
Risk bounds for deep learning
Bos, J.M.

Citation
Bos, J. M. (2024, June 19). Risk bounds for deep learning. Retrieved from
https://hdl.handle.net/1887/3763887

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3763887

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3763887

1

Chapter 1

Introduction

Deep learning is, broadly speaking, the training of artificial neural networks on
data for prediction tasks. It became popular in the 2010s after achieving hugely
improved performance on benchmark datasets used in machine-learning competitions
[60, 80, 51, 126]. This was the start of a revolution. Within a few years, deep neural
networks achieved (super)human level performance in visual object recognition and
speech recognition tasks [126, 30, 58, 3]. By now, deep learning is also successfully
used in various other applications.

In this thesis, we approach deep learning from the statistical viewpoint: what can
be said about the expected error if we view deep learning as a statistical estimation
method. This perspective connects machine learning and statistics.

The introduction is structured as follows. The statistical background is introduced
in Section 1.1. Section 1.2 provides an overview of deep learning. Sections 1.3, 1.4
and 1.5 briefly introduce the subjects of each of the later chapters.

1.1 Statistical background

Deep learning gained momentum by providing state-of-the-art procedures for supervised
learning tasks, where one observes data-pairs (Xi,Yi), with Xi an input vector and
Yi the corresponding output. This setting is called supervised because the output Yi

is already provided (as if by a teacher), contrary to unsupervised learning where the
algorithm is fed with unlabeled data. Regression and classification are the two main
sub-classes of supervised learning. In classification, the goal is to predict the class a
new data point belongs to. Examples include spam detection and image recognition.
For instance, in the latter case, the data-pairs could consist of images of different types

2 Chapter 1. Introduction

of animals (the input) and their corresponding labels ‘dog’, ‘cat’, etc (the output). For
a new image, the neural network must predict which category this image belongs to.

In regression, the output is a real-valued response. For example, predicting income
based on years of education. Various (nonparametric) methods have been developed
for regression problems. Many of them are also theoretically well-understood. First,
we will give a concise introduction of nonparametric statistics, mostly restricting
ourselves to regression. Classification will be treated in Section 1.3. After introducing
nonparametric methods, we will describe the decision theoretic concepts of loss, risk,
and convergence rates. This is followed by sections on empirical risk minimization and
the challenges arising in high-dimensional input-spaces.

0.0 0.2 0.4 0.6 0.8 1.0
X

0

2

4

6

8

10

Y

(a) Linear

0.0 0.2 0.4 0.6 0.8 1.0
X

0

2

4

6

8

10

Y

(b) Non-linear

Figure 1.1: Plots of the samples (blue), linear least squares estimator (red) and the
true regression function (black) of a linear and a non-linear model.

1.1.1 Nonparametric statistics

In statistics, recurring questions are: what does one already know about the distribu-
tion of the data or what can one reasonably assume about it? This is of particular
importance for complex statistical models. Below, we illustrate this using the nonpara-
metric regression model, as this is a widely accepted framework to study supervised
learning.

Example 1.1.1 (Regression). In the (multivariate) regression model we observe n
random pairs (X1, Y1), (X2, Y2), . . . , (Xn, Yn) satisfying

Yi = f0(Xi) + ϵi.

1.1. Statistical background 3

Here the ϵi are noise variables and f0 is an unknown deterministic function. Models of
this form are also called signal plus noise models. The regression problem is to infer
f0 from the data. It is common to assume that the noise variables ϵi are independent
and this assumption will be used throughout this chapter.

The available prior information plays a crucial role. For instance, suspecting that
the regression function f0 is linear, all that remains is to estimate the parameters of
the linear function. In Figure 1.1a, data from a linear regression problem are plotted
in blue and the parametric linear least squares estimator is displayed in red. Linear
regression is an example of a parametric model. Parametric models are statistical
models that depend only on a finite number of parameters. See for example [152, 119]
for an introduction and overview of parametric methods. However, often far less is
known about the underlying model. For instance, it is clear that the (blue) data-sample
in Figure 1.1b was not generated from a linear regression function. The estimate of
the (red) linear least squares estimator does not reflect the data. It is, however, not
immediately clear which parametric family of functions would be a better candidate. In
cases like this, a method is required that assumes less about the structure of the data.
In nonparametric statistics, problems are studied that do not satisfy a parametric
model. Instead, one considers problems that are too big to be parametrized by a finite
number of parameters. For instance, in the regression problem, Example 1.1.1, we can
assume that the function f0 is in the class of all continuous functions. This class is so
large that it is impossible to represent it by a finite basis expansion.

There exist many different nonparametric regression estimation methods. Here
we provide two examples: the Nadaraya-Watson estimator, Example 1.1.2, and the
Fourier-series estimator, Example 1.1.3.

Example 1.1.2 (Nadaraya-Watson estimator). A kernel in d-dimensions is a function
K : Rd → R such that

∫
Rd K(u) du = 1. Some standard kernels in one dimension are

displayed in Figure 1.2.
The Nadaraya-Watson estimator fNW with kernel K and bandwidth h > 0 is given

by

f̂NW (x) :=

n∑

i=1

Yi
K
(

1
h

(
Xi − x

))

∑n
j=1K

(
1
h

(
Xj − x

)) ,

when
∑n

j=1K
(

Xj−x
h

)
̸= 0 and fNW (x) = 0 otherwise.

The Nadaraya-Watson estimator was first proposed in 1964 by Nadaraya [100]
and Watson [154]. The estimate in a point x is determined by a weighted average of
the output variables Yi. The weight assigned to each sample is determined by the
chosen kernel K and the bandwidth h. The role of the bandwidth h in tuning the

4 Chapter 1. Introduction

−1.5 −1 −0.5 0.5 1 1.5

0.5

1

X

Y

(a) Rectangular kernel

−1.5 −1 −0.5 0.5 1 1.5

0.5

1

X

Y

(b) Triangular kernel

−1.5 −1 −0.5 0.5 1 1.5

0.5

1

X

Y

(c) Epanechnikov kernel

Figure 1.2: Three examples of standard kernels in one dimension.

estimator will be discussed in Section 1.1.3. In Figure 1.3 the (red) Nadaraya-Watson
estimator with the rectangular kernel is shown on the linear and non-linear regression
dataset from before. Compared to the linear least squares estimator in Figure 1.1, this
estimator provides a reasonable estimate for both problems.

0.0 0.2 0.4 0.6 0.8 1.0
X

0

2

4

6

8

10

Y

(a) Linear

0.0 0.2 0.4 0.6 0.8 1.0
X

0

2

4

6

8

10
Y

(b) Non-linear

Figure 1.3: Plots of the samples (blue), Nadaraya-Watson estimator (red) and the
true regression function (black) of a linear and a non-linear model.

Example 1.1.3 (Fourier-series estimator). Consider the problem of estimating a
function in the function space L2[0, 1]: the space of square integrable functions on the
interval [0, 1]. The Fourier basis in L2[0, 1] is given by

ψ1(x) := 1,

ψ2k(x) :=
√
2 cos(2kπx),

ψ2k+1(x) :=
√
2 sin(2kπx),

1.1. Statistical background 5

for k = 1, 2, In other words, for every function f ∈ L2[0, 1], there exist coefficients
(cj)

∞
j=1 such that f can be written as f(x) =

∑∞
j=1 cjψj . The first four Fourier basis

functions are plotted in Figure 1.4.
The Fourier-series estimator of level N and with threshold τ is given by

f̂F (x) :=

N∑

j=1

ĉjψj(x)1
(
|ĉj | ≥ τ

)
,

where ĉj := n−1
∑n

i=1 Yiψj(Xi) is the empirical Fourier coefficient. Here 1(·) denotes
the indicator function, returning one when |ĉj | ≥ τ and zero otherwise.

0.25 0.5 0.75 1

−1.5

−1

−0.5

0.5

1

1.5

X

Y

(a) ψ1

0.25 0.5 0.75 1

−1.5

−1

−0.5

0.5

1

1.5

X

Y

(b) ψ2

0.25 0.5 0.75 1

−1.5

−1

−0.5

0.5

1

1.5

X

Y

(c) ψ3

0.25 0.5 0.75 1

−1.5

−1

−0.5

0.5

1

1.5

X

Y

(d) ψ4

Figure 1.4: The first four Fourier basis functions

The Fourier-series estimator is an example of a projection estimator (also known as
orthogonal series estimator), [153, 146, 44], as it projects on the space spanned by the
first N basis elements and then estimates the coefficients of these N elements. The
choice of the (orthogonal) basis determines how one can interpret an orthogonal series
estimator. In the case of the Fourier-series estimator, the basis functions represent
frequencies. In Figure 1.5 the (red) Fourier-series estimator is shown on the linear
and non-linear regression dataset from before. The waveform of the sine and cosine
functions used in the Fourier-basis can be seen back in the estimated function.

For a further introduction and overview of nonparametric estimation methods see
for example [153, 146, 54].

1.1.2 Loss, risk and minimax rates

An important aspect of statistical estimation theory is to provide a quantification of
how ‘good’ an estimator is. Consider for instance the regression problem, Example
1.1.1; Given an estimator f̂ , how far away is it from the true regression function f0?
The first step is to choose a loss function for measuring the estimation error.

6 Chapter 1. Introduction

0.0 0.2 0.4 0.6 0.8 1.0
X

0

2

4

6

8

10

Y

(a) Linear

0.0 0.2 0.4 0.6 0.8 1.0
X

0

2

4

6

8

10

Y

(b) Non-linear

Figure 1.5: Plots of the samples (blue), Fourier-series estimator (red) and the true
regression function (black) of a linear and a non-linear model.

Definition 1.1.4 (Loss-function). Let G represent the class containing the quantity
to be estimated. Denote by F the class in which the estimator takes its values. A loss
function ℓ assigns a non-negative number to any combination of g ∈ G and f ∈ F and
returns zero if f = g.

For nonparametric regression, an example is the squared pointwise loss: ℓ(f̂ , f0) =(
f̂(x)− f0(x)

)2
with x a given point. This loss is derived from the log-likelihood of

the regression model with Gaussian noise. In classification, the goal is to predict a
label y. A common choice for this task is the zero-one loss ℓ(f̂ , y) = 1(f̂ ̸= y). This
loss returns zero if the predicted label is correct and one otherwise.

To evaluate the performance of an estimator we consider the expected average loss
over all possible realizations of the data.

Definition 1.1.5 (Risk). The risk of an estimator f̂ with respect to the loss function ℓ

is given by R(f̂ , g) := Eg

[
ℓ
(
f̂ , g
)]
. Here the expectation Eg is over the data distribution

with parameter g.

In general the data distribution may also depend on other parameters besides g.

To compare estimators, we look at their worst-case risk over all possible parameters
g. In other words, we are interested in supg∈G R(f̂ , g), where G denotes the class
containing the quantity to be estimated. The (worst-case) risk cannot be computed
exactly in most cases. Instead, one relies on upper bounds. For a sensible estimator,

1.1. Statistical background 7

this upper bound should converge to zero as the sample size n increases. The rate at
which the upper bound decreases is called the convergence rate.

Ideally, the worst-case risk should decrease to zero as fast as possible, but how
fast can this possibly happen? The answer to this question depends on the imposed
assumptions. For instance, for the parametric linear regression problem a faster rate of
convergence can be reached, than for a nonparametric regression problem that involves
all differentiable functions. It can be shown that without assumptions, the worst-case
risk in the nonparametric regression model is lower bounded by some constant no
matter how much data is available, see for example Theorem 3.1 of [54] or Section 7
of [38].

For many classes it is possible to prove lower bounds on the rate of conver-
gence of the worst-case risk of any estimator. In other words, it can be shown that
inf f̃ supg∈G R(f̃ , g) cannot tend to zero faster than a certain rate. For an introduction

to lower bounds, see for example [146]. Lower bounds for standard nonparametric
regression settings were proven in [138].

If the rate of the lower bound matches the convergence rate of some estimator for
this estimation problem, then the rate is called minimax (rate) optimal.

The main focus in this thesis are convergence rates for worst-case upper bounds in
high-dimensional input settings related to deep learning. The empirical counterpart of
the risk plays a crucial role in establishing these bounds.

1.1.3 Empirical risk minimization

The chosen risk determines the quality of the estimator and a ‘good’ estimator will
have small risk. However, direct minimization of the risk is impossible; Computing
the expected value in the definition of the risk requires knowledge of the underlying
unknown data-distribution. To overcome this, one can replace the expectation by an
average.

Definition 1.1.6 (Empirical risk). The empirical risk of an estimator f̂ with respect

to the loss function ℓ is given by Rn(f̂) := 1
n

∑n
i=1 ℓ

(
f̂(Xi), Yi

)
. In other words,

the empirical risk is the average loss over all data-pairs (Xi, Yi) in the dataset. An

empirical risk minimizer with respect to the class F is any estimator f̂ satisfying
f̂ ∈ argminf∈F Rn(f).

The hope is that minimizing the empirical risk results in an estimator with low
risk. In other words, it leads to a procedure that generalizes well to unseen samples.
Plenty of theory has been developed showing that this is indeed true if the estimator
class is not too large or too small, see for example [148, 150]. If the estimator class
is too large, then too much of the noise gets incorporated into the estimator. In the

8 Chapter 1. Introduction

extreme case, the estimator interpolates the data points. In this instance the empirical
risk is zero, but depending on the loss function, the risk may be arbitrarily large. The
estimator class in empirical risk minimization should also be not too small. Otherwise,
the best function in the class could still be far away from the true function. The error
that arises from this difference is known as the approximation error, while the error
that comes from the vulnerability of the estimator to noise is called the stochastic
error. A major challenge of empirical risk minimization is to choose function classes
that balance approximation and stochastic error.

Both the Nadaraya-Watson estimator, Example 1.1.2, and the Fourier-series es-
timator, Example 1.1.3, can be derived as variants of empirical risk minimizers for
different estimator classes. The linear least squares estimator for linear regression, used
in Figure 1.1, is a parametric example of an empirical risk minimizer. It minimizes
the empirical risk for the squared loss ℓ(f̂(x), y) = (f̂(x) − y)2 over the class of all
linear functions.

The Nadaraya-Watson estimator f̂NW , with nonnegative kernel K is a minimizer
of a localized version of the empirical risk,

f̂NW (x) = argmin
θ∈R

n∑

i=1

(Yi − θ)2K

(
1

h

(
Xi − x

))
. (1.1.1)

The family of local polynomial estimators can be obtained by replacing θ in (1.1.1) by
a polynomial, see for example [146, 153, 93, 54]. The Nadaraya-Watson estimator is
therefore a specific local polynomial estimator. For kernel estimators, the bandwidth
parameter h controls the trade-off between the approximation and stochastic error.
Larger h means that the neighborhood that is included in the kernel increases. This
leads to a smoother estimate with a smaller stochastic error, but with a larger
approximation error. On the other hand, a smaller hmeans that a smaller neighborhood
is considered by the kernel. This results in a less smooth estimate with smaller
approximation error, but a larger stochastic error. In Figure 1.6 the Nadaraya-Watson
estimator for large and small bandwidth is plotted, using the same kernel and dataset
as in Figure 1.3b.

Now consider the Fourier-series estimator f̂F (x) of level N with threshold τ as
defined in Example 1.1.3. The linear combinations of the first N Fourier-basis functions
form the class

FN :=

{
N∑

j=1

cjψj , cj ∈ R for j = 1, 2, . . . , N

}
.

Using this class, the Fourier-series estimator can be rewritten as

f̂F (x) = argmin
f∈FN

1

n

n∑

i=1

(
f(Xi)− Yi

)2
+
λτ
n

pen(f), (1.1.2)

1.1. Statistical background 9

0.0 0.2 0.4 0.6 0.8 1.0
X

0

2

4

6

8

10

Y

(a) Large bandwidth

0.0 0.2 0.4 0.6 0.8 1.0
X

0

2

4

6

8

10

Y

(b) Small bandwidth

Figure 1.6: Plots of the samples (blue), Nadaraya-Watson estimator (red) with a large
bandwidth h on the left and a small bandwidth h on the right.

where the penalty pen(f) counts the number of non-zero coefficients cj of f and the
parameter λτ depends on the value of the threshold τ. This estimator thus minimizes
a penalized/regularized version of the empirical risk. The number of terms considered
in the series estimator N and the threshold τ control the approximation and stochastic
error. Including more terms, thus increasing N and decreasing τ , leads to a smaller
approximation error and a larger stochastic error. Including less terms decreases the
stochastic error and increases the approximation error.

1.1.4 Curse of dimensionality

Nonparametric methods work well for low-dimensional input problems. However, in
higher dimensions their performance degrades. The (input) dimension d appears in
the minimax rate of many nonparametric problems in the power of n. For example,
the minimax rate for the squared loss for estimating a β times differentiable function
is of order n−2β/(2β+d), [137, 138, 54, 44]. As d grows, this rate gets slower. The
reason for this is that in higher dimensions one needs (many) more data-points before
every local neighborhood contains at least one observation. To see this, consider the
problem of placing points in the space [0, 1]d such that everywhere in [0, 1]d one is
at most 1/4 in the maximum-norm distance away from one of these points. This is
depicted in Figure 1.7. One needs 2 = 21 points in one dimension, 4 = 22 points in
two dimensions and 8 = 23 points in three dimensions. In general, one needs 2d points
in dimension d, an exponential growth in the dimension.

10 Chapter 1. Introduction

0 0.25 0.5 0.75 1

(a) Dimension 1

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

(b) Dimension 2

0
0.25 0.5

0.75 1 0
0.25

0.5
0.75

1

0

0.25

0.5

0.75

1

(c) Dimension 3

Figure 1.7: Required number of points to cover the cube [0, 1]d with maximum norm
balls of radius 1/4.

In contrast, the dimension d appears in the minimax rate for parametric problems
only as a multiplicative constant. For example, for linear regression the minimax
rate for the squared loss is d/n, [63, 98, 144]. The strong structural assumptions in
parametric models reduce the intrinsic dimension of the problem. This is related to the
main idea behind approaches to tackle the curse of dimensionality in nonparametric
regression: Introduce additional assumptions on the structure such that the intrinsic
dimension of the function class becomes smaller. An example are generalized additive
models, [56], assuming that the multivariate function can be written as a linear
combination of univariate functions. Methods that make use of this structure are
able to achieve the dimensionless rate n−2β/(2β+1) for β times differentiable functions
instead of n−2β/(2β+d), see for example [139] or Section 22 of [54]. The possibility that
deep neural networks are able to circumvent the curse of dimensionality is one of the
motivations for the statistical analysis of deep learning.

1.2 Deep learning

Around 1960, the first trainable artificial neural networks were developed: The
perceptron of Rosenblatt [121, 122] has zero-one output, and the adaptive linear
element (ADALINE) [156] is a linear model trained with (a version of) gradient
descent. Both the perceptron and ADALINE existed as dedicated physical machines,
in contrast to modern neural networks which are software implementations.

In essence, these first neural networks consisted of one single trainable neuron.
More neurons and layers were proposed [121, 122, 156], but in those setups only the
parameters of the last neuron were changed during training. The other parameters

1.2. Deep learning 11

were kept fixed [121, 150]. This means that, from a statistical point of view, all these
early neural networks are parametric methods.

In Figure 1.8 a neural network with a single neuron is shown. This neural network
multiplies each input coefficient xi with a weight Wi. It then takes the sum over all
these weighted inputs and adds the shift v to this sum. Finally, the activation function
σ is applied in the single neuron. The trainable parameters in this neural network are
the weights Wi and the shift v. This simple neural network already can be used for
various tasks by choosing a suitable activation function σ. The original perceptron used
the heaviside function σ(x) = 1(x ≥ 0), Figure 1.9a. With this activation function
the neural network can be used for binary classification, e.g., for answering yes or no
questions. When, as in ADALINE, σ is the identity function, Figure 1.9c, this neural
network does linear regression. Taking σ as the logistic function σ(x) = 1/(1 + e−x),
Figure 1.9b, results in a neural network that does logistic regression, estimating the
probability of an event. Sigmoid activation functions, such as the logistic function,
can be considered as smooth alternatives for the heaviside function. These activation
functions became the standard in the late eighties.

σ
(
v +

∑
(· · ·)

)

Ŷ

X1 X2 XdInput

Neuron

Output

W1 W2 Wd

Figure 1.8: A neural network with one single neuron.

Modern deep neural networks consist of multiple neurons ordered in layers. A
neural network consists of an input layer, several hidden layers, and an output layer.
The number of hidden layers is also called the depth of the neural network, and the
‘deep’ in deep learning refers to neural networks with multiple layers. In Figure 1.10
an example of a deep neural network is given. This example has d inputs, three
hidden layers with four neurons each, and a single neuron as its output. Such a
neural network is called a fully connected feedforward network: fully connected since

12 Chapter 1. Introduction

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

X

Y

(a) Heaviside

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

X

Y

(b) Logistic

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

X

Y

(c) Linear

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

X

Y

(d) Rectified Linear
Unit (ReLU)

Figure 1.9: Examples of activation functions

every node in a layer is connected to all nodes in the previous and the next layer,
feedforward because all connections go forward to the next layer. In fully connected
feedforward networks, all hidden units generally have the same activation function
σ. Nowadays, the most common choice is the rectified linear unit (ReLU) activation
function, Figure 1.9d. This is the activation function used in the hidden layers of the
neural networks considered in Chapters 2 and 3. Depending on the learning task, the
output may use different activation functions. The linear activation function is used
for regression/function estimation problems. Chapter 3 considers neural networks
with this function in the output layer. For estimating a binary probability the logistic
function is the standard choice for the activation function of the output neuron.
Chapter 2 deals with estimating vectors of probabilities. For this task a multivariate
version of the logistic function, the softmax function, is used as output activation
function.

Around 1990 it was shown that shallow neural networks, neural networks with one
hidden layer, have the so-called universal approximation property: If the number of
neurons in the hidden layer is allowed to become arbitrarily large, then shallow neural
networks are able to approximate any continuous function arbitrarily well, [34, 61, 46].
Multi-neuron networks are thus able to approximate large function classes if the neural
network size, and thus the number of parameters, grows as a function of the data.
This means that multi-neuron networks can be considered as nonparametric methods.

In the nineties it was proven that shallow neural networks could approximate specific
classes of multivariate functions with a rate whose power of n does not contain the
input dimension d, [65, 7, 8, 27]. However, these classes come with Fourier transform
conditions that depend on d: if the dimension increases, then these conditions become
more restrictive. More recently, it has been shown that deep neural networks with
ReLU activation function can approximate various classes of functions better than

1.2. Deep learning 13

shallow neural networks, [160, 141, 110]. This is in contrast to older works which
considered smooth and bounded activation functions, such as the logistic activation
function, Figure 1.9b. Following these approximation results, convergence rates for the
risk in the regression problem were derived. These results showed that if the regression
function has a compositional structure, then deep neural networks can exploit this
structure to circumvent the curse of dimensionality, [71, 62, 72, 113, 11, 127, 77].

σv(·) σv(·) σv(·) σv(·)

σv(·) σv(·) σv(·) σv(·)

σv(·) σv(·) σv(·) σv(·)

ϕv(·)

Ŷ

X1 X2 XdInput

Hidden layers

Output

Figure 1.10: A neural network with three hidden layers with four neurons each, an
input layer with d inputs, and an output layer with a single output neuron.

1.2.1 Training of neural networks

For supervised learning problems training a neural network means minimizing a
training loss. In other words, deep learning is an example of a (regularized) empirical
risk minimization approach as discussed in Section 1.1.3. Unlike the examples in that
section, it is impossible to derive an explicit solution of the minimization problem.
Instead, the empirical risk is minimized stepwise during training by an optimization

14 Chapter 1. Introduction

method. The most common method is gradient descent (or a variation thereof): In
each training step the parameters are updated according to the update rule:

θk = θk−1 − αk∇θk−1

(
1

n

n∑

i=1

ℓ
(
fθk−1

(Xi), Yi
))
, (1.2.1)

for a sequence of positive numbers αk called the learning rate and fθk−1
the neural

network with parameters θk−1. In the neural networks as described before, the
parameters θ are all the weight matrices W and all the shift vectors v. For convex
problems, gradient descent converges to the global minimum for suitable sequences of
learning rates. Neural networks viewed as functions do not lead to a convex function
class. Training neural networks is therefore a non-convex problem. Instead of one
global minimum, there may exist multiple minima, which may be local or global
[37, 125, 29]. As a consequence, a minimum found during training might be a local
minimum and in this case there exist neural network-parameters that achieve a lower
training loss.

Training neural networks with multiple layers of neurons became feasible with the
introduction of backpropagation in 1986 in [124] and [86]. Backpropagation consists
of a forward and a backward pass through the neural network. In the forward pass,
the neural network is given a training sample as input and the output of the neural
network is computed for this sample. In the backward pass, the output is used to
calculate the training loss, after which the gradient for all parameters is calculated
using the chain-rule for differentiation.

In Figure 1.11 estimates by fully connected feedforward networks for the regression
dataset from Section 1.1 are shown. These neural networks have 10 hidden layers with
50 neurons each and use the ReLU activation function in the hidden layers and the
linear activation in the output layer.

For a further history of deep learning see [51] or for a more statistics oriented
overview of machine learning see [150].

1.3 Introduction for Chapter 2: Classification

The current popularity of deep learning is in part caused by the performance of deep
neural networks for image recognition tasks: identifying what object is depicted in an
image. In 2012, a deep neural network [80] became state-of-the-art by outperforming
other methods in the ImageNet Large Scale Visual Recognition Challenge.

In statistical terms, image recognition is an example of a supervised classification
problem. In the classification model with K classes, we observe n random pairs
(X1,Y1), (X2,Y2), . . . , (Xn,Yn), with Yi the encoding of the observed label or class

1.3. Introduction for Chapter 2 15

0.0 0.2 0.4 0.6 0.8 1.0
X

0

2

4

6

8

10

Y

(a) Linear

0.0 0.2 0.4 0.6 0.8 1.0
X

0

2

4

6

8

10

Y

(b) Non-linear

Figure 1.11: Plots of the samples (blue), Deep Neural Network estimator (red) and
the true regression function (black) of a linear and a non-linear model.

of the input Xi. For more than two classes, it is standard to represent the labels
with one-hot encoding: Each Yi is a K-dimensional vector consisting of exactly one
1 and all other coefficients are set to zero. The relationship between Xi and Yi is
determined by the (unknown) conditional class probabilities

P(Yi,k = 1|Xi = x),

where Yi,k is the k-th coefficient of Yi and x is a specific value taken by the input
Xi. In classification, the goal is to predict the class label of a new input. In machine
learning, classification methods are often compared based on the fraction of correct
classifications. This is equal to one minus the risk corresponding to the 0-1 loss.

To build a classifier, one can try to estimate the decision boundaries directly.
Alternatively, one can first estimate the conditional class probabilities and then plug
these estimates into a decision rule. For an overview of classification methods see for
example [38].

Deep neural networks output estimates of the conditional class probabilities, see for
example the seminal work [80]. Furthermore, neural networks are typically compared
to other methods based on the faction of correct labels that are contained in the (top
five or ten) most likely predicted labels. The activation function commonly used in
the output layer of these neural networks is the softmax function

Φ(x) :=

(
ex1

∑K
j=1 e

xj

, . . . ,
exK

∑K
j=1 e

xj

)
: RK → SK ,

16 Chapter 1. Introduction

where SK =
{
(p1, . . . , pK :

∑K
j=1 pj = 1, pj ≥ 0

}
denotes the probability simplex in

RK . The softmax function is a multivariate version of the logistic function in Figure
1.9b and guarantees that the output of the neural network is a probability vector.

Because of the non-differentiability, gradient descent cannot be applied to the
0-1 loss. Therefore, neural networks are trained using a surrogate loss [9, 140]. The
cross-entropy loss is commonly used in combination with the softmax output:

ℓ(p̂(Xi),Yi) := −
K∑

k=1

Yi,k log(p̂k(Xi)).

The cross-entropy loss can be derived from the log-likelihood of the conditional class
probabilities, see Section 2.2. Chapter 2 focuses on estimating the conditional class
probabilities instead of the final classification. Therefore, the risk corresponding
to the cross-entropy loss is considered instead of the risk corresponding to the 0-1
loss. Convergence rates for a neural network estimator are derived with respect to a
truncated version of the risk corresponding to the cross-entropy loss.

1.4 Introduction for Chapter 3: Multivariate density
estimation

In multivariate density estimation, we observe a sequence of independent random
vectors X1,X2, . . . ,Xn distributed according to some multivariate density f0. The
density estimation problem is to estimate this unknown density f0 from the data.
Unlike regression and classification, there are no observed response variables Yi, making
this problem unsupervised.

Kernel density estimators are standard methods for nonparametric density estima-
tion. A kernel in d-dimensions is a function K : Rd → R such that

∫
RK(u) du = 1.

The kernel density estimator f̂K with kernel K and bandwidth h is given by:

f̂K :=
1

nhd

n∑

i=1

K

(
1

h

(
Xi − x

))
. (1.4.1)

Kernel density estimators are related to histograms. For the rectangular kernel, Figure
1.2a, the corresponding kernel density estimator can be derived as an average of
an infinite number of histograms with shifted bin centers. Alternatively, one can
derive this estimator from an approximation of the derivative of the cumulative
distribution function (cdf), an approach that was taken in early work on kernel density
estimation, [123, 108]. Figure 1.12 compares histogram and kernel density estimator
with rectangular kernel.

1.5. Introduction for Chapter 4 17

0.0 0.2 0.4 0.6 0.8 1.0
X

0.0

0.5

1.0

1.5

2.0

2.5

(a) Histogram

0.0 0.2 0.4 0.6 0.8 1.0
X

0.0

0.5

1.0

1.5

2.0

2.5

(b) Kernel density estimator

Figure 1.12: Plots, based on the same sample, of the histogram estimator (red) on the
left and the kernel density estimator with rectangular kernel (red) on the right. The
true density function (black) is a mixture of two beta-distributions.

In Chapter 3 we transform the unsupervised density estimation problem into a
supervised regression problem. We first use a kernel density estimator to generate
response variables. This allows us to fit a deep ReLU network using existing results
for regression. We derive convergence rates showing that this approach can use
compositional structures to partly circumvent the curse of dimensionality. We also
provide an exploratory simulation study applying this method to several structural
density models.

1.5 Introduction for Chapter 4: Optimization moti-
vated by biological neural networks

From the beginning, artificial neural networks have been influenced by theories about
biological neural networks (the brain). The first artificial network, the perceptron
[121, 122] was based on the McCulloch-Pitts model [95] for neurons in the brain
[51, 150]. The firing pattern of neurons in the brain has been cited as motivation for
the ReLU activation function, Figure 1.9d, [50]. However, the main interest in ReLU
activation functions originates from the empirically observed performance improvement
compared to the previously used sigmoid activation functions [50, 102]. Importantly,
artificial neural networks are not intended to represent learning in the brain. Popular

18 Chapter 1. Introduction

and successful methods for artificial neural networks, such as gradient descent and
backpropagation, are even implausible for biological neural networks [33, 89, 142].
One issue is that these training methods require the capacity to share information
about all the parameters with the entire neural network, also known as the weight
transportation problem.

Recently there has been renewed interest in the differences and similarities between
artificial and biological neural networks, [89, 128, 155]. For example, alternatives to
gradient descent have been proposed that are more biologically plausible. One of them
is known as (weight-perturbed) forward gradient descent [13, 117]. In this method the
gradient update step (1.2.1) is replaced by the update step

θk = θk−1 − αk

(
∇θk−1

ℓ
(
fθk−1

(Xk), Yk
))⊤

ξkξk,

where ξk is distributed as N (0, Id) and is independent of all other randomness. Thus,
only random linear combinations of the gradient are required instead of the full
gradient. In Chapter 4, we study forward gradient descent in the framework of the
linear regression model. We prove that in this setting the mean squared error converges
with a rate d2 log(d)/k, for a large enough number of samples k. This rate has an
additional dimension factor d log(d) compared to the optimal rate for linear regression
[144, 63, 98].

