤ 1

κ+ 1

∣∣∣∣
x− c

x ∧ c

∣∣∣∣
κ+1

,

where the sum in Tκ
c is defined as zero if κ = 0. Moreover, if 0 < x ≤ c, we also have

that Tκ
c (x) ≤ log(c).

Proof. We claim that Tκ
c is equal to the k-th order Taylor approximation of the

logarithm. First we show that from this claim the statements of the proposition follow.
The α-th derivative of the logarithm is log(α)(x) = (α − 1)!(−1)α+1x−α. Thus, the
k-th order Taylor approximation of the logarithm around the point c is given by

log(c) +

κ∑

α=1

(x− c)α(−1)α+1

αcα
. (2.B.1)

By the mean value theorem, the remainder is bounded by

1

κ+ 1

∣∣∣∣
x− c

s

∣∣∣∣
κ+1

,

for some s between x and c. Now since the function 1/s on (0,∞) is decreasing, its
maximum is obtained at the left boundary, that is, x ∧ c, which yields the first claim
of the proposition. Now we show that Tκ

c ≤ log(c) whenever 0 < x ≤ c. When κ = 0,
the sum in (2.B.1) disappears and the result follows immediately. When κ ≥ 1, notice
that (x− c) is always negative. Hence the product (x− c)α(−1)α+1 is negative for all
α, so together with the case κ = 0 this yields Tκ

c (x) ≤ log(c), for 0 < x ≤ c.

It remains to prove that Tκ
c is the k-th order Taylor approximation of the logarithm

around the point c. Writing the Taylor approximation as a linear combination of
monomials gives

log(c) +

κ∑

α=1

(x− c)α(−1)α+1

αcα
=

κ∑

γ=0

xγ c̄γ ,

2.B. Neural networks approximating the logarithm 55

for suitable coefficients c̄γ . Using this expression we can obtain the coefficients c̄γ for
γ ≥ 1 by evaluating the derivatives at x = 0 :

dγ

dxγ
log(c) +

κ∑

α=1

(x− c)α(−1)α+1

αcα

∣∣∣∣∣
x=0

= γ!c̄γ .

This gives us that

c̄γ =

κ∑

α=γ

(α− 1)!(−c)α−γ(−1)α+1

γ!(α− γ)!cα
=

κ∑

α=γ

(
α

γ

)
c−γ(−1)1−γ

α
.

For c̄0 we get

c̄0 = log(c) +

κ∑

α=1

(α− 1)!(−c)α(−1)α+1

(α)!cα
= log(c) +

κ∑

α=1

(−1)

α
.

Hence
∑κ

γ x
γ c̄γ =

∑κ
γ x

γcγ = Tκ
c (x), proving the claim.

Next we establish a bound on the sum of the coefficients cγ of Tκ
c in the case c ≤ e.

For γ ≥ 1, we bound cγ by

|cγ | ≤
κ∑

α=γ

(
α

γ

)
(1 ∧ c)−γ

α
≤ (1 ∧ c)−κ

κ∑

α=γ

(
α

γ

)
.

Since also

|c0| ≤ | log(c)|+
κ∑

α=1

1

α
≤ | log(c)|+

κ∑

α=1

(
α

0

)
,

this shows that the sum of the coefficients is bounded by

κ∑

γ=0

|cγ | ≤ | log(c)|+ (1 ∧ c)−κ
κ∑

γ=0

κ∑

α=1∧γ

(
α

γ

)
≤ | log(c)|+ (1 ∧ c)−κ

κ∑

γ=0

κ∑

α=γ

(
α

γ

)
.

The double sum can be rewritten as the sum of all the entries in the rows 0, · · · , κ of
Pascal’s triangle. From the binomial theorem we know that summing over the α-th
row of Pascal’s triangle gives 2α. Combined with | log(c)| ≤ (1 ∧ c)−1 for 0 < c ≤ e,
this gives

κ∑

γ=0

|cγ | ≤ (κ+1)2κ+1(1∧c)−(κ∨1) ≤ (κ+1)2κ+1(1∧c)−κ−1, for all 0 < c ≤ e. (2.B.2)

56 Chapter 2. multiclass classification

Applying the softmax function to an approximation g of the logarithm involves the
exponential function and requires a bound for |eg(x) − x| with x > 0. By the mean
value theorem |eg(x) − elog(x)| = es|g(x)− log(x)| for a suitable s between log(x) and
g(x). The next proposition provides such a bound.

Proposition 2.B.2. For all λ ≥ 1, define

Dλ :=

[
λ⌈β⌉

2⌈β⌉2⌈β⌉⌊β⌋M ,
(λ+ 1)⌈β⌉

2⌈β⌉2⌈β⌉⌊β⌋M

]
.

If [a, b] ⊂ Dλ, then it holds for any x ∈ [a, b] and any ω ≤ log
(

(λ+1)⌈β⌉

2⌈β⌉2⌈β⌉⌊β⌋M

)
, that

eω|T ⌊β⌋
b (x)− log(x)| ≤ 1

M
.

Proof. First notice that on (0,∞) the logarithm is strictly increasing and is infinitely
times continuously differentiable. For real numbers a, b and a positive integer j,
aj−bj = (a−b)∑j

i=1 a
j−ibi−1. Applied to a = λ+1 and b = λ, this gives (λ+1)j−λj ≤

j(λ+ 1)j−1 and thus for x ∈ [a, b] ⊆ Dλ, we get that

|x− b| ≤ b− a ≤ (λ+ 1)⌈β⌉ − λ⌈β⌉

2⌈β⌉2⌈β⌉⌊β⌋M ≤ b
⌈β⌉
λ+ 1

.

Substituting this in the bound from Proposition 2.B.1 and using that x ≥ a gives

|T ⌊β⌋
b (x)− log(x)| ≤ 1

⌈β⌉

∣∣∣∣
⌈β⌉(λ+ 1)⌊β⌋

a2⌈β⌉2⌈β⌉⌊β⌋M

∣∣∣∣
⌈β⌉

.

Since a ∈ Dλ,

|T ⌊β⌋
b (x)− log(x)| ≤ 1

⌈β⌉

∣∣∣∣∣
⌈β⌉(λ+ 1)⌊β⌋

2⌈β⌉2⌈β⌉⌊β⌋M · 2
⌈β⌉2⌈β⌉⌊β⌋M

λ⌈β⌉

∣∣∣∣∣

⌈β⌉

= ⌈β⌉⌊β⌋
∣∣∣∣
(λ+ 1)⌊β⌋)

λ⌈β⌉

∣∣∣∣
⌈β⌉

.

Multiplying both sides with an exponential, noticing that the exponential function
is strictly increasing, and applying the upper bound on ω given in the statement of
the proposition yields

eω|T ⌊β⌋
b (x)− log(x)| ≤ (λ+ 1)⌈β⌉⌈β⌉⌊β⌋

2⌈β⌉2⌈β⌉⌊β⌋M

∣∣∣∣
(λ+ 1)⌊β⌋)

λ⌈β⌉

∣∣∣∣
⌈β⌉

=
1

2⌈β⌉2M

(
λ+ 1

λ

)⌈β⌉2

.

2.B. Neural networks approximating the logarithm 57

Since (λ+ 1)λ−1 is positive and decreasing for λ ≥ 1, we can upper bound the last
display by 1/M .

2.B.2 Partition of unity

So far we have bounded the approximation error on subintervals. As we work with
ReLU functions, indicator functions of intervals are impractical to use, because they
are discontinuous. Instead we create a partition of unity consisting of continuous
piecewise linear functions for an interval that contains the interval [M−1, 1−M−1] .

Define R as the smallest integer sucht that

(R2 + 2⌈β⌉⌈β⌉⌊β⌋/⌈β⌉ − 3
4)

⌈β⌉

2⌈β⌉2⌈β⌉⌊β⌋M ≥ 1− 1

M
.

Rewriting this equation yields

R = ⌈∗⌉2⌈β⌉+1⌈β⌉⌊β⌋/⌈β⌉ (M − 1)
1

⌈β⌉ − 2

(
2⌈β⌉⌈β⌉⌊β⌋/⌈β⌉ − 3

4

)

≤ 2⌈β⌉+1⌈β⌉⌊β⌋/⌈β⌉M 1
⌈β⌉ .

Now we define sequences (ar)r=1,··· ,R and (br)r=1,··· ,R−1 as follows

ar :=
(2⌈β⌉⌈β⌉⌊β⌋/⌈β⌉ + r

2 − 3
4)

⌈β⌉

2⌈β⌉2⌈β⌉⌊β⌋M ,

br :=
(2⌈β⌉⌈β⌉⌊β⌋/⌈β⌉ + r

2 − 1
2)

⌈β⌉

2⌈β⌉2⌈β⌉⌊β⌋M ,

and for ease of notation define b0 = a1 and bR = aR. Notice that [M−1, 1−M−1] ⊆
[a1, aR] ⊆ [M−1, 1 +M−1].

Next we define a family of functions (Fr)r=2,3,··· ,R and (Hr)r=1,2,··· ,R on the
interval [a1, aR]. For r = 2, · · · , R define the function Fr to be zero outside of the
interval [ar−1, ar] and to be a linear interpolation between the value one at the point
br−1 and the value zero at the boundaries of this interval. In the same way define for
r = 2, · · · , R− 1 the function Hr, but with support on the interval [br−1, br] and with
interpolation point ar. Define H1 to be the linear interpolation between the value one
at the point a1 and the value zero at b1 and let it be zero outside this interval. Finally
define HR as the linear interpolation between the value one at the point bR and the
value zero at bR−1 and set it to zero outside of this interval.

58 Chapter 2. multiclass classification

Fr(x)

Hr(x)

1

1
2

0
1
M

x

Figure 2.B.1: The first few functions Fr(x) and Hr(x) when β ∈ (1, 2]. The points ar
are marked with circles, while the points br are denoted by squares.

By construction it holds that

R∑

r=2

Fr(x) +

R∑

r=1

Hr(x) = 1, for all x ∈ [a1, aR].

Figure 2.B.1 gives the first few functions Fr and Hr in the case that β ∈ (1, 2].
We can construct a ReLU network that exactly represents the functions Fr and

Hr. This construction is a modification of the construction of continuous piecewise
linear functions as used in [160]. This modification assures that the parameters are
bounded by one.

Proposition 2.B.3. For each function Fr and Hr their exists a network UFr , UHr ∈
Fid(L,m, s), with L = 3((1 + ⌈β⌉)2 + ⌊log2(M⌈β⌉⌊β⌋)⌋), m = (1, 3, 3, · · · , 3, 1) and
s = 8((1 + ⌈β⌉)2 + log2(M⌈β⌉⌊β⌋)), such that Fr(x) = UFr

(x) and Hr(x) = UHr
(x)

for all x ∈ [a1, aR].

Proof. The functions Fr andHr, r = 2, · · · , R, are piecewise linear functions, consisting
of four pieces each. This means that these function can be perfectly represented as
a linear combination of three ReLU functions. The interpolation points provide the
values of the shift vectors. Writing this out for Fr gives

Fr(x) =
σ(x− ar−1)

br−1 − ar−1
+

(
1

br−1 − ar−1
+

1

ar − br−1

)
σ(x− ar−1) +

σ(x− ar−1)

ar − br−1
.

For Hr, r = 2, · · · , R this can be done in a similar way. For H1 and HR we actually
only need one ReLU function. The networks weights in this construction are greater
than one. The difference between two consecutive points ar and br can be lower

2.B. Neural networks approximating the logarithm 59

bounded by using that for x, y ≥ 0: (x+ y)⌈β⌉ − x⌈β⌉ ≥ y⌈β⌉. Because of

(2⌈β⌉⌈β⌉⌊β⌋/⌈β⌉)⌈β⌉
2⌈β⌉2⌈β⌉⌊β⌋M − (2⌈β⌉⌈β⌉⌊β⌋/⌈β⌉ − 1

4)
⌈β⌉

2⌈β⌉2⌈β⌉⌊β⌋M ≥ (14)
⌈β⌉

2⌈β⌉2⌈β⌉⌊β⌋M ,

we can upper bound all the network weights by

21+2⌈β⌉+⌈β⌉2⌈β⌉⌊β⌋M, (2.B.3)

which is the inverse of the lower bound on the smallest difference between two
consecutive points multiplied by two. Dividing the multiplicative constants by this
bound and combining (2.A.2) the resulting network with the ScaleC(x) network
from Proposition 2.A.2 with C equal to (2.B.3) yields a network with the required
output and parameters bounded by one. The network class is simplified by using the
depth-synchronization (2.A.3) followed by the enlarging property of neural networks
(2.A.1).

The previous partition yields an approximation T β : [a1, aR] → R of the logarithm
on the entire interval [a1, aR] via

T β(x) :=

R∑

r=2

Fr(x)T
⌊β⌋
ar

(x) +

R∑

r=1

Hr(x)T
⌊β⌋
br

(x). (2.B.4)

This function depends on M through the sequence of points ar and br.
We can now derive the same type of error bound as in Lemma 2.B.2 for all x ∈ [0, 1].

For this, define the projection π : [0, 1] → [a1, aR], that maps x ∈ [0, 1] to itself, if it is
already in the interval [a1, aR], and to the closest boundary point otherwise.

Lemma 2.B.4. For all x ∈ [0, 1], we have |eTβ(π(x)) − x| ≤M−1.

Proof. First consider x ∈ (a1, aR]. By construction there exists a unique r∗ ∈
{2, 3, · · · , R} and a unique r̄ ∈ {1, · · · , R} such that x ∈ (ar∗−1, ar∗], and x ∈ (br̄−1, br̄].
By the mean value theorem and (2.B.4),

∣∣∣eTβ(x) − x
∣∣∣ ≤ eξ

∣∣T β(x)− log(x)
∣∣

= eξ

∣∣∣∣∣
R∑

r=2

Fr(x)T
⌊β⌋
ar

(x) +

R∑

r=1

Hr(x)T
⌊β⌋
br

(x)− log(x)(Fr∗(x) +Hr̄(x))

∣∣∣∣∣

≤ Fr∗(x)e
ξ
∣∣∣T ⌊β⌋

ar∗ (x)− log(x)
∣∣∣+Hr̄(x)e

ξ
∣∣∣T ⌊β⌋

br̄
(x)− log(x)

∣∣∣ ,

where ξ is some number between T β(x) and log(x). We now want to apply Proposition
2.B.2. For this we need to find a λ ≥ 1 such that [ar∗−1, ar∗] ∪ [br̄−1, br̄] ∈ Dλ and

60 Chapter 2. multiclass classification

ξ ≤ maxy∈Dλ
log(y), with Dλ as defined by that proposition. Because of our choice of

the sequences of points ar and br,

λ := max
{r∗

2
+ 2⌈β⌉⌈β⌉⌊β⌋/⌈β⌉ − 3

4
,
r̄

2
+ 2⌈β⌉⌈β⌉⌊β⌋/⌈β⌉ − 1

2

}
− 1

satisfies λ ≥ 1, since r∗ ≥ 2 and r̄ ≥ 1. Furthermore this choice of λ guarantees
that [ar∗−1, ar∗] ∪ [br̄−1, br̄] ⊆ Dλ. For the bound on ξ, notice that x ∈ [ar∗−1, ar∗] ∪
[br̄−1, br̄] and that T β(x) = Fr∗(x)T

⌊β⌋
ar∗ (x)+Hr̄(x)T

⌊β⌋
br̄

(x). Combined with the second
statement of Proposition 2.B.1, that is Tκ

c ≤ log(c) for 0 < c ≤ x, and together
with Fr∗(x) +Hr̄(x) = 1, this yields ξ ≤ max{log(ar∗), log(br̄)}. Thus we can apply
Proposition 2.B.2 and obtain

Fr∗(x)e
ξ
∣∣∣T ⌊β⌋

ar∗ (x)− log(x)
∣∣∣+Hr̄(x)e

ξ
∣∣∣T ⌊β⌋

br̄
(x)− log(x)

∣∣∣

≤ Fr∗(x)
1

M
+Hr̄(x)

1

M
=

1

M
,

completing the proof for x ∈ [a1, aR].

When x ∈ [0, a1], notice that 0 < a1 < M−1 and T β(π(x)) = T
⌊β⌋
b1

(a1). Hence

by Proposition 2.B.1 together with b1 = M−1, we get that T β(π(x)) ≤ log(M−1)

proving that both x and eT
β(π(x)) are in [0,M−1]. Thus the conclusion also holds for

x ∈ [0, a1].
For aR ≥ 1, the proof follows from [0, 1] ⊆ ([0, a1] ∪ [a1, aR]). Thus it remains

to study aR < 1. Consider x ∈ [aR, 1]. Using that 1 −M−1 ≤ aR < 1 and that

T β(π(x)) = T
⌊β⌋
bR

(aR) = T
⌊β⌋
aR (aR) yields T

β(π(x)) = log(aR). This gives us that both

x and eT
β(π(x)) are in [aR, 1] ⊂ [1−M−1, 1], which immediately yields the required

bound.

Network Construction

The following result shows how to approximate multiplications with deep ReLU
networks. This is required later to construct neural networks mimicking the Taylor-
approximation T β considered in the previous section.

Lemma 2.B.5 (Lemma A.3. of [127]). For every η ∈ N≥1 and D ∈ N≥1, there
exists a network MultDη ∈ Fid((η + 5)⌈log2(D)⌉, (D, 6D, 6D, · · · , 6D, 1)), such that

MultDη ∈ [0, 1] and

∣∣∣∣∣MultDη (x1, · · · , xD)−
D∏

i=1

xi

∣∣∣∣∣ ≤ 3D2−η, for all (x1, · · · , xD) ∈ [0, 1]D.

2.B. Neural networks approximating the logarithm 61

Moreover MultDη (x) = 0 if one of the coefficients of x is zero.

Remark 2.B.6. Using (2.A.5) the number of parameters in the neural network MultDη
is bounded by ((η + 5)⌈log2(D)⌉+ 1)42D2 ≤ (η + 5)126D2 log2(D).

We now have all the required ingredients to finish the proof of Theorem 2.4.1:

Proof of Theorem 2.4.1. Since a1 = σ(0 · x+ a1), the projection π can be written in
terms of ReLU functions as

π(x) = max
(
a1,min(x, aR)

)
= σ(0 · x+ a1) + σ(x− a1)− σ(x− aR).

For aR ≤ 1, all network parameters are bounded by one and this defines a neural
network in Fid(1, (1, 3, 1), 8). When aR > 1, we replace σ(x − aR) with σ(x − 1) as
we are only interested in input in the interval [0, 1]. Having thus obtained a value
in the interval [a1, aR], we can, for any r ∈ {1, · · · , R}, apply the network UFr from
Proposition 2.B.3 to it. Using depth synchronization (2.A.3) and parallelization (2.A.4),
we can combine the network UFr

with a parallel network that forwards the input
value to obtain a network in the network class Fid(L,m, s), with L = 4

(
(1 + ⌈β⌉)2 +

log2(M⌈β⌉⌊β⌋)
)
, m = (1, 3, 1, 4, · · · , 4, 2) and s = 13

(
(1 + ⌈β⌉)2 + log2(M⌈β⌉⌊β⌋)

)
,

that maps x ∈ [0, 1] to (Fr(π(x)), π(x)). The next step is to construct a network that
approximates Fr(x)T

β
ar
(x). Since ar ∈ [M−1, 1 +M−1], (2.B.2) allows us, for γ =

1, · · · , ⌊β⌋, to use the network Multγ+1
η with input vector (Fr(π(x)), π(x), · · · , π(x))

to compute approximately the function Fr(π(x))π(x)
γ , and multiply its output with

cγ/⌈β⌉2⌊β⌋+1M⌈β⌉. For each γ ∈ {1, · · · , ⌊β⌋} we have a network that approximately
computes the function x 7→ Fr(π(x))π(x)

γcγ/⌈β⌉2⌊β⌋+1M⌈β⌉. We now consider the
network that computes these functions in parallel and combines this with a single
shallow hidden node network to approximately compute Fr(π(x))c0/⌈β⌉2⌊β⌋+1M⌈β⌉.
Making use of parallelization (2.A.4), depth synchronization (2.A.3) and Remark 2.B.6,
this yields a network GFr ∈ Fid(L

∗, (1, 6(⌈β⌉)2, · · · , 6(⌈β⌉)2, 1), s∗), with

L∗ = 4((1 + ⌈β⌉)2 + log2(M⌈β⌉⌊β⌋)) + 2(η + 5) log2(⌈β⌉)
s∗ = 13((1 + ⌈β⌉)2 + log2(M⌈β⌉⌊β⌋)) + (η + 5) log2(⌈β⌉)126(⌈β⌉)3

such that
∣∣∣∣∣∣
GFr (x)− Fr(π(x))

⌊β⌋∑

γ=0

cγ
⌈β⌉2⌊β⌋+1M⌈β⌉π(x)

γ

∣∣∣∣∣∣
≤ 3⌈β⌉2−η.

Due to the normalization constant ⌈β⌉2⌊β⌋+1M⌈β⌉ it holds that GFr
(x) ∈ [−1, 1] when

π(x) is in the support of Fr. If π(x) is outside the support of Fr, then Lemma 2.B.5

62 Chapter 2. multiclass classification

guarantees that GFr
(x) = 0. Similarly for Fr replaced by Hr, we can construct deep

ReLU networks GHr
with the same properties.

Using the R networks GHr
and R− 1 networks GFr

in parallel together with the
observation that each x can be in the support of at most one Fr and one Hr, this
yields a deep ReLU network with output

∑R
r=2GFr (x) +

∑R
r=1GHr (x), such that

∣∣∣∣∣
R∑

r=2

GFr
(x) +

R∑

r=1

GHr
(x)− T β(π(x))

⌈β⌉2⌊β⌋+1M⌈β⌉

∣∣∣∣∣ ≤ 3⌈β⌉2−η+1.

In the next step we compose the network construction with a scaling network. For this
we use the scaling network from Proposition 2.A.2 with constant C = ⌈β⌉2⌊β⌋+1M⌈β⌉.
Since the input can be negative we use two of those networks in parallel as described
in Proposition 2.A.3. This gives us a network

G̃ ∈ Fid

(
L∗ + 4 log2

(
⌈β⌉2⌊β⌋+1M⌈β⌉

)
,m∗, 2Rs∗ + 16 log2

(
⌈β⌉2⌊β⌋+1M⌈β⌉

))
,

where m∗ = (1, 12R(⌈β⌉)2, · · · , 12R(⌈β⌉)2, 1), such that

∣∣∣G̃(x)− T β(π(x))
∣∣∣ ≤ ⌈β⌉2⌊β⌋+2M⌈β⌉3⌈β⌉2−η.

Setting η = ⌈log2(⌈β⌉2⌊β⌋+2M⌈β⌉+13⌈β⌉)⌉, this is upper bounded by M−1. Applying
the triangle inequality, the mean value theorem and Lemma 2.B.4 yields

∣∣∣eG̃(x) − x
∣∣∣ ≤

∣∣∣eG̃(x) − eT
β log(π(x))

∣∣∣+
∣∣∣eTβ log(π(x)) − x

∣∣∣ ≤ e2/M

M
+

1

M
≤ 4

M
, (2.B.5)

where the term e2/M comes from noticing that |G̃(x) − T β log(π(x))| ≤ M−1,
|T β log(π(x))− log(1)| ≤M−1 and triangle inequality.

To derive the lower bound G(x) ≥ log(4/M), we construct a network that computes

the maximum between G̃(x) and log(4/M). Since M ≥ 1 implies
| log(4/M)|/⌈β⌉2⌊β⌋+1M⌈β⌉ ≤ 1, we can achieve this by adding one additional layer
before the scaling. This layer can be written as

σ
(
x− log(4/M)

⌈β⌉2⌊β⌋+1M⌈β⌉

)
+

log(4/M)

⌈β⌉2⌊β⌋+1M⌈β⌉σ(1). (2.B.6)

Applying the scaling as before yields a network G(x) = max{G̃(x), log(4/M)} that is

in the same network class as G̃(x). For the upper bound notice that if G(x) = G̃(x),

2.B. Neural networks approximating the logarithm 63

scale

UF2

scale

UF3

scale

UFR

...

scale

UH1

scale

UH2

scale

UHR−1

...

scale

UHR

Partition

Identity

π(x)

Restriction

x

Input

Identity

F2(π(x))

Mult2η

F2(π(x))π(x)

Mult
bβc
η

F2(π(x))π(x)
bβc

...

GF2

GF3

GFR

GH1

GH2

GHR−1

GHR

...

...

Lower Bound
Enforcement

c0

c1

cγ

cbβc

c

c

c

c

c

c

scale

positive
part

scale

negative
part

+

−

G(x)

Output

+

−

Taylor

G(x)

Figure 2.B.2: The construction of the logarithm approximation network G of Theorem
2.4.1 from subnetworks. The difference between the networks G and G̃ is the single
layer which enforces the lower bound, which is not present in the network G̃.

then the bound follows from (2.B.5). When G(x) = log(4/M), then G̃(x) ≤ log(4/M),
so (2.B.5) implies that x ≤ 8/M. Hence

∣∣∣eG(x) − x
∣∣∣ =

∣∣∣∣
4

M
− x

∣∣∣∣ ≤
4

M
.

The network size as given in the theorem is an upper bound on the network size
obtained here, which is allowed by the depth-synchronization followed by the enlarging
property, and is done in order to simplify the expressions.

Figure 2.B.2 shows the main substructures of the deep ReLU network construction
in this proof.

64 Chapter 2. multiclass classification

2.C Further technicalities

Proposition 2.C.1 (Bernstein’s inequality). For independent random variables
(Zi)

n
i=1 with zero mean and moment bounds E|Zi|m ≤ 1

2m!Um−2vi for m = 2, 3, . . .
and i = 1, . . . , n for some constants U and vi, we have

P

(∣∣∣∣∣
n∑

i=1

Zi

∣∣∣∣∣ > x

)
≤ 2e−

x2

2v+2Ux , for v ≥
n∑

i=1

vi.

This formulation of Bernstein’s inequality is based on the formulation in Lemma
2.2.11 of [148]. The proof can be found in [16].

The next elementary inequality generalizes Lemma 10 of [127].

Lemma 2.C.2. If a, b, c, d are real numbers, a ≥ 0, such that |a − b| ≤ 2
√
ac + d,

then, for each ϵ ∈ (0, 1],

(1− ϵ)(b− d)− (1− ϵ)2

ϵ
c2 ≤ a ≤ (1 + ϵ)(b+ d) +

(1 + ϵ)2

ϵ
c2.

Proof. First notice that |a−b| ≤ 2
√
ac+d if and only if −2

√
ac−d ≤ a−b ≤ 2

√
ac+d.

Using that 2xy ≤ x2 + y2 for all x, y ∈ R, we get for x :=
√
a
√
ϵ/
√
1 + ϵ and

y := c
√
1 + ϵ/

√
ϵ, that

2
√
ac = 2xy ≤ x2 + y2 =

ϵa

1 + ϵ
+

(1 + ϵ)c2

ϵ

and therefore

a− b ≤ ϵa

1 + ϵ
+

(1 + ϵ)c2

ϵ
+ d.

Rearranging the terms yields the upper bound of the lemma. For the lower bound
notice that if ϵ = 1, then the lower bound is zero, and holds since a ≥ 0. For ϵ ∈ (0, 1)
using the same argument but now with x =

√
a
√
ϵ/
√
1− ϵ and y = c

√
1− ϵ/

√
ϵ, gives

a− b ≥ − ϵa

1− ϵ
− (1− ϵ)c2

ϵ
− d.

Rearranging the terms yields the lower bound of the proposition.

The number a is required to be nonnegative as otherwise
√
a would not be a real

number. In the statement in [127] the constants a, b, c, d are all required to be positive.
However since the inequality 2xy ≤ x2+y2 holds for all real numbers x, y the positivity
constraint is not necessary. However, when c and d are negative the term 2

√
ac+ d is

negative, and no pair a, b exists such that the condition is satisfied.

2.C. Further technicalities 65

Recall that dτ (f ,g) := supx∈D maxk=1,··· ,K |(τ ∨ fk(x)) − (τ ∨ gk(x))|. Observe
that dτ (f ,g) = 0 does not imply f = g, which is why dτ is not a metric. The next
lemma shows that this, however, defines a pseudometric.

Lemma 2.C.3. Let f ,g,h : D → RK , then for every τ ∈ R:
(i) dτ (f ,g) ≥ 0
(ii) dτ (f , f) = 0
(iii) dτ (f ,g) = dτ (g, f)
(iv) dτ (f ,g) ≤ dτ (f ,h) + dτ (h,g).

Proof. (i), (ii) and (iii) follow immediately. (iv) follows from applying triangle inequality
to the ∥ · ∥∞ norm,

dτ (f ,g) =
∥∥ max

k=1,··· ,K
|(τ ∨ fk(·))− (τ ∨ gk(·))|

∥∥
∞

≤
∥∥ max

k=1,··· ,K
|(τ ∨ fk(·))− (τ ∨ hk(·))|

∥∥
∞

+
∥∥ max

k=1,··· ,K
|(τ ∨ hk(·))− (τ ∨ gk(·))|

∥∥
∞

= dτ (f ,h) + dτ (h,g).

Lemma 2.C.4. If G is a function class of functions from D to [0,∞)K , then for all
δ > 0 and τ > 0

N
(
δ, log(G), dlog(τ)(·, ·)

)
≤ N

(
δτ,G, dτ (·, ·)

)
.

Proof. Let δ > 0. Denote by (gj)
Nn
j=1 the centers of a minimal internal δτ -covering of G

with respect to dτ and let g ∈ G. By the cover property, there exist a j ∈ {1, · · · ,Nn}
such that dτ (g,gj) ≤ δτ .

The derivative of log(u) is 1/u, so the logarithm is Lipschitz on [τ,∞) with Lipschitz
constant τ−1. Applying this to dlog(τ)(log(g), log(gj)), noticing that
max{log(τ), log(x)} ∈ [log(τ),∞) for x ∈ [0,∞), yields

max
x∈D

max
k=1,··· ,K

|(log(τ) ∨ log(gk(x)))− (log(τ) ∨ log(gj,k(x)))|

≤ τ−1 max
x∈D

max
k=1,··· ,K

|(τ ∨ gk(x))− (τ ∨ gj,k)(x))|

≤ τ−1δτ = δ.

Since g ∈ G was arbitrary, this means that for all g ∈ G there exists a j ∈ {1, · · · ,Nn}
such that dlog(τ)(log(g), log(gj)) ≤ δ. Hence (log(gj))

Nn
j=1 is a δ-cover for log(G) with

66 Chapter 2. multiclass classification

respect to dlog(τ). Since the gj are in G, the log(gj) are in log(G), thus this cover is
an internal cover. Since N (δ, log(G), dlog(τ)(·, ·)) is the minimal number of balls with
center in log(G) required to cover log(G). This proves the assertion.

Proof of Lemma 2.3.7. Let p,q ∈ Sk. Thus,
∑K

k=1 pk = 1,
∑K

k=1 qk = 1 and

K∑

k=1

pk

(
B ∧ log

(
pk
qk

))
=

K∑

k=1

(
pk

(
B ∧ log

(
pk
qk

))
− pk + qk

)
. (2.C.1)

Suppose for the moment that for any k = 1, · · · ,K,

pk

(
B ∧ log

(
pk
qk

))
− pk + qk ≥ 1

Cm,B
pk

∣∣∣∣B ∧ log

(
pk
qk

)∣∣∣∣
m

, (2.C.2)

with Cm,B := max{m!, Bm/(B − 1)}. Applying this inequality to each term on the
right hand side of (2.C.1) gives

K∑

k=1

pk

(
B ∧ log

(
pk
qk

))
≥

K∑

k=1

1

Cm,B
pk

∣∣∣∣B ∧ log

(
pk
qk

)∣∣∣∣
m

.

Since Cm,B > 0, multiplying both sides of the inequality with Cm,B yields the claim.
It remains to proof (2.C.2). First we consider the case that pk = 0. By considering

the limit we get that 0 logm(0) = 0, for m = 1, 2, · · · . Thus the right hand side of
(2.C.2) is equal to 0, while the left hand side is equal to qk. Since qk ≥ 0, this proves
(2.C.2) for this case.

Assume now that pk > 0. Dividing both sides by pk yields

B ∧ log

(
pk
qk

)
− 1 +

qk
pk

≥ 1

Cm,B

∣∣∣∣B ∧ log

(
pk
qk

)∣∣∣∣
m

.

If pk/qk ≥ eB the inequality follows immediately. It remains to study the case
that pk/qk < eB . In this case one can always replace B ∧ log(pk/qk) by log(pk/qk).
Introducing the new variable u = qk/pk and replacing Cm,B by C > 0 gives rise to a
function

HC,m(u) = u− 1− log(u)− | log(u)|m/C.
It remains to show that HCm,B ,m(u) ≥ 0 for all u ≥ e−B . Obviously, HC,m(1) = 0 for
all C, so we only have to consider u ̸= 1. Consider first u > 1 and C = m!. Using the
substitution u = es gives

m!es −m!(s+ 1)− sm.

2.C. Further technicalities 67

Substituting the power series for the exponential function leads to

m!

∞∑

n=0

sn

n!
−m!(1 + s)− sm = m!

m−1∑

n=2

sn

n!
+m!

∞∑

n=m+1

sn

n!
> 0,

where the last strict inequality holds because u > 1 and thus s > 0. Thus Hm!,m(u) ≥ 0
for u > 1.

For u ∈ (e−b, 1), dividing by u− log(u)− 1 gives us the following constraint on the
constant C :

C ≥ sup
u∈(e−B ,1)

| log(u)|m
u− log(u)− 1

. (2.C.3)

This division can be done since u− log(u)− 1 > 0 when u > 0, u ̸= 1 and zero if and
only if u = 1, which for example can be shown by observing the sign of the derivative.

Define C<1 as C<1 := Bm/(B − 1). Since | log(u)|m/(u − log(u) − 1) is strictly
decreasing on (0, 1), see Proposition 2.C.5 (II), it follows for u ∈ [e−B , 1) that
| log(u)|m/(u − log(u) − 1) ≤ Bm/(e−B + B − 1). Now since B > 1, it follows that
Bm/(u + B − 1) is also strictly decreasing on [0, 1]. Hence on [0, e−B] we have
Bm/(e−B +B − 1) ≤ Bm/(u+B − 1) ≤ C<1, thus C<1 satisfies (2.C.3).

Now notice that Cm,B = max{C<1,m!}. Consequently HCm,B ,m(u) ≥ 0, for all
u ≥ e−B , proving (2.C.2).

For all m = 2, 3, . . . define the function Fm : (0,∞) → [0,∞) as

Fm(u) :=
| logm(u)|

u− log(u)− 1
.

Since u − log(u) − 1 ≥ 0, this function indeed takes only positive values. Further-
more since u − log(u) − 1 = 0 only when u = 1 this is the only possible singular-
ity/discontinuity of this function. The next result derives some properties of the
function Fm(u).

Proposition 2.C.5. If m = 2, 3, · · · , then
(i) limu→1 F2(u) = 2 and limu→1 Fm(u) = 0 for m > 2
(ii) Fm(u) is strictly decreasing on (0, 1).

Proof. (i): For u = 1, it holds that (u− log(u)− 1) = 0 and | logm(u)| = 0. Applying
L’Hopital’s rule twice yields the desired result.

(ii): The L’Hopital’s like rule for monotonicity, see [112] or Lemma 2.2 in [4],
states that a function f/g on an interval (a, b), satisfying g′ ≠ 0 and either f(a) =
0 = g(a) or f(b) = 0 = g(b), is strictly increasing/decreasing if f ′/g′ is strictly

68 Chapter 2. multiclass classification

increasing/decreasing on (a, b). For f(u) = | logm(u)| and g(u) = u− log(u)− 1, we
have

f ′(u)
g′(u)

=
m log(u)| logm−2(u)|

u− 1

and for f̄(u) = m log(u)| logm−2(u)| and ḡ(u) = u− 1, we obtain

f̄ ′(u)
ḡ′(u)

=
(m− 1)m| logm−2(u)|

u
.

On u ∈ (0, 1), f̄ ′(u)/ḡ′(u) is strictly decreasing. Applying the L’Hopital’s like rule for
monotonicity twice yields the statement.

Proof of Lemma 2.3.4. The inequality KL2(P,Q) ≤ KLB(P,Q) follows direct from
the definition of the truncated Kullback-Leibler divergence. Write P = P a + P s for
the Lebesgue decomposition of P with respect to Q such that P a ≪ Q. The Lebesgue
decomposition ensures existence of a set A with P a(A) = 0 = P s(Ac). For x ∈ A,
we define dP/dQ(x) := +∞. For the dominating measure µ = (P +Q)/2, denote by
p, pa, ps, q the µ-densities of P, P a, P s, Q, respectively. Since psq = 0,

H2(P,Q) =

∫ (
pa + ps −√

paq
)

≤
∫

0<pa/q≤e2

(
pa −√

paq
)
+

∫

pa/q>e2
pa +

∫
ps.

For every u ∈ R, we have 1−u ≤ e−u and hence eu−1 ≤ ueu. Substituting u = log(
√
y)

yields
√
y − 1 ≤ √

y log(
√
y) and therefore y − √

y ≤ y log(
√
y) = y log(y)/2. With

y = pa/q, we find,

H2(P,Q) ≤
∫

0<pa/q≤e2

pa

2q
log
(pa
q

)
q +

∫

pa/q>e2
pa +

∫
ps.

The other direction works similarly. Second order Taylor expansion around one
gives for y > 0, y log(y) ≤ y − 1 + 1

2 (y − 1)2/(y ∧ 1). For y =
√
x, we find x log(x) =

2
√
x · √x log(√x) ≤ 2(x−√

x) + (1 ∨√
x)(

√
x− 1)2. Consequently, for each B ≥ 0,

KLB(P,Q) =

∫

pa/q≤eB

pa

q
log
(pa
q

)
q +B

∫

dP/dQ>eB
dP

≤ 2eB/2H2(P,Q) + 2

∫

pa/q≤eB
p−√

pq +B

∫

dP/dQ>eB
dP.

2.C. Further technicalities 69

If
∫
pa/q≤eB

pa − √
paq ≤ 0, we can use that H2(P,Q) ≥ 1

2

∫
p/q≥eB

(
√
p − √

q)2 ≥
1
2

∫
p/q≥eB

p(1− e−B/2)2 and hence

KLB(P,Q) ≤ 2
(
eB/2 + (1− e−B/2)−2

)
H2(P,Q).

Otherwise, if
∫
pa/q≤eB

pa −√
paq > 0, we can upper bound

KLB(P,Q) ≤ 2eB/2H2(P,Q) +B(1− e−B/2)−1

∫

pa/q≤eB
p−√

pq

+B

∫

dP/dQ>eB
dP

≤ 2eB/2H2(P,Q) +B(1− e−B/2)−1

∫
p−√

pq

=
(
2eB/2 +B(1− e−B/2)−1

)
H2(P,Q).

The result now follows by observing that since B ≥ 2, both B(1 − e−B/2)−1 and
2(1− e−B/2)−2 are less than 2eB/2.

Proposition 2.C.6. Recall that Φ denotes the softmax function. The function
log(Φ(·)) : RK → RK satisfies | log(Φ(x))− log(Φ(y))|∞ ≤ K∥x− y∥∞.

Proof. Consider the composition of the logarithm with the softmax function, that is,

(
log

(
ex1

∑K
j=1 e

xj

)
, · · · , log

(
exK

∑K
j=1 e

xj

))
.

It holds for k, i ∈ {1, · · · ,K}, i ̸= k that

∂

∂xk
log

(
exk

∑K
j=1 e

xj

)
= 1− exk

∑K
j=1 e

xj

,

∂

∂xk
log

(
exi

∑K
j=1 e

xj

)
= − exk

∑K
j=1 e

xj

.

The partial derivatives are bounded in absolute value by one. The combined log-
softmax function is therefore Lipschitz continuous (w.r.t to ∥ · ∥∞ norm for vectors)
with Lipschitz constant bounded by K.

70 Chapter 2. multiclass classification

Proof of Lemma 2.3.8. We start proving the first bound. Notice that g ∈ log(FΦ(L,m, s))
means that there exists a ReLU network fg ∈ Fid(L,m, s) such that g(x) = log(Φ(fg(x))).
By Lemma 5 of [127] it holds that N (δ/(2K),Fid(L,m, s), ∥·∥∞) ≤ (4δ−1K(L+1)V 2).
Let δ > 0. Denote by (fj)

Nn
j=1 the centers of a minimal δ/(2K)-covering of Fid(L,m, s)

with respect to ∥ · ∥∞. Triangle inequality gives that for each fj there exists a

f̂j ∈ Fid(L,m, s) such that (f̂j)
Nn
j=1 is an interior δ/K-cover of Fid(L,m, s). Let

g ∈ log(FΦ(L,m, s)). By the cover property, there exists a j ∈ {1, · · · ,Nn} such that

∥fg − f̂j∥ ≤ δ/K. Proposition 2.C.6 yields:

∥g − log(Φ(f̂j))∥∞ = ∥ log(Φ(fg))− log(Φ(f̂j))∥∞ ≤ K∥fg − f̂j∥∞ ≤ δ.

Since g ∈ log(FΦ(L,m, s)) was arbitrary and f̂j ∈ Fid(L,m, s) for j = 1, · · · ,Nn,

this means that (log(Φ(f̂j)) is an internal δ-cover for log(FΦ(L,m, s)) with respect to
∥ · ∥∞. Hence

N (δ, log(FΦ(L,m, s)), ∥ · ∥∞) ≤ N (δ/(2K),Fid(L,m, s), ∥ · ∥∞)

≤ (4δ−1K(L+ 1)V 2).

Now we consider the second bound of the lemma. Using that m0 = d, mL+1 = K and
by removing inactive nodes, Proposition 2.A.1, we get that mℓ ≤ s for s = 1, · · · , L,
and thus

V ≤ dKsL2L+2.

Substituting this in the first bound and taking the logarithm yields the result.

Proposition 2.C.7. Consider binary classification (K = 2) for the conditional class
probabilities p1(x) = (3|x1 + x2 − 1|8)/4 and p2(x) = 1 − p1(x). If X is uniformly
distributed on [0, 1]2, then

PX (p1(X) ≤ t) = 2

(
4t

3

) 1
8

−
(
4t

3

) 1
4

.

If the distribution of X is given by the density (x1, x2) 7→ 3|x1 + x2 − 1|, then

PX (p1(X) ≤ t) = 3

(
4t

3

) 1
4

− 2

(
4t

3

) 3
8

.

Proof. By rewriting the inequality p1(X) ≤ t, we get for both cases that

PX (p1(X) ≤ t) = PX

(
(3|x1 + x2 − 1|8)/4 ≤ t

)

2.C. Further technicalities 71

= PX

(
1−

(
4t

3

) 1
8

≤ x1 + x2 ≤ 1 +

(
4t

3

) 1
8

)
.

First we consider the case of uniform design. In this case, we find

PX

(
1−

(
4t

3

) 1
8

≤ x1 + x2 ≤ 1 +

(
4t

3

) 1
8

)

=

∫ 1

0

∫ 1+(4t
3)

1
8 −x2

1−(4t
3)

1
8 −x2

1dx1dx2 −
∫ (4t

3)
1
8

0

∫ 1+(4t
3)

1
8 −x2

1

1dx1dx2

−
∫ 1

1−(4t
3)

1
8

∫ 0

1−(4t
3)

1
8 −x2

1dx1dx2

= 2

(
4t

3

) 1
8

− 1

2

(
4t

3

) 1
4

− 1

2

(
4t

3

) 1
4

.

Here, the second and third double integral are correction terms that compensate for
the regions where the first double integral integrates over values outside [0, 1]2.

To prove the second part of the statement, consider the case that the distribution
of X is given by the density (x1, x2) 7→ 3|x1 + x2 − 1|. In this case we have that

PX

(
1−

(
4t

3

) 1
8

≤ x1 + x2 ≤ 1 +

(
4t

3

) 1
8

)

=

∫ 1

0

∫ 1+(4t
3)

1
8 −x2

1−(4t
3)

1
8 −x2

3|x1 + x2 − 1|dx1dx2

−
∫ (4t

3)
1
8

0

∫ 1+(4t
3)

1
8 −x2

1

3|x1 + x2 − 1|dx1dx2

−
∫ 1

1−(4t
3)

1
8

∫ 0

1−(4t
3)

1
8 −x2

3|x1 + x2 − 1|dx1dx2

=

∫ 1

0

∫ 1−x2

1−(4t
3)

1
8 −x2

3(−x1 − x2 + 1)dx1dx2

+

∫ 1

0

∫ 1+(4t
3)

1
8 −x2

1−x2

3(x1 + x2 − 1)dx1dx2

−
∫ (4t

3)
1
8

0

∫ 1+(4t
3)

1
8 −x2

1

3(x1 + x2 − 1)dx1dx2

72 Chapter 2. multiclass classification

−
∫ 1

1−(4t
3)

1
8

∫ 0

1−(4t
3)

1
8 −x2

3(−x1 − x2 + 1)dx1dx2

=
3

2

(
4t

3

) 1
4

+
3

2

(
4t

3

) 1
4

−
(
4t

3

) 3
8

−
(
4t

3

) 3
8

.

Again, the correction terms occur because we integrate over values outside [0, 1]2.

Acknowledgments

We thank the two referees and the editor of the Electronic Journal of Statistics for
many helpful suggestions.

