
Risk bounds for deep learning
Bos, J.M.

Citation
Bos, J. M. (2024, June 19). Risk bounds for deep learning. Retrieved from
https://hdl.handle.net/1887/3763887

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3763887

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3763887

Risk bounds for deep learning

Thijs Bos

Risk bounds for deep learning
Author: Thijs Bos
176 pages

PhD thesis, Universiteit Leiden, The Netherlands (2024)
With summary in English and Dutch

ISBN: 978-94-6469-978-4

Printed by ProefschriftMaken ∥ www.proefschriftmaken.nl

The research described in this thesis was financially supported by the NWO/STAR
grant 613.009.034b and the NWO Vidi grant VI.Vidi.192.021.

Risk bounds for deep learning

Proefschrift

ter verkrijging van
de graad van doctor aan de Universiteit Leiden,
op gezag van rector magnificus prof.dr.ir. H. Bijl,
volgens besluit van het college voor promoties

te verdedigen op woensdag 19 juni 2024
klokke 10:00 uur

door

Johan Matthijs Bos
geboren te Bergschenhoek

in 1991

Promotores:
Prof.dr. P.D. Grünwald (Universiteit Leiden en Centrum Wiskunde & Informatica)
Prof.dr. A.J. Schmidt-Hieber (Universiteit Twente)

Promotiecommissie:
Prof.dr.ir. G.L.A. Derks
Prof.dr. J.J. Goeman
Prof.dr. A. Rohde (Universität Freiburg)
Prof.dr. M. Kohler (Technische Universität Darmstadt)
Dr. R.M. Castro (Technische Universiteit Eindhoven)

I

Contents

1 Introduction 1
1.1 Statistical background . 1

1.1.1 Nonparametric statistics . 2
1.1.2 Loss, risk and minimax rates 5
1.1.3 Empirical risk minimization . 7
1.1.4 Curse of dimensionality . 9

1.2 Deep learning . 10
1.2.1 Training of neural networks . 13

1.3 Introduction for Chapter 2: Classification 14
1.4 Introduction for Chapter 3: Multivariate density estimation 16
1.5 Introduction for Chapter 4: Optimization motivated by biological neural

networks . 17

2 Convergence rates of deep ReLU networks for multiclass classification 19
2.1 Introduction . 19
2.2 The multiclass classification model . 21

2.2.1 Deep ReLU networks . 24
2.3 Main Results . 25

2.3.1 Relationship with Hellinger distance 31
2.3.2 Oracle Inequality . 33

2.4 Proofs . 35
2.4.1 Approximation related results 36
2.4.2 Oracle inequality related results 41

2.A Basic network properties and operations 51
2.A.1 Embedding properties of neural network function classes 51
2.A.2 Scaling numbers . 52
2.A.3 Negative numbers . 53

2.B Neural networks approximating the logarithm 53

II Contents

2.B.1 Taylor approximation . 54
2.B.2 Partition of unity . 57

2.C Further technicalities . 64

3 A supervised deep learning method for nonparametric density esti-
mation 73
3.1 Introduction . 73

3.1.1 Notation . 75
3.2 Conversion into a supervised learning problem 75
3.3 Main results . 77

3.3.1 Neural networks . 79
3.3.2 Structural constraints: compositions of functions 79

3.4 Examples of multivariate densities with compositional structure 82
3.4.1 Copulas . 84
3.4.2 Mixture distributions . 88

3.5 Simulations . 89
3.5.1 Methods . 89
3.5.2 Densities . 90
3.5.3 Neural network training setup 93
3.5.4 Simulation Results . 93

3.6 Proofs for Section 3.3 . 97
3.6.1 Proof of Theorem 3.3.1 . 97
3.6.2 Proof of Theorem 3.3.4 . 101

3.7 Proofs for Section 3.4 . 102
3.7.1 Proof of Theorem 3.4.5 . 104

3.8 Proofs for Section 3.5 . 106
3.9 Proofs for Section 3.6 . 107

4 Convergence guarantees for forward gradient descent in the linear
regression model 125
4.1 Introduction . 125
4.2 Weight-perturbed forward gradient descent 127
4.3 Convergence rates in the linear regression model 129
4.4 Proofs . 133

4.4.1 Proof of Theorem 4.3.2 . 134
4.4.2 Proof of Theorem 4.3.3 . 137

5 General discussion 141
5.1 Statistical theory and training of neural networks 142
5.2 Model assumptions . 142

Contents III

Bibliography 158

Summary 159

Samenvatting 161

Acknowledgements 163

Curriculum Vitae 165

List of publications 167

1

Chapter 1

Introduction

Deep learning is, broadly speaking, the training of artificial neural networks on
data for prediction tasks. It became popular in the 2010s after achieving hugely
improved performance on benchmark datasets used in machine-learning competitions
[60, 80, 51, 126]. This was the start of a revolution. Within a few years, deep neural
networks achieved (super)human level performance in visual object recognition and
speech recognition tasks [126, 30, 58, 3]. By now, deep learning is also successfully
used in various other applications.

In this thesis, we approach deep learning from the statistical viewpoint: what can
be said about the expected error if we view deep learning as a statistical estimation
method. This perspective connects machine learning and statistics.

The introduction is structured as follows. The statistical background is introduced
in Section 1.1. Section 1.2 provides an overview of deep learning. Sections 1.3, 1.4
and 1.5 briefly introduce the subjects of each of the later chapters.

1.1 Statistical background

Deep learning gained momentum by providing state-of-the-art procedures for supervised
learning tasks, where one observes data-pairs (Xi,Yi), with Xi an input vector and
Yi the corresponding output. This setting is called supervised because the output Yi

is already provided (as if by a teacher), contrary to unsupervised learning where the
algorithm is fed with unlabeled data. Regression and classification are the two main
sub-classes of supervised learning. In classification, the goal is to predict the class a
new data point belongs to. Examples include spam detection and image recognition.
For instance, in the latter case, the data-pairs could consist of images of different types

2 Chapter 1. Introduction

of animals (the input) and their corresponding labels ‘dog’, ‘cat’, etc (the output). For
a new image, the neural network must predict which category this image belongs to.

In regression, the output is a real-valued response. For example, predicting income
based on years of education. Various (nonparametric) methods have been developed
for regression problems. Many of them are also theoretically well-understood. First,
we will give a concise introduction of nonparametric statistics, mostly restricting
ourselves to regression. Classification will be treated in Section 1.3. After introducing
nonparametric methods, we will describe the decision theoretic concepts of loss, risk,
and convergence rates. This is followed by sections on empirical risk minimization and
the challenges arising in high-dimensional input-spaces.

0.0 0.2 0.4 0.6 0.8 1.0
X

0

2

4

6

8

10

Y

(a) Linear

0.0 0.2 0.4 0.6 0.8 1.0
X

0

2

4

6

8

10

Y

(b) Non-linear

Figure 1.1: Plots of the samples (blue), linear least squares estimator (red) and the
true regression function (black) of a linear and a non-linear model.

1.1.1 Nonparametric statistics

In statistics, recurring questions are: what does one already know about the distribu-
tion of the data or what can one reasonably assume about it? This is of particular
importance for complex statistical models. Below, we illustrate this using the nonpara-
metric regression model, as this is a widely accepted framework to study supervised
learning.

Example 1.1.1 (Regression). In the (multivariate) regression model we observe n
random pairs (X1, Y1), (X2, Y2), . . . , (Xn, Yn) satisfying

Yi = f0(Xi) + ϵi.

1.1. Statistical background 3

Here the ϵi are noise variables and f0 is an unknown deterministic function. Models of
this form are also called signal plus noise models. The regression problem is to infer
f0 from the data. It is common to assume that the noise variables ϵi are independent
and this assumption will be used throughout this chapter.

The available prior information plays a crucial role. For instance, suspecting that
the regression function f0 is linear, all that remains is to estimate the parameters of
the linear function. In Figure 1.1a, data from a linear regression problem are plotted
in blue and the parametric linear least squares estimator is displayed in red. Linear
regression is an example of a parametric model. Parametric models are statistical
models that depend only on a finite number of parameters. See for example [152, 119]
for an introduction and overview of parametric methods. However, often far less is
known about the underlying model. For instance, it is clear that the (blue) data-sample
in Figure 1.1b was not generated from a linear regression function. The estimate of
the (red) linear least squares estimator does not reflect the data. It is, however, not
immediately clear which parametric family of functions would be a better candidate. In
cases like this, a method is required that assumes less about the structure of the data.
In nonparametric statistics, problems are studied that do not satisfy a parametric
model. Instead, one considers problems that are too big to be parametrized by a finite
number of parameters. For instance, in the regression problem, Example 1.1.1, we can
assume that the function f0 is in the class of all continuous functions. This class is so
large that it is impossible to represent it by a finite basis expansion.

There exist many different nonparametric regression estimation methods. Here
we provide two examples: the Nadaraya-Watson estimator, Example 1.1.2, and the
Fourier-series estimator, Example 1.1.3.

Example 1.1.2 (Nadaraya-Watson estimator). A kernel in d-dimensions is a function
K : Rd → R such that

∫
Rd K(u) du = 1. Some standard kernels in one dimension are

displayed in Figure 1.2.
The Nadaraya-Watson estimator fNW with kernel K and bandwidth h > 0 is given

by

f̂NW (x) :=

n∑

i=1

Yi
K
(

1
h

(
Xi − x

))

∑n
j=1K

(
1
h

(
Xj − x

)) ,

when
∑n

j=1K
(

Xj−x
h

)
̸= 0 and fNW (x) = 0 otherwise.

The Nadaraya-Watson estimator was first proposed in 1964 by Nadaraya [100]
and Watson [154]. The estimate in a point x is determined by a weighted average of
the output variables Yi. The weight assigned to each sample is determined by the
chosen kernel K and the bandwidth h. The role of the bandwidth h in tuning the

4 Chapter 1. Introduction

−1.5 −1 −0.5 0.5 1 1.5

0.5

1

X

Y

(a) Rectangular kernel

−1.5 −1 −0.5 0.5 1 1.5

0.5

1

X

Y

(b) Triangular kernel

−1.5 −1 −0.5 0.5 1 1.5

0.5

1

X

Y

(c) Epanechnikov kernel

Figure 1.2: Three examples of standard kernels in one dimension.

estimator will be discussed in Section 1.1.3. In Figure 1.3 the (red) Nadaraya-Watson
estimator with the rectangular kernel is shown on the linear and non-linear regression
dataset from before. Compared to the linear least squares estimator in Figure 1.1, this
estimator provides a reasonable estimate for both problems.

0.0 0.2 0.4 0.6 0.8 1.0
X

0

2

4

6

8

10

Y

(a) Linear

0.0 0.2 0.4 0.6 0.8 1.0
X

0

2

4

6

8

10
Y

(b) Non-linear

Figure 1.3: Plots of the samples (blue), Nadaraya-Watson estimator (red) and the
true regression function (black) of a linear and a non-linear model.

Example 1.1.3 (Fourier-series estimator). Consider the problem of estimating a
function in the function space L2[0, 1]: the space of square integrable functions on the
interval [0, 1]. The Fourier basis in L2[0, 1] is given by

ψ1(x) := 1,

ψ2k(x) :=
√
2 cos(2kπx),

ψ2k+1(x) :=
√
2 sin(2kπx),

1.1. Statistical background 5

for k = 1, 2, In other words, for every function f ∈ L2[0, 1], there exist coefficients
(cj)

∞
j=1 such that f can be written as f(x) =

∑∞
j=1 cjψj . The first four Fourier basis

functions are plotted in Figure 1.4.
The Fourier-series estimator of level N and with threshold τ is given by

f̂F (x) :=

N∑

j=1

ĉjψj(x)1
(
|ĉj | ≥ τ

)
,

where ĉj := n−1
∑n

i=1 Yiψj(Xi) is the empirical Fourier coefficient. Here 1(·) denotes
the indicator function, returning one when |ĉj | ≥ τ and zero otherwise.

0.25 0.5 0.75 1

−1.5

−1

−0.5

0.5

1

1.5

X

Y

(a) ψ1

0.25 0.5 0.75 1

−1.5

−1

−0.5

0.5

1

1.5

X

Y

(b) ψ2

0.25 0.5 0.75 1

−1.5

−1

−0.5

0.5

1

1.5

X

Y

(c) ψ3

0.25 0.5 0.75 1

−1.5

−1

−0.5

0.5

1

1.5

X

Y

(d) ψ4

Figure 1.4: The first four Fourier basis functions

The Fourier-series estimator is an example of a projection estimator (also known as
orthogonal series estimator), [153, 146, 44], as it projects on the space spanned by the
first N basis elements and then estimates the coefficients of these N elements. The
choice of the (orthogonal) basis determines how one can interpret an orthogonal series
estimator. In the case of the Fourier-series estimator, the basis functions represent
frequencies. In Figure 1.5 the (red) Fourier-series estimator is shown on the linear
and non-linear regression dataset from before. The waveform of the sine and cosine
functions used in the Fourier-basis can be seen back in the estimated function.

For a further introduction and overview of nonparametric estimation methods see
for example [153, 146, 54].

1.1.2 Loss, risk and minimax rates

An important aspect of statistical estimation theory is to provide a quantification of
how ‘good’ an estimator is. Consider for instance the regression problem, Example
1.1.1; Given an estimator f̂ , how far away is it from the true regression function f0?
The first step is to choose a loss function for measuring the estimation error.

6 Chapter 1. Introduction

0.0 0.2 0.4 0.6 0.8 1.0
X

0

2

4

6

8

10

Y

(a) Linear

0.0 0.2 0.4 0.6 0.8 1.0
X

0

2

4

6

8

10

Y

(b) Non-linear

Figure 1.5: Plots of the samples (blue), Fourier-series estimator (red) and the true
regression function (black) of a linear and a non-linear model.

Definition 1.1.4 (Loss-function). Let G represent the class containing the quantity
to be estimated. Denote by F the class in which the estimator takes its values. A loss
function ℓ assigns a non-negative number to any combination of g ∈ G and f ∈ F and
returns zero if f = g.

For nonparametric regression, an example is the squared pointwise loss: ℓ(f̂ , f0) =(
f̂(x)− f0(x)

)2
with x a given point. This loss is derived from the log-likelihood of

the regression model with Gaussian noise. In classification, the goal is to predict a
label y. A common choice for this task is the zero-one loss ℓ(f̂ , y) = 1(f̂ ̸= y). This
loss returns zero if the predicted label is correct and one otherwise.

To evaluate the performance of an estimator we consider the expected average loss
over all possible realizations of the data.

Definition 1.1.5 (Risk). The risk of an estimator f̂ with respect to the loss function ℓ

is given by R(f̂ , g) := Eg

[
ℓ
(
f̂ , g
)]
. Here the expectation Eg is over the data distribution

with parameter g.

In general the data distribution may also depend on other parameters besides g.

To compare estimators, we look at their worst-case risk over all possible parameters
g. In other words, we are interested in supg∈G R(f̂ , g), where G denotes the class
containing the quantity to be estimated. The (worst-case) risk cannot be computed
exactly in most cases. Instead, one relies on upper bounds. For a sensible estimator,

1.1. Statistical background 7

this upper bound should converge to zero as the sample size n increases. The rate at
which the upper bound decreases is called the convergence rate.

Ideally, the worst-case risk should decrease to zero as fast as possible, but how
fast can this possibly happen? The answer to this question depends on the imposed
assumptions. For instance, for the parametric linear regression problem a faster rate of
convergence can be reached, than for a nonparametric regression problem that involves
all differentiable functions. It can be shown that without assumptions, the worst-case
risk in the nonparametric regression model is lower bounded by some constant no
matter how much data is available, see for example Theorem 3.1 of [54] or Section 7
of [38].

For many classes it is possible to prove lower bounds on the rate of conver-
gence of the worst-case risk of any estimator. In other words, it can be shown that
inf f̃ supg∈G R(f̃ , g) cannot tend to zero faster than a certain rate. For an introduction

to lower bounds, see for example [146]. Lower bounds for standard nonparametric
regression settings were proven in [138].

If the rate of the lower bound matches the convergence rate of some estimator for
this estimation problem, then the rate is called minimax (rate) optimal.

The main focus in this thesis are convergence rates for worst-case upper bounds in
high-dimensional input settings related to deep learning. The empirical counterpart of
the risk plays a crucial role in establishing these bounds.

1.1.3 Empirical risk minimization

The chosen risk determines the quality of the estimator and a ‘good’ estimator will
have small risk. However, direct minimization of the risk is impossible; Computing
the expected value in the definition of the risk requires knowledge of the underlying
unknown data-distribution. To overcome this, one can replace the expectation by an
average.

Definition 1.1.6 (Empirical risk). The empirical risk of an estimator f̂ with respect

to the loss function ℓ is given by Rn(f̂) := 1
n

∑n
i=1 ℓ

(
f̂(Xi), Yi

)
. In other words,

the empirical risk is the average loss over all data-pairs (Xi, Yi) in the dataset. An

empirical risk minimizer with respect to the class F is any estimator f̂ satisfying
f̂ ∈ argminf∈F Rn(f).

The hope is that minimizing the empirical risk results in an estimator with low
risk. In other words, it leads to a procedure that generalizes well to unseen samples.
Plenty of theory has been developed showing that this is indeed true if the estimator
class is not too large or too small, see for example [148, 150]. If the estimator class
is too large, then too much of the noise gets incorporated into the estimator. In the

8 Chapter 1. Introduction

extreme case, the estimator interpolates the data points. In this instance the empirical
risk is zero, but depending on the loss function, the risk may be arbitrarily large. The
estimator class in empirical risk minimization should also be not too small. Otherwise,
the best function in the class could still be far away from the true function. The error
that arises from this difference is known as the approximation error, while the error
that comes from the vulnerability of the estimator to noise is called the stochastic
error. A major challenge of empirical risk minimization is to choose function classes
that balance approximation and stochastic error.

Both the Nadaraya-Watson estimator, Example 1.1.2, and the Fourier-series es-
timator, Example 1.1.3, can be derived as variants of empirical risk minimizers for
different estimator classes. The linear least squares estimator for linear regression, used
in Figure 1.1, is a parametric example of an empirical risk minimizer. It minimizes
the empirical risk for the squared loss ℓ(f̂(x), y) = (f̂(x) − y)2 over the class of all
linear functions.

The Nadaraya-Watson estimator f̂NW , with nonnegative kernel K is a minimizer
of a localized version of the empirical risk,

f̂NW (x) = argmin
θ∈R

n∑

i=1

(Yi − θ)2K

(
1

h

(
Xi − x

))
. (1.1.1)

The family of local polynomial estimators can be obtained by replacing θ in (1.1.1) by
a polynomial, see for example [146, 153, 93, 54]. The Nadaraya-Watson estimator is
therefore a specific local polynomial estimator. For kernel estimators, the bandwidth
parameter h controls the trade-off between the approximation and stochastic error.
Larger h means that the neighborhood that is included in the kernel increases. This
leads to a smoother estimate with a smaller stochastic error, but with a larger
approximation error. On the other hand, a smaller hmeans that a smaller neighborhood
is considered by the kernel. This results in a less smooth estimate with smaller
approximation error, but a larger stochastic error. In Figure 1.6 the Nadaraya-Watson
estimator for large and small bandwidth is plotted, using the same kernel and dataset
as in Figure 1.3b.

Now consider the Fourier-series estimator f̂F (x) of level N with threshold τ as
defined in Example 1.1.3. The linear combinations of the first N Fourier-basis functions
form the class

FN :=

{
N∑

j=1

cjψj , cj ∈ R for j = 1, 2, . . . , N

}
.

Using this class, the Fourier-series estimator can be rewritten as

f̂F (x) = argmin
f∈FN

1

n

n∑

i=1

(
f(Xi)− Yi

)2
+
λτ
n

pen(f), (1.1.2)

1.1. Statistical background 9

0.0 0.2 0.4 0.6 0.8 1.0
X

0

2

4

6

8

10

Y

(a) Large bandwidth

0.0 0.2 0.4 0.6 0.8 1.0
X

0

2

4

6

8

10

Y

(b) Small bandwidth

Figure 1.6: Plots of the samples (blue), Nadaraya-Watson estimator (red) with a large
bandwidth h on the left and a small bandwidth h on the right.

where the penalty pen(f) counts the number of non-zero coefficients cj of f and the
parameter λτ depends on the value of the threshold τ. This estimator thus minimizes
a penalized/regularized version of the empirical risk. The number of terms considered
in the series estimator N and the threshold τ control the approximation and stochastic
error. Including more terms, thus increasing N and decreasing τ , leads to a smaller
approximation error and a larger stochastic error. Including less terms decreases the
stochastic error and increases the approximation error.

1.1.4 Curse of dimensionality

Nonparametric methods work well for low-dimensional input problems. However, in
higher dimensions their performance degrades. The (input) dimension d appears in
the minimax rate of many nonparametric problems in the power of n. For example,
the minimax rate for the squared loss for estimating a β times differentiable function
is of order n−2β/(2β+d), [137, 138, 54, 44]. As d grows, this rate gets slower. The
reason for this is that in higher dimensions one needs (many) more data-points before
every local neighborhood contains at least one observation. To see this, consider the
problem of placing points in the space [0, 1]d such that everywhere in [0, 1]d one is
at most 1/4 in the maximum-norm distance away from one of these points. This is
depicted in Figure 1.7. One needs 2 = 21 points in one dimension, 4 = 22 points in
two dimensions and 8 = 23 points in three dimensions. In general, one needs 2d points
in dimension d, an exponential growth in the dimension.

10 Chapter 1. Introduction

0 0.25 0.5 0.75 1

(a) Dimension 1

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

(b) Dimension 2

0
0.25 0.5

0.75 1 0
0.25

0.5
0.75

1

0

0.25

0.5

0.75

1

(c) Dimension 3

Figure 1.7: Required number of points to cover the cube [0, 1]d with maximum norm
balls of radius 1/4.

In contrast, the dimension d appears in the minimax rate for parametric problems
only as a multiplicative constant. For example, for linear regression the minimax
rate for the squared loss is d/n, [63, 98, 144]. The strong structural assumptions in
parametric models reduce the intrinsic dimension of the problem. This is related to the
main idea behind approaches to tackle the curse of dimensionality in nonparametric
regression: Introduce additional assumptions on the structure such that the intrinsic
dimension of the function class becomes smaller. An example are generalized additive
models, [56], assuming that the multivariate function can be written as a linear
combination of univariate functions. Methods that make use of this structure are
able to achieve the dimensionless rate n−2β/(2β+1) for β times differentiable functions
instead of n−2β/(2β+d), see for example [139] or Section 22 of [54]. The possibility that
deep neural networks are able to circumvent the curse of dimensionality is one of the
motivations for the statistical analysis of deep learning.

1.2 Deep learning

Around 1960, the first trainable artificial neural networks were developed: The
perceptron of Rosenblatt [121, 122] has zero-one output, and the adaptive linear
element (ADALINE) [156] is a linear model trained with (a version of) gradient
descent. Both the perceptron and ADALINE existed as dedicated physical machines,
in contrast to modern neural networks which are software implementations.

In essence, these first neural networks consisted of one single trainable neuron.
More neurons and layers were proposed [121, 122, 156], but in those setups only the
parameters of the last neuron were changed during training. The other parameters

1.2. Deep learning 11

were kept fixed [121, 150]. This means that, from a statistical point of view, all these
early neural networks are parametric methods.

In Figure 1.8 a neural network with a single neuron is shown. This neural network
multiplies each input coefficient xi with a weight Wi. It then takes the sum over all
these weighted inputs and adds the shift v to this sum. Finally, the activation function
σ is applied in the single neuron. The trainable parameters in this neural network are
the weights Wi and the shift v. This simple neural network already can be used for
various tasks by choosing a suitable activation function σ. The original perceptron used
the heaviside function σ(x) = 1(x ≥ 0), Figure 1.9a. With this activation function
the neural network can be used for binary classification, e.g., for answering yes or no
questions. When, as in ADALINE, σ is the identity function, Figure 1.9c, this neural
network does linear regression. Taking σ as the logistic function σ(x) = 1/(1 + e−x),
Figure 1.9b, results in a neural network that does logistic regression, estimating the
probability of an event. Sigmoid activation functions, such as the logistic function,
can be considered as smooth alternatives for the heaviside function. These activation
functions became the standard in the late eighties.

σ
(
v +

∑
(· · ·)

)

Ŷ

X1 X2 XdInput

Neuron

Output

W1 W2 Wd

Figure 1.8: A neural network with one single neuron.

Modern deep neural networks consist of multiple neurons ordered in layers. A
neural network consists of an input layer, several hidden layers, and an output layer.
The number of hidden layers is also called the depth of the neural network, and the
‘deep’ in deep learning refers to neural networks with multiple layers. In Figure 1.10
an example of a deep neural network is given. This example has d inputs, three
hidden layers with four neurons each, and a single neuron as its output. Such a
neural network is called a fully connected feedforward network: fully connected since

12 Chapter 1. Introduction

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

X

Y

(a) Heaviside

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

X

Y

(b) Logistic

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

X

Y

(c) Linear

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

X

Y

(d) Rectified Linear
Unit (ReLU)

Figure 1.9: Examples of activation functions

every node in a layer is connected to all nodes in the previous and the next layer,
feedforward because all connections go forward to the next layer. In fully connected
feedforward networks, all hidden units generally have the same activation function
σ. Nowadays, the most common choice is the rectified linear unit (ReLU) activation
function, Figure 1.9d. This is the activation function used in the hidden layers of the
neural networks considered in Chapters 2 and 3. Depending on the learning task, the
output may use different activation functions. The linear activation function is used
for regression/function estimation problems. Chapter 3 considers neural networks
with this function in the output layer. For estimating a binary probability the logistic
function is the standard choice for the activation function of the output neuron.
Chapter 2 deals with estimating vectors of probabilities. For this task a multivariate
version of the logistic function, the softmax function, is used as output activation
function.

Around 1990 it was shown that shallow neural networks, neural networks with one
hidden layer, have the so-called universal approximation property: If the number of
neurons in the hidden layer is allowed to become arbitrarily large, then shallow neural
networks are able to approximate any continuous function arbitrarily well, [34, 61, 46].
Multi-neuron networks are thus able to approximate large function classes if the neural
network size, and thus the number of parameters, grows as a function of the data.
This means that multi-neuron networks can be considered as nonparametric methods.

In the nineties it was proven that shallow neural networks could approximate specific
classes of multivariate functions with a rate whose power of n does not contain the
input dimension d, [65, 7, 8, 27]. However, these classes come with Fourier transform
conditions that depend on d: if the dimension increases, then these conditions become
more restrictive. More recently, it has been shown that deep neural networks with
ReLU activation function can approximate various classes of functions better than

1.2. Deep learning 13

shallow neural networks, [160, 141, 110]. This is in contrast to older works which
considered smooth and bounded activation functions, such as the logistic activation
function, Figure 1.9b. Following these approximation results, convergence rates for the
risk in the regression problem were derived. These results showed that if the regression
function has a compositional structure, then deep neural networks can exploit this
structure to circumvent the curse of dimensionality, [71, 62, 72, 113, 11, 127, 77].

σv(·) σv(·) σv(·) σv(·)

σv(·) σv(·) σv(·) σv(·)

σv(·) σv(·) σv(·) σv(·)

ϕv(·)

Ŷ

X1 X2 XdInput

Hidden layers

Output

Figure 1.10: A neural network with three hidden layers with four neurons each, an
input layer with d inputs, and an output layer with a single output neuron.

1.2.1 Training of neural networks

For supervised learning problems training a neural network means minimizing a
training loss. In other words, deep learning is an example of a (regularized) empirical
risk minimization approach as discussed in Section 1.1.3. Unlike the examples in that
section, it is impossible to derive an explicit solution of the minimization problem.
Instead, the empirical risk is minimized stepwise during training by an optimization

14 Chapter 1. Introduction

method. The most common method is gradient descent (or a variation thereof): In
each training step the parameters are updated according to the update rule:

θk = θk−1 − αk∇θk−1

(
1

n

n∑

i=1

ℓ
(
fθk−1

(Xi), Yi
))
, (1.2.1)

for a sequence of positive numbers αk called the learning rate and fθk−1
the neural

network with parameters θk−1. In the neural networks as described before, the
parameters θ are all the weight matrices W and all the shift vectors v. For convex
problems, gradient descent converges to the global minimum for suitable sequences of
learning rates. Neural networks viewed as functions do not lead to a convex function
class. Training neural networks is therefore a non-convex problem. Instead of one
global minimum, there may exist multiple minima, which may be local or global
[37, 125, 29]. As a consequence, a minimum found during training might be a local
minimum and in this case there exist neural network-parameters that achieve a lower
training loss.

Training neural networks with multiple layers of neurons became feasible with the
introduction of backpropagation in 1986 in [124] and [86]. Backpropagation consists
of a forward and a backward pass through the neural network. In the forward pass,
the neural network is given a training sample as input and the output of the neural
network is computed for this sample. In the backward pass, the output is used to
calculate the training loss, after which the gradient for all parameters is calculated
using the chain-rule for differentiation.

In Figure 1.11 estimates by fully connected feedforward networks for the regression
dataset from Section 1.1 are shown. These neural networks have 10 hidden layers with
50 neurons each and use the ReLU activation function in the hidden layers and the
linear activation in the output layer.

For a further history of deep learning see [51] or for a more statistics oriented
overview of machine learning see [150].

1.3 Introduction for Chapter 2: Classification

The current popularity of deep learning is in part caused by the performance of deep
neural networks for image recognition tasks: identifying what object is depicted in an
image. In 2012, a deep neural network [80] became state-of-the-art by outperforming
other methods in the ImageNet Large Scale Visual Recognition Challenge.

In statistical terms, image recognition is an example of a supervised classification
problem. In the classification model with K classes, we observe n random pairs
(X1,Y1), (X2,Y2), . . . , (Xn,Yn), with Yi the encoding of the observed label or class

1.3. Introduction for Chapter 2 15

0.0 0.2 0.4 0.6 0.8 1.0
X

0

2

4

6

8

10

Y

(a) Linear

0.0 0.2 0.4 0.6 0.8 1.0
X

0

2

4

6

8

10

Y

(b) Non-linear

Figure 1.11: Plots of the samples (blue), Deep Neural Network estimator (red) and
the true regression function (black) of a linear and a non-linear model.

of the input Xi. For more than two classes, it is standard to represent the labels
with one-hot encoding: Each Yi is a K-dimensional vector consisting of exactly one
1 and all other coefficients are set to zero. The relationship between Xi and Yi is
determined by the (unknown) conditional class probabilities

P(Yi,k = 1|Xi = x),

where Yi,k is the k-th coefficient of Yi and x is a specific value taken by the input
Xi. In classification, the goal is to predict the class label of a new input. In machine
learning, classification methods are often compared based on the fraction of correct
classifications. This is equal to one minus the risk corresponding to the 0-1 loss.

To build a classifier, one can try to estimate the decision boundaries directly.
Alternatively, one can first estimate the conditional class probabilities and then plug
these estimates into a decision rule. For an overview of classification methods see for
example [38].

Deep neural networks output estimates of the conditional class probabilities, see for
example the seminal work [80]. Furthermore, neural networks are typically compared
to other methods based on the faction of correct labels that are contained in the (top
five or ten) most likely predicted labels. The activation function commonly used in
the output layer of these neural networks is the softmax function

Φ(x) :=

(
ex1

∑K
j=1 e

xj

, . . . ,
exK

∑K
j=1 e

xj

)
: RK → SK ,

16 Chapter 1. Introduction

where SK =
{
(p1, . . . , pK :

∑K
j=1 pj = 1, pj ≥ 0

}
denotes the probability simplex in

RK . The softmax function is a multivariate version of the logistic function in Figure
1.9b and guarantees that the output of the neural network is a probability vector.

Because of the non-differentiability, gradient descent cannot be applied to the
0-1 loss. Therefore, neural networks are trained using a surrogate loss [9, 140]. The
cross-entropy loss is commonly used in combination with the softmax output:

ℓ(p̂(Xi),Yi) := −
K∑

k=1

Yi,k log(p̂k(Xi)).

The cross-entropy loss can be derived from the log-likelihood of the conditional class
probabilities, see Section 2.2. Chapter 2 focuses on estimating the conditional class
probabilities instead of the final classification. Therefore, the risk corresponding
to the cross-entropy loss is considered instead of the risk corresponding to the 0-1
loss. Convergence rates for a neural network estimator are derived with respect to a
truncated version of the risk corresponding to the cross-entropy loss.

1.4 Introduction for Chapter 3: Multivariate density
estimation

In multivariate density estimation, we observe a sequence of independent random
vectors X1,X2, . . . ,Xn distributed according to some multivariate density f0. The
density estimation problem is to estimate this unknown density f0 from the data.
Unlike regression and classification, there are no observed response variables Yi, making
this problem unsupervised.

Kernel density estimators are standard methods for nonparametric density estima-
tion. A kernel in d-dimensions is a function K : Rd → R such that

∫
RK(u) du = 1.

The kernel density estimator f̂K with kernel K and bandwidth h is given by:

f̂K :=
1

nhd

n∑

i=1

K

(
1

h

(
Xi − x

))
. (1.4.1)

Kernel density estimators are related to histograms. For the rectangular kernel, Figure
1.2a, the corresponding kernel density estimator can be derived as an average of
an infinite number of histograms with shifted bin centers. Alternatively, one can
derive this estimator from an approximation of the derivative of the cumulative
distribution function (cdf), an approach that was taken in early work on kernel density
estimation, [123, 108]. Figure 1.12 compares histogram and kernel density estimator
with rectangular kernel.

1.5. Introduction for Chapter 4 17

0.0 0.2 0.4 0.6 0.8 1.0
X

0.0

0.5

1.0

1.5

2.0

2.5

(a) Histogram

0.0 0.2 0.4 0.6 0.8 1.0
X

0.0

0.5

1.0

1.5

2.0

2.5

(b) Kernel density estimator

Figure 1.12: Plots, based on the same sample, of the histogram estimator (red) on the
left and the kernel density estimator with rectangular kernel (red) on the right. The
true density function (black) is a mixture of two beta-distributions.

In Chapter 3 we transform the unsupervised density estimation problem into a
supervised regression problem. We first use a kernel density estimator to generate
response variables. This allows us to fit a deep ReLU network using existing results
for regression. We derive convergence rates showing that this approach can use
compositional structures to partly circumvent the curse of dimensionality. We also
provide an exploratory simulation study applying this method to several structural
density models.

1.5 Introduction for Chapter 4: Optimization moti-
vated by biological neural networks

From the beginning, artificial neural networks have been influenced by theories about
biological neural networks (the brain). The first artificial network, the perceptron
[121, 122] was based on the McCulloch-Pitts model [95] for neurons in the brain
[51, 150]. The firing pattern of neurons in the brain has been cited as motivation for
the ReLU activation function, Figure 1.9d, [50]. However, the main interest in ReLU
activation functions originates from the empirically observed performance improvement
compared to the previously used sigmoid activation functions [50, 102]. Importantly,
artificial neural networks are not intended to represent learning in the brain. Popular

18 Chapter 1. Introduction

and successful methods for artificial neural networks, such as gradient descent and
backpropagation, are even implausible for biological neural networks [33, 89, 142].
One issue is that these training methods require the capacity to share information
about all the parameters with the entire neural network, also known as the weight
transportation problem.

Recently there has been renewed interest in the differences and similarities between
artificial and biological neural networks, [89, 128, 155]. For example, alternatives to
gradient descent have been proposed that are more biologically plausible. One of them
is known as (weight-perturbed) forward gradient descent [13, 117]. In this method the
gradient update step (1.2.1) is replaced by the update step

θk = θk−1 − αk

(
∇θk−1

ℓ
(
fθk−1

(Xk), Yk
))⊤

ξkξk,

where ξk is distributed as N (0, Id) and is independent of all other randomness. Thus,
only random linear combinations of the gradient are required instead of the full
gradient. In Chapter 4, we study forward gradient descent in the framework of the
linear regression model. We prove that in this setting the mean squared error converges
with a rate d2 log(d)/k, for a large enough number of samples k. This rate has an
additional dimension factor d log(d) compared to the optimal rate for linear regression
[144, 63, 98].

19

Chapter 2

Convergence rates of deep
ReLU networks for multiclass
classification

Abstract

For classification problems, trained deep neural networks return probabilities
of class memberships. In this chapter we study convergence of the learned
probabilities to the true conditional class probabilities. More specifically we
consider sparse deep ReLU network reconstructions minimizing cross-entropy
loss in the multiclass classification setup. Interesting phenomena occur when the
class membership probabilities are close to zero. Convergence rates are derived
that depend on the near-zero behaviour via a margin-type condition.

2.1 Introduction

The classification performance of a procedure is often evaluated by considering the
percentage of test samples that is assigned to the correct class. The corresponding
loss for this performance criterion is called the 0-1 loss. Theoretical results for this
loss are often related to the the margin condition [94, 145, 5], which allows for fast
convergence rates. Empirical risk minimization with respect to the non-convex 0-1 loss
is computationally hard and convex surrogate losses are used instead, see for example
[9, 140]. More recently, similar results have been obtained for deep neural networks
in the binary classification setting. This includes results for standard deep neural
networks in combination with the hinge and logistic loss as surrogate losses [67], as

This chapter is based on: Thijs Bos and Johannes Schmidt-Hieber (2022). Convergence rates
of deep ReLU networks for multiclass classification. In Electronic Journal of Statistics 16,
2724-2773. The research has been supported by the NWO/STAR grant 613.009.034b and the
NWO Vidi grant VI.Vidi.192.021.

20 Chapter 2. multiclass classification

well as results for deep convolutional neural networks with the least squares loss [74]
and logistic loss [76] as surrogate losses. More details can be found in the discussion
following Theorem 2.3.3.

Trained neural networks provide more information than just a guess of the class
membership. For each class and each input, they return an estimate for the probability
that the true label is in this class. For an illustration, see for example Figure 4 in
the seminal work [80]. In applications it is often important how certain a network is
about class memberships, especially in safety-critical systems where a wrong decision
can have serious consequences such as automated driving [22] and AI based disease
detection [87, 52]. In fact, the conditional class probabilities provide us with a notion
of confidence. If the probability of the largest class is nearly one, it is likely that this
class is indeed the true one. On the other hand, if there is no clear largest class and
the conditional class probabilities of several classes are close to each other, it might be
advisable to let a human examine the case instead of basing the decision only on the
outcome of the algorithm.

To evaluate how fast the estimated conditional class probabilities of deep ReLU
networks approach the true conditional class probabilities, we consider in this chapter
convergence with respect to the cross-entropy (CE) loss. If the conditional class
probabilities are bounded away from zero or one, the problem is related to regression
and density estimation. Therefore, it seems that one could simply modify the existing
proofs on convergence rates for deep ReLU networks in the regression context under
the least squares loss [127, 11]. This does, however, not work since the behaviour of the
CE loss differs fundamentally from that of the least squares loss for small conditional
class probabilities. The risk associated with the CE loss is the expectation with respect
to the input distribution of the Kullback-Leibler divergence of the conditional class
probabilities. If an estimator becomes zero for one of the conditional class probabilities
while the underlying conditional class probability is positive, the risk can even become
infinite, see Section 2.2. In many applications where deep learning is state-of-the-art,
the covariates contain nearly all information about the label and hence the conditional
class probabilities are close to zero or one. For example in image classification it is
often clear which object is shown on a picture. To deal with the behaviour near zero,
we introduce a truncation of the CE loss function. This allows us to obtain convergence
rates without bounding either the true underlying conditional class probabilities or
the estimators away from zero. Instead our rates depend on an index quantifying the
behaviour of the conditional class probabilities near zero. Convergence rates and the
condition on the conditional class probabilities can be found in Section 2.3.

Notation: We denote vectors and vector valued functions by bold letters. For
two vector valued functions f = (f1, . . . , fd) and g = (g1, . . . , gd) mapping D to
Rd, we set ∥f − g∥D,∞ :=

∥∥maxj=1,...,d |fj(x)− gj(x)|
∥∥
L∞(D)

. If it is clear to which

2.2. The multiclass classification model 21

domain D we refer to, we also simply write ∥f − g∥∞. For a vector v = (v1, . . . , vm)
and a matrix W = (Wi,j)i=1,...,n;j=1,...,m we define the maximum entry norms as
∥v∥∞ := maxi=1,...,m |vi| and ∥W∥∞ := maxi=1,...,n maxj=1,...,m |Wi,j |. The counting
‘norm’ ∥v∥0, ∥W∥0 is the number of nonzero entries in the vector v and matrix W,
respectively. For a vector v = (v1, . . . , vr)

⊤ and g a univariate function, we write
g(v) := (g(v1), . . . , g(vr))

⊤. We often apply this to the activation function or the
logarithm g(u) = log(u). Similarly, we define for two vectors of the same length v,v′,
log(v/v′) = log(v)− log(v′). For any natural number γ, we set 0 logγ(0) := 0. For a
real number x ∈ R, ⌊x⌋ is the largest integer strictly smaller than x and ⌈x⌉ is the
smallest integer ≥ x. A K-dimensional standard basis vector is a vector of length
K that can be written as (0, . . . , 0, 1, 0, . . . , 0)⊤. We use SK to denote the (K − 1)-

simplex in RK , that is, SK = {v ∈ RK :
∑K

k=1 vk = 1, vk ≥ 0, k = 1, . . . ,K}. For two
probability measures P and Q, the Kullback-Leibler divergence KL(P,Q) is defined
as KL(P,Q) :=

∫
log(dP/dQ) dP if P is dominated by Q and as KL(P,Q) := ∞

otherwise.

2.2 The multiclass classification model

In multiclass classification withK ≥ 2 classes and design on [0, 1]d, we observe a dataset
Dn =

{
(Xi,Yi) : i = 1, . . . , n

}
of n i.i.d. copies of pairs (X,Y) with design/input

vector X taking values in [0, 1]d and the corresponding response vector Y being one of
the K-dimensional standard basis vectors. The response decodes the label of the class:
the output Y is the k-th standard basis vector if the label of the k-th class is observed.
As a special case, for binary classification the output is decoded as (1, 0)T if the first
class is observed and as (0, 1)T if the second class is observed. We write P for the joint
distribution of the random vector (X,Y) and PX for the marginal distribution of X.
The conditional probability PY|X exists since Y is supported on finitely many points.

An alternative model is to assume that each of the K classes is observed roughly
n/K times. To derive statistical risk bounds, there is hardly any difference and the
fact that the i.i.d. model generates with small probability highly unbalanced designs
will not change the analysis.

The task is now to estimate/learn from the dataset Dn the probability that a
new input vector X is in class k. If Y = (Y1, . . . , YK)⊤, the true conditional class
probabilities are

p0k(x) := P(Yk = 1|X = x), k = 1, . . . ,K.

For any x this gives a probability vector, that is,
∑K

k=1 p
0
k(x) = 1. For notational

convenience, we also define the vector of conditional class probabilities p0(x) :=
(p01(x), · · · , p0K(x))⊤.

22 Chapter 2. multiclass classification

To learn the conditional class probabilities from data, the commonly employed
strategy in deep learning is to minimize the log-likelihood over the free parameters
of a deep neural network using (stochastic) gradient descent. The likelihood for the
conditional class probability vector p(x) := (p1(x), · · · , pK(x))⊤ is given by

L(p|Dn) =

n∏

i=1

K∏

k=1

(pk(Xi))
Yik ,

with Yik the k-th entry of Yi. The negative log-likelihood or cross-entropy loss is then

p 7→ ℓ
(
p,Dn

)
:= − 1

n

n∑

i=1

K∑

k=1

Yik log(pk(Xi)) = − 1

n

n∑

i=1

Y⊤
i log

(
p(Xi)

)
, (2.2.1)

where the logarithm in the last expression is taken component-wise as explained in
the notation section above and YT log(p(Xi)) is understood as the scalar product of
the vectors Y and log(p(Xi)). The response vectors Yi are standard basis vectors
and in particular have nonnegative entries. The cross-entropy loss is thus always
nonnegative and consequently defines indeed a proper statistical loss function. The
cross-entropy loss is also convex, but not strictly convex and thus also not strongly
convex, see [149], Chapter III-B for a proof. For binary classification (K = 2), the
cross-entropy loss coincides with the logistic loss. Throughout this chapter, we consider
estimators/learners p̂(X) with the property that p̂(x) is a probability vector for all
x, or equivalently, p̂(x) lies in the simplex SK for all x. This is in particular true for
neural networks with softmax activation function in the output layer. Recall that p0(x)
is the vector of true class probabilities. If (X,Y) has the same distribution as each of
the observations and is independent of the dataset Dn, the statistical estimation risk
associated with the CE loss is

EDn,(X,Y)

[
Y⊤ log

(p0(X)

p̂(X)

)]
= EDn,X

[
p0(X)⊤ log

(p0(X)

p̂(X)

)]

= EDn,X

[
KL
(
p0(X), p̂(X)

)]
,

where the first equality follows from conditioning on the design vector X and
KL(p0(X), p̂(X)) is understood as the Kullback-Leibler divergence of the discrete
distributions with probability mass functions p0(X)|X and p̂(X)|(X,Dn).

(Stochastic) gradient descent methods aim to minimize the CE loss (2.2.1) over a
function class F induced by the method. In the context of neural networks, this class
is generated by all network functions with a pre-specified network architecture. In
particular, the class is parametrized through the network parameters. The maximum
likelihood estimator (MLE) is by definition any global minimizer of (2.2.1). For

2.2. The multiclass classification model 23

some function classes the MLE can be given explicitly. In the extreme case that
x 7→ p(x) is constraint to constant functions, the problem is equivalent to estimation
of the probability vector of a multinomial distribution and the MLE is the average
p̂MLE = 1

n

∑n
i=1 Yi. The other extreme is the case of training error zero. If the

observed design vectors are all different, training error zero is achieved whenever
there exists p ∈ F such that Yi = p(Xi) for all i = 1, . . . , n. This follows from
0 log(0) = 1 log(1) = 0. To achieve training error zero, we therefore need to interpolate
all data points. Notice that misclassification error zero does not necessarily require
interpolation of the data points.

Already for small function classes, the MLE has infinite risk if the statistical risk
is as defined above. The next lemma makes this precise.

Lemma 2.2.1. Consider binary classification (K = 2) with uniform design X ∼
Unif([0, 1]d) and p0(x) := (1/2, 1/2)⊤ for all x ∈ [0, 1]d. Suppose that the function class
F contains an element p(x) = (p1(x), p2(x))

⊤ such that p1(x) = 0 for all x ∈ [0, 1/3]d

and p1(x) = 1 for all x ∈ [2/3, 1]d. Then, there exists a MLE p̂ with

EDn,X

[
p0(X)⊤ log

(p0(X)

p̂(X)

)]
= ∞.

The assumption on the function class F in the previous statement is quite weak
and is satisfied if F contains all piecewise constant conditional class probabilities with
at most two pieces or all piecewise linear conditional class probabilities with at most
three pieces. A large statistical risk occurs also in the case of zero training error or if
the estimator p̂ severely underestimates the true probabilities.

To overcome the shortcomings of the Kullback-Leibler risk, one possibility is
to regularize the Kullback-Leibler divergence and to consider for some B > 0 the
truncated Kullback-Leibler risk

RB(p0, p̂) := EDn,X

[
KLB

(
p0(X), p̂(X)

)]
,

where

KLB

(
p0(X), p̂(X)

)
:= p0(X)⊤

(
B ∧ log

(
p0(X)

p̂(X)

))
.

The loss can be shown to be nonnegative whenever B ≥ 2, see Lemma 2.3.4 below.
The threshold B becomes void if the estimator p̂ is constrained to be in [e−B , 1]K .
If the estimator underestimates one of the true conditional class probabilities by a
large factor, the logarithm becomes large and the threshold B kicks in. For B = ∞,
we recover the Kullback-Leibler risk.

24 Chapter 2. multiclass classification

The idea of truncation is not new. [158] truncates the log-likelihood ratio to avoid
problems with this ratio becoming infinite. Their risk rates, however, are in terms of
the Hellinger distance and the truncation does not appear in the statement of their
results. For the truncated Kullback-Leibler risk the truncation plays a much more
prominent role and appears as a multiplicative factor in the risk bounds. Lemma 2.3.4
provides insight in this difference: it shows that any upper bound for any B-truncated
Kullback-Leibler divergence with B ≥ 2 provides an upper bound for the Hellinger
distance.

As we are interested in the multiclass classification problem in the context of
neural networks, the function class F is not convex. Due to this non-convexity, the
training of neural networks does typically not yield a neural network achieving the
global minimum. We therefore do not assume that the estimator is the MLE and use
a parameter to quantify the difference between the achieved empirical risk and the
global minimum: For any estimator p̂ taking values in a function class F , we denote
the difference between p̂ and the global minimum of the empirical risk over that entire
class by

∆n(p0, p̂) := EDn

[
− 1

n

n∑

i=1

Y⊤
i log(p̂(Xi))−min

p∈F
− 1

n

n∑

i=1

Y⊤
i log(p(Xi))

]
. (2.2.2)

2.2.1 Deep ReLU networks

In this chapter we study deep ReLU networks with softmax output layer. Recall that the
rectified linear unit (ReLU) activation function is σ(x) := max{x, 0}. For any vectors
v = (v1, · · · , vr)⊤,y = (y1, · · · , yr)⊤ ∈ Rr, write σvy := (σ(y1− v1), . . . , σ(yr − vr))⊤.
To ensure that the output of the network is a probability vector over the K classes, it
is standard to apply the softmax function

Φ =

(
ex1

∑K
j=1 e

xj

, . . . ,
exK

∑K
j=1 e

xj

)
: RK → SK

in the last layer. We use L to denote the number of hidden layers or depth of the
neural network, and m = (m0, · · · ,mL+1) ∈ NL+2 to denote the widths, that is, the
number of nodes in each layer of the network. A (ReLU) network architecture with
output function ψ : RmL+1 → RmL+1 is a pair (L,m)ψ and a network with network
architecture (L,m)ψ is any function of the form

f : Rm0 → RmL+1 , x 7→ f(x) = ψWLσvL
WL−1σvL−1

· · ·W1σv1
W0x, (2.2.3)

where Wj is a mj ×mj+1 weight matrix and vj ∈ Rmj is a shift vector. Throughout
this chapter we use the convention that v0 := (0, . . . , 0)⊤ ∈ Rm0 .

2.3. Main Results 25

First we define neural network classes with the additional property that all network
parameters are bounded in absolute value by one via

Fψ(L,m) :=

{
f is of the form of (2.2.3) : max

j∈{0,··· ,L}
(∥Wj∥∞ ∨ ∥vj∥∞) ≤ 1

}
,

with the maximum entry norm ∥ · ∥∞ as defined in the notation section above. As in
previous work, we study estimation over s-sparse ReLU networks. Those are function
classes of the form

Fψ(L,m, s) :=

{
f ∈ F(L,m) :

L∑

j=0

∥Wj∥0 + ∥vj∥0 ≤ s

}
,

where the counting norm ∥ · ∥0 denotes the number of nonzero vector/matrix entries.
All neural network classes in this chapter have either softmax output activation

ψ = Φ or identity output activation ψ = id .

2.3 Main Results

Interesting phenomena occur if the conditional class probabilities are close to zero or
one. We now introduce a notion measuring the size of the set on which the conditional
class probabilities are small. The index α will later appear in the convergence rate.

Definition 2.3.1. (Small Value Bound) Let α ≥ 0 and H be a function class. We say
that H is α-small value bounded (or α-SVB) if there exists a constant C > 0, such
that for all p = (p1, . . . , pK) ∈ H it holds that

PX(pk(X) ≤ t) ≤ Ctα, for all t ∈ (0, 1] and all k ∈ {1, . . . ,K}.

The condition always holds for α = 0 and C = 1. If PX(pk(X) = 0) > 0, the
condition does not hold for α > 0. If all functions in a class are lower bounded by a
constant B0, the class is α-SVB for any α with constant C = B−α

0 . More generally,
the index α is completely determined by the behaviour near zero: If for some function
class there exists some 0 < τ ≪ 1, so that the bound holds for α and for all t ∈ (0, τ],
then replacing C by C ′ = max{C, τ−α} guarantees that C ′τα ≥ 1, which in turn
implies that the function class is α-SVB. Moreover, if a function class is α-SVB, then
it is also α∗-SVB for all α∗ ≤ α. This follows immediately by noticing that tα

∗ ≥ tα

for all t ∈ (0, 1]. Increasing the index makes the small value bound condition thus
more restrictive.

To show that the definition of the small value bound makes sense, we have to check
that for any α > 0, there exist conditional class probabilities that are α-SVB for that

26 Chapter 2. multiclass classification

α, but are not α∗-SVB for any larger α∗ > α. To see this, consider the case that X
is uniformly distributed on [0, 1], and that there are three classes K = 3. For given
α > 0, define the function pα : [0, 1] → S3 as p1(x) = min{x1/α, 1/3}, p2(x) = 1/3
and p3(x) = 1− p1(x)− p2(x) = 2/3−min{x1/α, 1/3}. Since p2(x), p3(x) ≥ 1/3, we
have for k = 2, 3 that PX(pk(X) ≤ t) ≤ (3t)α. When k = 1, it holds for t ≤ 1/3 that
PX(p1(X) ≤ t) = PX(X1/α ≤ t) = PX(X ≤ tα) = tα. Hence PX(pk(X) ≤ t) ≤ (3t)α

for k = 1, 2, 3, so pα is α-SVB with constant 3α. Now we show that this function is
not α∗-SVB for any α∗ > α. Let α∗ > α, then for every constant C > 0, there exists
a τC ∈ (0, 1/3) such that C(τC)

α∗
< (τC)

α = PX(p1(X) ≤ τC). Since C is arbitrary,
pα is not α∗-SVB.

The following example provides some insights into the relation between the condi-
tional class probabilities and the distribution of X. Consider the binary case K = 2,
with input domain [0, 1]2, p1(x) = (3|x1+x2−1|8)/4, and p2(x) = 1−p1(x), see Figure
2.1. Observe that 0 ≤ p1(x) ≤ 3/4 for all x ∈ [0, 1]2, so p1(x) and p2(x) indeed define
conditional class probabilities. Furthermore, p2(x) ≥ 1/4, in other words, p2(x) is
bounded away from zero. Thus, to determine the SVB index α, it remains to consider
p1(x). If X is the uniform distribution on [0, 1]2, Proposition 2.C.7 tells us that

PX (p1(X) ≤ t) = 2

(
4t

3

) 1
8

−
(
4t

3

) 1
4

and hence the small value bound is satisfied for α at most 1/8. Now suppose that
instead of the uniform design, the distribution of X is given by the density (x1, x2) 7→
3|x1 + x2 − 1|, see Figure 2.1 for a plot. Thus, the design density is zero if p1(x) is
zero. In this case, Proposition 2.C.7 gives

PX (p1(X) ≤ t) = 3

(
4t

3

) 1
4

− 2

(
4t

3

) 3
8

,

and the SVB index α is at most 1/4.
The following theorem shows the influence of the index α in the small value bound

on the approximation rates.

Theorem 2.3.2. If the function class is α-SVB with constant C, then, for any
approximating function p = (p1, . . . , pk) : [0, 1]

d → SK satisfying ∥p− p0∥∞ ≤ C1/M,
and mink infx∈[0,1]d pk(x) ≥ 1/M, for some constant C1, it holds that

EX

[
(p0(X))⊤ log

(
p0(X)

p(X)

)]
≤ CK

(C1 + 1)2+(α∧1)

M1+(α∧1)

(
1 +

1{α<1}
1− α

+ log(M)
)
.

The proof for this result bounds the Kullback-Leibler divergence by the χ2-
divergence and then distinguishes the cases where the conditional class probabilities are

2.3. Main Results 27

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1 0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) Conditional class probability

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1 0

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

2

2.5

3

(b) Density

Figure 2.1: Plot of the conditional class probability p1(x) = (3|x1 + x2 − 1|8)/4 on the
left and of the density (x1, x2) 7→ 3|x1 + x2 − 1| on the right.

smaller and larger than 1/M. Both terms can be controlled via the α-SVB condition.
The convergence rate becomes faster in M up to α = 1 and is log(M)/M2 for all
α ≥ 1.

The small value bound provides a flexible framework that allows the conditional
class probabilities to be close to zero and therefore generalizes the standard assumption
in the nonparametric classification literature that the conditional class probabilities
are bounded away from zero. Here, we argue that the regime of small conditional
class probabilities is of particular relevance for classification tasks where most of
the information about the class label is contained in the covariates. Indeed, if X
contains all information about the class label Y, then Y |X is deterministic and the
conditional class probability is either zero or one. On the contrary, in situations where
the covariates/input variable X does not contain the full information about the class
label, Y |X is random, and the conditional class probabilities are bounded away from
zero or one. The case of small conditional class probabilities corresponds to a scenario
where the covariates contain most of the information about the class label. These
are classification tasks for which small misclassification errors can be achieved, but
perfect classification is impossible. This is also the regime for which the SVB index α
should be strictly larger than zero. For instance, for the widely used Breast Cancer
Wisconsin (Diagnostic) dataset and Heart Disease dataset from the UCI machine
learning repository [40] the covariates do not contain the full relevant information
about the disease but small misclassification can be achieved. It is therefore conceivable

28 Chapter 2. multiclass classification

that these are prototypical examples for the case α > 0.
The small value bound has a similar flavor as Tsybakov’s margin condition, which

can be stated as PX(0 < |p0(X)− 1/2| ≤ t) ≤ Ctγ for binary classification [5]. The
margin condition provides a control on the number of data points that are close to the
decision boundary {x : p0(x) = 1/2} and that are therefore hard to classify correctly.
Differently speaking, the problem becomes easier if the conditional class probabilities
are either close to zero or one. This is in contrast with the small value bound, which
will lead to faster convergence rates when the true conditional class probabilities are
mostly away from zero. This difference is due to the loss: the 0-1 loss only cares about
predicting the class membership, while the CE loss measures how well the conditional
class probabilities are estimated and puts additional emphasis on small conditional
class probabilities by considering the ratio between prediction and truth.

To obtain estimation rates, we further assume that the underlying true conditional
class probability function p0 belongs to the class of Hölder-smooth functions. For
β > 0 and D ⊂ Rm, the ball of β-Hölder functions with radius Q is defined as

Cβ(D,Q) :=

{
f : D → R :

∑

γ:∥γ∥1<β

∥∂γf∥∞ +
∑

γ:∥γ∥1=⌊β⌋
sup

x,y∈D,x̸=y

|∂γf(x)− ∂γf(y)|
∥x− y∥β−⌊β⌋

∞
≤ Q

}
,

where ∂γ = ∂γ1 . . . ∂γm , with γ = (γ1, . . . , γm) ∈ Nm. The function class G(β,Q) of
β-smooth conditional class probabilities is then defined as

G(β,Q) =
{
p = (p1, · · · , pK)⊤ : [0, 1]d → SK :

pk ∈ Cβ([0, 1]d, Q), k = 1, . . . ,K
}
.

If Q < 1/K, then, ∥p∥∞ ≤ Q implies
∑K

k=1 pk ≤ KQ < 1, so we need Hölder radius
Q ≥ 1/K for this class to be non-empty. Combining the smoothness and the small
value bound, we write Gα(β,Q) = Gα(β,Q,C) for all functions in G(β,Q) that satisfy
the α-SVB condition with constant C. For large enough radius Q and constant C, the
class Gα(β,Q) is non-empty. For example, the constant function p = (1/K, . . . , 1/K)
is in Gα(β,Q) for any β > 0 and α > 0 when Q ≥ 1/K and C ≥ Kα.

For 0 ≤ α ≤ 1 the index from the SVB condition and β the smoothness index, we
introduce the rate

ϕn = K
(1+α)β+(3+α)d

(1+α)β+d n−
(1+α)β

(1+α)β+d .

2.3. Main Results 29

Theorem 2.3.3 (Main Risk Bound). Consider the multiclass classification model
with p0 ∈ Gα(β,Q), 0 ≤ α ≤ 1, and n > 1. Let p̂ be an estimator taking values in the
network class FΦ(L,m, s) satisfying
(i) A(d, β) log2(n) ≤ L ≲ nϕn,
(ii) mini=1,··· ,Lmi ≳ nϕn,
(iii) s ≍ nϕn log(n)
for a suitable constant A(d, β). If n is sufficiently large, then, there exist constants
C ′, C ′′ only depending on α,C, β, d, such that whenever ∆n(p̂,p0) ≤ C ′′BϕnL log2(n)
then

RB(p0, p̂) ≤ C ′BϕnL log2(n).

An explicit expression for the constant A(d, β) can be derived from the proof. The
risk bound depends linearly on B. Choosing, for instance, B = O(log(n)) leads only
to an additional logarithmic factor in the convergence rate. The risk bound grows

with K
(1+α)β+(3+α)d

(1+α)β+d in the number of classes. Thus for large β, we obtain a near
linear dependence on K. The worst behavior occurs for α = 1 and d large. Then the
dependence on the number of classes is essentially of the order K4.

When the estimator p̂ is guaranteed to have output in [e−B , 1]K , the truncation
parameter B in the risk has no effect. The proof of the approximation properties
is done by the construction of a softmax-network ĝ with the property that ĝ(x) ≳

K
−(2+α)β
(1+α)β+dn−

β
(1+α)β+d , for all x ∈ [0, 1]d. This means that we can pick B ≍ log(n) such

that ĝ(x) ≥ e−B and restrict the class FΦ(L,m, s) to networks that are guaranteed to
have output in [e−B , 1]K . The proof of Theorem 2.3.3 can be extended for this setting
and implies a risk bound for the Kullback-Leibler risk of the form

EDn,X

[
KL
(
p0(X), p̂(X)

)]
≤ C ′′′ϕnL log3(n),

for some constant C ′′′. Thus Theorem 2.3.3 provides us with rates for the Kullback-
Leibler risk when the networks outputs are guaranteed to be sufficiently large, while
still providing a bound for the truncated Kullback-Leibler risk when no such guarantee
can be given.

When the input dimension d is large, the obtained convergence rates become
slow. A possibility to circumvent this curse of dimensionality is to assume additional
structure on p0. For nonparametric regression, [62, 72, 11, 127, 75] show that under
a composition assumption on the regression function, neural networks can exploit
this structure to obtain fast convergence rates that are unaffected by the curse of
dimensionality. It is conceivable that for various classification problems, such an
underlying composition structure is present. For instance to classify an email as
spam, the hierarchical structure is important and decision trees that are adapted to
such structures work well, see Section 9.2.5 in [56]. In image classification it is often

30 Chapter 2. multiclass classification

assumed that an image can be constructed from compositions of simpler features; for
example a square is built from lines and can itself be used as component of more
complicated shapes.

It is possible to incorporate a composition assumption on the conditional class
probabilities within the considered framework. As our approximation result already
depends on Theorem 5 of [127] it is relatively straightforward to sketch how the
additional composition assumption can help to deal with the curse of dimensionality.
Consider the class of functions that satisfy the composition assumption in [127]

Gcomp(r,d, t,β, Q) :=
{
f = gr ◦ · · · ◦ g0 : gi = (gij)j : [ai, bi]

di → [ai+1, bi+1]
di+1 ,

gij ∈ Cβi([ai, bi]
ti , Q) for some |ai|, |bi| ≤ Q

}
.

Here ti is the maximal number of variables on which each of the component functions
gij may depend on. For specific structural assumptions, such as generalized additive
models and sparse tensor decompositions, ti can be much smaller than the input
dimension d, [127].

In our setting the composition constraint can be incorporated by assuming that
each of the conditional class probabilities p1, . . . , pK lies in the class Gcomp(r,d, t,β, Q).
Define the effective smoothness indices as β∗

i := βi
∏r

ℓ=i+1(βℓ ∧ 1). By approximating
these composition functions by neural networks as in the proof of Theorem 1 of [127]
in place of Theorem 5 of the same article, one can then obtain the rate

ϕn = max
i=0,··· ,r

K
(1+α)β∗

i +(3+α)ti
(1+α)β∗

i
ti n

− (1+α)β∗
i

(1+α)β∗
i
+ti .

Let us briefly summarize the related literature. Convergence rates for neural
networks in (binary) classification have recently been studied in [67, 74, 76, 134, 111]
in various settings. [67] derives convergence rates for the 0− 1 loss based on different
surrogate losses and assumptions. For the hinge loss as surrogate loss, the margin
condition in combination with smoothness conditions on the decision boundary as well
as smoothness conditions on the conditional class probabilities are studied. Moreover,
the logistic loss is analyzed under a condition that requires the conditional class
probabilities to be near zero or one combined with smoothness conditions on the
decision boundary. Convergence rates for the 0 − 1 loss for convolutional neural
networks are studied in [74, 76]. Both papers assume smoothness conditions on the
conditional class probabilities and impose a max-pooling structure assumption for the
conditional class probability that is related to the structure of convolutional networks.
In [74] the least squares loss is used as a surrogate loss, while [76] uses the logistic loss as
surrogate loss. More recently, [134] studied the convergence rates for convex Lipschitz

2.3. Main Results 31

losses of convolutional neural networks in binary classification under a submanifold
condition. The framework includes least squares loss, hinge loss, truncated logistic
loss and truncated exponential loss. In the truncated cases, the minimizers are also
truncated. Furthermore, [111] studies convergence rates for the 0 − 1 loss with the
hinge loss as surrogate loss, in the case that the model is deterministic and that the
decision boundary is Barron regular.

2.3.1 Relationship with Hellinger distance

The multiclass classification problem can be written as statistical model (Qp,p ∈
F), where F is the parameter space, p is the unknown vector of conditional class
probabilities and Qp denotes the data distribution if the data are generated from
the conditional class probabilities p. The squared Hellinger distance H(P,Q)2 =
1
2

∫
(
√
dP −√

dQ)2, with P and Q probability measures on the same probability space,
induces in a natural way a loss function on such a statistical model by associating
to the two parameters p and p′ the loss H(Qp, Qp′). The Hellinger loss function
has been widely studied in the context of nonparametric variations of the maximum
likelihood principle, mainly for the related nonparametric density estimation problem,
[158, 147, 148]. The log-likelihood is closely related to the Kullback-Leibler divergence,
which in turn is related to the Hellinger distance by the inequality H(P,Q)2 ≤
KL(P,Q), see for example [146]. The Kullback-Leibler divergence cannot be upper
bounded by the squared Hellinger distance in general, although there exists conditions
under which such a bound can be established, see for example Theorem 5 of [158] and
Lemma 2.3.4 below.

In density estimation, the nonparametric MLE achieves in some regimes optimal
rates with respect to the Hellinger distance for convex estimator classes or if the
densities (or sieve estimators) are uniformly bounded away from zero, see [157, 158]
and Chapters 7 and 10 in [147]. Neural network function classes are not convex and,
as argued before, there are many applications in the deep learning literature, where
the conditional class probabilities are very small or even zero. Thus, these general
results are not applicable in our setting.

On the contrary, the convergence rates established above for the truncated Kullback-
Leibler divergence imply convergence with respect to the Hellinger loss. This relation-
ship is made precise in the next result.

Lemma 2.3.4. Let P and Q be two probability measures defined on the same measur-
able space. For any B ≥ 2,

H2(P,Q) ≤ 1

2
KL2(P,Q) ≤ 1

2
KLB(P,Q) ≤ 2eB/2H2(P,Q).

32 Chapter 2. multiclass classification

For the proof see Appendix 2.C. The upper bound on the truncated Kullback-Leibler
divergence is related to the inequalities that bound the Kullback-Leibler divergence
by the squared Hellinger distance under the assumption of a bounded likelihood ratio,
such as (7.6) in [20] or Lemma 4 in [57].

Combining the previous lemma and Theorem 2.3.3 with B = 2 gives

EDn

[∫

[0,1]d

K∑

j=1

(√
p0j (x)−

√
p̂j(x)

)2
dPX(x)

]
≤ 2C ′ϕnL log2(n), (2.3.1)

whenever ∆n(p̂,p0) ≤ C ′′BϕnL log2(n).
We can also use the relation with the Hellinger distance to show that for α = 1, we

obtain a near minimax optimal convergence rate. Indeed n−
2β

2β+d is the optimal rate
for the squared Hellinger distance. For references see for instance Example 7.4.1 of
[147] for univariate densities bounded away from zero; the entropy bounds in Theorem
2.7.1. together with Proposition 1 of [159] for densities bounded away from zero; or
the entropy bounds in Theorem 2.7.1. and Equation (3.4.5) of [148] together with
Chapter 2.3. of [159] for densities p for which

∫
1
p is bounded. Since the squared

Hellinger distance can be upper bounded by the Kullback-Leibler divergence, the rate

n−
2β

2β+d is also a lower bound for the Kullback-Leibler risk. Since this rate is achieved
for α = 1, it is clear that no further gain in the convergence rate can be expected
for α > 1. For α ≥ 1, the rate of convergence is up to log(n)-factors the same as in
Theorem 5 of [158] and also the conditions are comparable.

It is instructive to relate the global convergence rates to pointwise convergence.
Recall that for real numbers a, b, we have (

√
a−

√
b)2 = (a− b)2/(

√
a+

√
b)2. If PX

has a Lebesgue density that is bounded on [0, 1]d from below and above and if we
choose L of the order O(log n), (2.3.1) indicates that on a large subset of [0, 1]d, we
can expect a pointwise distance

∣∣∣p0j (x)− p̂j(x)
∣∣∣ ≲

∣∣∣
√
p0j (x) +

√
p̂j(x)

∣∣∣K
(1+α/2)d
(1+α)β+dn−

(1+α)β
2(1+α)β+2d log3/2(n).

The pointwise convergence rate gets therefore faster if the conditional class probabilities
are small. In the most extreme case, p0j (x) = 0, the previous bound becomes

∣∣∣p0j (x)− p̂j(x)
∣∣∣ ≲ K

(2+α)d
(1+α)β+dn−

(1+α)β
(1+α)β+d log3(n).

Since n−(1+α)β/((1+α)β+d) ≪ n−β/(2β+d), this rate can be much faster than the classical
nonparametric rate for pointwise estimation n−β/(2β+d). The gain gets accentuated
as the index α increases. A large index α in the SVB bound can be chosen if the
conditional class probabilities are rarely small or zero. Hence there is a trade-off and
the regions on which a faster rate can be obtained are thus smaller.

2.3. Main Results 33

2.3.2 Oracle Inequality

The risk bound of Theorem 2.3.3 relies on an oracle-type inequality. Before we can
state this inequality we first need some definitions. Given a function class of conditional
class probabilities F , we denote by log(F) the function class containing all functions
that can be obtained by applying the logarithm coefficient-wise to functions from F ,
that is,

log(F) =
{
g = log(f) : f ∈ F

}
.

Next we define a family of pseudometrics. Recall that a pseudometric is a metric
without the condition that d(f, g) = 0 implies f = g. For a real number τ and
f ,g : D → RK , set

dτ (f ,g) := sup
x∈D

max
k=1,··· ,K

|(τ ∨ fk(x))− (τ ∨ gk(x))|.

Lemma 2.C.3 in the appendix verifies that this indeed defines a pseudometric. For
τ = −∞, dτ (f ,g) coincides with the L∞-norm as defined in the notation section.

Denote by N (δ,F , d(·, ·)) the δ interior covering number of a function class F with
respect to a (pseudo)metric d(., .). For interior coverings, the centers of the balls of
any cover are required to be inside the function class F . Triangle inequality shows
that any (exterior) δ-cover can be used to construct an interior cover with the same
number of balls, but with radius 2δ instead of δ.

Theorem 2.3.5 (Oracle Inequality). Let F be a class of conditional class probabilities
and p̂ be any estimator taking values in F . If B ≥ 2 and Nn = N (δ, log(F), dτ (·, ·)) ≥ 3
for τ = log(Cne

−B/n), then

RB(p0, p̂) ≤ (1 + ϵ)

(
inf
p∈F

R(p0,p) + ∆n(p0, p̂) + 3δ

)

+
(1 + ϵ)2

ϵ
·
68B log(Nn) + 272B + (3/2)CnK

(
log
(

n
Cn

)
+B

)

n
,

for all δ, ϵ ∈ (0, 1], 0 < Cn ≤ ne−1 and ∆n(p0, p̂) as defined in (2.2.2).

The proof of this oracle inequality is a non-trivial variation of the proof for the
oracle inequality in the regression model [127]. The statement seems to suggest to pick
a small Cn. Then, however, also τ will be small, and dτ becomes a stronger metric
possibly leading to an increase of the covering number Nn.

We can also replace the covering number of log(F) by the covering number of F
in the oracle inequality:

34 Chapter 2. multiclass classification

Corollary 2.3.6. Denote Ñn := N (δCne
−B/n,F , dτ (·, ·)), with τ = Cne

−B/n. Un-
der the conditions of Theorem 2.3.5, it holds that

RB(p0, p̂) ≤ (1 + ϵ)

(
inf
p∈F

R(p0,p) + ∆n(p0, p̂) + 3δ

)

+
(1 + ϵ)2

ϵ
· 68B log(Ñn) + 272B + (3/2)CnK(log(n/Cn) +B)

n
,

for all δ, ϵ ∈ (0, 1], 0 < Cn ≤ ne−1 and ∆n(p0, p̂) as defined in (2.2.2).

Let us briefly discuss some ideas underlying the proof of the oracle inequality. For
simplicity, assume that p̂ is the MLE over a class F and that p0 ∈ F . By the definition
of the MLE p̂, we have that − 1

n

∑n
i=1 Y

⊤
i log(p̂(Xi)) ≤ − 1

n

∑n
i=1 Y

⊤
i log(p0(Xi)).

Taking expectation on both sides, one can then show that for any B ≥ 0,

EDn

[1
n

n∑

i=1

p0(Xi)
⊤
(
B ∧ log

(p0(Xi)

p̂(Xi)

))]

≤ EDn

[1
n

n∑

i=1

(
p0(Xi)−Yi

)⊤(
B ∧ log

(p0(Xi)

p̂(Xi)

))]
.

Using standard empirical process arguments, the right hand side can be roughly upper
bounded by EDn

[maxj
1
n

∑n
i=1(p0(Xi)−Yi)

⊤(B ∧ log(p0(Xi)/pj(Xi)))], where the
maximum is over all centers of an ε-covering of F for a sufficiently small ε. Since
EDn

[Yi|Xi] = p0(Xi), this is the maximum over a centered process. Using empirical
process theory a second time, the left hand side of the previous display can be shown
to converge to the statistical risk RB(p0, p̂) = EDn,X[KLB(p0(X), p̂(X))].

To apply Bernstein’s inequality we need to bound the moments of the random
variables in the empirical process. For that we have derived the following inequality
that relates the m-th moment to the truncated Kullback-Leibler divergence and also
shows the effect of the truncation level B.

Lemma 2.3.7. If B > 1 and m = 2, 3, . . . , then, for any two probability vectors
(p1, . . . , pK) and (q1, . . . , qK), we have

K∑

k=1

pk

∣∣∣∣B ∧ log

(
pk
qk

)∣∣∣∣
m

≤ max

{
m!,

Bm

B − 1

} K∑

k=1

pk

(
B ∧ log

(
pk
qk

))
.

In order to use the oracle inequality for deep ReLU networks with softmax activation
in the output layer, we now state a bound on the covering number of these classes.
The bound and its proof are a slight modification of Lemma 5 in [127].

2.4. Proofs 35

Lemma 2.3.8. If V :=
∏L+1

ℓ=0 (mℓ + 1), then for every δ > 0,

N (δ, log(FΦ(L,m, s)), ∥ · ∥∞) ≤
(
4δ−1K(L+ 1)V 2

)s+1
,

and

logN (δ, log(FΦ(L,m, s)), ∥ · ∥∞) ≤ (s+ 1) log(22L+6δ−1(L+ 1)K3d2sL).

The second bound follows from the first by removing inactive nodes, Proposition
2.A.1, and taking the logarithm. The full proof can be found in Appendix 2.C.

The proof of the main risk bound in Theorem 2.3.3 is based on the oracle inequality
derived above. To bound the individual error terms, we apply the approximation
theory developed in Theorem 2.3.2 and Lemma 2.4.3 as well as the previous bound on
the metric entropy. This shows that for any M > 1, the truncated Kullback-Leibler
risk for a network class with depth L, width ≳ KMd/β and sparsity s ≲ KMd/β can
be bounded by

RB(p0, p̂) ≲ K3+α log(M)

M1+α
+KMd/βL

log2(n)

n
+∆n(p̂,p0).

Balancing the terms K3+α/M1+α and KMd/β leads to M ≍ K
(2+α)β

(1+α)β+dn
β

(1+α)β+d and
for small ∆n(p̂,p0), we get the rate

RB(p0, p̂) ≲ K
(1+α)β+(3+α)d

(1+α)β+d n−
(1+α)β

(1+α)β+dL log2(n)

in Theorem 2.3.3.

2.4 Proofs

Proof of Lemma 2.2.1. Consider the event An := {(Xi,Yi) ∈ ([0, 1/3]d × (1, 0)⊤) ∪
([2/3, 1]d × (0, 1)⊤), for all i = 1, . . . , n}. Recall that 0 log(0) = 0. On the event An,
for any p(x) = (p1(x), p2(x))

⊤ such that p1(x) = 0 for all x ∈ [0, 1/3]d and p1(x) = 1
for all x ∈ [2/3, 1]d, we have that ℓ(p,Dn) = 0, where ℓ(p,Dn) is the negative log-
likelihood as defined in (2.2.1). Since the CE loss is nonnegative, any such p in the
class F is a MLE on this event. Since P(An) > 0, it follows that

EDn,X

[
p0(X)⊤ log

(p0(X)

p̂(X)

)]
≥ EDn

[
1(An)

∫

[0,1]d
p0(u)

⊤ log
(p0(u)

p̂(u)

)
du

]

= ∞ · P(An)

= ∞.

36 Chapter 2. multiclass classification

2.4.1 Approximation related results

This section is devoted to the proof of Theorem 2.3.3. First we construct a neural
network that approximates p0 in terms of the L∞-norm and is bounded away from zero.
Afterwards we prove Theorem 2.3.2 relating the previously derived approximation
theory to a bound on the approximation error in terms of the expected Kullback-Leibler
divergence. We finish the proof combining this network with the new oracle inequality
(Theorem 2.3.5) and an entropy bound for classes of neural networks with a softmax
function in the output layer, Lemma 2.3.8. Recall that Fid(L,m, s) denotes the neural
network class with L hidden layers, width vector m, network sparsity s and identity
activation function in the output layer.

Theorem 2.4.1. For all M ≥ 2 and β > 0 there exists a neural network G ∈
Fid(L,m, s), with
(i) L = ⌊40(β + 2)2 log2(M)⌋,
(ii) m = (1, ⌊48⌈β⌉32βM1/β⌋, · · · , ⌊48⌈β⌉32βM1/β⌋, 1),
(iii) s ≤ 4284(β + 2)52βM1/β log2(M),
such that for any x ∈ [0, 1],

∣∣eG(x) − x
∣∣ ≤ 4

M
and G(x) ≥ log

(4

M

)
.

The proof of this theorem can be found in Appendix 2.B. To approximate Hölder
functions we use Theorem 5 from [127] with m equal to ⌈log2(M))(d/β + 1)⌉. We
state here a variation of that theorem in our notation using weaker upper bounds to
simplify the expressions for the network size. These upper bounds can be deduced
directly from the depth-synchronization and network enlarging properties of neural
networks stated in Section 2.A.1. Set

CQ,β,d := (2Q+ 1)(1 + d2 + β2)6d +Q3β .

Theorem 2.4.2. For every function f ∈ G(β,Q) and everyM > (β+1)β∨(Q+1)β/deβ ,
there exist neural networks Hk ∈ Fid(L,m, s) with
(i) L = 3⌈log2(M)(d/β + 1)⌉(1 + ⌈log2(d ∨ β)⌉),
(ii) m = (d, 6(d+ ⌈β⌉)⌊Md/β⌋, · · · , 6(d+ ⌈β⌉)⌊Md/β⌋, 1),
(iii) s ≤ 423(d+ β + 1)3+dMd/β log2(M))(d/β + 1),
such that ∥∥Hk − f0k

∥∥
∞ ≤ CQ,β,d

M
, ∀k ∈ {1, · · · ,K}.

Here the M is chosen such that Md/β ≍ N, where N is as defined in Theorem 5 of
[127].

2.4. Proofs 37

Without loss of generality we can assume that the output of the Hk networks lies
in [0, 1]. Indeed if this would not be the case, then the projection-layer that we use
later on in our proof will guarantee that it is in this interval. This will not increase
the error since the functions f0k only take values in [0, 1].

To obtain a neural network with softmax output, the next lemma combines the
neural network constructions from the previous two theorems and replaces the output
with a softmax function.

Lemma 2.4.3. For every function f ∈ G(β,Q) and every M > K(4 + CQ,β,d) ∨ (β +
1)β ∨ (Q+ 1)β/deβ, there exists a neural network q̃ ∈ FΦ(L,m, s), with

(i) L = 3⌈log2(M)(d/β + 1)⌉(1 + ⌈log2(d+ β)⌉) + ⌊40(β + 2)2 log2(M)⌋+ 2,

(ii) m =
(
d, ⌊48K(d+ ⌈β⌉3)2βMd/β⌋, · · · , ⌊48K(d+ ⌈β⌉3)2βMd/β⌋,K

)
,

(iii) s ≤ 4707K(d+ β + 1)4+d2βMd/β log2(M))(d/β + 1),

such that,

∥q̃k − p0∥∞ ≤ 2K(4 + CQ,β,d)

M
,

and

q̃k(x) ≥
1

M
, ∀ k ∈ {1, · · · ,K}, ∀x ∈ [0, 1]d.

Proof. Composing the neural networks in Theorem 2.4.1 and Theorem 2.4.2 results in
a neural network G = (G(H1), · · · , G(HK)) such that for any k = 1, · · · ,K,

∥∥eG(Hk) − p0k
∥∥
∞ ≤

∥∥eG(Hk) −Hk

∥∥
∞ +

∥∥Hk − p0k
∥∥
∞ ≤ 4 + CQ,β,d

M
.

Define now the vector valued function q̃ component-wise by

q̃k(x) =
eG(Hk(x))

∑K
j=1 e

G(Hj(x))
, k = 1, · · · ,K.

Applying the composition (2.A.2), depth synchronization (2.A.3) and parallelization
rules (2.A.4) it follows that q̃ ∈ FΦ(L,m, s). To bound ∥q̃k − p0k∥∞, we use that
p0 = (p01, · · · , p0K) is a probability vector, eG(Hj) ≥ 0 for j = 1, · · · , k and triangle

38 Chapter 2. multiclass classification

inequality, to obtain

∥∥q̃k − p0k
∥∥
∞ ≤

∥∥∥∥∥e
G(Hk)

(
1

∑K
j=1 e

G(Hj)
− 1

)∥∥∥∥∥
∞

+
∥∥∥eG(Hk) − p0k

∥∥∥
∞

=

∥∥∥∥∥e
G(Hk)

(∑K
ℓ=1 p

0
ℓ∑K

j=1 e
G(Hj)

−
∑K

ℓ=1 e
G(Hℓ)

∑K
j=1 e

G(Hj)

)∥∥∥∥∥
∞

+
∥∥∥eG(Hk) − p0k

∥∥∥
∞

≤
(K∑

ℓ=1

∥∥∥p0ℓ − eG(Hℓ)
∥∥∥
∞

)∥∥∥∥∥
eG(Hk(·))

∑K
j=1 e

G(Hj)

∥∥∥∥∥
∞

+
∥∥∥eG(Hk) − p0k

∥∥∥
∞

≤ (K + 1)(4 + CQ,β,d)

M
≤ 2K(4 + CQ,β,d)

M
.

For the second bound of the lemma, notice that from the first bound of the lemma
and the second bound of Theorem 2.4.1 it follows that

q̃k(x) ≥
4
M∑K

j=1 e
G(Hj(x))

≥
4
M

1 +K
(4+CQ,β,d)

M

=
4

M +K(4 + CQ,β,d)
≥ 1

M
,

where for the second inequality we used that pj(x) ≤ 1, so eG(Hj(x)) ≤ p0j(x) + (4 +
CQ,β,d)/M and for the last inequality we used that M ≥ K(4 + CQ,β,d).

The Kullback-Leibler divergence can be upper bounded by the χ2-divergence, see
for instance Lemma 2.7 in [146]. Thus,

EX

[
(p0(X))⊤ log

(
p0(X)

q̃(X)

)]
≤ EX

[
K∑

k=1

(p0k(X)− q̃k(X))2

q̃k(X)

]
.

To control the approximation error, we can combine this bound with the first bound
of Lemma 2.4.3 to conclude that if p0k(X) > 2K(4 + CQ,β,d)/M, then

(p0k(X)− q̃k(X))2

q̃k(X)
≤ 4K2(4 + CQ,β,d)

2

M2

(
p0k(X)− 2K(4 + CQ,β,d)

M

)−1

.

On the other hand, combining the bound with the second inequality from the same
lemma yields

(p0k(X)− q̃k(X))2

q̃k(X)

≤
K∑

k=1

4K2(4 + CQ,β,d)
2

M2

(
max

{
p0k(X)− 2K(4 + CQ,β,d)

M
,
1

M

})−1

,

2.4. Proofs 39

which is valid for all possible values of p0(x) ∈ [0, 1]k. As M tends to infinity,
p0k(x) − 2K(4 + CQ,β,d)/M tends to p0k(x), while 1/M tends to zero. Without any
further conditions on p0k(X) this bound is thus of order M−1. The small value bound,
however, allows us to obtain an upper bound with better behaviour inM. The following
proposition employs the small value bound to control the expectation of (p0k(x))

−1 on
the set that p0k(x) exceeds some threshold value H.

Proposition 2.4.4. Assume there exists an α ≥ 0 and a finite constant C <∞, such
that for p = (p1, . . . , pK) : D → SK we have PX(pk(X) ≤ t) ≤ Ctα for all t ≥ 0 and
k ∈ {1, . . . ,K}. Let H ∈ [0, 1]. Then it holds that

∫

{pk(x)≥H}

1

pk(x)
dPX(x) ≤

{
CHα−1

1−α , if α ∈ [0, 1),

C(1− log(H)), if α ≥ 1.

Proof. Observe that pk(X) is a probability. Therefore, pk(X) ≤ 1 and consequently
C ≥ 1. For any nonnegative function h and random variable Z ∼ PZ , we have∫
h(Z) dPZ = E[h(Z)] =

∫∞
0

PZ(h(Z) ≥ u) du. Hence

∫

{pk(x)≥H}

1

pk(x)
dPX(x) =

∫ ∞

0

PX

(
1

pk(X)
1{pk(X)≥H} ≥ u

)
du

≤
∫ 1

H

0

PX

(
pk(X) ≤ 1

u

)
du,

where the inequality follows from observing that 1
pk(X)1{pk(X)≥H} ≥ u implies H ≤

pk(X) ≤ 1
u and u ≤ 1/H.

If α = 0, we use the trivial bound PX(pk(x) ≤ t) ≤ 1, for all t ∈ [0, 1], and obtain

∫ 1
H

0

PX

(
pk(X) ≤ 1

u

)
du ≤

∫ 1
H

0

1 du =
1

H
.

If 0 < α < 1, we can invoke the assumption of this proposition to obtain

∫ 1
H

0

PX

(
pk(X) ≤ 1

u

)
du ≤ C

∫ 1
H

0

u−α du =
CHα−1

1− α
.

For α ≥ 1, we have PX(pk(X) ≤ t) ≤ Ct for all 0 ≤ t ≤ 1. If moreover C ≤ H−1, the
inequality PX(pk(X) ≤ t) ≤ min{1, Ct} leads to

∫ 1
H

0

PX

(
pk(X) ≤ 1

u

)
du ≤

∫ C

0

1 du+ C

∫ 1
H

C

1

u
du

= C + C(− log(H)− log(C)).

40 Chapter 2. multiclass classification

If α ≥ 1 and C ≥ H−1, we can upper bound the integral by
∫ C

0
1 du = C. The result

of the proposition now follows from simplifying the expressions using that C ≥ 1.

We can now state and prove the main approximation bound.

Proof of Theorem 2.3.2. The condition ∥p − p0∥∞ ≤ C1/M implies that pk(x) ≥
p0k(x)− C1/M. Combined with pk(x) ≥ 1/M, this gives

pk(x) ≥
(
p0k(x)−

C1

M

)
∨ 1

M
≥ p0k(x)

C1 + 1
∨ 1

M
,

where we used that p0k(x) ≥ (C1 + 1)/M = ((C1 + 1)/C1) · (C1/M) implies

p0k(x)−
C1

M
≥ p0k(x)

(
1− C1

C1 + 1

)
=

p0k(x)

C1 + 1
.

This gives rise to the upper bound

(p0k(X)− pk(X))2

pk(X)
≤ C2

1

M
1{p0

k(x)≤
C1+1

M } +
C2

1

M2
· C1 + 1

p0k(x)
1{p0

k(x)≥
C1+1

M }.

Taking the expectation over the right hand side yields

C2
1

M
PX

(
p0k(x) ≤

C1 + 1

M

)
+
C2

1 (C1 + 1)

M2

∫

{p0
k(x)≥

C1+1
M }

1

p0k(x)
dPX(x)

By the α-SVB condition the first term is upper bounded by

C2
1

M
PX

(
p0k(x) ≤

C1 + 1

M

)
≤ C2

1C

M

(
C1 + 1

M

)α∧1

≤ C
(C1 + 1)2+(α∧1)

M1+(α∧1)
.

Applying Proposition 2.4.4 with H = (C1 + 1)/M to the second term yields the
result.

Now we have all the ingredients to complete the proof of the main theorem.

Proof of Theorem 2.3.3. Take δ = n−1 and ϵ = Cn = 1 in Theorem 2.3.5. Using that
dτ is upper bounded by the sup-norm distance together with Lemma 2.3.8 gives

RB(p0, p̂) ≤ 2

(
inf
p∈F

R(p0,p) + ∆n(p0, p̂) +
3

n

)

+ 4 · 68B(s+ 1) log(22L+6n(L+ 1)K3d2sL) + 272B + (3/2)K(log(n) +B)

n
. (2.4.1)

2.4. Proofs 41

Recall that 0 ≤ α ≤ 1 is the index from the SVB condition. We now choose M =

⌊cK
(2+α)β

(1+α)β+dn
β

(1+α)β+d ⌋ for a small constant c chosen below. To apply Lemma 2.4.3, we
need to show that M ≫ K. To see this, observe that RB(p0, p̂) ≤ B and therefore the

convergence rate becomes trivial if ϕn ≥ 1. Using that ϕn = K
(1+α)β+(3+α)d

(1+α)β+d n−
(1+α)β

(1+α)β+d ,

this implies K ≤ n
(1+α)β

(1+α)β+(3+α)d ≤ n
β

β+2d ≤ n
β
2d . Hence, Kd−β ≪ nβ and thus also

M ≫ K.
For this choice of M, the network q̃ from Lemma 2.4.3 is in the network class

FΦ(L,m, s), where L = 3⌈log2(M)(d/β + 1)⌉(1+⌈log2(d+ β)⌉)+⌊40(β + 2)2 log2(M)⌋
+ 2, the maximum width of the hidden layers is bounded by ≲ Kcd/βMd/β = cd/βnϕn
and similarly s ≲ Kcd/βMd/β log2(M) = cd/βnϕn log2(M). In particular, by tak-
ing c sufficiently small and using the depth synchronization property (2.A.3), q̃ ∈
FΦ(L,m, s), whenever A(d, β) log2(n) ≤ L ≲ nϕn, for a suitable constant A(d, β), the
maximum width is ≳ nϕn and s ≍ nϕn log(n). We now apply Theorem 2.3.2 with
C1 = 2K(4 + CQ,β,d). Using that C1 + 1 = 2K(4 + CQ,β,d) + 1 ≤ 2K(5 + CQ,β,d), we
find

inf
p∈F

R(p0,p) ≤ 8CK3+α (5 + CQ,β,d)
3

M1+α

(
1 +

1{α<1}
1− α

+ log(M)
)
≲ ϕn log(n).

Together with (2.4.1) and s ≍ nϕn log(n), the statement of Theorem 2.3.3 follows.

2.4.2 Oracle inequality related results

In this section we prove Theorem 2.3.5. For B > 0, consider

RB,n(p0, p̂) := EDn

[1
n

n∑

i=1

Y⊤
i

(
B ∧ log

(p0(Xi)

p̂(Xi)

)]
.

The next proposition shows how this risk is related to the approximation error and the
quantity ∆n(p0, p̂) defined in (2.2.2) that measures the empirical distance between an
arbitrary estimator and an empirical risk minimizer.

Proposition 2.4.5. For any estimator p̂ ∈ F ,

RB,n(p0, p̂) ≤ R∞,n(p0, p̂) ≤ inf
p∈F

R(p0,p) + ∆n(p0, p̂).

Proof. The first inequality follows from a ≥ min(a, b), for all a, b ∈ R. To prove the
second inequality, fix a p∗ ∈ F . Using that ∆n(p0,p

∗) ≥ 0 and

EDn

[
Y⊤

i log(p∗(Xi))
]
= EDn

[
EDn [Y

⊤
i |Xi] log(p

∗(Xi))
]

= EDn

[
p0(Xi)

⊤ log(p∗(Xi))
]
,

42 Chapter 2. multiclass classification

we get

EDn

[
− 1

n

n∑

i=1

Y⊤
i log(p̂(Xi))

]
≤ EDn

[
− 1

n

n∑

i=1

Y⊤
i log(p̂(Xi))

]
+∆n(p0,p

∗)

= EDn

[
− 1

n

n∑

i=1

Y⊤
i log(p∗(Xi))

]
+∆n(p0, p̂)

= EX

[
− p⊤

0 (X) log(p∗(X))
]
+∆n(p0, p̂).

As this holds for all p∗ ∈ F , we can take on the right hand side also the infimum
over all p∗ ∈ F . To complete the proof for the second inequality, we add to both sides
EDn [Y

⊤
i log(p0(Xi))] = EDn [p0(Xi)

⊤ log(p0(Xi))].

The truncation level B allows us to split the statistical risk into multiple parts
that can be controlled separately. The following lemma provides a bound on the event
that p0k(X) is small.

Lemma 2.4.6. Let F be a class of conditional class probabilities, p̂ be any estimator
taking values in F , (X,Y) be a random pair with the same distribution as (X1,Y1)
and Cn ∈ (0, n/e]. Then, for any i ∈ {1, · · · , n}, and any k ∈ {1, · · · ,K}, we have

∣∣∣∣EDn,(X,Y)

[
Y k1{p0

k(X)≤Cn
n }

(
B ∧ log

(p0k(X)

p̂k(X)

))]∣∣∣∣ ≤
Cn

(
log
(

n
Cn

)
+B

)

n
.

Proof. Since p0, p̂ ∈ [0, 1]K , we have

log(p0k(X)) ≤ B ∧ log
(p0k(X)

p̂k(X)

)
≤ B. (2.4.2)

Using that a ≤ x ≤ b implies |x| ≤ max{|a|, |b|} ≤ |a|+ |b| and Yk ≥ 0, we can get an
upper bound that does not depend on p̂

∣∣∣∣EDn,(X,Y)

[
Y k1{p0

k(X)≤Cn
n }

(
B ∧ log

(p0k(X)

p̂k(X)

))]∣∣∣∣

≤ E(X,Y)

[
Y k1{p0

k(X)≤Cn
n }
∣∣log(p0k(X))

∣∣
]
+ E(X,Y)

[
Y k1{p0

k(X)≤Cn
n }B

]

= EX

[
p0k(X)1{p0

k(X)≤Cn
n }
∣∣log(p0k(X))

∣∣
]
+ EX

[
p0k(X)1{p0

k(X)≤Cn
n }B

]
,

where the last equality follows from conditioning on X. Using that the function
u 7→ u| log(u)| is monotone increasing on (0, e−1) and n ≥ eCn, yields

∣∣∣∣EDn,(X,Y)

[
Y k1{p0

k(X)≤Cn
n }

(
B ∧ log

(p0k(X)

p̂k(X)

))]∣∣∣∣ ≤
Cn

(
log
(

n
Cn

)
+B

)

n
.

2.4. Proofs 43

Corollary 2.4.7. Under the conditions of Lemma 2.4.6 it holds that

−Cn log(n/Cn)

n
≤ EDn,(X,Y)

[
Y k1{p0

k(X)≤Cn
n }

(
B ∧ log

(p0k(X)

p̂k(X)

))]
≤ CnB

n
.

Proof. The lower and upper bound can be obtained from (2.4.2), Y k ≥ 0 and the fact
that u 7→ u log(u) is monotone decreasing on (0, e−1).

Both Lemma 2.4.6 and Corollary 2.4.7 do not require that the random pair (X,Y) is
independent of the data. Specifically, they also hold in the case that (X,Y) = (Xi,Yi)
for some i ∈ {1, · · · , n}.

Proof of Theorem 2.3.5. For ease of notation set

(
B ∧ log

(p0(Xi)

p̂(Xi)

))
≥Cn/n

to denote the vector with coefficients

1{p0
k(Xi)≥Cn

n }

(
B ∧ log

(p0k(Xi)

p̂k(Xi)

))
, k = 1, . . . ,K.

For i.i.d. random pairs (X̃i, Ỹi), i = 1, · · · , n with joint distribution P that are

generated independently of the data sample define D′
n := {(Xi,Yi)i, (X̃i, Ỹi)i}. Then,

for any Cn > 0,

|RB(p0, p̂)−RB,n(p0, p̂)|

=

∣∣∣∣∣ED′
n

[
1

n

n∑

i=1

K∑

k=1

Ỹi,k

(
B ∧ log

(p0k(X̃i)

p̂k(X̃i)

))

− 1

n

n∑

i=1

K∑

k=1

Yi,k

(
B ∧ log

(p0k(Xi)

p̂k(Xi)

))]∣∣∣∣∣
≤ (I) + (II) + (III),

(2.4.3)

where

(I) =

∣∣∣∣∣ED′
n

[
1

n

n∑

i=1

(
Ỹ⊤

i

(
B ∧ log

(p0(X̃i)

p̂(X̃i)

))
≥Cn/n

44 Chapter 2. multiclass classification

−Y⊤
i

(
B ∧ log

(p0(Xi)

p̂(Xi)

))
≥Cn/n

)]∣∣∣∣∣

(II) =

∣∣∣∣∣ED′
n

[
1

n

n∑

i=1

K∑

k=1

Ỹi,k1{p0
k(X̃i)≤Cn

n }

(
B ∧ log

(p0k(X̃i)

p̂k(X̃i)

))]∣∣∣∣∣

(III) =

∣∣∣∣∣ED′
n

[
1

n

n∑

i=1

K∑

k=1

Yi,k1{p0
k(Xi)≤Cn

n }

(
B ∧ log

(p0k(Xi)

p̂k(Xi)

))]∣∣∣∣∣ .

First we bound the terms (II) and (III). Applying Lemma 2.4.6 in total nK times

with (X,Y) = (X̃i, Ỹi), yields

(II) ≤ 1

n

n∑

i=1

K∑

k=1

Cn

(
log
(

n
Cn

)
+B

)

n
=
CnK

(
log
(

n
Cn

)
+B

)

n
, (2.4.4)

while taking (X,Y) = (Xi,Yi) in Lemma 2.4.6 yields

(III) ≤ 1

n

n∑

i=1

K∑

k=1

Cn

(
log
(

n
Cn

)
+B

)
+B)

n
=
CnK

(
log
(

n
Cn

)
+B

)

n
. (2.4.5)

Now we deal with the term (I). Due to the bound B and the indicator function

1{p0
k(Xi)≥Cn

n }

(
B ∧ log

(p0k(Xi)

p̂k(Xi)

))

= 1{p0
k(Xi)≥Cn

n }

(
B ∧ log

(p0k(Xi)

(Cne−B/n) ∨ p̂k(Xi)

))
. (2.4.6)

Given a minimal (internal) δ-covering of log(F) with respect to the pseudometric dτ ,
with τ = log(Cne

−B/n), denote the centers of the balls by pℓ. Then there exists a
random ℓ∗ such that

∥∥∥ log
(Cne

−B

n

)
∨ log(p̂)− log

(Cne
−B

n

)
∨ log(pℓ∗)

∥∥∥
∞

≤ δ.

This together with (2.4.6) and using that Y is one of the K-dimensional standard
basis vectors yields

(I) ≤ ED′
n

[∣∣∣∣∣
1

n

n∑

i=1

Gℓ∗(X̃i, Ỹi,Xi,Yi)

∣∣∣∣∣

]
+ 2δ, (2.4.7)

2.4. Proofs 45

where

Gℓ∗(X̃i, Ỹi,Xi,Yi) :=

Ỹ⊤
i

(
B ∧ log

(p0(X̃i)

pℓ∗(X̃i)

))
≥Cn/n

−Y⊤
i

(
B ∧ log

(p0(Xi)

pℓ∗(Xi)

))
≥Cn/n

. (2.4.8)

For all ℓ ∈ {1, · · · ,Nn} define Gℓ in the same way. Moreover, write

Zi := (X̃i, Ỹi,Xi,Yi).

In a next step, we apply Bernstein’s inequality (Proposition 2.C.1) to (Gℓ(Zi))
n
i=1.

Using that (Xi,Yi) and (X̃i, Ỹi) have the same distribution, we get for the expectation
of Gℓ that

ED′
n
[Gℓ(Zi)] = 0.

To verify the assumptions of Bernstein’s inequality, it remains to prove that

E|Gℓ(Zi)|m ≤ m!(2B)m−2RB(p0,pℓ)32B2−1, ∀m ∈ N≥2, (2.4.9)

such that, in the notation of Proposition 2.C.1, we have vi = RB(p0,pℓ)32B and
U = 2B. To show this moment bound, observe that any real numbers a, b satisfy
|a+ b|m ≤ 2m(|a|m + |b|m). Using moreover that (Xi,Yi) and (X̃i, Ỹi) have the same
distribution, the m-th absolute moment of Gℓ is given by

ED′
n

[
|Gℓ(Zi)|m

]

= ED′
n

[∣∣∣∣∣Ỹ
⊤
i

(
B ∧ log

(
p0(X̃i)

pℓ(X̃i)

))

≥Cn/n

−Y⊤
i

(
B ∧ log

(
p0(Xi)

pℓ(Xi)

))

≥Cn/n

∣∣∣∣∣

m]

≤ 2m+1EDn

[∣∣∣∣∣Y
⊤
i

(
B ∧ log

(
p0(Xi)

pℓ(Xi)

))

≥Cn/n

∣∣∣∣∣

m]
.

Triangle inequality gives

EDn

[∣∣∣∣∣Y
⊤
i

(
B ∧ log

(
p0(Xi)

pℓ(Xi)

))

≥Cn/n

∣∣∣∣∣

m]

≤ EDn

[(
Y⊤

i

∣∣∣∣∣

(
B ∧ log

(
p0(Xi)

pℓ(Xi)

))

≥Cn/n

∣∣∣∣∣

)m]
,

46 Chapter 2. multiclass classification

where for a vector v, |v| denotes the absolute value coefficient-wise. Since Y is one
of the standard basis vectors, it holds that Yk ∈ {0, 1}, and YkYj is equal to 0 when
j ̸= k and equal to Yk when k = j. Using this observation together with conditioning
on Xi yields

EDn

[(
Y⊤

i

∣∣∣∣∣

(
B ∧ log

(
p0(Xi)

pℓ(Xi)

))

≥Cn/n

∣∣∣∣∣

)m]

= EDn

[
Y⊤

i

∣∣∣∣∣

(
B ∧ log

(
p0(Xi)

pℓ(Xi)

))

≥Cn/n

∣∣∣∣∣

m]

= EXi

[
p⊤
0 (Xi)

∣∣∣∣∣

(
B ∧ log

(
p0(Xi)

pℓ(Xi)

))

≥Cn/n

∣∣∣∣∣

m]

≤ EXi

[
p⊤
0 (Xi)

∣∣∣∣B ∧ log

(
p0(Xi)

pℓ(Xi)

)∣∣∣∣
m]

,

where we used for the last inequality that for every set Ω, each A ⊆ Ω, every function
θ : Ω → R and every m ∈ N≥2 it holds that |1Aθ|m = (1A)

m|θ|m = 1A|θ|m ≤ |θ|m.
Combining the previous displays and applying Lemma 2.3.7, we get that

ED′
n
[|Gℓ(Zi)|m]

≤ 2m+1EXi

[
p⊤
0 (Xi)

∣∣∣∣B ∧ log

(
p0(Xi)

pℓ(Xi)

)∣∣∣∣
m]

≤ 2m+1Cm,BEXi

[
p⊤
0 (Xi)

(
B ∧ log

(
p0(Xi)

pℓ(Xi)

))]
= 2m+1Cm,BRB(p0,pℓ),

(2.4.10)
where Cm,B is given by

Cm,B = max

{
m!,

Bm

B − 1

}
.

Since B ≥ 2, we get that B/(B − 1) ≤ 2 and Cm,B ≤ max
{
m!, 2Bm−1

}
≤ 2m!Bm−1.

Together with (2.4.10) this yields

ED′
n
[|Gℓ(Zi)|m] ≤ 2m+1Cm,BRB(p0,pℓ) ≤ m!(2B)m−2RB(p0,pℓ)32B2−1,

completing the proof for the moment bound (2.4.9).

Now define zℓ :=
√
n−168B log(Nn)∨

√
E(X,Y)[Y⊤(B ∧ log(p0(X)/pℓ(X)))]. Since

B ≥ 2, Lemma 2.3.4 guarantees that the truncated Kullback-Leibler risk is always
nonnegative, so zℓ is well defined. Define z∗ = zℓ∗ , that is,

z∗ =

√
68B log(Nn)

n
∨

√√√√EDN ,(X,Y)

[
Y⊤

(
B ∧ log

(
p0(X)

pℓ∗(X)

))∣∣∣∣∣Dn

]
,

2.4. Proofs 47

where we also condition on the dataset Dn. To upper bound z∗, we split the truncated
empirical risk

EDN ,(X,Y)

[
Y⊤
(
B ∧ log

(
p0(X)

pℓ∗(X)

))∣∣∣∣∣Dn

]

= EDN ,(X,Y)

[
K∑

k=1

Yk1{p0
k(X)≤Cn

n }

(
B ∧ log

(
p0k(X)

pℓ∗,k(X)

))∣∣∣∣∣Dn

]

+ EDN ,(X,Y)

[
K∑

k=1

Yk1{p0
k(X)≥Cn

n }

(
B ∧ log

(
p0k(X)

pℓ∗,k(X)

))∣∣∣∣∣Dn

]
.

Using the property of the δ-cover, Equation (2.4.6) and the fact that Y is a standard
basis vector, it holds that

EDN ,(X,Y)

[
K∑

k=1

Yk1{p0
k(X)≥Cn

n }

(
B ∧ log

(
p0k(X)

pℓ∗,k(X)

))∣∣∣∣∣Dn

]

≤ EDN ,(X,Y)

[
K∑

k=1

Yk1{p0
k(X)≥Cn

n }

(
B ∧ log

(
p0k(X)

p̂k(X)

))∣∣∣∣∣Dn

]
+ δ.

On the other hand, applying Corollary 2.4.7, with (X,Y) = (X,Y), K times for p̂
and K times with p̂ replaced by pℓ∗ , yields

EDN ,(X,Y)

[
K∑

k=1

Yk1{p0
k(X)≤Cn

n }

(
B ∧ log

(
p0k(X)

pℓ∗,k(X)

))∣∣∣∣∣Dn

]

≤ EDN ,(X,Y)

[
K∑

k=1

Yk1{p0
k(X)≤Cn

n }

(
B ∧ log

(
p0k(X)

p̂k(X)

))∣∣∣∣∣Dn

]

+
CnK

(
log
(

n
Cn

)
+B

)

n
.

Define

V :=

√√√√EDN ,(X,Y)

[
Y⊤

(
B ∧ log

(
p0(X)

p̂(X)

))∣∣∣∣∣Dn

]
.

Combining the previous inequalities, we get that
√√√√EDN ,(X,Y)

[
Y⊤(B ∧ log

(
p0(X)

pℓ∗(X)

))∣∣∣∣∣Dn

]
≤ V +

√

δ +
CnK

(
log
(

n
Cn

)
+B

)

n
,

48 Chapter 2. multiclass classification

where we also used the elementary inequality
√
a+ b ≤ √

a +
√
b for all a, b ≥ 0.

Hence,

z∗ ≤
√

68B log(Nn)

n
+ V +

√

δ +
CnK

(
log
(

n
Cn

)
+B

)

n
. (2.4.11)

The term
√
n−168B log(Nn) is chosen such that in (2.4.13) and (2.4.14) below the

equations balance out. Now define

T := max
ℓ

∣∣∣∣∣
n∑

i=1

Gℓ(Zi)

zℓ

∣∣∣∣∣ .

The Cauchy-Schwarz inequality gives us that ED′
n
[V T] ≤

√
ED′

n
[V 2]ED′

n
[T 2]. Noticing

that ED′
n
[V 2] = RB(p0, p̂), we get from (2.4.3), (2.4.4), (2.4.5), (2.4.7) and (2.4.11)

that

|RB(p0, p̂)−RB,n(p0, p̂)|

≤ 1

n

√
RB(p0, p̂)

√
ED′

n
[T 2]

+
1

n

(√
68B log(Nn)

n
+

√

δ +
CnK

(
log
(

n
Cn

)
+B

)

n

)
ED′

n
[T]

+ 2δ +
2CnK

(
log
(

n
Cn

)
+B

)

n
.

(2.4.12)

The next step in the proof derives bounds on ED′
n
[T] and ED′

n
[T 2]. Using an union

bound it holds that

P (T ≥ t) = P

(
max

ℓ

∣∣∣∣∣
n∑

i=1

Gℓ(Zi)

zℓ

∣∣∣∣∣ ≥ t

)
= P

(Nn⋃

ℓ=1

(∣∣∣∣∣
n∑

i=1

Gℓ(Zi)

zℓ

∣∣∣∣∣ ≥ t

))

≤
Nn∑

ℓ=1

P

(∣∣∣∣∣
n∑

i=1

Gℓ(Zi)

∣∣∣∣∣ ≥ tzℓ

)
.

We already showed that Gℓ(Zi) satisfies the conditions of Bernstein’s inequality
(Proposition 2.C.1) with vi = RB(p0,pℓ)32B and U = 2B. Bernstein’s inequality

2.4. Proofs 49

applied to the last term gives

P (T ≥ t) ≤
Nn∑

ℓ=1

P

(∣∣∣∣∣
n∑

i=1

Gℓ(Zi)

∣∣∣∣∣ ≥ tzℓ

)

≤
Nn∑

ℓ=1

2 exp

(
− (tzℓ)

2

2nRB(p0,pℓ)32B + 4Btzℓ

)

= 2Nn exp


− t2

2nRB(p0,pℓ)32B
z2
ℓ

+ 4B t
zℓ


 .

Since zℓ ≥
√
RB(p0,pℓ) it holds that z2ℓ ≥ RB(p0,pℓ). As probabilities are in the

interval [0, 1], this gives us that

P (T ≥ t) ≤ 1 ∧ 2Nn exp

(
− t2

64Bn+ 4B t
zℓ

)
.

If t ≥
√
68Bn log(Nn), then since zℓ ≥

√
n−168B log(Nn) it holds that

exp

(
− t2

64Bn+ 4B t
zℓ

)
≤ exp

(
− t
√
log(Nn)√
68Bn

)
.

For every nonnegative random variable X with finite expectation one has E[X] =∫∞
0

P(X ≥ t) dt. Therefore,

ED′
n
[T] ≤

√
68Bn log(Nn) +

∫ ∞
√

68Bn log(Nn)

2Nn exp

(
− t
√
log(Nn)√
68Bn

)
dt

=
√

68Bn log(Nn) +

√
272Bn

log(Nn)
.

(2.4.13)

Since T is nonnegative, P(T 2 ≥ u) = P(T ≥ √
u), so using the same arguments as

before we get that

ED′
n
[T 2] ≤ 68Bn log(Nn) +

∫ ∞

68Bn log(Nn)

2Nn exp

(
−
√
u log(Nn)

68Bn

)
du.

Substitution s =
√
u and integration by parts gives us that (1/2)

∫∞
a
e−

√
ub du =∫∞√

a
se−sb ds = (

√
ab+ 1)e−

√
ab/b2 and consequently

ED′
n
[T 2] ≤ 68Bn log(Nn) + 544Bn, (2.4.14)

50 Chapter 2. multiclass classification

where we also used that Nn ≥ e and thus (log(Nn) + 1)/ log(Nn) ≥ 2.
Combining (2.4.13), (2.4.14) with (2.4.12), using twice that 2xy ≤ x2 + y2 for all

real numbers x, y, and using that log(Nn) ≥ 1, we get that

|RB(p0, p̂)−RB,n(p0, p̂)| ≤
√
RB(p0, p̂)

√
68B log(Nn) + 544B

n
+ 3δ

+
102B log(Nn) + 272B

n
+

3CnK
(
log
(

n
Cn

)
+B

)

n
.

(2.4.15)
Setting a = RB(p0, p̂), b = RB,n(p0, p̂),

c =

√
17B log(Nn) + 134B

n
,

and

d =
102B log(Nn) + 272B + 3CnK

(
log
(

n
Cn

)
+B

)

n
+ 3δ,

we get from (2.4.15) that |a−b| ≤ 2
√
ac+d. Since the excess risk is always nonnegative

we can apply Proposition 2.C.2. This gives us for any 0 < ϵ ≤ 1

RB(p0, p̂) ≤ (1 + ϵ) (RB,n(p0, p̂) + 3δ)

+ (1 + ϵ)

(
102B log(Nn) + 272B + 3CnK

(
log
(

n
Cn

)
+B

)

n

)

+
(1 + ϵ)2

ϵ
· 17B log(Nn) + 136B

n
.

Proposition 2.4.5 gives RB,n(p0, p̂) ≤ infp∈F R(p0,p) + ∆n(p0, p̂). Substituting this
in the previous equation and observing that (1 + ϵ)/ϵ ≥ 2, 1/ϵ ≥ 1 and 0 < 1− ϵ ≤ 1
for ϵ ∈ (0, 1] yields the assertion of the theorem.

51

Appendix Chapter 2

2.A Basic network properties and operations

In this section we state elementary properties of network classes and introduce small
networks that are capable of approximating multiplication operations based on similar
results in [127].

2.A.1 Embedding properties of neural network function classes

This section extends the results in [127] to arbitrary output activation function.
Enlarging: Let m and m′ be two width-vectors of the same length and let s, s′ > 0.

If m ≤ m′ component-wise, mL+1 = m′
L+1 and s ≤ s′, then

Fψ(L,m, s) ⊆ Fψ(L,m′, s′). (2.A.1)

This rule allows us to simplify the neural network architectures. For example we
can simplify a network class by embedding it in a class for which all hidden layers
have the same width.

Composition: Let f ∈ Fid(L,m, s1) and let g be a network in Fψ(L′,m′, s2), with
mL+1 = m′

0. For a vector v ∈ RmL+1 , define the composed network g ◦ σv(f). Then

g ◦ σv(f) ∈ Fψ
(
L+ L′ + 1, (m0, · · · ,mL+1,m

′
1, · · · ,m′

L′+1), s1 + s2 + |v|0
)
. (2.A.2)

The following rule allows us to synchronize the depths of neural networks.
Depth synchronization: For any positive integer a,

Fψ(L,m, s) ⊂ Fψ(L+ a, (m0, · · · ,m0︸ ︷︷ ︸
a times

,m), s+ am0). (2.A.3)

To identify simple neural network architectures, we can combine the depth synchro-
nization and enlarging properties. When there exist c ≥ m0 and b > 0, such that

52 Chapter 2. multiclass classification

s = cL+ b, and L∗ is an upper bound on L, combining the previous two properties
yields

Fψ(L,m, s) ⊂ Fψ(L∗,m′, cL+m0(L
∗ − L) + b) ⊂ Fψ(L∗,m′, cL∗ + b),

where the width vector m′ has length L∗ + 2 and can be chosen as (m0,m
′,m′,

· · · m′,mL+1) with m
′ equal to the largest coefficient of m.

Parallelization: Let m, m′ be two width vectors such that m0 = m′
0 and let

f ∈ Fid(L,m) and g ∈ Fid(L,m
′). Define the parallelized network h as h := (f ,g).

Then
h ∈ Fid(L, (m0,m1 +m′

1, · · · ,mL+1 +m′
L+1). (2.A.4)

Proposition 2.A.1 (Removal of inactive nodes). It holds that

Fψ(L,m, s) = Fψ(L, (m0,m1 ∧ s, · · · ,mL ∧ s,mL+1), s).

For this property, the output function plays no role and the proof in [127] carries
over.

The following equation gives the number of parameters in a fully connected network
in Fψ(L,m):

L∑

j=0

(mj + 1)mj+1 −mL+1. (2.A.5)

This will be used further on as an upper bound on the number of active parameters in
sub-networks.

2.A.2 Scaling numbers

We constraint all neural network parameters to be bounded in absolute value by
one. To build neural networks with large output values we construct small rescaling
networks.

Proposition 2.A.2. For any real number C there exists a network
ScaleC ∈ Fid(⌈log2(|C|)⌉+(⌈log2(|C|)⌉−1), (1, 2, 1, 2, 1, · · · , 1, 2, 1), 4⌈log2(|C|)⌉) such
that ScaleC(x) = C(x)+.

Proof. Set

W0 =

(
1
1

)
, v1 =

(
0
0

)
, and W1 = (1, 1).

The network W1σv1
W0x computes x 7→ 2(x)+. This network has exactly one hidden

layer, one input node, one output node and two nodes in the hidden layer. It

2.B. Neural networks approximating the logarithm 53

uses four nonzero-parameters. Composing ⌈log2(|C|)⌉ of these networks, using the
composition rule (2.A.2), where we take the output layer of one network to be the
input layer of the next one with shift vector zero, yields a network in the right
network class computing x 7→ 2⌈log2(|C|)⌉(x)+. Replacing the last weight matrix by
(C2−⌈log2(|C|)⌉, C2−⌈log2(|C|)⌉) yields the result.

2.A.3 Negative numbers

For negative input, the ReLU activation without shift returns zero. As a result, many
network constructions output zero for negative input. Using that x = σ(x)− σ(−x),
the next result shows existence of a neural network function that extends the original
network function as an even (or odd) function to negative input values.

Proposition 2.A.3. Assume f ∈ Fid(L, (m0,m1, · · · ,mL, 1), s) and f(x) = 0 when-
ever xj ≤ 0 for some index j ∈ {1, · · · ,m0}. Then there exist neural networks

f± ∈ Fid(L, (m0, 2m2, · · · , 2mL, 1), 2s),

such that xj 7→ f+(x) is an even function, xj 7→ f−(x) is an odd function and
f±(x) = f(x) for all x with xj ≥ 0.

Proof. Take two neural networks in the class Fid(L, (m0,m1, · · · ,mL, 1), s) in parallel:
The original network f to deal with the positive part and the second network to deal
with the negative part. This second network can be build from the first network f by
multiplying the j-th column vector of W0 by −1 and multiplying the output of the
network by ±1. The parallelized network computes then f±.

The extension to more than one output is straightforward. Following the same
construction as in the previous section, all that has to be done is multiplying the
corresponding rows of the weight matrix in the output layer of the neural network by
either −1, 1 of 0 depending on how we wish to extend the function. More precisely, if
we have m−

0 ≤ m0 input coefficients xj for which xj ≤ 0 implies f(x) = 0, we can find
neural networks

f± ∈ Fid(L, (m0, 2
m−

0 m2, · · · , 2m
−
0 mL,mL+1), 2

m−
0 s),

such that xj 7→ f+(x) is an even function and xj 7→ f−(x) is an odd function for all of

the m−
0 indices j. This network can be constructed using 2m

−
0 parallel networks.

2.B Neural networks approximating the logarithm

Theorem 2.4.1 assumes M ≥ 2. We use this throughout the proof without further
mentioning.

54 Chapter 2. multiclass classification

2.B.1 Taylor approximation

Set

Tκ
c (x) = log(c) +

κ∑

γ=0

xγ
κ∑

α=γ∨1

(
α

γ

)
c−γ(−1)1−γ

α
=

κ∑

γ=0

xγcγ .

Proposition 2.B.1. For all κ = 0, 1, . . . and every c > 0, we have that

∣∣ log(x)− Tκ
c (x)

∣∣ ≤ 1

κ+ 1

∣∣∣∣
x− c

x ∧ c

∣∣∣∣
κ+1

,

where the sum in Tκ
c is defined as zero if κ = 0. Moreover, if 0 < x ≤ c, we also have

that Tκ
c (x) ≤ log(c).

Proof. We claim that Tκ
c is equal to the k-th order Taylor approximation of the

logarithm. First we show that from this claim the statements of the proposition follow.
The α-th derivative of the logarithm is log(α)(x) = (α − 1)!(−1)α+1x−α. Thus, the
k-th order Taylor approximation of the logarithm around the point c is given by

log(c) +

κ∑

α=1

(x− c)α(−1)α+1

αcα
. (2.B.1)

By the mean value theorem, the remainder is bounded by

1

κ+ 1

∣∣∣∣
x− c

s

∣∣∣∣
κ+1

,

for some s between x and c. Now since the function 1/s on (0,∞) is decreasing, its
maximum is obtained at the left boundary, that is, x ∧ c, which yields the first claim
of the proposition. Now we show that Tκ

c ≤ log(c) whenever 0 < x ≤ c. When κ = 0,
the sum in (2.B.1) disappears and the result follows immediately. When κ ≥ 1, notice
that (x− c) is always negative. Hence the product (x− c)α(−1)α+1 is negative for all
α, so together with the case κ = 0 this yields Tκ

c (x) ≤ log(c), for 0 < x ≤ c.

It remains to prove that Tκ
c is the k-th order Taylor approximation of the logarithm

around the point c. Writing the Taylor approximation as a linear combination of
monomials gives

log(c) +

κ∑

α=1

(x− c)α(−1)α+1

αcα
=

κ∑

γ=0

xγ c̄γ ,

2.B. Neural networks approximating the logarithm 55

for suitable coefficients c̄γ . Using this expression we can obtain the coefficients c̄γ for
γ ≥ 1 by evaluating the derivatives at x = 0 :

dγ

dxγ
log(c) +

κ∑

α=1

(x− c)α(−1)α+1

αcα

∣∣∣∣∣
x=0

= γ!c̄γ .

This gives us that

c̄γ =

κ∑

α=γ

(α− 1)!(−c)α−γ(−1)α+1

γ!(α− γ)!cα
=

κ∑

α=γ

(
α

γ

)
c−γ(−1)1−γ

α
.

For c̄0 we get

c̄0 = log(c) +

κ∑

α=1

(α− 1)!(−c)α(−1)α+1

(α)!cα
= log(c) +

κ∑

α=1

(−1)

α
.

Hence
∑κ

γ x
γ c̄γ =

∑κ
γ x

γcγ = Tκ
c (x), proving the claim.

Next we establish a bound on the sum of the coefficients cγ of Tκ
c in the case c ≤ e.

For γ ≥ 1, we bound cγ by

|cγ | ≤
κ∑

α=γ

(
α

γ

)
(1 ∧ c)−γ

α
≤ (1 ∧ c)−κ

κ∑

α=γ

(
α

γ

)
.

Since also

|c0| ≤ | log(c)|+
κ∑

α=1

1

α
≤ | log(c)|+

κ∑

α=1

(
α

0

)
,

this shows that the sum of the coefficients is bounded by

κ∑

γ=0

|cγ | ≤ | log(c)|+ (1 ∧ c)−κ
κ∑

γ=0

κ∑

α=1∧γ

(
α

γ

)
≤ | log(c)|+ (1 ∧ c)−κ

κ∑

γ=0

κ∑

α=γ

(
α

γ

)
.

The double sum can be rewritten as the sum of all the entries in the rows 0, · · · , κ of
Pascal’s triangle. From the binomial theorem we know that summing over the α-th
row of Pascal’s triangle gives 2α. Combined with | log(c)| ≤ (1 ∧ c)−1 for 0 < c ≤ e,
this gives

κ∑

γ=0

|cγ | ≤ (κ+1)2κ+1(1∧c)−(κ∨1) ≤ (κ+1)2κ+1(1∧c)−κ−1, for all 0 < c ≤ e. (2.B.2)

56 Chapter 2. multiclass classification

Applying the softmax function to an approximation g of the logarithm involves the
exponential function and requires a bound for |eg(x) − x| with x > 0. By the mean
value theorem |eg(x) − elog(x)| = es|g(x)− log(x)| for a suitable s between log(x) and
g(x). The next proposition provides such a bound.

Proposition 2.B.2. For all λ ≥ 1, define

Dλ :=

[
λ⌈β⌉

2⌈β⌉2⌈β⌉⌊β⌋M ,
(λ+ 1)⌈β⌉

2⌈β⌉2⌈β⌉⌊β⌋M

]
.

If [a, b] ⊂ Dλ, then it holds for any x ∈ [a, b] and any ω ≤ log
(

(λ+1)⌈β⌉

2⌈β⌉2⌈β⌉⌊β⌋M

)
, that

eω|T ⌊β⌋
b (x)− log(x)| ≤ 1

M
.

Proof. First notice that on (0,∞) the logarithm is strictly increasing and is infinitely
times continuously differentiable. For real numbers a, b and a positive integer j,
aj−bj = (a−b)∑j

i=1 a
j−ibi−1. Applied to a = λ+1 and b = λ, this gives (λ+1)j−λj ≤

j(λ+ 1)j−1 and thus for x ∈ [a, b] ⊆ Dλ, we get that

|x− b| ≤ b− a ≤ (λ+ 1)⌈β⌉ − λ⌈β⌉

2⌈β⌉2⌈β⌉⌊β⌋M ≤ b
⌈β⌉
λ+ 1

.

Substituting this in the bound from Proposition 2.B.1 and using that x ≥ a gives

|T ⌊β⌋
b (x)− log(x)| ≤ 1

⌈β⌉

∣∣∣∣
⌈β⌉(λ+ 1)⌊β⌋

a2⌈β⌉2⌈β⌉⌊β⌋M

∣∣∣∣
⌈β⌉

.

Since a ∈ Dλ,

|T ⌊β⌋
b (x)− log(x)| ≤ 1

⌈β⌉

∣∣∣∣∣
⌈β⌉(λ+ 1)⌊β⌋

2⌈β⌉2⌈β⌉⌊β⌋M · 2
⌈β⌉2⌈β⌉⌊β⌋M

λ⌈β⌉

∣∣∣∣∣

⌈β⌉

= ⌈β⌉⌊β⌋
∣∣∣∣
(λ+ 1)⌊β⌋)

λ⌈β⌉

∣∣∣∣
⌈β⌉

.

Multiplying both sides with an exponential, noticing that the exponential function
is strictly increasing, and applying the upper bound on ω given in the statement of
the proposition yields

eω|T ⌊β⌋
b (x)− log(x)| ≤ (λ+ 1)⌈β⌉⌈β⌉⌊β⌋

2⌈β⌉2⌈β⌉⌊β⌋M

∣∣∣∣
(λ+ 1)⌊β⌋)

λ⌈β⌉

∣∣∣∣
⌈β⌉

=
1

2⌈β⌉2M

(
λ+ 1

λ

)⌈β⌉2

.

2.B. Neural networks approximating the logarithm 57

Since (λ+ 1)λ−1 is positive and decreasing for λ ≥ 1, we can upper bound the last
display by 1/M .

2.B.2 Partition of unity

So far we have bounded the approximation error on subintervals. As we work with
ReLU functions, indicator functions of intervals are impractical to use, because they
are discontinuous. Instead we create a partition of unity consisting of continuous
piecewise linear functions for an interval that contains the interval [M−1, 1−M−1] .

Define R as the smallest integer sucht that

(R2 + 2⌈β⌉⌈β⌉⌊β⌋/⌈β⌉ − 3
4)

⌈β⌉

2⌈β⌉2⌈β⌉⌊β⌋M ≥ 1− 1

M
.

Rewriting this equation yields

R = ⌈∗⌉2⌈β⌉+1⌈β⌉⌊β⌋/⌈β⌉ (M − 1)
1

⌈β⌉ − 2

(
2⌈β⌉⌈β⌉⌊β⌋/⌈β⌉ − 3

4

)

≤ 2⌈β⌉+1⌈β⌉⌊β⌋/⌈β⌉M 1
⌈β⌉ .

Now we define sequences (ar)r=1,··· ,R and (br)r=1,··· ,R−1 as follows

ar :=
(2⌈β⌉⌈β⌉⌊β⌋/⌈β⌉ + r

2 − 3
4)

⌈β⌉

2⌈β⌉2⌈β⌉⌊β⌋M ,

br :=
(2⌈β⌉⌈β⌉⌊β⌋/⌈β⌉ + r

2 − 1
2)

⌈β⌉

2⌈β⌉2⌈β⌉⌊β⌋M ,

and for ease of notation define b0 = a1 and bR = aR. Notice that [M−1, 1−M−1] ⊆
[a1, aR] ⊆ [M−1, 1 +M−1].

Next we define a family of functions (Fr)r=2,3,··· ,R and (Hr)r=1,2,··· ,R on the
interval [a1, aR]. For r = 2, · · · , R define the function Fr to be zero outside of the
interval [ar−1, ar] and to be a linear interpolation between the value one at the point
br−1 and the value zero at the boundaries of this interval. In the same way define for
r = 2, · · · , R− 1 the function Hr, but with support on the interval [br−1, br] and with
interpolation point ar. Define H1 to be the linear interpolation between the value one
at the point a1 and the value zero at b1 and let it be zero outside this interval. Finally
define HR as the linear interpolation between the value one at the point bR and the
value zero at bR−1 and set it to zero outside of this interval.

58 Chapter 2. multiclass classification

Fr(x)

Hr(x)

1

1
2

0
1
M

x

Figure 2.B.1: The first few functions Fr(x) and Hr(x) when β ∈ (1, 2]. The points ar
are marked with circles, while the points br are denoted by squares.

By construction it holds that

R∑

r=2

Fr(x) +

R∑

r=1

Hr(x) = 1, for all x ∈ [a1, aR].

Figure 2.B.1 gives the first few functions Fr and Hr in the case that β ∈ (1, 2].
We can construct a ReLU network that exactly represents the functions Fr and

Hr. This construction is a modification of the construction of continuous piecewise
linear functions as used in [160]. This modification assures that the parameters are
bounded by one.

Proposition 2.B.3. For each function Fr and Hr their exists a network UFr , UHr ∈
Fid(L,m, s), with L = 3((1 + ⌈β⌉)2 + ⌊log2(M⌈β⌉⌊β⌋)⌋), m = (1, 3, 3, · · · , 3, 1) and
s = 8((1 + ⌈β⌉)2 + log2(M⌈β⌉⌊β⌋)), such that Fr(x) = UFr

(x) and Hr(x) = UHr
(x)

for all x ∈ [a1, aR].

Proof. The functions Fr andHr, r = 2, · · · , R, are piecewise linear functions, consisting
of four pieces each. This means that these function can be perfectly represented as
a linear combination of three ReLU functions. The interpolation points provide the
values of the shift vectors. Writing this out for Fr gives

Fr(x) =
σ(x− ar−1)

br−1 − ar−1
+

(
1

br−1 − ar−1
+

1

ar − br−1

)
σ(x− ar−1) +

σ(x− ar−1)

ar − br−1
.

For Hr, r = 2, · · · , R this can be done in a similar way. For H1 and HR we actually
only need one ReLU function. The networks weights in this construction are greater
than one. The difference between two consecutive points ar and br can be lower

2.B. Neural networks approximating the logarithm 59

bounded by using that for x, y ≥ 0: (x+ y)⌈β⌉ − x⌈β⌉ ≥ y⌈β⌉. Because of

(2⌈β⌉⌈β⌉⌊β⌋/⌈β⌉)⌈β⌉
2⌈β⌉2⌈β⌉⌊β⌋M − (2⌈β⌉⌈β⌉⌊β⌋/⌈β⌉ − 1

4)
⌈β⌉

2⌈β⌉2⌈β⌉⌊β⌋M ≥ (14)
⌈β⌉

2⌈β⌉2⌈β⌉⌊β⌋M ,

we can upper bound all the network weights by

21+2⌈β⌉+⌈β⌉2⌈β⌉⌊β⌋M, (2.B.3)

which is the inverse of the lower bound on the smallest difference between two
consecutive points multiplied by two. Dividing the multiplicative constants by this
bound and combining (2.A.2) the resulting network with the ScaleC(x) network
from Proposition 2.A.2 with C equal to (2.B.3) yields a network with the required
output and parameters bounded by one. The network class is simplified by using the
depth-synchronization (2.A.3) followed by the enlarging property of neural networks
(2.A.1).

The previous partition yields an approximation T β : [a1, aR] → R of the logarithm
on the entire interval [a1, aR] via

T β(x) :=

R∑

r=2

Fr(x)T
⌊β⌋
ar

(x) +

R∑

r=1

Hr(x)T
⌊β⌋
br

(x). (2.B.4)

This function depends on M through the sequence of points ar and br.
We can now derive the same type of error bound as in Lemma 2.B.2 for all x ∈ [0, 1].

For this, define the projection π : [0, 1] → [a1, aR], that maps x ∈ [0, 1] to itself, if it is
already in the interval [a1, aR], and to the closest boundary point otherwise.

Lemma 2.B.4. For all x ∈ [0, 1], we have |eTβ(π(x)) − x| ≤M−1.

Proof. First consider x ∈ (a1, aR]. By construction there exists a unique r∗ ∈
{2, 3, · · · , R} and a unique r̄ ∈ {1, · · · , R} such that x ∈ (ar∗−1, ar∗], and x ∈ (br̄−1, br̄].
By the mean value theorem and (2.B.4),

∣∣∣eTβ(x) − x
∣∣∣ ≤ eξ

∣∣T β(x)− log(x)
∣∣

= eξ

∣∣∣∣∣
R∑

r=2

Fr(x)T
⌊β⌋
ar

(x) +

R∑

r=1

Hr(x)T
⌊β⌋
br

(x)− log(x)(Fr∗(x) +Hr̄(x))

∣∣∣∣∣

≤ Fr∗(x)e
ξ
∣∣∣T ⌊β⌋

ar∗ (x)− log(x)
∣∣∣+Hr̄(x)e

ξ
∣∣∣T ⌊β⌋

br̄
(x)− log(x)

∣∣∣ ,

where ξ is some number between T β(x) and log(x). We now want to apply Proposition
2.B.2. For this we need to find a λ ≥ 1 such that [ar∗−1, ar∗] ∪ [br̄−1, br̄] ∈ Dλ and

60 Chapter 2. multiclass classification

ξ ≤ maxy∈Dλ
log(y), with Dλ as defined by that proposition. Because of our choice of

the sequences of points ar and br,

λ := max
{r∗

2
+ 2⌈β⌉⌈β⌉⌊β⌋/⌈β⌉ − 3

4
,
r̄

2
+ 2⌈β⌉⌈β⌉⌊β⌋/⌈β⌉ − 1

2

}
− 1

satisfies λ ≥ 1, since r∗ ≥ 2 and r̄ ≥ 1. Furthermore this choice of λ guarantees
that [ar∗−1, ar∗] ∪ [br̄−1, br̄] ⊆ Dλ. For the bound on ξ, notice that x ∈ [ar∗−1, ar∗] ∪
[br̄−1, br̄] and that T β(x) = Fr∗(x)T

⌊β⌋
ar∗ (x)+Hr̄(x)T

⌊β⌋
br̄

(x). Combined with the second
statement of Proposition 2.B.1, that is Tκ

c ≤ log(c) for 0 < c ≤ x, and together
with Fr∗(x) +Hr̄(x) = 1, this yields ξ ≤ max{log(ar∗), log(br̄)}. Thus we can apply
Proposition 2.B.2 and obtain

Fr∗(x)e
ξ
∣∣∣T ⌊β⌋

ar∗ (x)− log(x)
∣∣∣+Hr̄(x)e

ξ
∣∣∣T ⌊β⌋

br̄
(x)− log(x)

∣∣∣

≤ Fr∗(x)
1

M
+Hr̄(x)

1

M
=

1

M
,

completing the proof for x ∈ [a1, aR].

When x ∈ [0, a1], notice that 0 < a1 < M−1 and T β(π(x)) = T
⌊β⌋
b1

(a1). Hence

by Proposition 2.B.1 together with b1 = M−1, we get that T β(π(x)) ≤ log(M−1)

proving that both x and eT
β(π(x)) are in [0,M−1]. Thus the conclusion also holds for

x ∈ [0, a1].
For aR ≥ 1, the proof follows from [0, 1] ⊆ ([0, a1] ∪ [a1, aR]). Thus it remains

to study aR < 1. Consider x ∈ [aR, 1]. Using that 1 −M−1 ≤ aR < 1 and that

T β(π(x)) = T
⌊β⌋
bR

(aR) = T
⌊β⌋
aR (aR) yields T

β(π(x)) = log(aR). This gives us that both

x and eT
β(π(x)) are in [aR, 1] ⊂ [1−M−1, 1], which immediately yields the required

bound.

Network Construction

The following result shows how to approximate multiplications with deep ReLU
networks. This is required later to construct neural networks mimicking the Taylor-
approximation T β considered in the previous section.

Lemma 2.B.5 (Lemma A.3. of [127]). For every η ∈ N≥1 and D ∈ N≥1, there
exists a network MultDη ∈ Fid((η + 5)⌈log2(D)⌉, (D, 6D, 6D, · · · , 6D, 1)), such that

MultDη ∈ [0, 1] and

∣∣∣∣∣MultDη (x1, · · · , xD)−
D∏

i=1

xi

∣∣∣∣∣ ≤ 3D2−η, for all (x1, · · · , xD) ∈ [0, 1]D.

2.B. Neural networks approximating the logarithm 61

Moreover MultDη (x) = 0 if one of the coefficients of x is zero.

Remark 2.B.6. Using (2.A.5) the number of parameters in the neural network MultDη
is bounded by ((η + 5)⌈log2(D)⌉+ 1)42D2 ≤ (η + 5)126D2 log2(D).

We now have all the required ingredients to finish the proof of Theorem 2.4.1:

Proof of Theorem 2.4.1. Since a1 = σ(0 · x+ a1), the projection π can be written in
terms of ReLU functions as

π(x) = max
(
a1,min(x, aR)

)
= σ(0 · x+ a1) + σ(x− a1)− σ(x− aR).

For aR ≤ 1, all network parameters are bounded by one and this defines a neural
network in Fid(1, (1, 3, 1), 8). When aR > 1, we replace σ(x − aR) with σ(x − 1) as
we are only interested in input in the interval [0, 1]. Having thus obtained a value
in the interval [a1, aR], we can, for any r ∈ {1, · · · , R}, apply the network UFr from
Proposition 2.B.3 to it. Using depth synchronization (2.A.3) and parallelization (2.A.4),
we can combine the network UFr

with a parallel network that forwards the input
value to obtain a network in the network class Fid(L,m, s), with L = 4

(
(1 + ⌈β⌉)2 +

log2(M⌈β⌉⌊β⌋)
)
, m = (1, 3, 1, 4, · · · , 4, 2) and s = 13

(
(1 + ⌈β⌉)2 + log2(M⌈β⌉⌊β⌋)

)
,

that maps x ∈ [0, 1] to (Fr(π(x)), π(x)). The next step is to construct a network that
approximates Fr(x)T

β
ar
(x). Since ar ∈ [M−1, 1 +M−1], (2.B.2) allows us, for γ =

1, · · · , ⌊β⌋, to use the network Multγ+1
η with input vector (Fr(π(x)), π(x), · · · , π(x))

to compute approximately the function Fr(π(x))π(x)
γ , and multiply its output with

cγ/⌈β⌉2⌊β⌋+1M⌈β⌉. For each γ ∈ {1, · · · , ⌊β⌋} we have a network that approximately
computes the function x 7→ Fr(π(x))π(x)

γcγ/⌈β⌉2⌊β⌋+1M⌈β⌉. We now consider the
network that computes these functions in parallel and combines this with a single
shallow hidden node network to approximately compute Fr(π(x))c0/⌈β⌉2⌊β⌋+1M⌈β⌉.
Making use of parallelization (2.A.4), depth synchronization (2.A.3) and Remark 2.B.6,
this yields a network GFr ∈ Fid(L

∗, (1, 6(⌈β⌉)2, · · · , 6(⌈β⌉)2, 1), s∗), with

L∗ = 4((1 + ⌈β⌉)2 + log2(M⌈β⌉⌊β⌋)) + 2(η + 5) log2(⌈β⌉)
s∗ = 13((1 + ⌈β⌉)2 + log2(M⌈β⌉⌊β⌋)) + (η + 5) log2(⌈β⌉)126(⌈β⌉)3

such that
∣∣∣∣∣∣
GFr (x)− Fr(π(x))

⌊β⌋∑

γ=0

cγ
⌈β⌉2⌊β⌋+1M⌈β⌉π(x)

γ

∣∣∣∣∣∣
≤ 3⌈β⌉2−η.

Due to the normalization constant ⌈β⌉2⌊β⌋+1M⌈β⌉ it holds that GFr
(x) ∈ [−1, 1] when

π(x) is in the support of Fr. If π(x) is outside the support of Fr, then Lemma 2.B.5

62 Chapter 2. multiclass classification

guarantees that GFr
(x) = 0. Similarly for Fr replaced by Hr, we can construct deep

ReLU networks GHr
with the same properties.

Using the R networks GHr
and R− 1 networks GFr

in parallel together with the
observation that each x can be in the support of at most one Fr and one Hr, this
yields a deep ReLU network with output

∑R
r=2GFr (x) +

∑R
r=1GHr (x), such that

∣∣∣∣∣
R∑

r=2

GFr
(x) +

R∑

r=1

GHr
(x)− T β(π(x))

⌈β⌉2⌊β⌋+1M⌈β⌉

∣∣∣∣∣ ≤ 3⌈β⌉2−η+1.

In the next step we compose the network construction with a scaling network. For this
we use the scaling network from Proposition 2.A.2 with constant C = ⌈β⌉2⌊β⌋+1M⌈β⌉.
Since the input can be negative we use two of those networks in parallel as described
in Proposition 2.A.3. This gives us a network

G̃ ∈ Fid

(
L∗ + 4 log2

(
⌈β⌉2⌊β⌋+1M⌈β⌉

)
,m∗, 2Rs∗ + 16 log2

(
⌈β⌉2⌊β⌋+1M⌈β⌉

))
,

where m∗ = (1, 12R(⌈β⌉)2, · · · , 12R(⌈β⌉)2, 1), such that

∣∣∣G̃(x)− T β(π(x))
∣∣∣ ≤ ⌈β⌉2⌊β⌋+2M⌈β⌉3⌈β⌉2−η.

Setting η = ⌈log2(⌈β⌉2⌊β⌋+2M⌈β⌉+13⌈β⌉)⌉, this is upper bounded by M−1. Applying
the triangle inequality, the mean value theorem and Lemma 2.B.4 yields

∣∣∣eG̃(x) − x
∣∣∣ ≤

∣∣∣eG̃(x) − eT
β log(π(x))

∣∣∣+
∣∣∣eTβ log(π(x)) − x

∣∣∣ ≤ e2/M

M
+

1

M
≤ 4

M
, (2.B.5)

where the term e2/M comes from noticing that |G̃(x) − T β log(π(x))| ≤ M−1,
|T β log(π(x))− log(1)| ≤M−1 and triangle inequality.

To derive the lower bound G(x) ≥ log(4/M), we construct a network that computes

the maximum between G̃(x) and log(4/M). Since M ≥ 1 implies
| log(4/M)|/⌈β⌉2⌊β⌋+1M⌈β⌉ ≤ 1, we can achieve this by adding one additional layer
before the scaling. This layer can be written as

σ
(
x− log(4/M)

⌈β⌉2⌊β⌋+1M⌈β⌉

)
+

log(4/M)

⌈β⌉2⌊β⌋+1M⌈β⌉σ(1). (2.B.6)

Applying the scaling as before yields a network G(x) = max{G̃(x), log(4/M)} that is

in the same network class as G̃(x). For the upper bound notice that if G(x) = G̃(x),

2.B. Neural networks approximating the logarithm 63

scale

UF2

scale

UF3

scale

UFR

...

scale

UH1

scale

UH2

scale

UHR−1

...

scale

UHR

Partition

Identity

π(x)

Restriction

x

Input

Identity

F2(π(x))

Mult2η

F2(π(x))π(x)

Mult
bβc
η

F2(π(x))π(x)
bβc

...

GF2

GF3

GFR

GH1

GH2

GHR−1

GHR

...

...

Lower Bound
Enforcement

c0

c1

cγ

cbβc

c

c

c

c

c

c

scale

positive
part

scale

negative
part

+

−

G(x)

Output

+

−

Taylor

G(x)

Figure 2.B.2: The construction of the logarithm approximation network G of Theorem
2.4.1 from subnetworks. The difference between the networks G and G̃ is the single
layer which enforces the lower bound, which is not present in the network G̃.

then the bound follows from (2.B.5). When G(x) = log(4/M), then G̃(x) ≤ log(4/M),
so (2.B.5) implies that x ≤ 8/M. Hence

∣∣∣eG(x) − x
∣∣∣ =

∣∣∣∣
4

M
− x

∣∣∣∣ ≤
4

M
.

The network size as given in the theorem is an upper bound on the network size
obtained here, which is allowed by the depth-synchronization followed by the enlarging
property, and is done in order to simplify the expressions.

Figure 2.B.2 shows the main substructures of the deep ReLU network construction
in this proof.

64 Chapter 2. multiclass classification

2.C Further technicalities

Proposition 2.C.1 (Bernstein’s inequality). For independent random variables
(Zi)

n
i=1 with zero mean and moment bounds E|Zi|m ≤ 1

2m!Um−2vi for m = 2, 3, . . .
and i = 1, . . . , n for some constants U and vi, we have

P

(∣∣∣∣∣
n∑

i=1

Zi

∣∣∣∣∣ > x

)
≤ 2e−

x2

2v+2Ux , for v ≥
n∑

i=1

vi.

This formulation of Bernstein’s inequality is based on the formulation in Lemma
2.2.11 of [148]. The proof can be found in [16].

The next elementary inequality generalizes Lemma 10 of [127].

Lemma 2.C.2. If a, b, c, d are real numbers, a ≥ 0, such that |a − b| ≤ 2
√
ac + d,

then, for each ϵ ∈ (0, 1],

(1− ϵ)(b− d)− (1− ϵ)2

ϵ
c2 ≤ a ≤ (1 + ϵ)(b+ d) +

(1 + ϵ)2

ϵ
c2.

Proof. First notice that |a−b| ≤ 2
√
ac+d if and only if −2

√
ac−d ≤ a−b ≤ 2

√
ac+d.

Using that 2xy ≤ x2 + y2 for all x, y ∈ R, we get for x :=
√
a
√
ϵ/
√
1 + ϵ and

y := c
√
1 + ϵ/

√
ϵ, that

2
√
ac = 2xy ≤ x2 + y2 =

ϵa

1 + ϵ
+

(1 + ϵ)c2

ϵ

and therefore

a− b ≤ ϵa

1 + ϵ
+

(1 + ϵ)c2

ϵ
+ d.

Rearranging the terms yields the upper bound of the lemma. For the lower bound
notice that if ϵ = 1, then the lower bound is zero, and holds since a ≥ 0. For ϵ ∈ (0, 1)
using the same argument but now with x =

√
a
√
ϵ/
√
1− ϵ and y = c

√
1− ϵ/

√
ϵ, gives

a− b ≥ − ϵa

1− ϵ
− (1− ϵ)c2

ϵ
− d.

Rearranging the terms yields the lower bound of the proposition.

The number a is required to be nonnegative as otherwise
√
a would not be a real

number. In the statement in [127] the constants a, b, c, d are all required to be positive.
However since the inequality 2xy ≤ x2+y2 holds for all real numbers x, y the positivity
constraint is not necessary. However, when c and d are negative the term 2

√
ac+ d is

negative, and no pair a, b exists such that the condition is satisfied.

2.C. Further technicalities 65

Recall that dτ (f ,g) := supx∈D maxk=1,··· ,K |(τ ∨ fk(x)) − (τ ∨ gk(x))|. Observe
that dτ (f ,g) = 0 does not imply f = g, which is why dτ is not a metric. The next
lemma shows that this, however, defines a pseudometric.

Lemma 2.C.3. Let f ,g,h : D → RK , then for every τ ∈ R:
(i) dτ (f ,g) ≥ 0
(ii) dτ (f , f) = 0
(iii) dτ (f ,g) = dτ (g, f)
(iv) dτ (f ,g) ≤ dτ (f ,h) + dτ (h,g).

Proof. (i), (ii) and (iii) follow immediately. (iv) follows from applying triangle inequality
to the ∥ · ∥∞ norm,

dτ (f ,g) =
∥∥ max

k=1,··· ,K
|(τ ∨ fk(·))− (τ ∨ gk(·))|

∥∥
∞

≤
∥∥ max

k=1,··· ,K
|(τ ∨ fk(·))− (τ ∨ hk(·))|

∥∥
∞

+
∥∥ max

k=1,··· ,K
|(τ ∨ hk(·))− (τ ∨ gk(·))|

∥∥
∞

= dτ (f ,h) + dτ (h,g).

Lemma 2.C.4. If G is a function class of functions from D to [0,∞)K , then for all
δ > 0 and τ > 0

N
(
δ, log(G), dlog(τ)(·, ·)

)
≤ N

(
δτ,G, dτ (·, ·)

)
.

Proof. Let δ > 0. Denote by (gj)
Nn
j=1 the centers of a minimal internal δτ -covering of G

with respect to dτ and let g ∈ G. By the cover property, there exist a j ∈ {1, · · · ,Nn}
such that dτ (g,gj) ≤ δτ .

The derivative of log(u) is 1/u, so the logarithm is Lipschitz on [τ,∞) with Lipschitz
constant τ−1. Applying this to dlog(τ)(log(g), log(gj)), noticing that
max{log(τ), log(x)} ∈ [log(τ),∞) for x ∈ [0,∞), yields

max
x∈D

max
k=1,··· ,K

|(log(τ) ∨ log(gk(x)))− (log(τ) ∨ log(gj,k(x)))|

≤ τ−1 max
x∈D

max
k=1,··· ,K

|(τ ∨ gk(x))− (τ ∨ gj,k)(x))|

≤ τ−1δτ = δ.

Since g ∈ G was arbitrary, this means that for all g ∈ G there exists a j ∈ {1, · · · ,Nn}
such that dlog(τ)(log(g), log(gj)) ≤ δ. Hence (log(gj))

Nn
j=1 is a δ-cover for log(G) with

66 Chapter 2. multiclass classification

respect to dlog(τ). Since the gj are in G, the log(gj) are in log(G), thus this cover is
an internal cover. Since N (δ, log(G), dlog(τ)(·, ·)) is the minimal number of balls with
center in log(G) required to cover log(G). This proves the assertion.

Proof of Lemma 2.3.7. Let p,q ∈ Sk. Thus,
∑K

k=1 pk = 1,
∑K

k=1 qk = 1 and

K∑

k=1

pk

(
B ∧ log

(
pk
qk

))
=

K∑

k=1

(
pk

(
B ∧ log

(
pk
qk

))
− pk + qk

)
. (2.C.1)

Suppose for the moment that for any k = 1, · · · ,K,

pk

(
B ∧ log

(
pk
qk

))
− pk + qk ≥ 1

Cm,B
pk

∣∣∣∣B ∧ log

(
pk
qk

)∣∣∣∣
m

, (2.C.2)

with Cm,B := max{m!, Bm/(B − 1)}. Applying this inequality to each term on the
right hand side of (2.C.1) gives

K∑

k=1

pk

(
B ∧ log

(
pk
qk

))
≥

K∑

k=1

1

Cm,B
pk

∣∣∣∣B ∧ log

(
pk
qk

)∣∣∣∣
m

.

Since Cm,B > 0, multiplying both sides of the inequality with Cm,B yields the claim.
It remains to proof (2.C.2). First we consider the case that pk = 0. By considering

the limit we get that 0 logm(0) = 0, for m = 1, 2, · · · . Thus the right hand side of
(2.C.2) is equal to 0, while the left hand side is equal to qk. Since qk ≥ 0, this proves
(2.C.2) for this case.

Assume now that pk > 0. Dividing both sides by pk yields

B ∧ log

(
pk
qk

)
− 1 +

qk
pk

≥ 1

Cm,B

∣∣∣∣B ∧ log

(
pk
qk

)∣∣∣∣
m

.

If pk/qk ≥ eB the inequality follows immediately. It remains to study the case
that pk/qk < eB . In this case one can always replace B ∧ log(pk/qk) by log(pk/qk).
Introducing the new variable u = qk/pk and replacing Cm,B by C > 0 gives rise to a
function

HC,m(u) = u− 1− log(u)− | log(u)|m/C.
It remains to show that HCm,B ,m(u) ≥ 0 for all u ≥ e−B . Obviously, HC,m(1) = 0 for
all C, so we only have to consider u ̸= 1. Consider first u > 1 and C = m!. Using the
substitution u = es gives

m!es −m!(s+ 1)− sm.

2.C. Further technicalities 67

Substituting the power series for the exponential function leads to

m!

∞∑

n=0

sn

n!
−m!(1 + s)− sm = m!

m−1∑

n=2

sn

n!
+m!

∞∑

n=m+1

sn

n!
> 0,

where the last strict inequality holds because u > 1 and thus s > 0. Thus Hm!,m(u) ≥ 0
for u > 1.

For u ∈ (e−b, 1), dividing by u− log(u)− 1 gives us the following constraint on the
constant C :

C ≥ sup
u∈(e−B ,1)

| log(u)|m
u− log(u)− 1

. (2.C.3)

This division can be done since u− log(u)− 1 > 0 when u > 0, u ̸= 1 and zero if and
only if u = 1, which for example can be shown by observing the sign of the derivative.

Define C<1 as C<1 := Bm/(B − 1). Since | log(u)|m/(u − log(u) − 1) is strictly
decreasing on (0, 1), see Proposition 2.C.5 (II), it follows for u ∈ [e−B , 1) that
| log(u)|m/(u − log(u) − 1) ≤ Bm/(e−B + B − 1). Now since B > 1, it follows that
Bm/(u + B − 1) is also strictly decreasing on [0, 1]. Hence on [0, e−B] we have
Bm/(e−B +B − 1) ≤ Bm/(u+B − 1) ≤ C<1, thus C<1 satisfies (2.C.3).

Now notice that Cm,B = max{C<1,m!}. Consequently HCm,B ,m(u) ≥ 0, for all
u ≥ e−B , proving (2.C.2).

For all m = 2, 3, . . . define the function Fm : (0,∞) → [0,∞) as

Fm(u) :=
| logm(u)|

u− log(u)− 1
.

Since u − log(u) − 1 ≥ 0, this function indeed takes only positive values. Further-
more since u − log(u) − 1 = 0 only when u = 1 this is the only possible singular-
ity/discontinuity of this function. The next result derives some properties of the
function Fm(u).

Proposition 2.C.5. If m = 2, 3, · · · , then
(i) limu→1 F2(u) = 2 and limu→1 Fm(u) = 0 for m > 2
(ii) Fm(u) is strictly decreasing on (0, 1).

Proof. (i): For u = 1, it holds that (u− log(u)− 1) = 0 and | logm(u)| = 0. Applying
L’Hopital’s rule twice yields the desired result.

(ii): The L’Hopital’s like rule for monotonicity, see [112] or Lemma 2.2 in [4],
states that a function f/g on an interval (a, b), satisfying g′ ≠ 0 and either f(a) =
0 = g(a) or f(b) = 0 = g(b), is strictly increasing/decreasing if f ′/g′ is strictly

68 Chapter 2. multiclass classification

increasing/decreasing on (a, b). For f(u) = | logm(u)| and g(u) = u− log(u)− 1, we
have

f ′(u)
g′(u)

=
m log(u)| logm−2(u)|

u− 1

and for f̄(u) = m log(u)| logm−2(u)| and ḡ(u) = u− 1, we obtain

f̄ ′(u)
ḡ′(u)

=
(m− 1)m| logm−2(u)|

u
.

On u ∈ (0, 1), f̄ ′(u)/ḡ′(u) is strictly decreasing. Applying the L’Hopital’s like rule for
monotonicity twice yields the statement.

Proof of Lemma 2.3.4. The inequality KL2(P,Q) ≤ KLB(P,Q) follows direct from
the definition of the truncated Kullback-Leibler divergence. Write P = P a + P s for
the Lebesgue decomposition of P with respect to Q such that P a ≪ Q. The Lebesgue
decomposition ensures existence of a set A with P a(A) = 0 = P s(Ac). For x ∈ A,
we define dP/dQ(x) := +∞. For the dominating measure µ = (P +Q)/2, denote by
p, pa, ps, q the µ-densities of P, P a, P s, Q, respectively. Since psq = 0,

H2(P,Q) =

∫ (
pa + ps −√

paq
)

≤
∫

0<pa/q≤e2

(
pa −√

paq
)
+

∫

pa/q>e2
pa +

∫
ps.

For every u ∈ R, we have 1−u ≤ e−u and hence eu−1 ≤ ueu. Substituting u = log(
√
y)

yields
√
y − 1 ≤ √

y log(
√
y) and therefore y − √

y ≤ y log(
√
y) = y log(y)/2. With

y = pa/q, we find,

H2(P,Q) ≤
∫

0<pa/q≤e2

pa

2q
log
(pa
q

)
q +

∫

pa/q>e2
pa +

∫
ps.

The other direction works similarly. Second order Taylor expansion around one
gives for y > 0, y log(y) ≤ y − 1 + 1

2 (y − 1)2/(y ∧ 1). For y =
√
x, we find x log(x) =

2
√
x · √x log(√x) ≤ 2(x−√

x) + (1 ∨√
x)(

√
x− 1)2. Consequently, for each B ≥ 0,

KLB(P,Q) =

∫

pa/q≤eB

pa

q
log
(pa
q

)
q +B

∫

dP/dQ>eB
dP

≤ 2eB/2H2(P,Q) + 2

∫

pa/q≤eB
p−√

pq +B

∫

dP/dQ>eB
dP.

2.C. Further technicalities 69

If
∫
pa/q≤eB

pa − √
paq ≤ 0, we can use that H2(P,Q) ≥ 1

2

∫
p/q≥eB

(
√
p − √

q)2 ≥
1
2

∫
p/q≥eB

p(1− e−B/2)2 and hence

KLB(P,Q) ≤ 2
(
eB/2 + (1− e−B/2)−2

)
H2(P,Q).

Otherwise, if
∫
pa/q≤eB

pa −√
paq > 0, we can upper bound

KLB(P,Q) ≤ 2eB/2H2(P,Q) +B(1− e−B/2)−1

∫

pa/q≤eB
p−√

pq

+B

∫

dP/dQ>eB
dP

≤ 2eB/2H2(P,Q) +B(1− e−B/2)−1

∫
p−√

pq

=
(
2eB/2 +B(1− e−B/2)−1

)
H2(P,Q).

The result now follows by observing that since B ≥ 2, both B(1 − e−B/2)−1 and
2(1− e−B/2)−2 are less than 2eB/2.

Proposition 2.C.6. Recall that Φ denotes the softmax function. The function
log(Φ(·)) : RK → RK satisfies | log(Φ(x))− log(Φ(y))|∞ ≤ K∥x− y∥∞.

Proof. Consider the composition of the logarithm with the softmax function, that is,

(
log

(
ex1

∑K
j=1 e

xj

)
, · · · , log

(
exK

∑K
j=1 e

xj

))
.

It holds for k, i ∈ {1, · · · ,K}, i ̸= k that

∂

∂xk
log

(
exk

∑K
j=1 e

xj

)
= 1− exk

∑K
j=1 e

xj

,

∂

∂xk
log

(
exi

∑K
j=1 e

xj

)
= − exk

∑K
j=1 e

xj

.

The partial derivatives are bounded in absolute value by one. The combined log-
softmax function is therefore Lipschitz continuous (w.r.t to ∥ · ∥∞ norm for vectors)
with Lipschitz constant bounded by K.

70 Chapter 2. multiclass classification

Proof of Lemma 2.3.8. We start proving the first bound. Notice that g ∈ log(FΦ(L,m, s))
means that there exists a ReLU network fg ∈ Fid(L,m, s) such that g(x) = log(Φ(fg(x))).
By Lemma 5 of [127] it holds that N (δ/(2K),Fid(L,m, s), ∥·∥∞) ≤ (4δ−1K(L+1)V 2).
Let δ > 0. Denote by (fj)

Nn
j=1 the centers of a minimal δ/(2K)-covering of Fid(L,m, s)

with respect to ∥ · ∥∞. Triangle inequality gives that for each fj there exists a

f̂j ∈ Fid(L,m, s) such that (f̂j)
Nn
j=1 is an interior δ/K-cover of Fid(L,m, s). Let

g ∈ log(FΦ(L,m, s)). By the cover property, there exists a j ∈ {1, · · · ,Nn} such that

∥fg − f̂j∥ ≤ δ/K. Proposition 2.C.6 yields:

∥g − log(Φ(f̂j))∥∞ = ∥ log(Φ(fg))− log(Φ(f̂j))∥∞ ≤ K∥fg − f̂j∥∞ ≤ δ.

Since g ∈ log(FΦ(L,m, s)) was arbitrary and f̂j ∈ Fid(L,m, s) for j = 1, · · · ,Nn,

this means that (log(Φ(f̂j)) is an internal δ-cover for log(FΦ(L,m, s)) with respect to
∥ · ∥∞. Hence

N (δ, log(FΦ(L,m, s)), ∥ · ∥∞) ≤ N (δ/(2K),Fid(L,m, s), ∥ · ∥∞)

≤ (4δ−1K(L+ 1)V 2).

Now we consider the second bound of the lemma. Using that m0 = d, mL+1 = K and
by removing inactive nodes, Proposition 2.A.1, we get that mℓ ≤ s for s = 1, · · · , L,
and thus

V ≤ dKsL2L+2.

Substituting this in the first bound and taking the logarithm yields the result.

Proposition 2.C.7. Consider binary classification (K = 2) for the conditional class
probabilities p1(x) = (3|x1 + x2 − 1|8)/4 and p2(x) = 1 − p1(x). If X is uniformly
distributed on [0, 1]2, then

PX (p1(X) ≤ t) = 2

(
4t

3

) 1
8

−
(
4t

3

) 1
4

.

If the distribution of X is given by the density (x1, x2) 7→ 3|x1 + x2 − 1|, then

PX (p1(X) ≤ t) = 3

(
4t

3

) 1
4

− 2

(
4t

3

) 3
8

.

Proof. By rewriting the inequality p1(X) ≤ t, we get for both cases that

PX (p1(X) ≤ t) = PX

(
(3|x1 + x2 − 1|8)/4 ≤ t

)

2.C. Further technicalities 71

= PX

(
1−

(
4t

3

) 1
8

≤ x1 + x2 ≤ 1 +

(
4t

3

) 1
8

)
.

First we consider the case of uniform design. In this case, we find

PX

(
1−

(
4t

3

) 1
8

≤ x1 + x2 ≤ 1 +

(
4t

3

) 1
8

)

=

∫ 1

0

∫ 1+(4t
3)

1
8 −x2

1−(4t
3)

1
8 −x2

1dx1dx2 −
∫ (4t

3)
1
8

0

∫ 1+(4t
3)

1
8 −x2

1

1dx1dx2

−
∫ 1

1−(4t
3)

1
8

∫ 0

1−(4t
3)

1
8 −x2

1dx1dx2

= 2

(
4t

3

) 1
8

− 1

2

(
4t

3

) 1
4

− 1

2

(
4t

3

) 1
4

.

Here, the second and third double integral are correction terms that compensate for
the regions where the first double integral integrates over values outside [0, 1]2.

To prove the second part of the statement, consider the case that the distribution
of X is given by the density (x1, x2) 7→ 3|x1 + x2 − 1|. In this case we have that

PX

(
1−

(
4t

3

) 1
8

≤ x1 + x2 ≤ 1 +

(
4t

3

) 1
8

)

=

∫ 1

0

∫ 1+(4t
3)

1
8 −x2

1−(4t
3)

1
8 −x2

3|x1 + x2 − 1|dx1dx2

−
∫ (4t

3)
1
8

0

∫ 1+(4t
3)

1
8 −x2

1

3|x1 + x2 − 1|dx1dx2

−
∫ 1

1−(4t
3)

1
8

∫ 0

1−(4t
3)

1
8 −x2

3|x1 + x2 − 1|dx1dx2

=

∫ 1

0

∫ 1−x2

1−(4t
3)

1
8 −x2

3(−x1 − x2 + 1)dx1dx2

+

∫ 1

0

∫ 1+(4t
3)

1
8 −x2

1−x2

3(x1 + x2 − 1)dx1dx2

−
∫ (4t

3)
1
8

0

∫ 1+(4t
3)

1
8 −x2

1

3(x1 + x2 − 1)dx1dx2

72 Chapter 2. multiclass classification

−
∫ 1

1−(4t
3)

1
8

∫ 0

1−(4t
3)

1
8 −x2

3(−x1 − x2 + 1)dx1dx2

=
3

2

(
4t

3

) 1
4

+
3

2

(
4t

3

) 1
4

−
(
4t

3

) 3
8

−
(
4t

3

) 3
8

.

Again, the correction terms occur because we integrate over values outside [0, 1]2.

Acknowledgments

We thank the two referees and the editor of the Electronic Journal of Statistics for
many helpful suggestions.

73

Chapter 3

A supervised deep learning
method for nonparametric
density estimation

Abstract

Nonparametric density estimation is an unsupervised learning problem. In
this chapter we propose a two-step procedure that casts the density estimation
problem in the first step into a supervised regression problem. The advantage
is that we can afterwards apply supervised learning methods. Compared to
the standard nonparametric regression setting, the proposed procedure creates,
however, dependence among the training samples. To derive statistical risk
bounds, one can therefore not rely on the well-developed theory for i.i.d. data.
To overcome this, we prove an oracle inequality for this specific form of data
dependence. As an application, it is shown that under a compositional structure
assumption on the underlying density, the proposed two-step method achieves
convergence rates that are faster than the standard nonparametric rates. A
simulation study illustrates the finite sample performance.

3.1 Introduction

Machine learning distinguishes between supervised and unsupervised learning tasks
[21, 99]. In the supervised framework, the dataset consists of input-output pairs. No
outputs are observed in the unsupervised setting. For supervised learning, classical
examples are regression and classification; for unsupervised learning, commonly en-

This chapter is based on: Thijs Bos and Johannes Schmidt-Hieber (2023). A supervised deep
learning method for nonparametric density estimation. Preprint arXiv:2306.10471. The
research has been supported by the NWO/STAR grant 613.009.034b and the NWO Vidi grant
VI.Vidi.192.021.

74 Chapter 3. supervised density estimation

countered problems are density estimation and clustering. The apparent difference
between supervised and unsupervised tasks results in methods that either apply to the
supervised or to the unsupervised framework. Of course, neural nets can be applied
in both scenarios but the underlying methodology is unrelated: In the supervised
context, deep learning is applied to reconstruct the function mapping the inputs to
the outputs; in the unsupervised framework, neural networks are employed for feature
extraction, e.g. by making use of variational autoencoders [68].

In this chapter, we show how unsupervised multivariate density estimation can be
cast into a supervised regression problem. For that, we generate suitable response
variables from the data in a first step. Rewriting the problem as supervised learning
task allows us to borrow strength from supervised learning methods. We demonstrate
this by fitting deep ReLU networks. In the theoretical deep learning literature, it
has been shown that supervised deep networks can outperform other methods if the
target function exhibits some compositional structure. Making the link to supervised
learning allows us to exploit this property also for density estimation. This is highly
desirable as a compositional structure is frequently imposed in modelling of densities.
Examples include copula models [1, 101] and Bayesian network models [78], see also
Section 3.4.

Theorem 3.3.1 is the main theoretical contribution and establishes an oracle inequal-
ity for supervised regression methods applied to nonparametric density estimation.
The key technical difficulty in the proof is to deal with the dependence incurred
by generating the response variables in the first step of the proposed method. To
control the dependence, we use a Poissonization argument. Applying the derived
oracle inequality, we show in Theorem 3.3.4 that deep ReLU networks can obtain fast
convergence rates, given that the underlying density has a compositional structure.
For sufficiently smooth densities the convergence rates are, up to logarithmic factors in
the sample size, the same as the recently obtained minimax rates in the nonparametric
regression model under compositional structure on the regression function, [127]. But
there are also smoothness regimes where the convergence rate is slower by a polynomial
order in the sample size if compared to the nonparametric regression case. This is
due to the first step in the construction of the estimator that transforms the density
estimation problem into a supervised regression problem. But still then there are
scenarios where the convergence rate is considerably faster than doing off-the-shelf
kernel density estimation without taking the underlying compositional structure of
the density into account.

The proposed two-step procedure is related to Lindsey’s method which transforms
parametric estimation in exponential families into a Poisson regression problem [91,
90, 45]. The first step of this method discretizes the sample space into disjoint bins.
The bin counts follow a multinomial distribution that is then approximated by the
Poisson distribution. Assuming Poisson distributed bin counts, maximum likelihood

3.2. Conversion into a supervised learning problem 75

estimation of the parameters results then in a Poisson regression problem. A benefit of
Lindsey’s transformation is that the normalization constant of the exponential family
vanishes. This constant is an integral over the entire domain and hard to compute
in high dimensions [97, 48]. While Lindsey’s method returns one observation per bin
and has been formulated for exponential families, the proposed method in this chapter
focuses on nonparametric densities and artificially creates a supervised dataset by
computing a response vector for each of the datapoints. Approximation of the bin
counts by the Poisson distribution occurs in our approach in the proof.

This chapter is structured as follows. Section 3.2 describes the construction of
suitable response variables from the data. In Section 3.3 we present a suitable oracle
inequality for non-i.i.d. data. Furthermore, we provide convergence rates in the case
that the regression estimator is a deep neural network and the underlying density
are compositional functions. In Section 3.4 we shortly discuss some density models
that exhibit compositional structure. A small (exploratory) simulation is provided in
Section 3.5. All proofs are deferred to the Appendix.

3.1.1 Notation

We denote vectors and vector valued functions by bold letters. For a vector x =
(x1, . . . , xk)

⊤ we define |x|∞ = maxi=1,...,k |xi|, |x|1 =
∑k

i=1 |xi|. and |x|0 =∑k
i=1 1{xi ̸=0}. For partial derivatives we use multi-index notation, that is, if α ∈

{0, 1, 2, . . .}d we use the notation ∂α := ∂α1
x1
. . . ∂αd

xd
. We denote the supremum norm

of a function f : D → R by ∥f∥∞ = supx∈D |f(x)|. As commonly defined in nonpara-
metric statistics, for a real number x ∈ R, ⌊x⌋ is the largest integer < x and ⌈x⌉ is
the smallest integer ≥ x. The minimum and maximum of two numbers x, y are also
written as x ∧ y and x ∨ y. For two sequences (an)n and (bn)n, we write an ≲ bn if
there exists a constant C such that an ≤ Cbn for all n. Moreover, an ≍ bn means that
an ≲ bn and bn ≲ an. If no basis is specified, then log = ln .

3.2 Conversion into a supervised learning problem

We consider nonparametric density estimation on the hypercube [0, 1]d, where we
observe 2n i.i.d. vectors Xi ∈ [0, 1]d which are distributed according to an unknown
density f0 from a nonparametric class. The density estimation problem is to recover
this density f0 from the data (Xi)

2n
i=1. Here the sample size 2n is chosen for notational

convenience, as we will do data splitting. Half of the data are used to compute an
undersmoothed kernel density estimator. From that we construct response variables
Yi for the remaining data. In a last step, we fit a neural network to the resulting
regression problem. The response variables Yi can be interpreted as noisy versions of

76 Chapter 3. supervised density estimation

f0(Xi), such that the regression estimator then yields an estimator for the underlying
density f0. It is convenient to denote the n data points used for the kernel density
estimator by X′

1, . . . ,X
′
n, and the n data points for the regression step by X1, . . . ,Xn.

The multivariate kernel density estimator based on the subsample X′
1, . . . ,X

′
n with

X′
ℓ = (X ′

ℓ,1, . . . , X
′
ℓ,d)

⊤ is defined by

f̂KDE(x) :=
1

nhdn

n∑

ℓ=1

d∏

r=1

K

(
X ′

ℓ,r − xr

hn

)
, (3.2.1)

with hn the bandwidth and K : R → R the kernel. We choose a sequence hn satisfying
(log(n)/n)1/d ≤ hn ≤ 2(log(n)/n)1/d and such that h−1

n is a positive integer for all
n > 1. Existence of such a sequence is guaranteed by Lemma 3.3.2. The fact that
h−1
n is a positive integer allows us to partition [0, 1] into h−1

n disjoint intervals of
length hn. This construction undersmooths and does not require knowledge of the
true smoothness.

For i = 1, . . . , n, define
Yi := f̂KDE(Xi). (3.2.2)

Setting ϵi := Yi − f0(Xi), we obtain the regression model

Yi = f0(Xi) + ϵi, i = 1, . . . , n. (3.2.3)

Although the notation seems to suggest that this is the standard nonparametric
regression framework, all data points depend on the underlying kernel density estimator
f̂KDE. The pairs (X1, Y1), . . . , (Xn, Yn) are henceforth dependent and thus not i.i.d.
To deal with this dependence is the main technical challenge in the analysis of the
proposed method.

The least squares estimator f̂n over a function class F for the density f0 is defined
as any global minimizer of the least squares loss

f̂n ∈ argmin
f∈F

1

n

n∑

i=1

(Yi − f(Xi))
2.

Due to the nonconvex energy landscape, neural network training usually does not
find the global minimum. The difference between training error of the estimator and
training error of the global minimum is commonly referred to as optimization error.
For any estimator f̂ taking values in a function class F , and data generated from
the nonparametric regression model with regression function f0, we consider here the
optimization error

∆n(f̂ , f0) := Ef0

[
1

n

n∑

i=1

(Yi − f̂(Xi))
2 − inf

f∈F
1

n

n∑

i=1

(Yi − f(Xi))
2

]
, (3.2.4)

3.3. Main results 77

where the expectation is taken over the full data set, making ∆n(f̂ , f0) deterministic.

The risk of an estimator f̃ is given by

R(f̃ , f0) := Ef0,X

[
(f̃(X)− f0(X))2

]
=

∫
Ef0

[
(f̃(x)− f0(x))

2
]
f0(x) dx. (3.2.5)

Here X
d
= X1 is independent of the data and Ef0,X is the expectation with respect to

the joint distribution of X and the data set. We denote by EX the expectation with
respect to X.

3.3 Main results

We assume that the density f0 belongs to the class of β-Hölder smooth function on Rd

with support on [0, 1]d. For β > 0 and D ⊂ Rd, the ball of β-Hölder functions with
radius Q is defined as

Cβ
d (D, Q) :=

{
f : D ⊆ Rd → R :

∑

γ:|γ|1<β

∥∂γf∥∞

+
∑

γ:|γ|1=⌊β⌋
sup

x,y∈D,x̸=y

|∂γf(x)− ∂γf(y)|
|x− y|β−⌊β⌋

∞
≤ Q

}
,

(3.3.1)
where ∥ · ∥∞ denotes the supremum norm, ∂γ = ∂γ1

x1
. . . ∂γd

xd
, with γ = (γ1, . . . , γd) ∈

{0, 1, 2, , . . .}d. The class of β-Hölder smooth densities on Rd and support on [0, 1]d

can subsequently be defined as

Cβ
d (Q) :=

{
f ∈ Cβ

d (R
d, Q) : supp f ⊆ [0, 1]d,

∫

[0,1]d
f(x) dx = 1, f ≥ 0

}
.

The condition that the density f0 is smooth on Rd instead of [0, 1]d is imposed to
avoid (technical) difficulties of the kernel density estimator near the boundary of [0, 1]d.
(There is literature dealing with the behaviour of kernel estimators near boundaries,
see for example Section 2.11 of [151].) We define the class of β-Hölder smooth densities
on [0, 1]d by restricting β-Hölder smooth densities on Rd to [0, 1]d,

Cβ
d ([0, 1]

d, Q) :=
{
f : [0, 1]d → R : there exists h ∈ Cβ

d (Q) s.t. f = h|[0,1]d
}
.

A function K : R → R is said to be a (one-dimensional) kernel of order ⌊β⌋ if∫
RK(u) du = 1,

∫
R |u|⌊β⌋+1K(u) du <∞, and ifK has vanishing moments

∫
R u

ℓK(u) du
= 0 for all ℓ = 1, . . . , ⌊β⌋.

78 Chapter 3. supervised density estimation

We state the oracle inequality for estimators taking values in an abstract function
class F(F) ⊆ {f : ∥f∥∞ ≤ F}. Furthermore we denote by NF (δ) the covering number
of a class F(F) with respect to the supremum norm. More specifically, NF (δ) is the
minimum number of supremum norm balls with radius δ and centers contained in F
that are necessary to cover F .

Theorem 3.3.1. Consider the density estimation model as defined in Section 3.2
with density f0 in the Hölder class Cβ

d ([0, 1]
d, Q). Let f̂ be any (regression) estimator

based on the data (X1, Y1), . . . , (Xn, Yn) generated from (3.2.3) and taking values in
the function class F(F), with F ≥ max{Q, 1} and NF (δ) ≥ n. If K is a kernel of
order ⌊β⌋ with support in [−1, 1] and ∥K∥∞ < ∞, then, for n > e, (log(n)/n)1/d ≤
hn ≤ 2(log(n)/n)1/d and h−1

n a positive integer, there exist constants C1, C2, C3 only
depending on F,K, d,Q, β such that

R(f̂ , f0) ≤C1
log2(n) log(NF (δ))

n
+ C2δ + C3

(
log(n)

n

) 2β
d

+
16

3
∆n(f̂ , f0)

+
20

3
inf
f∈F

EX

[
(f(X)− f0(X))2

]
.

As common for oracle inequalities, the upper bound contains an approximation
term, a complexity term involving the metric entropy, and the optimization error
∆n(f̂ , f0). For neural networks and other parametrizable function classes, the metric
entropy log(NF (δ)) depends only logarithmically on δ and one can choose δ = 1/n,
making the C2δ term negligibly small.

Additionally, the bound contains the term C3(log(n)/n)
2β/d that is due to the

bandwidth choice hn ≍ (log(n)/n)1/d and a term of the order h2βn that can be traced
back to Proposition 3.6.3. To decrease the order of the C3(log(n)/n)

2β/d term, it
is tempting to aim for a smaller bandwidth hn ≪ n−1/d. However, even if the data
points are equally spaced in [0, 1]d, the distance of two neighboring data points is
n−1/d. Thus for bandwidth hn ≪ n−1/d, it follows from the definition of the kernel
density estimator in (3.2.1) that the estimated density degenerates into separate spikes
centered around the data points, the generated response variables Yi become much
larger than the true density f(Xi), and consequently the two-step method that we
propose will not work anymore.

The assumption NF (δ) ≥ n in the previous theorem is imposed for convenience
and holds for all common nonparametric classes F . The bound is still valid if we
replace NF (δ) by NF (δ) ∨ n.

The following lemma shows that a bandwidth hn with the imposed properties
exists.

Lemma 3.3.2. If n > 1, then there exists a hn, such that (log(n)/n)1/d ≤ hn ≤
2(log(n)/n)1/d and h−1

n is a positive integer.

3.3. Main results 79

3.3.1 Neural networks

We study the effect of fitting a deep ReLU network in the regression step of the proposed
two-step procedure. We rely on the mathematical formulation of deep neural networks
introduced in [127] and briefly recall the details for completeness of the exposition. The
rectified linear unit (ReLU) activation function is σ(x) := max{x, 0}. For any vectors
v = (v1, . . . , vr)

⊤,y = (y1, . . . , yr)
⊤ ∈ Rr, we define the shifted activation function

σvy := (σ(y1 − v1), . . . , σ(yr − vr))
⊤. The number of hidden layers is denoted by L

and the width of the layers is denoted by the width vector p = (p0, . . . , pL+1) ∈ NL+2.
A network with network architecture (L,p) is any function of the form

f : Rp0 → RpL+1 , x 7→ f(x) =WLσvL
WL−1σvL−1

. . .W1σv1
W0x, (3.3.2)

where Wj is a pj+1 × pj weight matrix and vj ∈ Rpj is a shift vector. We use the
convention that v0 := (0, . . . , 0)⊤ ∈ Rp0 . Denote the maximum entry norm of a matrix
W by ∥W∥∞. The class of ReLU networks with architecture (L,p) and parameters
bounded in absolute value by one is

F(L,p) :=

{
f is of the form of (3.3.2) : max

j∈{0,...,L}
∥Wj∥∞ ∨ |vj |∞ ≤ 1

}
.

For a matrix W denote the counting norm (number of non-zero entries) by ∥W∥0. We
are interested in sparsely connected networks where the number of non-zero or active
parameters is small compared to the total number of parameters. For this we define
the class of s-sparse networks, that are bounded in uniform norm by F , as

F(L,p, s, F) :=



f ∈ F(L,p) :

L∑

j=0

∥Wj∥0 + |vj |0 ≤ s, ∥|f |∞∥∞ ≤ F



 .

Definition 3.3.3 (Two-stage neural network density estimator). The two-stage neural
network estimator is defined as follows. In the first step, we generate response variables
as in (3.2.3) and in the second step, we fit a neural network from the class F(L,p, s, F)
to the augmented sample (X1, Y1), . . . , (Xn, Yn).

3.3.2 Structural constraints: compositions of functions

Deep neural networks are built by computing individual layers. Previously derived
statistical theory has shown that they are well-suited to pick up compositional structure
in the regression function, [71, 113, 11, 127, 77]. In this chapter we follow the
composition structure introduced in [127] and impose it on the multivariate density f0,
that is, we assume that f0 = gq ◦gq−1 ◦ . . .◦g1 ◦g0, with gi : [ai, bi]di → [ai+1, bi+1]

di+1 .

80 Chapter 3. supervised density estimation

Denote by gi = (gij)
⊤
j=1,...,di+1

the components of gi and let ti be the maximal number
of variables on which each of the gij depends. It always holds that ti ≤ di and for
certain models ti can be much smaller than di. Section 3.4 provides examples of
densities where this is the case. As we consider density estimation on [0, 1]d, it follows
that d0 = d, a0 = 0, b0 = 1 and dq+1 = 1. Since gij depends on ti variables, we
also interpret it as a function [ai, bi]

ti → [ai+1, bi+1]
di+1 whenever this is convenient.

Denote by αi the smoothness of each of the functions gij . Then gij ∈ Cαi
ti ([ai, bi]

ti , Qi)
and the space of compositions of these smooth functions is given by

G(q,d, t,α, Q′) :=
{
f = gq ◦ . . . ◦ g0 : gi = (gij)j : [ai, bi]

di → [ai+1, bi+1]
di+1 ,

gij ∈ Cαi
ti ([ai, bi]

ti , Q′), for some |ai|, |bi| ≤ Q′
}
.

(3.3.3)
If two functions h, g : R → R have respective smoothness αh, αg ≤ 1 then it follows
from the definition of the Hölder space that the composition f := g ◦h has smoothness
αhαg. For αh > 1 or αf > 1, this is not necessarily true anymore. It turns out that
the convergence rates for a compositional function in G(q,d, t,α, Q′) are governed by
a notion of effective smoothness indices which are defined as

α∗
i := αi

q∏

ℓ=i+1

(αℓ ∧ 1).

Indeed, in the nonparametric regression model with i.i.d. observations the minimax
estimation rate is up to log(n)-terms

ϕn := max
i=0,...,q

n
− 2α∗

i
2α∗

i
+ti , (3.3.4)

cf. [127]. A function can be represented as a composition in different ways. In the
function representation f = gq ◦ . . . ◦ g0, the αi, ti and the components g0, . . . , gq are
not identifiable. Since we are only interested in estimating the density f0 this does
not constitute a problem.

The oracle inequality in Theorem 3.3.1 together with the approximation and
covering entropy bound results for deep ReLU networks from [127] yields a convergence
rate result for the proposed two-stage neural networks estimator.

Theorem 3.3.4 (Main convergence rates results). Consider the multivariate density

estimation model as defined in Section 3.2 with density f0 in the class Cβ
d ([0, 1]

d, Q) ∩
G(q,d, t,α, Q). For K a kernel of order ⌊β⌋ with support in [−1, 1] and ∥K∥∞ <∞,

let f̂n be an estimator, based on the data (X1, Y1), . . . , (Xn, Yn) generated from (3.2.3),
taking values in the network class F(L, (p0, . . . , pL+1), s, F) with parameters satisfying

3.3. Main results 81

(i) F ≥ max{Q, 1},
(ii) NF (n−1) ≥ n,
(iii)

∑q
i=1 log2(4ti ∨ 4αi) log2(n) ≤ L ≲ nϕn,

(iv) nϕn ≲ mini=1,...,L, pi,
(v) s ≍ nϕn log(n).

If n > e, then there exist constants C4, C5 only depending on q,d,α, t, F, β,K and the
implicit constants in (iii), (iv) and (v), such that if the optimization error satisfies

∆n(f̂n, f0) ≤ C4Lmax(ϕn log
4(n), n−2β/d), we have

R(f̂n, f0) ≤ C5Lmax
(
ϕn log

4(n), n−2β/d
)
.

Any admissible compositional structure f = gq ◦ . . . ◦ g0 leads to an upper bound
on the risk. The estimator achieves therefore the fastest convergence rate among all
possible representations.

Choosing depth L ≍ log(n), the convergence rate for the learned network f̂ is
thus ϕn + n−2β/d, up to log(n)-factors. The n−2β/d-term is due to the kernel density
estimator in the first step and already occurs in the general oracle inequality, see
also the discussion after Theorem 3.3.1. Assuming that the true density f0 is β-
Hölder smooth without any further structural assumption, the minimax rate is up to
log(n)-factors, the standard nonparametric rate n−2β/(2β+d), [137].

If the density exhibits a compositional structure, it is now of interest to under-
stand which of the two terms ϕn and n−2β/d will drive the convergence rate. If the
compositional structure is strong enough to make ϕn small but β is small compared
to d, then n−2β/d dominates the convergence rate. This is faster than the standard
nonparametric rate n−2β/(2β+d) but still suffers from the curse of dimensionality.

If 2β ≥ d, then n−2β/d = O(n−1). Since ϕn ≫ n−1, the rate is in this case always
of order ϕn (up to log-factors). The condition 2β ≥ d appears frequently in the
literature on nonparametric statistics and empirical risk minimization. For d = 1,
2β > 1 is known to be a necessary condition for nonparametric density estimation
and nonparametric regression to be asymptotically equivalent if all densities are
bounded from below [107, 116]. This condition seems also necessary to ensure that
the nonparametric least squares estimator achieves the nonparametric rate, see e.g.
Section 6.1 in [130]. Barron [8] showed that shallow neural networks can circumvent
the curse of dimensionality under a Fourier criterion. A sufficient, but not necessary
condition for this Fourier criterion to be finite is that the partial derivatives up to the
least integer β such that 2β ≥ d+ 2 are square-integrable, see Example 15 in Section
IX of [7].

In the next section, we provide more explicit examples of densities that satisfy the
compositional assumption and attain the convergence rate ϕn.

82 Chapter 3. supervised density estimation

3.4 Examples of multivariate densities with compo-
sitional structure

Compositional structures arise naturally in density modelling. One possibility to see
this is to rewrite the joint density f as a product

f(x1, . . . , xd) = f(xd|x1, . . . , xd−1) · . . . · f(x2|x1)f(x1).

Each factor f(xi|x1, . . . , xi−1) is a function of i variables. But the effective number of
variables can be much smaller under conditional independence of the variables. When
X = (X1, . . . , Xd)

⊤ is generated for instance from a Markov chain, Xi only depends
on Xi−1 and the density is a product of bivariate conditional densities

f(x1, . . . , xd) = f(xd|xd−1) · . . . · f(x2|x1)f(x1). (3.4.1)

Such a structure could occur if the individual data vectors are recordings from a time
series, that is, every observation Xi = (Xi,1, . . . , Xi,d)

⊤ contains measurements of the
same quantity taken at d different times instances. We now assume that the density is
of the form

f(x1, . . . , xd) =
∏

I∈R
ψI(xI), (3.4.2)

with R ⊆ {S ⊂ {1, . . . , d}, |S| ≤ r}, r a given number, xI = (xi)i∈I , and ψI non-
negative functions. Observe that |R| ≤∑r

s=1

(
d
s

)
.

Lemma 3.4.1. Consider a density f of the form (3.4.2). If all the functions ψI in
the decomposition satisfy ψI ∈ Cγ

rI ([0, 1]
rI , Q) for some rI ≤ r, then the density f

can be rewritten as a composition g1 ◦ g0 of the form (3.3.3), with (d0, d1) = (d, |R|),
(t0, t1) = (r, |R|), (α0, α1) = (γ, ζ), and ζ arbitrarily large.

Under the combined conditions of Lemma 3.4.1 and Theorem 3.3.4, the proposed
two-step density estimator achieves, up to log(n)-factors, the convergence rate

n−
2γ

2γ+r ∨ n− 2β
d , (3.4.3)

with β the (global) Hölder smoothness of the joint density f. If β = γ, that is, the
effective smoothness γ coincides with the global Hölder smoothness β of f , then the

achieved rate is n−
2γ

2γ+r if γ ≥ (d− r)/2 and n−
2β
d if γ ≤ (d− r)/2.

Next, we discuss three examples of models that are of the form (3.4.2).

3.4. Examples of multivariate densities with compositional structure 83

Independent variables

If X = (X1, . . . , Xd) is a vector containing independent random variables, the joint
density is given by

f(x1, . . . , xd) =

d∏

i=1

fi(xi), (3.4.4)

where fi is the marginal density of Xi. We assume that fi is γi-Hölder. If we are
unaware of the independence and simply use multivariate kernel density estimators,
we will suffer from the curse of dimensionality as demonstrated for Gaussian densities
and Gaussian kernels in Chapter 7 of [131].

Observe that (3.4.4) is of the form (3.4.2), with R the set of singletons. Thus
under the combined conditions of Lemma 3.4.1 and Theorem 3.3.4, we get, up to
log(n)-factors, the convergence rate n−2γ/(2γ+1) ∨ n−2β/d, with β the (global) Hölder
smoothness of the joint density f. The construction in Lemma 3.4.1 implies that
β ≥ γ = mini=1,...,d γi. The next result shows that in this case we necessarily have
equality β = γ. In other words the smoothness of the joint density f has to be equal
to the (effective) smoothness of the least smooth marginal density.

Lemma 3.4.2. Consider a density f of the form (3.4.4). If one of the marginal
densities fi is at most α-Hölder smooth, then f is at most α-Hölder smooth.

Graphical models

Let (X1, . . . , Xd) be a d-dimensional random vector. An undirected graphical model
(or Markov random field) is defined by a graph with d nodes representing the d random
variables. In this graph, no edge between node i and j is drawn if and only if Xi, Xj

are conditionally independent given all the other variables {X1, . . . , Xd} \ {Xi, Xj}. A
clique in a graph is any fully connected subgraph. When the joint density f(x1, . . . , xd)
is strictly positive with respect to a σ-finite product measure, the Hammersley-Clifford
theorem states that

f(x1, . . . , xd) =
∏

C∈C
ψC(xC), (3.4.5)

where C is the set of all cliques in the graph and ψC are suitable functions called
potentials [19, 85]. As we consider densities supported on [0, 1]d, one can take as
dominating product measure the uniform distribution on (0, 1)d and the condition
requires that the density is strictly positive on (0, 1)d. There is no clear link between
the potentials and marginal densities.

Assuming that the true density f0 satisfies (3.4.5) with largest clique size r and
all potentials having Hölder smoothness γ, Lemma 3.4.1 implies that, under the

84 Chapter 3. supervised density estimation

conditions of Theorem 3.3.4, the two-step estimator is able to exploit the underlying

low-dimensional structure and achieves the rate n−2γ/(2γ+r) ∨ n−
2β
d , up to log(n)-

factors.

Bayesian networks

Bayesian network models are widely used to model for instance medical expert systems
[78, 59] and causal relationships [109]. As in the previous section, consider a d-
dimensional random vector (X1, . . . , Xd). In a Bayesian network, the dependence
relationships of the variables are encoded in a directed acyclic graph with nodes
{1, . . . , d} [109, 78, 21, 79]. A directed acyclic graph (DAG) is a directed graph that
contains no cycles, meaning one cannot visit the same node twice by following a path
along the direction of the edges. The parents pa(i) of a node i are all nodes that have
an edge pointing to node i.

The DAG underlying a Bayesian network is constructed such that each variable Xi

is conditionally independent of all other variables given the parents Xpa(i) := {Xj : j ∈
pa(i)} in the graph. The joint density can now be written as product of conditional
densities

f(x1, . . . , xd) = fd
(
xd|xpa(d)

)
· . . . · f1

(
x1|xpa(1)

)
. (3.4.6)

In particular, if X1, . . . , Xd are generated from a Markov chain, the corresponding
DAG is X1 → X2 → . . .→ Xd. Thus pa(j) = {j− 1} for j > 1, and we recover (3.4.1).

Assuming that the true density f0 satisfies (3.4.6), that no node in the DAG
has more than r parents, and that all conditional densities fd

(
xi|xpa(i)

)
have Hölder

smoothness γ, Lemma 3.4.1 shows that, under the conditions of Theorem 3.3.4,

the two-step estimator achieves the rate of convergence n−2γ/(2γ+r) ∨ n− 2β
d , up to

log(n)-factors.

3.4.1 Copulas

Copulas are widely employed to model dependencies between variables and to construct
multivariate distributions, [104, 28, 35]. Denote by F the multivariate distribution,
with marginals F1(x1), . . . , Fd(xd) and density f . Sklar’s theorem states that there
exists a (unique) d-dimensional copula C (a multivariate distribution function with
uniformly distributed marginals on [0, 1]) such that F (x) = C(F1(x1), . . . , Fd(xd)).
The density f can then be rewritten by the chain rule as

f(x) = c
(
F1(x1), . . . , Fd(xd)

) d∏

i=1

fi(xi), (3.4.7)

3.4. Examples of multivariate densities with compositional structure 85

where fi(xi) = F ′
i (xi) is the marginal density with respect to xi and c is the density

of C (assuming that all these densities exist). For a reference, see Section 2.3 of [104].

Lemma 3.4.3. Consider a density f of the form (3.4.7). If c ∈ Cγc

d ([0, 1]d, Qc)
and fi ∈ Cγi

1 ([0, 1], Qi), for i = 1, . . . , d, then, the density f can be rewritten as a
composition g2◦g1◦g0 of the form (3.3.3), with (d0, d1, d2) = (d, 2d, d+1), (t0, t1, t2) =
(1, d, d+ 1), (α0, α1, α2) = (mini=1,...,d γi, γc, γ), and γ arbitrarily large.

Assume that the true density is of the form (3.4.7), that all marginals fi have
the same Hölder smoothness γ1 = . . . = γd, that β = γc ∧ γ1, and that all the
conditions on the kernel and the network architecture underlying Theorem 3.3.4
are satisfied. Applying the decomposition of the density in Lemma 3.4.3, Theorem
3.3.4 yields the convergence rate n−2γ1/(2γ1+1) ∨ n−2γc/(2γc+d) ∨ n−2β/d, up to log(n)-
factors. When γc/d ≥ γ1 ≥ (d − 1)/2, the convergence rate becomes n−2γ1/(2γ1+1)

(up to log(n)-factors). The minimax estimation rate for β-Hölder smooth functions
without compositional assumption is n−2β/(2β+d). If the copula c is smoother than
the marginals, in the sense that γc > γ1 = β, then the obtained convergence rate is
faster than the standard nonparametric rate.

As example, consider the d-variate Farlie-Gumbel-Morgenstern copula family with
parameter vector θ, which has copula density

cθ(u1, . . . , ud) = 1 +

d∑

r=2

∑

1≤j1<···<jr≤d

θj1...jr

r∏

k=1

(1− 2ujk),

for a parameter vector θ satisfying

1 +

d∑

r=2

∑

1≤j1<···<jr≤d

θj1...jr

r∏

k=1

ξjk ≥ 0 for all ξjk ∈ {−1, 1},

[64, 39, 43]. The double summation sums over all 2d−d−1 subsets of {1, . . . , d} with at
least two elements. Since the input of the copula comes from the distribution functions
of the marginals, it holds that (u1, . . . , ud) ∈ [0, 1]d. This implies vj := (1 − 2uj) ∈
[−1, 1], and by Lemma 3.7.1, v 7→ ∏r

k=1 vjk ∈ Cγ
r ([−1, 1]r, 2r), for all γ ≥ r + 1.

Together with the chain rule this yields u 7→∏r
k=1(1− 2ujk) ∈ Cγ

r ([−1, 1]r, 4r). The
derivative of a sum is the sum of the derivatives and therefore the triangle inequality
implies that when |θ|∞ ≤ 1 then cθ ∈ Cγ

r ([−1, 1]d, (2d − d)4d), for all γ ≥ d+1. So for
this family of copulas, the effective smoothness of the composition is determined by
the smoothness of the marginals. If γm is the Hölder smoothness of the least smooth
marginal, then ϕn = n−2γm/(2γm+1). This shows that if β = γm, then under the
conditions of Theorem 3.3.4, the convergence rate of the proposed two-step estimator

86 Chapter 3. supervised density estimation

is, up to log(n)-factors, n−2γm/(2γm+1) whenever γm ≥ (d−1)/2 and n−2γm/d whenever
γm ≤ (d− 1)/2.

Explicit low-dimensional copula structures can be imposed using the fact that
a d-dimensional copula density factorizes into a product of d(d − 1)/2 bivariate
(conditional) copula densities [101, 14, 1, 36]. The key ingredient in this argument
is to successively rewrite the conditional densities using the formula fX|Y (x|y) =
cX,Y (FX(x), FY (y))fX(x), where cX,Y denotes the bivariate copula density of (X,Y).
The decomposition into bivariate copulas is not unique. Already for three variables
(X,Y, Z), there are two possible decompositions, namely

fX|Y,Z(x|y, z) = cX,Y |Z
(
FX|Z(x|z), FY |Z(y|z) | z

)
fX|Z(x|z)

and a second decomposition that interchanges the roles of y and z. The so-called
simplifying assumption [136, 101, 36] states that all the bivariate copulas in the
decomposition are independent of the conditioned variables, in other words

ci,j|k(Fi|k(xi|xk), Fj|k(xj |xk)|xk) = ci,j|k
(
Fi|k(xi|xk), Fj|k(xj |xk)

)
.

For the remainder of this section, we will assume that the simplifying assumption
holds.

A way to define such decompositions is by relying on regular vines, [101, 14, 1, 36].
A vine on d variables X1, . . . , Xd is a set of trees (T1, . . . , Tr), such that the nodes of
the first tree T1 are u1, . . . , ud. The nodes of the tree Ti, for i = 2, . . . , r, are (a subset
of) the edges of the tree Ti−1. For a regular vine it furthermore holds that r = d− 1,
that two edges in a tree can only be joined by an edge in the next tree if these edges
share a common node and that the set of nodes of Ti has to be equal to the set of
edges of Ti−1

Any regular vine on (X1, . . . , Xd) defines a factorization of a d-dimensional copula,
by associating a bivariate copula density to each edge in any of the trees. Copulas
defined in this way are called vine-copulas.

Figure 3.4.1 shows an example of a regular vine with four variables. Regular vines
such as the one in Figure 3.4.1, where each tree has one node that has an edge to all
other nodes in that tree, are known as canonical-vines [1] or C-vines [36]. The density
corresponding to a canonical vine on d variables (up to renumbering the variables) is
given by

d∏

k=1

fk(xk)

d−1∏

j=1

d−j∏

i=1

cj,j+i|1,...,j−1

(
F (xj |x1, . . . , xj−1), F (xj+i|x1, . . . , xj−1)

)

Another type of regular vine is the D-vine, [1, 36]. In a D-vine no node in any tree is
connected to more than two edges. Figure 3.5.2 shows the first tree of a D-vine on d

3.4. Examples of multivariate densities with compositional structure 87

variables. The density corresponding to a D-vine on d variables (up to renumbering
the variables) is given by

d∏

k=1

fk(xk)

·
d−1∏

j=1

d−j∏

i=1

ci,i+j|i+1,...,i+j−1

(
F (xi|xi+1, . . . , xi+j−1), F (xi+j |xi+1, . . . , xi+j−1)

)
.

X1

X2

X3

X4

X1, X2

X1, X3

X1, X4

(a) First tree

X1, X3

X1, X2

X1, X4

X2, X3|X1

X2, X4|X1

(b) Second tree

X2, X3|X1 X2, X4|X1

X3, X4|X1, X2

(c) Third tree

Figure 3.4.1: Example of a regular vine on four variables. Another example is given in
Figure 3.5.2.

If two random variables X1, X2 are conditionally independent given X3, then
c1,2|3 = 1. If such conditional independence relations hold, one can simplify the
vine-structure. For example consider the vine on four variables in Figure 3.4.1. In
the (very simplified) case that X2 and X3 are independent given X1, that X2 and
X4 are independent given X1, and that X3 and X4 are independent given X1 and
X2, only the bivariate copulas on the edges of the first tree (Figure 3.4.1a) appear in
the decomposition, cf. Section 3 of [1]. More generally, suppose that there exists a
canonical vine on d variables such that the bivariate (conditional) copulas associated
with all the trees except the first one are equal to one, then under the simplifying
assumption, the decomposition becomes

f(x) =

d∏

k=1

fk(xk)

d∏

i=2

c1,i
(
F (x1), F (xi)

)
. (3.4.8)

Here we use that X1 is the root of the first tree, which can always be achieved
by renumbering the variables. In the case of a D-vine the decomposition (up to

88 Chapter 3. supervised density estimation

renumbering) becomes

f(x) =

d∏

k=1

fk(xk)

d−1∏

i=1

ci,i+1

(
F (xi), F (xi+1)

)
. (3.4.9)

Vine copulas where the bivariate copulas associated with all trees except the first
one are equal to the independence copula can be interpreted as Markov tree models
[26, 70].

Lemma 3.4.4. Consider a density f of the form (3.4.8) or (3.4.9). If fi ∈
C

γm,i

1 ([0, 1], Qm,i), for i = 1, . . . , d, and all bivariate copulas are in Cγc

2 ([0, 1]2, Qc),
then, the function f can be written as a composition g2 ◦ g1 ◦ g0, with (d0, d1, d2) =
(d, 2d, 2d− 1), (t0, t1, t2) = (1, 2, 2d− 1), (α0, α1, α2) = (min1≤i≤d γm,i, γc, γ), where
γ is arbitrarily large.

If we assume that γc = β = min1≤i≤d γm,i, then under the combined conditions
of Theorem 3.3.4 and Lemma 3.4.4, the proposed two-step neural network estimator
achieves the rate n−2β/(2β+2) ∨ n−2β/d up to log(n) factors. If d > 2, this rate is
faster than the minimax rate without structure n−2β/(2β+d). Furthermore when
β ≥ d/2− 1 the rate equals n−2β/(2β+2), up to log(n)-factors. If instead of assuming
that γc = β = min1≤i≤d γm,i, we assume that γc ≥ 2β = 2min1≤i≤d γm,i, that is, the
copulas have at least twice the Hölder smoothness of the marginals, then the rate
becomes n−2β/(2β+1) ∨ n−2β/d, up to log(n)-factors.

3.4.2 Mixture distributions

If the true density is a mixture and all mixture components can be estimated by a
fast convergence rate, it should be possible to also estimate the true density with a
fast rate. Below we make this precise, assuming that the true density is of the form

f0 = a1f1 + . . .+ arfr (3.4.10)

with non-negative mixture weights a1, . . . ar summing up to one and densities fj in
the compositional Hölder space G(qj ,dj , tj ,αj , Q

′) defined in (3.3.3). Compositional
spaces are not closed under linear combinations and therefore there is no natural
embedding of f into the compositional spaces of the fj ’s. As shown next, the
convergence rate for estimation of f still coincides with the maximum among all
convergence rates for estimation of individual mixture components fj .

Theorem 3.4.5 (Convergence rates for mixture distributions). Consider the density
estimation model as defined in Section 3.2 with density f0 =

∑r
i=1 aifi, where a1, . . . ar

3.5. Simulations 89

are non-negative mixture weights summing up to one, and with fj ∈ Cβj

d ([0, 1]d, Q) ∩
G(qj ,dj , tj ,αj , Q), for j = 1, . . . , r. Set ϕ⋆n = maxj=1,...,r ϕn,j, where ϕn,j is the rate
(3.3.4) for estimation of fj . Set β = minj=1,...,r βj. For K a kernel of order ⌊β⌋ with

support in [−1, 1] and ∥K∥∞ <∞, let f̂n be the two-stage density estimator defined in
Definition 3.3.3 for the neural network class F(L, (p0, . . . , pL+1), s, F) with parameters
satisfying

(i) F ≥ max{Q, 1},
(ii) NF (n−1) ≥ n,
(iii) maxj=1,...,r

∑qj
i=1 log2(4ti,j ∨ 4αi,j) log2(n) ≤ L ≲ nϕ⋆n,

(iv) nϕ⋆n ≲ mini=1,...,L pi,
(v) s ≍ nϕ⋆n log(n).

If n is large enough, then there exist constants C6, C7 only depending on r,
(qj ,dj , tj ,αj)

r
j=1, F, β, K and the implicit constants in (iii), (iv) and (v) such

that if the optimization error satisfies ∆n(f̂n, f0) ≤ C6Lmax(ϕ⋆n log
4(n), n−

2β
d), we

have

R(f̂n, f0) ≤ C7Lmax
(
ϕ⋆n log

4(n), n−
2β
d

)
.

3.5 Simulations

3.5.1 Methods

In a numerical simulation study we compare the proposed two-step neural network
method (named SD for Split Data) as described in Definition 3.3.3 to two other
methods. The FD (full data) method follows the same construction as the two-step
neural network method but uses for both steps the full dataset without sample splitting.
Thus, we have twice as many data for the individual steps, but also incur additional
dependence between the regression variables as each of the constructed response
variables Yi depends on the entire dataset (instead of only on the kernel dataset and
the corresponding Xi from the regression set). The neural network based methods are
moreover compared to a multivariate kernel density estimator (KDE).

As suggested by the theory, for the first step in the SD and FD method, the
bandwidths for the kernel density estimator are chosen of the form c1(log(n)/n)

1/d

and c2(log(2n)/2n)
1/d. For the KDE method, the bandwidth is c3n

−1/(2β+d). The
constants c1, c2, c3 are determined based on the average of the optimal bandwidths
found by 50-fold cross-validation, taking as searchspace [0.05, 1.1] with stepsize 0.005,
on five independently generated datasets with sample size n = 200 from the true
density. Taking n = 200 for the calibration is natural as it is the smallest sample size
in the simulation environment.

90 Chapter 3. supervised density estimation

3.5.2 Densities

For the different simulation settings, we generate data from five densities. These
densities are called Naive Bayes mixing (NBm), Naive Bayes shifting (NBs), Binary
Tree mixing (BTm), Binary Tree shifting (BTs) and Copula (C).

NBm, NBs, BTm, BTs

The densities (NBm) and (NBs) are so-called Naive Bayes networks [78] with DAGs
displayed in Figure 3.5.1a and density factorization

f(x1, . . . , xd) = fd(xd|x1) · . . . · f2(x2|x1)f1(x1). (3.5.1)

The densities (BTm) and (BTs) are Bayesian networks with DAGs displayed in Figure
3.5.1b and density factorization

f(x1, . . . , xd) = f1(x1)

d∏

j=2

fj(xj |x⌈(j−1)/2⌉). (3.5.2)

X1

X2 X3
. Xd

(a) Naive Bayes DAG

X1

X2 X3

X4 X5
.

.

(b) Binary tree DAG

Figure 3.5.1: DAG for the Naive Bayes network (a) and the Bayesian network with
binary tree structure (b).

For the density f1 we use the exponential of a standard Brownian motion on [0, 1],
normalized such that f1 integrates to one. We use two different types of conditional
densities. The mixing conditional density has mixture weights from the conditioned
variable,

fj(xj |xi) = xihj(xj) + (1− xi)hj(1− xj), (3.5.3)

with hj a density supported on [0, 1]. The shifting conditional density incorporates a
shift determined by the conditioned variable,

fj(xj |xi) = hj
(
max{xj − xi/4, 0}

)
, (3.5.4)

3.5. Simulations 91

with hj a density supported on the interval [0, 3/4], so that the support of fj(·|xi) is
ensured to lie in [0, 1].

For the densities (NBm) and (BTm) all conditional densities fj(·|·) in the factor-
ization are mixing densities (3.5.3). For the densities (NBs) and (BTs) the conditional
densities fj(·|·) in the factorization are shifting densities (3.5.4) if j is divisible by 3
and mixing densities (3.5.3) otherwise.

It remains to choose the density hj in (3.5.3) and (3.5.4). We consider scenarios
containing both smooth and rough densities. For (NBm), (NBs), (BTm) and (BTs)
and all j such that j − 1 is not divisible by 3, we set

hj(x) =
(
1− 2x− 1

d

)
1
(
0 ≤ x ≤ 1

)
. (3.5.5)

Viewed as functions on [0, 1], these densities have arbitrarily large Hölder smoothness.
The densities take values between 1−1/d and 1+1/d ensuring that in higher dimensions
the joint densities, which are products, neither become extremely small or large.

For (NBm) and (BTm) and all j > 1 such that j − 1 is divisible by 3, we take
as densities hj the exponential of the Brownian motion on [0, 1], normalized such
that hj integrates to one. Brownian motion has Hölder smoothness 1/2− η for any
η ∈ (0, 1/2), but is almost surely not 1/2-Hölder smooth [96]. This means that these
densities have low regularity.

For (NBs) and (BTs) and all j > 1 such that j − 1 is divisible by 3, we take as
densities hj the paths of the exponential of the Brownian motion on [0, 1] multiplied
with the function x 7→ ρ(x) = max(0, (4x/3)(1− 4x/3)) and normalized such that hj
integrates to one. Multiplication with ρ ensures that the support of these densities is
in [0, 3/4], as required in the definition (3.5.4).

The conditional densities fj defined in (3.5.3) and (3.5.4) can be interpreted as
compositional functions.

Lemma 3.5.1. Consider the mixing conditional density fj in (3.5.3). If hj ∈
C

γj

1 ([0, 1], Q), then fj can be written as the composition g2 ◦ g1 ◦ g0, with (d0, d1, d2) =
(d, 3, 3), (t0, t1, t2) = (1, 1, 3), and (α0, α1, α2) = (γ, γj , ζ), with γ, ζ arbitrarily large.

Lemma 3.5.2. Consider the shifting conditional density fj in (3.5.4) If hj ∈
C

γj

1 ([0, 3/4], Q), then fj can be written as g1 ◦g0, with (d0, d1) = (d, 1), (t0, t1) = (2, 1),
(α0, α1) = (1, γj).

The (NBm), (NBs), (BTm) and (BTs) joint densities are thus compositions where
the components with low regularity are all univariate functions, making the rate
ϕn dimensionless. The factorization in (3.5.1) and the composition of Lemma 3.4.1
combined with the composition in Lemma 3.5.1 shows this for the (NBm) model.
The factorization in (3.5.1) and the composition Lemma 3.4.1 combined with the

92 Chapter 3. supervised density estimation

compositions in Lemma 3.5.1 and Lemma 3.5.2 show this for the (NBs) model. The
factorization in (3.5.2) and the composition of Lemma 3.4.1 combined with Lemma 3.5.1
shows this for the (BTm) model and the factorization in (3.5.2) and the composition
of Lemma 3.4.1 combined with the compositions in Lemma 3.5.1 and Lemma 3.5.2
show this for the (BTs) model.

Simulation setup for copula density model

For the copula model, the density (C) is associated to a D-vine copula. The first
tree of the D-vine is depicted in Figure 3.5.2. We assume that this first tree captures
all the dependencies between the variables. This means that Xi is conditionally
independent of Xi+j given Xi+1, . . . , Xi+j−1 for all pairs (j, i) with j ∈ {2, . . . , d− 1}
and i ∈ {1, . . . , d− j}.

X1 X2 X3
. . . Xd

X1, X2 X2, X3 X3, X4 Xd−1, Xd

Figure 3.5.2: Structure of the first tree of the D-vine copula used in the simulation.

The bivariate copulas for the density (C) are chosen from the bivariate Farlie-
Gumbel-Morgenstern copula family defined via the copula densities cθ,i,j(Fi(xi), Fj(xj))
= 1+θ(1−2Fi(xi))(1−2Fj(xj)), with parameter |θ| ≤ 1. As already shown in Section
3.4.1, these copulas have arbitrarily large Hölder smoothness. If (i− 1)/(d− 2) ̸= 1/2,
we use the parameter θ = −1+ 2(i− 1)/(d− 2) for the bivariate copula. Otherwise we
use θ = 1/100. The marginal densities are displayed in Figure 3.5.3. The smoothness

fk(x) =





1 + 1
2d − 1

d

√
1
4 − x, if 0 ≤ x < 1

4

1 + 1
2d − 1

d

√
x− 1

4 , if 1
4 ≤ x < 1

2

1− 1
2d + 1

d

√
3
4 − x, if 1

2 ≤ x < 3
4

1− 1
2d + 1

d

√
x− 3

4 , if 3
4 ≤ x ≤ 1.

0 0.2 0.4 0.6 0.8 1

0.8

0.9

1

1.1

1.2

Figure 3.5.3: Marginal density fk(x) used in the simulated copula model.

of this density is determined by the square root, which has Hölder smoothness 1/2.

3.5. Simulations 93

The right panel of Figure 3.5.3 displays the graph for d = 2. This marginal density
is appealing as it has a closed-form expression for the density and the c.d.f. The
dependency on d of the marginals is to ensure that the marginal densities remain
between 1 − 1/d and 1 + 1/d in order to prevent numerical instability. Since the
Farlie-Gumbel-Morgenstern copula is infinitely smooth, we get from Lemma 3.4.4
that the effective smoothness of the joint density generated from this vine-copula
approach is equal to 1/2 and thus the rate ϕn in Theorem 3.3.4 becomes n−1/2, up to
log(n)-factors.

3.5.3 Neural network training setup

For both the SD and FD method, we train 50 neural networks on each training
sample with width vector p = (d, ⌈(2n)1/2⌉, ⌈(2n)1/2⌉, . . . , ⌈(2n)1/2⌉, 1) and depth
L = ⌈log2(2n)⌉. Since the derived convergence rate of the two-stage neural network
estimator is ϕn = nη

′−1/2, for any η′ ∈ (0, 1/2), in the (NBm), (NBs), (BTm) and
(BTs) settings and ϕn = n−1/2 for the (C) setting, this choice of the network width
satisfies the bound in Theorem 3.3.4. The chosen depth is of the order log(n) suggested
by the theory, but there might be a mismatch regarding the constants in the lower
bound of Condition (iii) in Theorem 3.3.4. Since the proof of this result does not
optimize the constants, we find it more appealing to work with the generic choice
L = ⌈log2(2n)⌉ in the simulations. Furthermore, Theorem 3.3.4 imposes a sparsity
condition on the networks as well as a condition on the maximum norm of the
parameters. In the simulation study we use ℓ2-penalization on the weight matrices
and the Glorot uniform initialization [49] to ensure that the parameter values do not
become too large. Although these methods do not provide a hard guarantee that the
condition on the maximum norm is satisfied, they work reasonably well in practice
and the number of learned network parameters that are larger in absolute value than
one is small compared to the total number of network parameters. We use pruning
(using the TensorFlow model optimization package) to enforce sparsity. The fraction
of zero network parameters is chosen as 1− 2m log(m)ϕm/p, with p the total number
of network parameters and m = 2n for the FD method and m = n for the SD method.

The source code is available on GitHub [23].

3.5.4 Simulation Results

We compare the performance of all the methods on 106 test samples. This sample is
only used for computing the test error and none of the methods has access to the test
samples during training. Figures 3.5.4-3.5.6 report the test errors for the five different
settings. In each of these settings we consider four data-sets, one of size 200, one of
size 1000, one of size 5000 and one of size 25000.

94 Chapter 3. supervised density estimation

200 1000 5000 25000

0

1

2

3

4

5

sample size

te
st

er
ro
r

(a) NBs, dimension 4

200 1000 5000 25000

34

36

38

40

42

44

46

sample size

te
st

er
ro
r

(b) NBs, dimension 12

200 1000 5000 25000
0

0.5

1

1.5

2

2.5

sample size

te
st

er
ro
r

(c) NBm, dimension 4

200 1000 5000 25000
2.2

2.4

2.6

2.8

3

3.2

3.4

sample size

te
st

er
ro
r

(d) NBm, dimension 12

Figure 3.5.4: Test errors for the naive Bayes model. SD in blue, FD in red, KDE black
bars. The test error of the network with the lowest training error is indicated by the
filled square. The black dashed line is the test error of the zero function. Notice that
in the individual plots, the y-axis has different starting points.

For the smaller sample sizes there is in all models some degree of concentration
of the test errors of the trained networks around the value of the test error for the
zero function. The theory claims that among the sparsely connected networks that
satisfy all the imposed conditions, the one with small training error should perform
particularly well. To see whether there is an effect, we mark for every simulation setting

3.5. Simulations 95

200 1000 5000 25000

0

1

2

3

4

5

sample size

te
st

er
ro
r

(a) BTs, dimension 4

200 1000 5000 25000

34

36

38

40

42

44

sample size

te
st

er
ro
r

(b) BTs, dimension 12

200 1000 5000 25000

0

0.5

1

1.5

2

sample size

te
st

er
ro
r

(c) BTm, dimension 4

200 1000 5000 25000

2

2.2

2.4

2.6

2.8

3

sample size

te
st

er
ro
r

(d) BTm, dimension 12

Figure 3.5.5: Test errors for the Bayesian network model. SD in blue, FD in red, KDE
black bars. The test error of the network with the lowest training error is indicated by
the filled square. The black dashed line is the test error of the zero function. Notice
that in the individual plots, the y-axis has different starting points.

the test error of the network with the smallest training error by a filled square. This
network is the one we use to compare the methods with each other in the discussion
below.

To further investigate the relation between training error and test error, we plot
for the (NBs) model in dimension four (Figure 3.5.7) and twelve (Figure 3.5.8) the

96 Chapter 3. supervised density estimation

200 1000 5000 25000

0

0.5

1

1.5

sample size

te
st

er
ro
r

(a) Copula, dimension 4

200 1000 5000 25000

3.4

3.6

3.8

4

4.2

4.4

4.6

sample size

te
st

er
ro
r

(b) Copula, dimension 12

Figure 3.5.6: Test errors for the Copula model. SD in blue, FD in red, KDE black
bars. The test error of the network with the lowest training error is indicated by the
filled square. The black dashed line is the test error of the zero function. Notice that
in the individual plots, the y-axis has different starting points.

training error versus the test error of all networks, for both the SD and FD method
and for all the four considered sample sizes. The linear line displaying the least squares
regression fit has positive slope, except for the SD method with sample size 1000 (in
both dimensions four and twelve).

To estimate the joint density depending on four variables, the neural network fits
based on the FD method with the lowest training error (indicated by red squares in
the plots) seem to perform best for all sample sizes. For density estimation on [0, 1]12,
the picture is less clear as there are sample sizes for which the KDE method achieves a
comparable or even better test error. The test error of the SD method is consistently
higher. In dimension 4, it decreases, however, faster than the test errors of the FD
and KDE method. The fact that networks with small training errors (filled squares in
the plots) perform particularly well suggests that the performance of the FD method
could be further increased by fitting much larger networks. Although sample splitting
makes the theory tractable, we do not advise to use it in practice. While the idea to
transform an unsupervised learning problem into a supervised learning problem and
using supervised learning methods is appealing, we feel that considerable future effort
is required to transform this into stable and efficient algorithms.

3.6. Proofs for Section 3.3 97

0.5 1 1.5

2

3

4

5

training error

test error

(a) SD method, sample
size 200

0.2 0.4 0.6

1

1.5

2

training error

test error

(b) SD method, sam-
ple size 1000

1 2

2

4

training error

test error

(c) SD method, sample
size 5000

0.2 0.4 0.6 0.8

0.6

0.8

1

1.2

1.4

training error

test error

(d) SD method, sam-
ple size 25000

0.5 1 1.5 2

2

3

4

5

training error

test error

(e) FD method, sam-
ple size 200

0.2 0.4 0.6 0.8 1

1

1.5

2

2.5

training error

test error

(f) FD method, sample
size 1000

0.1 0.2 0.3 0.4

0.6

0.8

1

1.2

training error

test error

(g) FD method, sam-
ple size 5000

0.2 0.4 0.6 0.8

0.4

0.6

0.8

1

1.2

training error

test error

(h) FD method, sam-
ple size 25000

Figure 3.5.7: Scatterplot of the test error versus the training error for the (NBs) model
in 4 dimensions. The line shows the linear least squares regression fit.

3.6 Proofs for Section 3.3

Proof of Lemma 3.3.2. For all x ≥ 0, we have x < 1 + x ≤ ex and thus log n/n < 1
as well as 0 < un := 2(log n/n)1/d < 2 for all n > 1. For all y > 0, one can find an
integer r such that y/2 ≤ 2r ≤ y. If y < 2, we must have r ≤ 0. Thus, there exists
s ≤ 0 such that un/2 ≤ 2s ≤ un. Set hn = 2s. Since s ≤ 0, we must have h−1

n = 2−s,
which is an integer.

3.6.1 Proof of Theorem 3.3.1

The response variables Yi in the regression model (3.2.3) are identically distributed,
but they are not jointly independent as they all depend through the kernel density
estimator on the subsample (X′

ℓ)
n
ℓ=1.

To deal with the dependence induced by the kernel density estimator, we partition
the hypercube [0, 1]d into h−d

n hypercubes with sidelength hn. By construction h−1
n

is an integer and therefore no boundary issues arise. The centers of these h−d
n

hypercubes are given by the vectors hn(k1 − 1/2, k2 − 1/2, . . . , kd − 1/2)⊤ ∈ [0, 1]d

with k1, k2, . . . , kd ∈ {1, . . . , h−1
n }. By numbering these points (the specific numbering

98 Chapter 3. supervised density estimation

0.01 0.02 0.03

40

40.5

41

41.5

training error

test error

(a) SD method, sample
size 200

0.02 0.04 0.06 0.08

37

38

39

40

training error

test error

(b) SD method, sam-
ple size 1000

0.02 0.04 0.06
36

37

38

39

training error

test error

(c) SD method, sample
size 5000

0.05 0.10 0.15

35.5

36

36.5

training error

test error

(d) SD method, sam-
ple size 25000

0.10 0.20 0.30 0.40

40

45

training error

test error

(e) FD method, sam-
ple size 200

0.05 0.10 0.15

38

40

42

training error

test error

(f) FD method, sample
size 1000

0.02 0.04 0.06 0.08

36

36.5

37

training error

test error

(g) FD method, sam-
ple size 5000

0.05 0.10 0.15 0.20
34

34.5

35

35.5

training error

test error

(h) FD method, sam-
ple size 25000

Figure 3.5.8: Scatterplot of the test error versus the training error for the (NBs) model
in 12 dimensions. The line shows the linear least squares regression fit.

of the points is irrelevant), we assign to each center an index in J := {1, . . . , h−d
n }.

The j-th bin Bj is then the | · |∞-norm ball of radius hn/2 around the j-th center
C(Bj) in this index set. To avoid that boundary points are in two bins, we include
a boundary point only if is not already included in a bin with smaller index in the
ordering induced by J . This construction gives a partition of [0, 1]d. As each bin is a
hypercube with sidelength hn, the Lebesgue measure is hdn (in Rd). The neighborhood
of a bin Bj , denoted by NB(Bj), are all bins whose centers are at most | · |∞-distance
hn away from the center of Bj , in other words,

NB(Bj) =
⋃

ℓ:|C(Bj)−C(Bℓ)|∞≤hn

Bℓ (3.6.1)

(In two dimensions this neighborhood is also known as the Moore neighborhood).

We further subdivide the bins into equivalence classes. For all sufficiently large n,

hn ≤ 1/3 and the hypercube [0, 3hn]
d contains exactly 3d bins. Denote by (js)

3d

s=1 the
indices of these bins and define the index set Js ⊂ J by

Js :=
{
ℓ ∈ J :

1

3hn

(
C(Bℓ)− C(Bjs)

)
∈ Zd

}
.

3.6. Proofs for Section 3.3 99

By construction, the sets Js are mutually disjoint and
⋃

s Js = J .
Fix a j ∈ J . Since the kernel K in the kernel density estimator has bandwidth hn

and support contained in [−1, 1], the point estimator f̂KDE(x) only depends on the
data points from the kernel data set (X′

ℓ)
n
ℓ=1 that are in NB(Bj).

More generally, for two different indices j, j̃ ∈ Js, j ̸= j̃ and points x1 ∈ Bj , x2 ∈
Bj̃ , the point estimators f̂KDE(x1) and f̂KDE(x2) depend on {X′

ℓ : X
′
ℓ ∈ NB(Bj), ℓ =

1, . . . , n} and {X′
ℓ : X′

ℓ ∈ NB(Bj̃), ℓ = 1, . . . , n}, respectively. The latter two sets

are dependent if n is fixed (knowing that a data point is in one of the bins means
that there can be at most n − 1 in any of the other bins). If we instead assume
that the sample size of the data set (X′

ℓ)
n
ℓ=1 is not n but M with M ∼ Poisson(n),

then {X′
ℓ : X

′
ℓ ∈ A, ℓ = 1, . . . ,M} and {X′

ℓ : X
′
ℓ ∈ B, ℓ = 1, . . . ,M} are independent,

whenever A and B are disjoint sets. This will formally be shown in the proof of Lemma
3.6.2. Using Poisson point process theory, we also show in the proof of Lemma 3.6.2
that f̂KDE(x1) and f̂KDE(x2) are independent.

The previously described strategy is known as Poissonization, cf. [148] Section
3.5.2., [47], [42] Section 8.3. In particular, we use the following inequality

Lemma 3.6.1. For M and X′
1,X

′
2, . . . as above, for any function h, and any mea-

surable set A,

P
(n∑

i=1

h(X′
i) ∈ A

)
≤

√
2eπnP

(M∑

i=1

h(X′
i) ∈ A

)
.

Proof of Lemma 3.6.1. We have

P
(n∑

i=1

h(X′
i) ∈ A

)
= P

(M∑

i=1

h(X′
i) ∈ A

∣∣∣∣M = n

)
≤ P

(∑M
i=1 h(X

′
i) ∈ A

)

P(M = n)
.

Since M is a Poisson(n) random variable we have that P(M = n) = nne−n/n!. By
Stirling’s formula, see for example [120], n! ≤

√
2πn(n/e)ne1/(12n) ≤

√
2eπn(n/e)n

and 1/P(M = n) ≤
√
2eπn.

While Poissonization removes dependence, the factor
√
2eπn arises in the bounds.

Proving oracle inequalities for the risk R(f̃ , f0) := Ef0,X[(f̃(X)− f0(X))2] in the
standard i.i.d. setting typically first shows an oracle inequality for the empirical risk
R̂n(f̂ , f0) as

R̂n(f̂ , f0) := Ef0

[
1

n

n∑

i=1

(
f̂(Xi)− f0(Xi)

)2
]
.

Here empirical refers to the fact that the estimator f̂ is evaluated at the data points
X1, . . . ,Xn. The derivation of an oracle inequality for the empirical risk can be further

100 Chapter 3. supervised density estimation

subdivided into several steps. The bound below refers to the step where our setting
and the i.i.d. case differ the most. The proof (presented in Section 3.9) relies heavily
on the construction of the bins above combined with Poissonization. Recall that
εi = Yi − f(Xi).

Lemma 3.6.2. For any estimator f̂ as in Theorem 3.3.1, any fixed f ∈ F and
log2(n) log(NF (δ)) ≤ n, it holds that

∣∣∣∣Ef0

[
2

n

n∑

i=1

ϵi(f̂(Xi)− f(Xi))

]∣∣∣∣

≤ 2d+614e2∥K∥2d∞F 33
7d
2

(√
R̂n(f̂ , f0) log(n)

√
log(NF (δ))

n
+ log(n)

log(NF (δ))
n

+ δ

)

+
46F 22d∥K∥d∞

n
+ 8h2βn F 2d2β∥K∥2d∞ +

EX[(f0(X)− f(X))2]

4
+
R̂n(f̂ , f0)

4
.

With this lemma in place, we can prove (see Section 3.9) the following bound on
the empirical risk. This is similar to step (III) in the proof of the oracle inequality of
Lemma 4 in [127].

Proposition 3.6.3. For any estimator f̂ as in Theorem 3.3.1, any fixed f ∈ F and
log2(n) log(NF (δ)) ≤ n,

R̂n(f̂ , f0) ≤ δ2d+638e2∥K∥2d∞F 33
9d
2

+
10

3
EX

[
(f(X)− f0(X))2

]
+

8

3
∆n(f̂ , f0)

+ 2d+638e2∥K∥2d∞F 33
7d
2 log(n)

log(NF (δ))
n

+
124F 22d∥K∥d∞

n
+ 22h2βn F 2d2β∥K∥2d∞

+ 4d+7192e4∥K∥4d∞F 637d log2(n)
log(NF (δ))

n
.

We now have all ingredients to finish the proof of Theorem 3.3.1.

Proof of Theorem 3.3.1. If log2(n) log(NF (δ)) ≥ n, the statement follows with C1 =

4F 2 by observing that R(f̂ , f0) ≤ 4F 2.

3.6. Proofs for Section 3.3 101

It remains to consider the case log2(n) log(NF (δ)) ≤ n. The proof of Lemma 4,
Part (I) in [127] states that for any ϵ ∈ (0, 1],

(1− ϵ)R̂n(f̂ , f0)−
F 2

nϵ

(
15 log

(
NF (δ)

)
+ 75

)
− 26δF

≤ R(f̂ , f0) ≤ (1 + ϵ)

(
R̂n(f̂ , f0) + (1 + ϵ)

F 2

nϵ

(
12 log(NF (δ)) + 70

)
+ 26δF

)
.

(3.6.2)
This lemma for the standard nonparametric regression problem relates the risk to its
empirical counterpart. The inequality and its proof only depend on the Xi and on the
function class F , not on the noise or the response variables Yi. Since in our regression
model (3.2.3) the variables Xi are i.i.d. (the dependence is induced by the response
variables Yi and ϵi), this inequality is still valid.

Substituting the bound on R̂n(f̂ , f0) from Proposition 3.6.3 in (3.6.2), choosing
ε = 1 and f as a minimizer over F of EX

[
(f(X)− f0(X))2

]
, the fact that hn ≤

2(log(n)/n)1/d, and replacing the explicit constants by C1, C2, C3 yields the result.

3.6.2 Proof of Theorem 3.3.4

The following lemma provides a bound on the covering entropy.

Lemma 3.6.4 (Lemma 5 combined with Remark 1 of [127]). For any δ > 0

log
(
NF(L,p,s,∞)(δ)

)
≤ (s+ 1) log

(
22L+5δ−1(L+ 1)p20p

2
L+1s

2L
)
.

The proof of Theorem 1 in [127] derives the following bound for the approximation
error for function approximation in the function class G(q,d, t,α, Q′) by sparsely
connected deep ReLU networks.

Theorem 3.6.5. For every function g ∈ G(q,d, t,α, Q′) and whenever

(i)
∑q

i=1 log2(4ti ∨ 4αi) log2(n) ≤ L ≲ nϕn,
(ii) nϕn ≲ mini=1,...,L pi,
(iii) s ≍ nϕn log(n),
(iv) F ≥ max{Q′, 1},

then there exists a neural network H ∈ F(L,p, s, F) and a constant C8 only depending
on q,d, t,α, F and the implicit constants in (i), (ii) and (iii), such that

∥g −H∥2∞ ≤ C8ϕn.

We now have all the necessary ingredients to prove Theorem 3.3.4

102 Chapter 3. supervised density estimation

Proof of Theorem 3.3.4. Apply the general oracle inequality in Theorem 3.3.1 with
the choice δ = n−1 to the neural network class F(L,p, s, F) with parameter con-
straints as in the statement of the theorem. For the approximation error in the
oracle inequality, we use Theorem 3.6.5.For the covering entropy, the bound from
Lemma 3.6.4 gives log

(
NF(L,p,s,∞)(δ)

)
≲ (s + 1)L log(n) ≍ nLϕn log

2(n). Since

L ≳ log(n), we have (log(n)/n)2β/d ≤ L(n−2β/d ∨ n−1). As ϕn ≫ n−1, Lϕn log
4(n) +

(log(n)/n)2β/d ≤ Lmax(ϕn log
4(n), n−2β/d). Combined with the assumption that

∆n(f̂n, f0) ≤ C4Lmax(ϕn log
4(n), n−2β/d), Theorem 3.3.1 yields

R(f̂n, f0) ≤C1
log2(n) log(NF (δ))

n
+ C2δ + C3

(
log(n)

n

) 2β
d

+
16

3
∆n(f̂n, f0)

+
20

3
inf
f∈F

EX

[
(f(X)− f0(X))2

]

≲Lmax
(
ϕn log

4(n), n−
2β
d

)
.

This yields the result.

3.7 Proofs for Section 3.4

Lemma 3.7.1. Let m be a positive integer and Q > 0. Then f : [−Q,Q]m → R:
f(x) :=

∏m
i=1 xi is in Cγ

m([−Q,Q]m, (Q+ 1)m), for all γ ≥ m+ 1.

Proof. Observe that |∂0f(x)| = |f(x)| ≤ Qm, ∂xj
f(x) =

∏m
i=1,i̸=j xi and ∂xj

∂xj
f = 0,

for i = 1, . . . ,m. This means that for all α ∈ Zm
≥0 it holds that ∂αf = 0 if αj ≥ 2 for

some j ∈ {1, . . . ,m}. Rephrased, ∂αf ̸= 0 if and only if α ∈ {0, 1}m. Furthermore
for α ∈ {0, 1}m, |∂αf(x)| = |∏i:αi=0 xi| ≤ Qm−|α|0 , where | · |0 denotes the counting

norm. There are
(

m
m−|α|0

)
ways to distribute m− |α|0 zeros over a vector of length m.

So for γ ≥ m+ 1, we get by the binomial theorem

∑

α:|α|1<γ

∥∂αf∥∞ ≤
m∑

k=0

(
m

k

)
Qk = (Q+ 1)m.

If |α|1 > m, then there exists at least one j such that αj ≥ 2 and thus we have that
∂αf = 0 in this case. In the case that |α|1 = m, then either there exists a j such that
αj ≥ 2, so ∂αf = 0, or α is the vector with only ones, in which case ∂αf = 1. Hence,
γ ≥ m+ 1 yields

∑

α:|α|1=⌊γ⌋
sup

x,y∈D,x̸=y

|∂αf(x)− ∂αf(y)|
|x− y|γ−⌊γ⌋

∞
= 0.

3.7. Proofs for Section 3.4 103

Together with the definition the Hölder ball, (3.3.1), the statement follows.

Proof of Lemma 3.4.1. The function g0 = (g0,1, . . . , g0,|R|) is given by g0,I = ψI for all
I ∈ R. From ψI ∈ Cγ

rI ([0, 1]
rI , Q) and |I| ≤ r it follows that t0 = r and α0 = γ. The

function g1(u1, . . . , u|R|) =
∏

I∈R uI is the product of |R| different terms in [−Q,Q].

Applying Lemma 3.7.1 yields g1 ∈ Cζ
|R|([−Q,Q]|R|, (Q+ 1)|R|) for all ζ ≥ |R|+ 1. So

t1 = |R| and α1 is arbitrarily large.

Proof of Lemma 3.4.2. We argue by contradiction. Let j be the index of the marginal
density that is at most α-Hölder smooth. Denote the Hölder smoothness of f by β
and suppose that β > α. Then there exists a constant Q such that f ∈ Cβ

d ([0, 1]
d, Q).

Because f is β-Hölder smooth it holds that

∂k

∂xkj
f(x) =

(∏

i ̸=j

fi(xi)

)
∂k

∂xkj
fj(xj) (3.7.1)

for all k = 0, 1, . . . , ⌊β⌋. Since∏i ̸=j fi(xi) is a density on [0, 1]d−1, it is nonnegative and

there exists a x̃−j = (x̃1, . . . , x̃j−1, x̃j+1, . . . , x̃d) ∈ [0, 1]d−1 such that
∏

i ̸=j fi(x̃i) =
C > 0. Since fj only depends on xj and f is β-Hölder smooth, for any k = 0, 1, , . . . , ⌊β⌋,

Q

C
≥ 1

C

∥∥∥∥
(∏

i ̸=j

fi(xi)

)
∂k

∂xkj
fj

∥∥∥∥
L∞([0,1]d)

≥
∏

i ̸=j fi(x̃i)

C

∥∥∥∥∥
∂k

∂xkj
fj

∥∥∥∥∥
L∞([0,1])

=

∥∥∥∥∥
∂k

∂xkj
fj

∥∥∥∥∥
L∞([0,1])

.

(3.7.2)

Similarly, by the β-Hölder smoothness of f and (3.7.1),

Q

C
≥ 1

C
sup

x,y∈[0,1]d,x̸=y

∣∣∣∣ ∂⌊β⌋

∂x
⌊β⌋
j

f(x)− ∂⌊β⌋

∂x
⌊β⌋
j

f(y)

∣∣∣∣
|x− y|β−⌊β⌋

∞

≥
∏

i ̸=j fi(x̃i)

C
sup

x,y∈[0,1],x ̸=y

∣∣∣∣ ∂⌊β⌋

∂x
⌊β⌋
j

fj(x)− ∂⌊β⌋

∂x
⌊β⌋
j

fj(y)

∣∣∣∣
|x− y|β−⌊β⌋ .

(3.7.3)

From (3.7.2) and (3.7.3) it follows that fj ∈ Cβ
1 ([0, 1], (⌊β⌋+1)Q/C). Since β > α, this

contradicts the condition that fj was at most α-Hölder smooth. Therefore, β ≤ α.

104 Chapter 3. supervised density estimation

Proof of Lemma 3.4.3. The function g0 = (g0,1, . . . , g0,2d) is given by g0,i(xi) = fi(xi)
for i = 1, . . . , d and g0,i(xi−d) = Fi−d(xi−d) for i = d + 1, . . . , 2d. Each of these
functions is univariate, so t0 = 1. Since Fi−d is the c.d.f. of fi−d, it holds that
Fi−d ∈ Cγi+1

1 ([0, 1], Qi+1). Thus the function g0,i with the smallest Hölder smoothness
has to correspond to one of the functions fi and α0 = mini=1,...,d γi. The function
g1 = (g1,1, . . . , g1,d+1) satisfies g1,i(yi) = yi (the identity function) for i = 1, . . . , d and
g1,d+1(v) = c(v1, . . . , vd), so t1 = d. For i = 1, . . . , d the domain of g1,i is [0, ∥fi∥∞] ⊆
[0, Qi], so g1,i ∈ Cγ

1 ([0, Qi], Qi + 1), for all γ ≥ 2. This means the Hölder smoothness
of g1,i can be taken arbitrarily large, that consequently g1,d+1, corresponding to the
copula c, has the smallest Hölder smoothness among the component functions of g1,
and thus α1 = γc. Set Q := Qc ∨ (maxi=1,...,dQi), then g2(u, y1, . . . , yd) = u

∏d
i=1 yi

is the product of d+ 1 different factors in [−Q,Q]d+1. Applying Lemma 3.7.1 yields
g2 ∈ Cγ

d+1([−Q,Q]d+1, (Q+1)d+1) for all γ ≥ d+2. So t2 = d+1 and the smoothness
index α2 can be taken to be arbitrarily large.

Proof of Lemma 3.4.4. The function g0 = (g0,1, . . . , g0,2d) is given by g0,i(xi) = fi(xi)
for i = 1, . . . , d and g0,i(xi−d) = Fi−d(xi−d) for i = d + 1, . . . , 2d. Since Fi−d is

the c.d.f. of fi−d, it holds that Fi−d ∈ C
γm,i+1
1 ([0, 1], Qm,i + 1). So t0 = 1 and

α0 = mini=1,...,d γm,i. The function g1 = (g1,1, . . . , g1,d+(d−1)) satisfies g1,i(ui) = ui
(the identity function) for 1 = 1, . . . , d. For f of the form (3.4.8) it holds that
g1,i(v1, v2) = c1,i+1−d(v1, v2) for i = d + 1, . . . , d + (d − 1) and for f of the form
(3.4.9) we have that g1,i(v1, v2) = ci−d,i+1−d(v1, v2) for i = d + 1, . . . , d + (d − 1).
For i = 1, . . . , d the domain of g1,i is [0, ∥fi∥∞] ⊆ [0, Qm,i], so for i = 1, . . . , d
it holds that g1,i ∈ Cγ

1 ([0, Qm,i], Qm,i + 1), for all γ ≥ 2. This means the Hölder
smoothness of g1,i, for i = 1, . . . , d, can be taken to be arbitrarily large. So t1 = 2 and
α2 = γc. Set Q = (maxi=1,...,dQm,i) ∨Qc. The function g2(u1, . . . , ud, y1, . . . , yd−1) =∏d

k=1 uk
∏d−1

j=1 yj is the product of 2d− 1 terms. Thus by Lemma 3.7.1 it holds that

g2 ∈ Cγ
2d−1([−Q,Q]2d−1, (Q + 1)2d−1) for all γ ≥ 2d, so α2 is arbitrarily large and

t2 = 2d− 1.

3.7.1 Proof of Theorem 3.4.5

Recall that we work in the density estimation model as defined in Section 3.2 with
mixture density f0 =

∑r
j=1 ajfj , where a1, . . . ar are non-negative mixture weights

summing up to one, and fj ∈ Cβj

d ([0, 1]d, Q) ∩ G(qj ,dj , tj ,αj , Q), for j = 1, . . . , r.
Set ϕ⋆n = maxj=1,...,r ϕn,j , where ϕn,j is the rate (3.3.4) for estimation of fj and set
β = minj=1,...,r βj .

Lemma 3.7.2 (Approximation of mixtures). Whenever
(i) maxj=1,...,r

∑qj
i=1 log2(4ti,j ∨ 4αi,j) log2(n) ≤ L ≲ nϕ⋆n,

3.7. Proofs for Section 3.4 105

(ii) nϕ⋆n ≲ mini=1,...,L pi,
(iii) s ≍ nϕ⋆n log(n),
(iv) F ≥ max{Q, 1},
then, for n large enough, there exists a network H ∈ F(L,p, s, F) and a constant C9

only depending on (qj ,dj , tj ,αj)
r
j=1, r, F and the implicit constants in (i), (ii) and

(iii) such that ∥∥∥∥
r∑

j=1

ajfj −H

∥∥∥∥
2

∞
≤ C9ϕ

⋆
n.

Proof. For positive constants cL, cp, csℓ, csu, let L
⋆, p⋆ and s⋆ be such that

(i’) maxj=1,...,r

∑qj
i=1 log2(4ti,j ∨ 4αi,j) log2(n) ≤ L⋆ ≤ cLnϕ

⋆
n

(ii’) nϕ⋆n ≤ cp mini=1,...,L p
⋆
i

(iii’) csℓnϕ
⋆
n log(n) ≤ s⋆ ≤ csunϕ

⋆
n log(n).

For n large enough, we have
(I) cLnϕ

⋆
n ≤ (csℓ/(2r))nϕ

⋆
n log(n),

(II) nϕ⋆n > rcp,
(III) ⌊cLnϕn,j⌋ ≥

∑qj
i=1 log2(4ti,j ∨ 4αi,j) log2(n), for all j = 1, . . . , r,

(IV) (csl/(4r))nϕn,j log(n) ≥ 1, for all j = 1, . . . , r.
For j = 1, . . . , r define Lj := min{L⋆, ⌊cLnϕn,j⌋}, pi,j = ⌊p⋆i /r⌋ and sj =

⌊s⋆ϕn,j/(2rϕ⋆n)⌋. Recall that ϕ⋆n = maxj=1,...,r ϕn,j . Using the definition of Lj and
(III) yields

qj∑

i=1

log2(4ti,j ∨ 4αi,j) log2(n) ≤ Lj ≤ cLnϕn,j .

Using (ii’), (II), and the definitions of ϕ∗n and pj we get that

nϕn,j ≤ 2cpr min
i=1,...,L

⌊p∗i /r⌋ = 2cpr min
i=1,...,L

pi,j .

From (IV), the definition sj = ⌊s⋆ϕn,j/(2rϕ⋆n)⌋, (iii’), and ⌊u⌋ ≥ u− 1 for all u ∈ R,
it follows that

csl
4r
nϕn,j log(n) ≤

csl
2r
nϕn,j log(n)− 1 ≤ sj ≤

csu
2r
nϕn,j log(n).

This means that for j = 1, . . . , r the class F(Lj ,pj , sj , F) and the function fj ∈
Cβj

d ([0, 1]d, Q) ∩ G(qj ,dj , tj ,αj , Q) satisfy the conditions of Theorem 3.6.5. Ap-
plying Theorem 3.6.5 gives us that for each j = 1 . . . , r there exist a network
Hj ∈ F(Lj ,pj , sj , F) such that ∥fj −Hj∥2∞ ≤ C8,jϕn,j . Since aj is in [0, 1], multiply-
ing the last weight matrix of Hj with aj yields a network ajHj in the same network
class as Hj such that ∥ajfj − ajHj∥2∞ ≤ C8,jϕn,j .

106 Chapter 3. supervised density estimation

Whenever Lj < L⋆, we can synchronize the depth by adding additional layers with
identity weight matrix such that

Fj(Lj ,pj , sj , F) ⊂ F̃j(L
∗, (pj , 1, . . . , 1︸ ︷︷ ︸

(L⋆−Lj) times

), sj + (L⋆ − Lj), F).

For ease of notation define p̃j = (pj , 1, . . . , 1). Placing all these networks in parallel
yields a network

H ∈ F
(
L⋆,

r∑

j=1

p̃j ,

r∑

j=1

(
sj + (L⋆ − Lj)

)
, F
)
,

such that

∥∥∥∥∥∥

r∑

j=1

ajfj −H

∥∥∥∥∥∥

2

∞

≤




r∑

j=1

∥ajfj − ajHj∥∞




2

≤




r∑

j=1

√
C8,jϕn,j




2

≤ r2 max
j=1,...,r

C8,jϕn,j .

A network with width p and sparsity s can always be embedded in a larger network of
the same depth with width p̃ ≥ p and network sparsity s̃ ≥ s. Thus it remains to show
that

∑r
j=1 p̃j ≤ p⋆ and

∑r
j=1

(
sj+(L⋆−Lj)

)
≤ s⋆. First consider the width. Using the

definitions of pi,j and p̃j we get for i = 1, . . . , L⋆ that
∑r

j=1 p̃i,j ≤ rmaxj=1,...,r p̃i,j ≤
rmax{p⋆i /r, 1}. From (II) and (ii’) we get that p⋆i /r > 1. Hence,

∑r
j=1 p̃j ≤ p⋆. Now

consider the sparsity. By the definition of sj it holds that sj ≤ s⋆/(2r). From (i’) and
(I) we get that L⋆ ≤ s⋆/(2r). Hence,

∑r
j=1

(
sj+(L⋆−Lj)

)
≤∑r

j=1

(
sj+L

⋆
)
≤ s⋆.

Proof of Theorem 3.4.5. The derivative of a sum is the sum of the derivatives. Since

fj ∈ Cβj

d ([0, 1]d, Q) for j = 1, . . . , r, this means that f0 has smoothness at least
β = minj=1,...,r βj . Furthermore (a1, . . . , ar) are non-negative mixture weights that

sum op to one and f0 ∈ Cβ
d ([0, 1]

d, Q). The statement of the theorem now follows from
taking δ = 1/n and the network class F(L,p, s, F) as the function class in Theorem
3.3.1. For the approximation error in the oracle inequality, we use Lemma 3.7.2 and
for the covering entropy the bound from Lemma 3.6.4. This yields the result.

3.8 Proofs for Section 3.5

Proof of Lemma 3.5.1. The function g0 = (g0,1, . . . , g0,3) is given by g0,1(xi) = xi,
g0,2(xk) = xk and g0,3(xk) = 1 − xk. Since xi, xk ∈ [0, 1], it holds that g0,i ∈

3.9. Proofs for Section 3.6 107

Cγ
1 ([0, 1], 2), for all γ ≥ 2. The function g1 = (g1,1, . . . , g1,3) is given by g1,1(xi) = xi,

g1,2(u) = hj(u) and g1,3(v) = hj(v), so t1 = 1. Since g1,1 ∈ Cγ
1 ([0, 1], 2), for all γ ≥ 2,

we get that α1 = γj . The function g2 is given by g2(xi, y1, y2) = xiy1 + (1 − xi)y2,
so t2 = 3. The partial derivatives are ∂xig2 = y1 − y2, ∂y1g2 = xi, ∂y2g2 = 1 − xi,
∂xi

∂y1
= 1 and ∂xi

∂y2
= −1. All other partial derivatives of g2 vanish. Thus g2 ∈

Cγ
3 ([0, 1]× [−Q,Q]2, 4(Q+ 1)), for all γ ≥ 3, so α2 is arbitrarily large.

Proof of Lemma 3.5.2. The function g0 is given by g0(xj , xi) = max{0, xj − xi/4}.
The derivative of this function is discontinuous along the line xj − xi/4 = 0. Observe
that |max(0, u)−max(0, u+ v)| ≤ |v|, for all real numbers u, v. Hence

|g0(xj , xi)− g0(xj + hj , xi + hi)|
max(|hj |, |hi|)

≤ |hi/4− hj |
max(|hj |, |hi|)

≤ 5

4
.

Thus g0 ∈ C1
2 ([0, 1]

2, 9/4), so α0 = 1. The function g1 is given by g1(y) = hj(y), thus
t1 = 1 and α1 = γj .

3.9 Proofs for Section 3.6

Proof of Lemma 3.6.2. The random variable ϵi = f̂KDE(Xi)− f0(Xi) is not centered.
The first step adds and subtracts Ef0 [ϵi|Xi] to get the centered random variable
ϵi − Ef0 [ϵi|Xi] instead. Together with the triangle inequality, this gives

∣∣∣∣∣Ef0

[
2

n

n∑

i=1

ϵi(f̂(Xi)− f(Xi))

]∣∣∣∣∣

≤
∣∣∣∣∣Ef0

[
2

n

n∑

i=1

(ϵi − Ef0 [ϵi|Xi])(f̂(Xi)− f0(Xi))

]∣∣∣∣∣

+

∣∣∣∣∣Ef0

[
2

n

n∑

i=1

(ϵi − Ef0 [ϵi|Xi])(f0(Xi)− f(Xi))

]∣∣∣∣∣

+

∣∣∣∣∣Ef0

[
2

n

n∑

i=1

Ef0 [ϵi|Xi](f̂(Xi)− f(Xi))

]∣∣∣∣∣
=: (I) + (II) + (III).

(3.9.1)

By the tower rule, we can in (II) first condition the expectation on Xi. Now (II) = 0
follows from

Ef0

[(
ϵi − Ef0

[
ϵi
∣∣Xi

])
(f0(Xi)− f(Xi))

∣∣∣Xi

]

=
(
Ef0 [ϵi|Xi]− Ef0 [ϵi|Xi]

)(
f0(Xi)− f(Xi)

)
= 0.

108 Chapter 3. supervised density estimation

For real numbers ai, bi, we have (|ai| − |bi|/2)2 ≥ 0 and therefore |aibi| ≤ a2i + b2i /4 as
well as

∑
i |aibi| ≤

∑
i a

2
i +

1
4

∑
i b

2
i . Bringing first the absolute value inside the expec-

tation and applying this inequality twice, once to the sequences (2Ef0 [ϵi|Xi]/
√
n)i and

((f̂(Xi)− f0(Xi))/
√
n)i and once to the sequences (2Ef0 [ϵi|Xi]/

√
n)i and ((f0(Xi)−

f(Xi))/
√
n)i yields

∣∣∣∣∣Ef0

[
2

n

n∑

i=1

Ef0 [ϵi|Xi](f̂(Xi)− f(Xi))

]∣∣∣∣∣

(i)
=

∣∣∣∣∣Ef0

[
n∑

i=1

2Ef0 [ϵi|Xi]√
n

(f̂(Xi)− f0(Xi))√
n

]

+Ef0

[
n∑

i=1

2Ef0 [ϵi|Xi]√
n

(f0(Xi)− f(Xi))√
n

]∣∣∣∣∣

≤ 8Ef0

[
1

n

n∑

i=1

(Ef0 [ϵi|Xi])
2

]
+

1

4
Ef0

[
1

n

n∑

i=1

(f0(Xi)− f(Xi))
2

]

+
1

4
Ef0

[
1

n

n∑

i=1

(
f̂(Xi)− f0(Xi)

)2
]

(ii)
= 8Ef0

[
(Ef0 [ϵ1|X1])

2
]
+

EX[(f0(X)− f(X))2]

4
+
R̂n(f̂ , f0)

4
,

where for (i) we added and subtracted the same term and (ii) follows from the

definition of R̂n(f̂ , f0) and the fact that the Xi are i.i.d. Proposition 3.9.1 gives
Ef0 [(Ef0 [ϵ1|X1])

2] ≤ h2βn F 2d2β∥K∥2d∞ and so

(III) ≤ 8h2βn F 2d2β∥K∥2d∞ +
EX[(f0(X)− f(X))2]

4
+
R̂n(f̂ , f0)

4
. (3.9.2)

It remains to bound (I) in (3.9.1). Let N := NF (δ) be the covering number. By
assumption, the N centers f1, . . . , fN lie in F . Choose k∗ ∈ {1, . . . , N} such that

∥f̂ − fk∗∥∞ = min
1≤ℓ≤N

∥f̂ − fℓ∥∞.

3.9. Proofs for Section 3.6 109

In particular, k∗ is random. Define (IV) := |Ef0 [
2
n

∑n
i=1(ϵi − Ef0 [ϵi|Xi])(fk∗(Xi)−

f0(Xi))]|. This gives us that
∣∣∣∣∣Ef0

[
2

n

n∑

i=1

(ϵi − Ef0 [ϵi|Xi])(f̂(Xi)− f0(Xi))

]∣∣∣∣∣

≤
∣∣∣∣∣Ef0

[
2

n

n∑

i=1

(ϵi − Ef0 [ϵi|Xi])(f̂(Xi)− fk∗(Xi))

]∣∣∣∣∣+ (IV)

(i)

≤ Ef0

[
2δ

n

n∑

i=1

∣∣ϵi − Ef0 [ϵi|Xi]
∣∣
]
+ (IV)

(ii)

≤ 4δ∥K∥d∞2dF + (IV)

(3.9.3)

where for (i) we used the property of the δ cover and the triangle inequality, and for
(ii) we used Proposition 3.9.2.

In the next step we split the term (IV) into two parts. One case were the Xi used
for the regression are distributed ‘nicely’ and a second case where we have an extreme
concentration of data points Xi. The bad second case can be shown to have small
probability. For the derivation, we use the bins Bj as defined in Section 3.6.

Define the set Aj as Aj := {∑n
i=1 1{Xi∈Bj} ≤ 2d+3F log(n)} and the set A as the

intersection

A :=
⋂

j∈J
Aj . (3.9.4)

By choice of hn, 2
d log(n) ≥ nhdn. Together with the union bound, it follows that

Pf0(A
c) ≤

∑

j∈J
Pf0(A

c
j)

=
∑

j∈J
Pf0

(n∑

i=1

1{Xi∈Bj} > (7F + F)nhdn

)

(iii)

≤
∑

j∈J
Pf0

(n∑

i=1

1{Xi∈Bj} > 7Fnhdn + npj

)

=
∑

j∈J
Pf0

(n∑

i=1

(
1{Xi∈Bj} − pj

)
> 7Fnhdn

)

≤
∑

j∈J
Pf0

(∣∣∣∣
n∑

i=1

(
1{Xi∈Bj} − pj

)∣∣∣∣ > 7Fnhdn

)
,

(3.9.5)

110 Chapter 3. supervised density estimation

where for (iii) we used that pj =
∫
Bj
f0(x) dx ≤ Fhdn is the probability that an

observation falls into bin Bj .

We now apply the moment-version of Bernstein’s inequality stated in Proposition
3.9.4 (i). For any m = 1, . . .

Ef0

[
|1{Xi∈Bj}|m

]
= Ef0

[
1{Xi∈Bj}

]
= pj .

Setting U = 1, vi = pj , and v = nFhdn ≥ npj , we get from Bernstein’s inequality in
Proposition 3.9.4 (i) that

Pf0

(∣∣∣∣
n∑

i=1

(
1{Xi∈Bj} − pj

)∣∣∣∣ > 7Fnhdn

)
≤ 2 exp

(
− 72F 2n2h2dn
2n(Fhdn + 7Fhdn)

)

= 2 exp

(
−49

16
Fnhdn

)

≤ 2 exp(−3nhdn)

(v)

≤ 2n−3,

where for (v) we used that, by choice of hn, h
d
n ≥ log(n)/n. Combined with (3.9.5),

we find

Pf0(A
c) ≤ 2

∑

j∈J
n−3 ≤ 2n−2,

where the last inequality holds because n > e implies |J | = h−d
n ≤ n/ log n ≤ n.

With

ξk :=

n∑

i=1

(
ϵi − Ef0 [ϵi|Xi]

)(
fk(Xi)− f0(Xi)

)
1A

one can decompose (IV) as follows

∣∣∣∣∣Ef0

[
2

n

n∑

i=1

(
ϵi − Ef0 [ϵi|Xi]

)(
fk∗(Xi)− f0(Xi)

)
]∣∣∣∣∣

≤
∣∣∣∣Ef0

[
2

n
ξk∗

]∣∣∣∣+
∣∣∣∣∣Ef0

[
2

n

n∑

i=1

(
ϵi − Ef0 [ϵi|Xi]

)(
fk∗(Xi)− f0(Xi)

)
1Ac

]∣∣∣∣∣ .
(3.9.6)

Moving the absolute value inside, using that fk∗ and f0 are bounded by F and applying

3.9. Proofs for Section 3.6 111

the Cauchy-Schwarz inequality yields
∣∣∣∣∣Ef0

[
2

n

n∑

i=1

(ϵi − Ef0 [ϵi|Xi])(fk∗(Xi)− f0(Xi))1Ac

]∣∣∣∣∣

≤ 4F

n

n∑

i=1

Ef0 [|ϵi − Ef0 [ϵi|Xi]|1Ac]

≤ 4F

n

n∑

i=1

√
Ef0

[
|ϵi − Ef0 [ϵi|Xi]|2

]√
Pf0(A

c)

(∗)
≤ 4F

√
2(65F 222d∥K∥2d∞)

n

≤ 46F 22d∥K∥d∞
n

.

(3.9.7)

where for (∗) we used Proposition 3.9.3 and that Pf0(A
c) ≤ 2n−2 and for the last

inequality we used that 4
√
130 ≤ 46.

It remains to bound the term |Ef0 [
2
nξk∗]|. Define

zk :=
√
log(NF (δ)) ∨

√
n∥fk − f0∥n (3.9.8)

and define zk∗ as zk for k = k∗. The empirical norm of a function g is

∥g∥n :=

(
1

n

n∑

i=1

(g(Xi))
2

) 1
2

.

Using that k∗ is the index of the center of the ball of the δ-cover closest to f̂ , it holds
that

zk∗√
n
=

√
log(NF (δ))

n
∨ ∥fk∗ − f0∥n ≤ ∥f̂ − f0∥n + δ +

√
log(NF (δ))

n
.

Together with the Cauchy-Schwarz inequality, we obtain
∣∣∣∣Ef0

[
2

n
ξk∗

]∣∣∣∣ ≤
2√
n
Ef0

[∣∣∣∣
ξk∗√
n

∣∣∣∣
]

≤ 2√
n
Ef0

[
∥f̂ − f0∥n + δ +

√
log(NF (δ))

n
zk∗√
n

∣∣∣∣∣
ξk∗√
n

∣∣∣∣∣

]

≤2

√
R̂n(f̂ , f0) + δ +

√
log(NF (δ))

n√
n

√
Ef0

[
ξ2k∗

z2k∗

]
.

(3.9.9)

112 Chapter 3. supervised density estimation

For notational ease, define

Ci,k :=
fk(Xi)− f0(Xi)

nhdnzk
1A. (3.9.10)

Since probabilities are always upper bounded by one, we have for any a > 0 and any
square integrable random variable T , E[T 2] =

∫∞
0

P
(
T 2 ≥ t

)
dt =

∫∞
0

P
(
|T | ≥

√
t
)
dt ≤

a+
∫∞
a

P
(
|T | ≥

√
t
)
dt. Therefore for any a > 0

Ef0

[
ξ2k∗/z2k∗

∣∣X1, . . . ,Xn

]
≤ Ef0

[
max

k
ξ2k/z

2
k

∣∣X1, . . . ,Xn

]

≤ a+

∫ ∞

a

Pf0

(
max

k
|ξk/zk| ≥

√
t
∣∣X1, . . . ,Xn

)
dt.

(3.9.11)

The ratio ξk/zk can be rewritten as the sum
∑n

ℓ=1 hk(X
′
ℓ), where

hk(u) =

n∑

i=1

(d∏

r=1

K

(
ur −Xi,r

hn

)
−
∫

Rd

d∏

r=1

K

(
vr −Xi,r

hn

)
f0(v) dv

)
Ci,k

is σ(X1, . . . ,Xn) measurable. Now let X̃1, X̃2, . . . be i.i.d. random variables distributed
asX and independent of the data. LetM be a Poisson(n) random variable independent

of the data and of the X̃i. By the union bound and Poissonization (Lemma 3.6.1),

Pf0

(
max

k
|ξk/zk| ≥

√
t
∣∣X1, . . . ,Xn

)

≤ NF (δ)max
k

Pf0

(
|ξk/zk| ≥

√
t
∣∣X1, . . . ,Xn

)

= NF (δ)max
k

Pf0

(∣∣∣∣
n∑

ℓ=1

hk(X
′
ℓ)

∣∣∣∣ ≥
√
t

∣∣∣∣X1, . . . ,Xn

)

≤
√
2eπnNF (δ)max

k
Pf0

(∣∣∣∣
M∑

ℓ=1

hk(X̃ℓ)

∣∣∣∣ ≥
√
t

∣∣∣∣X1, . . . ,Xn

)
.

(3.9.12)

With W (Xi) :=
∑M

ℓ=1

∏d
r=1K(

X̃ℓ,r−Xi,r

hn
), we can write

M∑

ℓ=1

hk(X̃ℓ) =

n∑

i=1

(
W (Xi)− Ef0

[
W (Xi)|Xi

])
Ci,k. (3.9.13)

Next we rewrite the sum over n. For this we use the bins Bj and the index sets of
bins Js as defined in Section 3.6.1. Using that the bins are disjoint and that each bin

3.9. Proofs for Section 3.6 113

is in exactly one of the 3d index classes Js, we have
∑n

i=1 =
∑3d

s=1

∑
j∈Js

∑
Xi∈Bj

.

Here we use
∑

Xi∈Bj
as shorthand notation for

∑
1≤i≤n,s.t.Xi∈Bj

. For non-negative

random variables U1, . . . , Um, {U1 + . . .+Um ≥
√
t} ⊆ ∪m

j=1{Uj ≥
√
t/m} and by the

union bound P(U1 + . . . + Um ≥
√
t) ≤ m · maxj=1,...,m P(Uj ≥

√
t/m). Combined

with (3.9.13),

Pf0

(∣∣∣∣
M∑

ℓ=1

hk(X̃ℓ)

∣∣∣∣ ≥
√
t

∣∣∣∣X1, . . . ,Xn

)

≤ 3d max
s=1,...,3d

Pf0

(
3d
∣∣∣∣
∑

j∈Js

∑

Xi∈Bj

(
W (Xi)− Ef0

[
W (Xi)|Xi

])
Ci,k

∣∣∣∣ ≥
√
t

∣∣∣∣X1, . . . ,Xn

)
.

Thus, (3.9.11), (3.9.12) and the previous display give for any a > 0

Ef0

[ξ2k∗

z2k∗

∣∣∣X1, . . . ,Xn

]

≤ a+

∫ ∞

a

NF (δ)3
d
√
2eπnmax

k
max

s=1,...,3d

Pf0

(
3d
∣∣∣∣
∑

j∈Js

∑

Xi∈Bj

(
W (Xi)− Ef0 [W (Xi)|Xi]

)
Ci,k

∣∣∣∣ ≥
√
t

∣∣∣∣X1, . . . ,Xn

)
dt

(3.9.14)
We will now apply Bernstein’s inequality in the form of Proposition 3.9.4 (i) to
the random variables Zj =

∑
Xi∈Bj

W (Xi)Ci,k. For that we show first that, con-
ditionally on X1, . . . ,Xn, the random variables Zj , j ∈ Js with fixed s are jointly

independent. To see this, recall that W (Xi) :=
∑M

ℓ=1

∏d
r=1K(

X̃ℓ,r−Xi,r

hn
). The ker-

nel K has support in [−1, 1]. By the definition of the neighborhood NB(Bj) in

(3.6.1), Zj only depends on the X̃1, . . . , X̃n that fall into NB(Bj), that is, Zj =
∑

Xi∈Bj

∑M
ℓ=1

∏d
r=1K(

X̃ℓ,r−Xi,r

hn
)Ci,k1{X̃ℓ∈NB(Bj)}. The variables Ci,k defined in

(3.9.10) depend on X1, . . . ,Xn but not on X̃1, . . . , X̃n. Working conditionally on
X1, . . . ,Xn and interchanging the summations, we can write Zj =∑M

ℓ=1 gj(X̃ℓ)1{X̃ℓ∈NB(Bj)}, for suitable real-valued functions g1, g2, . . . Since the kernel

K has support in [−1, 1], it follows from the definition of Js that if two different

indices j and j̃ are both in Js, then {x : gj(x) ̸= 0} ∩ {x : gj̃(x) ̸= 0} = ∅. Let B(R)
be the Borel σ-algebra on R and define g(x) =

∑
j∈Js

gj(x)1{x∈NB(Bj)}. The map

T : [0, 1]d × B(R) → [0, 1], given by

T (x, B) =

{
1, if g(x) ∈ B,

0, otherwise,

114 Chapter 3. supervised density estimation

defines a transition kernel. Since X̃ℓ are i.i.d. and M ∼ Poisson(n),
∑M

ℓ=1 δX̃ℓ
, with

δu the point measure at u, is a Poisson point process on [0, 1]d. The marking theorem
states that a Poisson process on a space A and a transition kernel to the Borel algebra
of another space B induces a Poisson point process on the product space A×B, see
Proposition 4.10.1(b) of [118] and Chapter 5 of [69]. Hence together with the transition

kernel T , we get from the marking theorem, that
∑M

ℓ=1 δX̃ℓ,g(X̃ℓ)
is a Poisson point

process on the product space [0, 1]d × R. Since the neighborhoods NB(Bj) are by
construction disjoint sets for different j ∈ Js, the processes

M∑

ℓ=1

δ
X̃ℓ,gj(X̃ℓ)

1{X̃ℓ∈NB(Bj)},

are independent Poisson point processes for different j ∈ Js. Hence, conditionally
on the Xi, the random variables Zj =

∑M
ℓ=1 gj(X̃ℓ)1{X̃ℓ∈NB(Bj)}, j ∈ Js are jointly

independent.
To apply Bernstein’s inequality, it remains to check that there exists U and v such

that
∑

j∈Js
Ef0 [|Zj |m] ≤ 1

2m!Um−2v, for m = 2, 3,
We have conditionally on Xi that

Ef0

[∣∣∣∣
∑

Xi∈Bj

W (Xi)Ci,k

∣∣∣∣
m ∣∣∣∣X1, . . . ,Xn

]
(3.9.15)

= Ef0

[∣∣∣∣
∑

Xi∈Bj

(M∑

ℓ=1

d∏

r=1

K

(
X̃ℓ,r −Xi,r

hn

))
Ci,k

∣∣∣∣
m ∣∣∣∣X1, . . . ,Xn

]

(i)

≤ Ef0

[(∑

Xi∈Bj

(M∑

ℓ=1

∣∣∣∣
d∏

r=1

K

(
X̃ℓ,r −Xi,r

hn

)∣∣∣∣
)
|Ci,k|

)m ∣∣∣∣X1, . . . ,Xn

]

(ii)
= Ef0

[(∑

Xi∈Bj

(M∑

ℓ=1

∣∣∣∣
d∏

r=1

K

(
X̃ℓ,r −Xi,r

hn

)∣∣∣∣1{X̃ℓ∈NB(Bj)}

)
|Ci,k|

)m ∣∣∣∣X1, . . . ,Xn

]

(iii)

≤ Ef0

[(∑

Xi∈Bj

(M∑

ℓ=1

∥K∥d∞1{X̃ℓ∈NB(Bj)}

)
|Ci,k|

)m ∣∣∣∣X1, . . . ,Xn

]

(iv)
= Ef0

[(M∑

ℓ=1

∥K∥d∞1{X̃ℓ∈NB(Bj)}

)m(∑

Xi∈Bj

|Ci,k|
)m ∣∣∣∣X1, . . . ,Xn

]

(v)
= ∥K∥dm∞

(∑

Xi∈Bj

|Ci,k|
)m

Ef0

[(M∑

ℓ=1

1{X̃ℓ∈NB(Bj)}

)m]
.

3.9. Proofs for Section 3.6 115

Where (i) follows from the triangle inequality. For (ii) we used that Xi ∈ Bj and that

K has support in [−1, 1], so if X̃ℓ is outside NB(Bj) then
∏d

r=1K
(

X̃ℓ,r−Xi,r

hn

)
= 0.

For (iii) we use that ∥K∥∞ <∞ and that all terms are non-negative. The equality

(iv) follows from observing that
∑M

ℓ=1 ∥K∥d∞1{X̃ℓ∈NB(Bj)} does not depend on i and

can be taken out of the sum. Finally (v) follows by taking all the constants out of the
expectation, recalling that Ci,k is X1, . . . ,Xn measurable.

Since X̃ℓ are i.i.d. andM ∼ Poisson(n), we have
∑M

ℓ=1 1{X̃ℓ∈NB(Bj)} ∼ Poisson(np̃j),

where p̃j denotes the probability that X ∈ NB(Bj). Expressing the moments of the
Poisson distribution as Bell polynomials [2] gives

Ef0

[(M∑

ℓ=1

1{X̃ℓ∈NB(Bj)}

)m]
=

m∑

t=0

(np̃j)
t

{
m

t

}
≤ (np̃j ∨ 1)m

m∑

t=0

{
m

t

}
,

where
{
m
t

}
denote the Stirling numbers of the second kind. The m-th Bell number

equals the sum
∑m

t=0

{
m
t

}
. Applying now the bound on Bell numbers derived in

Theorem 2.1 of [18] gives

m∑

t=0

{
m

t

}
≤
(

m

log(m+ 1)

)m

.

Due to m ≥ 2, log(m+1) ≥ log(3) > 1 and the right hand side of the previous display
can be upper bounded by mm. Using Stirling’s formula ([120]) again, we get that√
2πmmme−m ≤ m!. Since m ≥ 2,

√
2πm ≥ e and mm ≤ m!em−1. Thus

Ef0

[(M∑

ℓ=1

1{X̃ℓ∈NB(Bj)}

)m]
≤ m!em−1(np̃j ∨ 1)m ≤ m!em−1(F3dnhdn)

m.

The last inequality follows from observing that p̃j ≤ F3dhdn (the upper bound on
f0 times the Lebesgue measure of NB(Bj)) and that 3dFnhdn ≥ 3dF log(n) ≥ 1.
Combined with (3.9.15), this leads to

Ef0

[∣∣∣∣
∑

Xi∈Bj

W (Xi)Ci,k

∣∣∣∣
m∣∣∣∣X1, . . . ,Xn

]
≤ m!em−1(F3dnhdn)

m∥K∥dm∞
(∑

Xi∈Bj

|Ci,k|
)m

.

The previous inequality suggests to take the parameters v and U in Bernstein’s inequal-
ity as upper bounds of

∑
j∈Js

(e∥K∥d∞)2(F3dnhdn)
2(
∑

Xi∈Bj
|Ci,k|)2 and

e∥K∥d∞3dFnhdn
∑

Xi∈Bj
|Ci,k|, respectively. To find a convenient expression for v,

116 Chapter 3. supervised density estimation

observe that

∑

j∈Js

(e∥K∥d∞)2(F3dnhdn)
2

(∑

Xi∈Bj

|Ci,k|
)2

=
∑

j∈Js

(e3d∥K∥d∞F)2n2h2dn
(∑

Xi∈Bj

∣∣∣∣
(fk(Xi)− f0(Xi))

nhdnzk
1A

∣∣∣∣
)2

=
∑

j∈Js

(e3d∥K∥d∞F)2
z2k

(∑

Xi∈Bj

|fk(Xi)− f0(Xi)|1A

)2

.

By Cauchy-Schwarz,

(∑

Xi∈Bj

|fk(Xi)− f0(Xi)|1A

)2

≤
(
1A

∑

Xi∈Bj

12
)(∑

Xi∈Bj

(
fk(Xi)− f0(Xi)

)2
)

≤ 2d+3F log(n)
∑

Xi∈Bj

(
fk(Xi)− f0(Xi)

)2
,

where for the last inequality we used that the definition of the event A in (3.9.4)
implies

∑
Xi∈Bj

1 ≤ 2d+3F log(n). By (3.9.8), zk ≥ √
n∥fk − f0∥n. Moreover,

∑n
i=1 =∑

j∈Js

∑
Xi∈Bj

and thus

∑

j∈Js

(e∥K∥d∞)2(F3dnhdn)
2

(∑

Xi∈Bj

|Ci,k|
)2

≤
∑

j∈Js

(e3d∥K∥d∞F)2
n∥fk − f0∥2n

2d+3F log(n)

(∑

Xi∈Bj

(fk(Xi)− f0(Xi))
2

)

= 2d+3 (e3
d∥K∥d∞)2

n∥fk − f0∥2n
F 3 log(n)n∥fk − f0∥2n

= 2d+3(e3d∥K∥d∞)2F 3 log(n).

Hence we can take v = 2d+3(e3d∥K∥d∞)2F 3 log(n) in Bernstein’s inequality.

To obtain a convenient expression for the U in Bernstein’s inequality, we now
bound

∑
Xi∈Bj

|Ci,k|. Using that by zk ≥
√
log(NF (δ)), that fk and f0 are bounded

3.9. Proofs for Section 3.6 117

by F, and that on the event A,
∑

Xi∈Bj
≤ 2d+3F log(n) gives

∑

Xi∈Bj

|Ci,k| =
∑

Xi∈Bj

|fk(Xi)− f0(Xi)|
nhdnzk

1A ≤ 2F

nhdn
√

log(NF (δ))

∑

Xi∈Bj

1A

≤ 2d+3F 2 log(n)

nhdn
√

log(NF (δ))
.

Hence it holds that

e∥K∥d∞3dFnhdn

(∑

Xi∈Bj

|Ci,k|
)

≤ 2d+3e∥K∥d∞3dF 3 log(n)√
log(NF (δ))

.

The support of the kernel is contained in [−1, 1]. This means that 1 ≤ 2∥K∥∞
and consequently, e3d∥K∥d∞ ≥ 1. Thus, setting U = v/

√
log(NF (δ)) with v =

2d+3(e3d∥K∥d∞)2F 3 log(n), as above, we find U ≥ 2d+3e∥K∥d∞3dF 3

log(n)/
√

log(NF (δ)) and obtain

∑

j∈Js

Ef0

[∣∣∣∣
∑

Xi∈Bj

W (Xi)Ci,k

∣∣∣∣
m]

≤ m!

2
vUm−2,

for all m = 2, 3, Consequently we can apply Bernstein’s inequality with those
choices for U and v.

Using Bernstein’s inequality on the sum over the variables Zj with the bound U
and v as defined above we get that

Pf0

(
3d
∣∣∣∣
∑

j∈Js

∑

Xi∈Bj

(
W (Xi)− Ef0 [W (Xi)|Xi]

)
Ci,k

∣∣∣∣ ≥
√
t

∣∣∣∣X1, . . . ,Xn

)

= Pf0

(∣∣∣∣
∑

j∈Js

(Zj − Ef0 [Zj |Xi])

∣∣∣∣ ≥ 3−d
√
t

∣∣∣∣X1, . . . ,Xn

)

≤ 2 exp

(
− t3−2d

2
(
v + U3−d

√
t
)
)

= 2 exp


− t3−2d

2v
(
1 + 3−d

√
t/ log(NF (δ))

)


 .

If t ≥ 32d log(NF (δ)), the previous expression can be further bounded by

≤ 2 exp

(
−
√
t log(NF (δ))3−d

4v

)
. (3.9.16)

118 Chapter 3. supervised density estimation

Observe that this gives us an upper bound that is the same for all collections of
bins Js and all cover centers k. Choosing a = 64v232d log(NF (δ)) in (3.9.14) gives

Ef0

[ξ2k∗

z2k∗

∣∣∣X1, . . . ,Xn

]

(i)

≤ 64v232d log(NF (δ))

+ 2NF (δ)3
d
√
2eπn

∫ ∞

64v232d log(NF (δ))

exp

(
−
√
t

√
log(NF (δ))3−d

4v

)
dt

(ii)
= 64v232d log(NF (δ))

+ 4NF (δ)3
d
√
2eπn(16v232d)

(2 log(NF (δ)) + 1)

log(NF (δ))
exp (−2 log(NF (δ)))

(iii)

≤ 64v232d log(NF (δ)) + 1280v233d

(iv)

≤ (2d+510(e∥K∥d∞)2F 3 log(n))237d log(NF (δ)),

where for (i) we used (3.9.16) combined with the observation that if t ≥ 64v232d log(NF (δ)),
then t ≥ 32d log(NF (δ)), since v ≥ 1. For (ii) we used that

∫∞
b2
e−

√
ucdu = 2

∫∞
b
se−scds =

2(bc+1)e−bc/c2. For (iii) we used that log(NF (δ)) ≥ 1 so (2 log(NF (δ))+1)/ log(NF (δ)) ≤
4 and NF (δ) ≥ n,

√
2eπ ≤ 5, log(NF (δ)) ≥ 1. For (iv) we substituted v =

2d+3(e3d∥K∥d∞)2F 3 log(n) and used that
√
1344 = 4

√
84 and

√
84 ≤ 10.

Together with (3.9.9), this yields

∣∣∣∣Ef0

[
2

n
ξk∗

]∣∣∣∣

≤2

√
R̂n(f̂ , f0) + δ +

√
log(NF (δ))

n√
n

√
Ef0

[
ξ2k∗

z2k∗

]

≤ 2

√
R̂n(f̂ , f0) + δ +

√
log(NF (δ))

n√
n

√
(2d+510e2∥K∥2d∞F 3 log(n))

2
37d log(NF (δ))

=

(√
R̂n(f̂ , f0) + δ +

√
log(NF (δ))

n

)
2d+610e2∥K∥2d∞F 3 log(n)

√
37d log(NF (δ))

n
.

Inserting this bound in (3.9.6) together with (3.9.7) gives a bound for (IV). Together
with (3.9.3) and (3.9.2) and combining the terms with δ, using that log2(n) log(NF (δ)) ≤
n finishes the proof.

3.9. Proofs for Section 3.6 119

Proof of Proposition 3.6.3. Expanding the square yields

(
f̂(Xi)− f0(Xi)

)2
=
(
f̂(Xi)− Yi + Yi − f0(Xi)

)2

= (f̂(Xi)− Yi)
2 + 2(f̂(Xi)− Yi)(Yi − f0(Xi)) + (Yi − f0(Xi))

2.

We use this identity to rewrite the definition R̂n(f̂ , f0) = Ef0 [
1
n

∑n
i=1(f̂(Xi)−f0(Xi))

2].

Applying moreover that for any fixed f ∈ F , we have by definition of ∆n(f̂ , f0) that

Ef0

[
1

n

n∑

i=1

(Yi − f̂(Xi))
2

]
≤ Ef0

[
1

n

n∑

i=1

(Yi − f(Xi))
2

]
+∆n(f̂ , f0)

yields

R̂n(f̂ , f0)

= Ef0

[
1

n

n∑

i=1

(
(f̂(Xi)− Yi)

2 + 2(f̂(Xi)− Yi)(Yi − f0(Xi)) + (Yi − f0(Xi))
2
)]

≤ Ef0

[
1

n

n∑

i=1

(
(f(Xi)− Yi)

2 + 2(f̂(Xi)− Yi)(Yi − f0(Xi)) + (Yi − f0(Xi))
2
)]

+∆n(f̂ , f0)

= Ef0

[
1

n

n∑

i=1

(
(f(Xi)− Yi)

2 + 2(f(Xi)− Yi)(Yi − f0(Xi)) + (Yi − f0(Xi))
2
)
]

+ Ef0

[
2

n

n∑

i=1

(Yi − f0(Xi))(f̂(Xi)− f(Xi))

]
+∆n(f̂ , f0)

= Ef0

[
1

n

n∑

i=1

(f(Xi)− f0(Xi))
2

]
+ Ef0

[
2

n

n∑

i=1

(Yi − f0(Xi))(f̂(Xi)− f(Xi))

]

+∆n(f̂ , f0)

= EX

[
(f(X)− f0(X))2

]
+ Ef0

[
2

n

n∑

i=1

ϵi(f̂(Xi)− f(Xi))

]
+∆n(f̂ , f0),

where for the last equality we used that the Xi are independent and have the same
distribution as X.

Combined with Lemma 3.6.2, this yields

R̂n(f̂ , f0) ≤ EX

[
(f(X)− f0(X))2

]

120 Chapter 3. supervised density estimation

+

√
R̂n(f̂ , f0)2

d+614e2∥K∥2d∞F 3 log(n)

√
37d log(NF (δ))

n

+ 2d+614e2∥K∥2d∞F 33
7d
2 log(n)

log(NF (δ))
n

+ δ2d+614e2∥K∥2d∞F 33
7d
2 +

46F 22d∥K∥d∞
n

+ 8h2βn F 2d2β∥K∥2d∞ +
EX[(f0(X)− f(X))2]

4
+
R̂n(f̂ , f0)

4
+ ∆n(f̂ , f0).

Rewriting this and upper bounding constants, yields

R̂n(f̂ , f0) ≤
5

3
EX

[
(f(X)− f0(X))2

]

+

√
R̂n(f̂ , f0)2

d+619e2∥K∥2d∞F 3 log(n)

√
37d log(NF (δ))

n

+ 2d+619e2∥K∥2d∞F 33
7d
2 log(n)

log(NF (δ))
n

+ δ2d+619e2∥K∥2d∞F 33
7d
2

+
62F 22d∥K∥d∞

n
+ 11h2βn F 2d2β∥K∥2d∞ +

4

3
∆n(f̂ , f0).

For real numbers a, c, d, satisfying |a| ≤ 2
√
ac+d, we have |a| ≤ 2

√
ac+d ≤ 1

2 |a|+2c2+d

and thus |a| ≤ 2d+ 4c2. Applying this inequality with a = R̂n(f̂ , f0),

c = 2d+619e2∥K∥2d∞F 3 log(n)

√
37d log(NF (δ))

n

and

d = δ2d+619e2∥K∥2d∞F 33
7d
2 +

62F 22d∥K∥d∞
n

+ 2d+619e2∥K∥2d∞F 33
7d
2 log(n)

log(NF (δ))
n

+ 11h2βn F 2d2β∥K∥2d∞ +
4

3
∆n(f̂ , f0) +

5

3
EX

[
(f(X)− f0(X))2

]

yields the result.

Proposition 3.9.1. |Ef0 [ϵi|Xi]| ≤ hβnd
β∥K∥d∞F.

Proof. By the construction of the ϵi in (3.2.2) and (3.2.3), ϵi = f̂KDE(Xi)− f0(Xi).
Using moreover the definition of the multivariate kernel density estimator in (3.2.1)

3.9. Proofs for Section 3.6 121

and writing |v|α for |v1|α1 · . . . · |vd|αd , we obtain

∣∣Ef0 [ϵi|Xi]
∣∣ =

∣∣∣∣∣Ef0

[
1

nhdn

n∑

ℓ=1

d∏

r=1

K

(
X ′

ℓ,r −Xi,r

hn

)
− f0(Xi)

∣∣∣∣∣Xi

]∣∣∣∣∣

(i)
=

∣∣∣∣∣
1

hdn

∫

[0,1]d
f0(u)

d∏

r=1

K

(
ur −Xi,r

hn

)
du− f0(Xi)

∣∣∣∣∣

(ii)
=

∣∣∣∣∣

∫

Rd

(
d∏

r=1

K (vr)

)
f0(Xi,1 + v1hn, . . . , Xi,d + vdhn) dv − f0(Xi)

∣∣∣∣∣

(iii)
=

∣∣∣∣∣

∫

Rd

(
d∏

r=1

K (vr)

)(
f0(Xi,1 + v1hn, . . . , Xi,d + vdhn)− f0(Xi)

)
dv

∣∣∣∣∣

(iv)
=

∣∣∣∣∣

∫

Rd

(
d∏

r=1

K (vr)

)

×
(∑

α:|α|1≤⌊β⌋−1,α ̸=0

(hnv)
α

α!
(∂αf0)(Xi)

+
∑

α:|α|1=⌊β⌋

(hnv)
α

α!
(∂αf0)(Xi + hnτv)

)
dv

∣∣∣∣∣

(v)
=

∣∣∣∣∣

∫

Rd

(
d∏

r=1

K (vr)

)
 ∑

α:|α|1=⌊β⌋

(hnv)
α

α!
((∂αf0)(Xi + hnτv)− (∂αf0)(Xi))


 dv

∣∣∣∣∣

(vi)

≤ h⌊β⌋n

∫

Rd

∣∣∣∣∣
d∏

r=1

K (vr)

∣∣∣∣∣


 ∑

α:|α|1=⌊β⌋

|v|α
α!

|(∂αf0)(Xi + hnτv)− (∂αf0)(Xi)|


 dv

(vii)

≤ h⌊β⌋n ∥K∥d∞
∫

[0,1]d


 ∑

α:|α|1=⌊β⌋

|v|α
α!

|hnτv|β−⌊β⌋
∞ F


 dv

(viii)

≤ hβn∥K∥d∞F
∫

[0,1]d

∑

α:|α|1=⌊β⌋

1

α!
dv

(ix)

≤ hβn∥K∥d∞dβF.

Here we used for (i) that the X′
ℓ are i.i.d. and independent of Xi. For (ii) we substituted

the transformed variables vr = (ur−Xi,r)/hn and used that f0 vanishes outside [0, 1]d,

122 Chapter 3. supervised density estimation

since f0 has support in [0, 1]d and is continuous on Rd. For (iii) we used that a kernel
integrates to 1 and that f0(Xi) is a constant with respect to the integration variables.
Step (iv) applies ⌊β⌋-order Taylor expansion, that is, for a suitable τ ∈ (0, 1),

f0(Xi + hnv) = f0(Xi) +
∑

α:|α|1≤⌊β⌋−1,α ̸=0

(hnv)
α

α!
(∂αf0)(Xi)

+
∑

α:|α|1=⌊β⌋

(hnv)
α

α!
(∂αf0)(Xi + hnτv)

see Theorem 2.2.5 in [66]. For (v) we used that K is a kernel of order ⌊β⌋ and therefore∫
vmK(v) dv = 0 for all m = 1, . . . , ⌊β⌋. For (vi) we used that h

⌊β⌋
n appears in every

term of the sum. Jensen’s inequality and triangle inequality are moreover applied to
move the absolute value inside the integral and the sum. For (vii) we used that f0 is
in the β-Hölder ball with radius F and that K has support contained in [−1, 1]. For
(viii) we used that |τ | ≤ 1. To see (ix), observe that for the multinomial distribution
with number of trials ⌊β⌋ and d event probabilities (1/d, . . . , 1/d), we have

1 =
∑

α:|α|1=⌊β⌋

⌊β⌋!
α!

(1
d

)α1

· . . . ·
(1
d

)αd

= ⌊β⌋!d−⌊β⌋ ∑

α:|α|1=⌊β⌋

1

α!
≥ d−β

∑

α:|α|1=⌊β⌋

1

α!
.

Proposition 3.9.2. Ef0 [|ϵi − Ef0 [ϵi|Xi]|] ≤ F∥K∥d∞2d+1.

Proof. By definition, ϵi = Yi − f0(Xi). Together with conditioning on Xi, triangle
inequality and Jensen’s inequality this yields

Ef0 [|ϵi − Ef0 [ϵi|Xi]|] = Ef0 [|Yi − Ef0 [Yi|Xi]|] ≤ 2Ef0 [Ef0 [|Yi||Xi]]

≤ 2

n∑

ℓ=1

1

nhdn
Ef0

[
Ef0

[
d∏

r=1

∣∣∣∣K
(
X ′

ℓ,r −Xi,r

hn

)∣∣∣∣
∣∣∣Xi

]]
.

(3.9.17)

Using that ∥f0∥∞ ≤ F and the kernel K is supported on [−1, 1], we get by substitution

Ef0

[
d∏

r=1

∣∣∣∣K
(
X ′

ℓ,r −Xi,r

hn

)∣∣∣∣
∣∣∣Xi

]
≤ F

∫

Rd

d∏

r=1

∣∣∣∣K
(
ur −Xi,r

hn

) ∣∣∣∣ du

= Fhdn

∫

Rd

d∏

r=1

∣∣K(vr)
∣∣ dv

≤ F∥K∥d∞2dhdn.

3.9. Proofs for Section 3.6 123

Proposition 3.9.3. Ef0

[
|ϵi − Ef0 [ϵi|Xi]|2

]
≤ 65F 222d∥K∥2d∞.

Proof. By definition, ϵi = Yi − f0(Xi). For a non-negative random-variable T, it holds
that E[T 2] =

∫∞
0

P(T 2 ≥ t) dt =
∫∞
0

P(T ≥
√
t) dt.

Ef0

[
|ϵi − Ef0 [ϵi|Xi]|2

]
= Ef0

[∣∣Yi − Ef0 [Yi|Xi]
∣∣2
]

= Ef0

[
Ef0

[∣∣Yi − Ef0 [Yi|Xi]
∣∣2
∣∣∣Xi

]]

= Ef0

[∫ ∞

0

Pf0

(∣∣Yi − Ef0 [Yi|Xi]
∣∣ ≥

√
t
∣∣∣Xi

)
dt

]
.

The probability can also be written as
∫ ∞

0

Pf0

(∣∣Yi − Ef0 [Yi|Xi]
∣∣ ≥

√
t
∣∣∣Xi

)
dt

=

∫ ∞

0

Pf0

(∣∣∣∣∣
n∑

ℓ=1

(
d∏

r=1

K

(
X ′

ℓ,r −Xi,r

hn

)

−
∫

[0,1]d
f0(u)

d∏

r=1

K

(
ur −Xi,r

hn

)
du

)∣∣∣∣∣ ≥ nhdn
√
t

∣∣∣∣∣Xi

)
dt.

This is a sum of i.i.d. random variables minus their expectation (conditionally on Xi).
Using that ∥f0∥∞ ≤ F and the kernel K is supported on [−1, 1], we get by substitution

Ef0

[
d∏

r=1

K2

(
X ′

ℓ,r −Xi,r

hn

) ∣∣∣Xi

]
≤ F

∫

Rd

d∏

r=1

K2

(
ur −Xi,r

hn

)
du

= Fhdn

∫

Rd

d∏

r=1

K2(vr) dv

≤ F∥K∥2d∞2dhdn.

Applying the bounded variable version of Bernstein’s inequality in Proposition 3.9.4
(ii) with v = F∥K∥2d∞2dhdn and b = 3∥K∥d∞ (that is, b/3 = ∥K∥∞), we get that

∫ ∞

0

Pf0

(∣∣∣∣∣
n∑

ℓ=1

(
d∏

r=1

K

(
X ′

ℓ,r −Xi,r

hn

)

−
∫

[0,1]d
f0(u)

d∏

r=1

K

(
ur −Xi,r

hn

)
du

)∣∣∣∣∣ ≥ nhdn
√
t

)
dt

124 Chapter 3. supervised density estimation

≤
∫ ∞

0

1 ∧ 2 exp

(
− n2h2dn t

2(n∥K∥2d∞F2dhdn + ∥K∥d∞nhdn
√
t)

)
dt

=

∫ ∞

0

1 ∧ 2 exp

(
− nhdnt

2(∥K∥2d∞F2d + ∥K∥d∞
√
t)

)
dt

(∗)
≤ F 222d∥K∥2d∞ + 2

∫ ∞

F 222d∥K∥2d
∞

exp

(
− nhdn

√
t

4∥K∥d∞

)
dt

(∗∗)
= F 222d∥K∥2d∞ +

64∥K∥2d∞
(

F2d∥K∥d
∞nhd

n

4∥K∥d
∞

+ 1
)
exp

(
−F2d∥K∥d

∞nhd
n

4∥K∥d
∞

)

n2h2dn
(∗∗∗)
≤ F 222d∥K∥2d∞ + 64∥K∥2d∞(F2d + 1)

(∗∗∗∗)
≤ 65F 222d∥K∥2d∞,

where we used for (∗) that 2(∥K∥2d∞F2d+∥K∥d∞
√
t) ≤ 4∥K∥d∞

√
t when t ≥ F 222d∥K∥2d∞.

For (∗∗) we used that
∫∞
b2
e−a

√
u du = 2

∫∞
b
se−sads = 2(ba + 1)e−ba/a2, with a =

nhdn/(4∥K∥d∞) and b = F2d∥K∥d∞. For (∗∗∗) we used that nhdn ≥ log(n) ≥ 1 and that
0 < exp(−x) ≤ 1 for x ≥ 0. For (∗∗∗∗) we used that F2d+1 ≤ 2F2d ≤ F22d ≤ F 222d.
The result follows from observing that E[c] = c for c ∈ R.

Proposition 3.9.4. Given independent random variables Z1, . . . , Zn.

(i) (moment version) If for some constants U and vi the moment bounds EZi
[|Zi|m] ≤

1
2m!Um−2vi hold for all m = 2, 3, . . . , and all i = 1, . . . , n, then

PZi

(∣∣∣∣
n∑

i=1

(Zi − EZi
[Zi])

∣∣∣∣ > t

)
≤ 2e−

t2

2v+2Ut , for all v ≥
n∑

i=1

vi.

(ii) (bounded version) If for some constants b and vi, the bounds |Zi| ≤ b and
EZi [|Zi|2] ≤ vi hold for all i = 1, . . . , n, then,

PZi

(∣∣∣∣
n∑

i=1

(Zi − EZi [Zi])

∣∣∣∣ > t

)
≤ 2e−

t2

2v+2bt/3 , for all v ≥
n∑

i=1

vi.

These formulations of Bernstein’s inequality are based on Corollary 2.11 and
Equation (2.10) in [25].

Acknowledgments

We want to thank Claire Donnat for pointing us to Lindsey’s method.

125

Chapter 4

Convergence guarantees for
forward gradient descent in
the linear regression model

Abstract

Renewed interest in the relationship between artificial and biological neural
networks motivates the study of gradient-free methods. Considering the linear
regression model with random design, we theoretically analyze in this chapter
the biologically motivated (weight-perturbed) forward gradient scheme that is
based on random linear combination of the gradient. If d denotes the number of
parameters and k the number of samples, we prove that the mean squared error
of this method converges for k ≳ d2 log(d) with rate d2 log(d)/k. Compared to
the dimension dependence d for stochastic gradient descent, an additional factor
d log(d) occurs.

4.1 Introduction

Looking at the past developments, it is apparent that artificial neural networks (ANNs)
became more powerful the more they resembled the brain. It is therefore anticipated
that the future of AI is even more biologically inspired. As in the past, the bottlenecks
towards more biologically inspired learning are computational barriers. For instance,
shallow networks only became computationally feasible after the backpropagation
algorithm was proposed. Deep neural networks were proposed for a longer time
but deep learning became implementable after the development of large scale GPU

This chapter is based on: Thijs Bos and Johannes Schmidt-Hieber. Convergence guarantees
for forward gradient descent in the linear regression model. To appear in Journal of
Statistical Planning and Inference, Volume 233. The research has been supported by the
NWO/STAR grant 613.009.034b and the NWO Vidi grant VI.Vidi.192.021.

126 Chapter 4. forward gradient descent

computing. Neuromorphic computing aims to imitate the brain on computer chips,
but is currently not fully scalable.

The mathematics of AI has focused on explaining the state-of-the-art performance
of modern machine learning methods and empirically observed phenomena such as the
good generalization properties of extreme overparametrization. To shape the future
of AI, statistical theory needs more emphasis on anticipating future developments
and proposing biologically motivated methods already at a stage before scalable
implementations exist.

This chapter aims to analyze a biologically motivated learning rule building on
the renewed interest of the differences and similarities between ANNs and biological
neural networks (BNNs) [89, 128, 155] which are rooted in the foundational literature
from the 1980s [53, 33]. A key difference between ANNs and BNNs is that ANNs are
usually trained based on a version of (stochastic) gradient descent, while this seems
prohibitive for BNNs. Indeed, to compute the gradient, knowledge of all parameters in
the network is required, but biological networks do not posses the capacity to transport
this information to each neuron. This suggests that biological networks cannot directly
use the gradient to update their parameters [33, 89, 142].

The brain still performs well without gradient descent and can learn tasks with
much fewer examples than ANNs. This sparks interest in biologically plausible learning
methods that do not require (full) access of the gradient. Such methods are called
derivative-free. A simple example of a derivative-free method is to randomly sample
in each step a new parameter. If this decreases the loss one keeps the parameter and
otherwise discards it. There is a wide variety of derivative-free strategies [32, 83, 135].
Among those, so-called zero-order methods use evaluations of the loss function to build
a noisy estimate of the gradient. This substitute is then used to replace the gradient
in the gradient descent routine [92, 41]. [128] establishes a connection between the
Hebbian learning underlying the local learning of the brain (see e.g. Chapter 6 of
[142]) and a specific zero-order method. A statistical analysis of this zero-order scheme
is provided in the companion article [129].

In this chapter, we study (weight-perturbed) forward gradient descent. This method
is motivated by biological neural networks [13, 117] and lies between full gradient
descent methods and derivative-free methods, as only random linear combination of
the gradient are required. The form of the random linear combination is related to
zero-order estimators, see Section 4.2. Settings with partial access to the gradient
have been studied before. For example, [105] proposes a learning method based on
directional derivatives for convex functions. In this chapter we specifically derive
theoretical guarantees for forward gradient descent in the linear regression model with
random design. Theorem 4.3.1 establishes an expression for the expectation. A bound
on the mean squared error is provided in Theorem 4.3.3.

The structure of this chapter is as follows. In Section 4.2 we describe the forward

4.2. Weight-perturbed forward gradient descent 127

gradient descent update rule in the linear regression model. Results are in Section 4.3
and the corresponding proofs can be found in Section 4.4.

Notation

Vectors are denoted by bold letters and we write ∥ · ∥2 for the Euclidean norm. We
denote the largest and smallest eigenvalue of a matrix A by the respective expressions
λmax(A) and λmin(A). The spectral norm is ∥A∥S :=

√
λmax(A⊤A). The condition

number of a positive semi-definite matrix B is κ(B) := λmax(B)/λmin(B).
For a random variable U we denote the expectation with respect to U by EU . The

symbol E stands for an expectation taken with respect to all random variables that
are inside that expectation. The (multivariate) normal distribution with mean vector
µ and covariance matrix Σ is denoted by N (µ,Σ).

4.2 Weight-perturbed forward gradient descent

Suppose we want to learn a parameter vector θ from training data (X1, Y1), (X2, Y2), . . .
∈ Rd × R. Stochastic gradient descent (SGD) is based on the iterative update rule

θk+1 = θk − αk+1∇L(θk), k = 0, 1, . . . (4.2.1)

with θ0 some initial value and L(θk) := L(θk,Xk, Yk) a loss that depends on the data
only through the k-th sample (Xk, Yk).

For a standard normal random vector ξk+1 ∼ N (0, Id) that is independent of all the
other randomness, the quantity (∇L(θk))⊤ξk+1ξk+1 is called the (weight-perturbed)
forward gradient [13, 117]. (Weight-perturbed) forward gradient descent is then given
by the update rule

θk+1 = θk − αk+1

(
∇L(θk)

)⊤
ξk+1ξk+1, k = 0, 1, . . . (4.2.2)

Assuming that the exogenous noise has unit variance is sufficient. Indeed, general-
izing to ξk+1 ∼ N (0, σ2Id) with variance parameter σ2 has the same effect as rescaling
the learning rate αk+1 → σ−2αk+1.

Since for a deterministic d-dimensional vector v, one has E[vtξk+1ξk+1] = v, taking
the expectation of the weight-perturbed forward gradient descent scheme with respect
to the exogenous randomness induced by ξ1, ξ2, . . . gives

E(ξi)i≥1
[θk+1] = E(ξi)i≥1

[θk]− αk+1E(ξi)i≥1
[∇L(θk)], (4.2.3)

resembling the SGD dynamic (4.2.1). If ∇L(θk) depends on θk linearly then also
E(ξi)i≥1

[∇L(θk)] = ∇L(E(ξi)i≥1
[θk]).

128 Chapter 4. forward gradient descent

While in expectation, forward gradient descent is related to SGD, the induced
randomness of the d-dimensional random vectors xk+1 induces a large amount of noise.
To control the high noise level in the dynamic is the main obstacle in the mathematical
analysis. One of the implications is that one has to make small steps by choosing a
small learning rate to avoid completely erratic behavior. This particularly effects the
first phase of the learning.

First order multivariate Taylor expansion shows that L(θk + ξk) − L(θk) and
(∇L(θk))⊤ξk+1 are close. Therefore, forward gradient descent is related to the zero-
order method

θk+1 = θk − αk+1

(
L(θk + ξk)− L(θk)

)
ξk, (4.2.4)

[92]. Consequently, forward gradient descent can be viewed as an intermediate step
between gradient descent, with full access to the gradient, and zero-order methods
that are solely based on (randomly) perturbed function evaluations.

θ1

θ2

u1 = X1θ1

u2 = X2θ2

u3 = Y − u1 − u2 u4 = 1
2 (u3)

2

v1

v2

u′1 = X1v1

u′2 = X2v2

u′3 = −u′1 − u′2 u′4 = u3u
′
3

Figure 4.2.1: Computional graphs for computing in a forward pass L(θ) = 1
2 (Y −

X1θ1 −X2θ2)
2 (upper half) and (∇L(θ))⊤v (lower half).

We now comment on the biological plausibility of forward gradient descent. As
mentioned in the introduction, it is widely accepted that the brain cannot perform (full)
gradient descent. The backpropagation algorithm decomposes the computation of the
gradient in a forward pass and a backward pass. The forward pass evaluates the loss for
a training sample by sending signal through the network. This is biologically plausible.

For a given vector v, it is even possible to compute both L(θk) and
(
∇L(θk)

)⊤
v in

one forward pass, [13, 117, 12]. The construction can be conveniently explained for two
variables θ = (θ1, θ2)

⊤, see Figure 4.2.1. The loss function L(θ) = 1
2 (Y −X1θ1−X2θ2)

2

4.3. Convergence rates in the linear regression model 129

is implemented by first computing u1 = X1θ1 and u2 = X2θ2 in parallel. Subsequently,
one can infer u3 = Y − u1 − u2 = Y − X1θ1 − X2θ2 and u4 = 1

2 (u3)
2 = L(θ). For

a given vector v = (v1, v2)
⊤, the update value (∇L(θ))⊤v in the forward gradient

descent routine can be computed from v1, v2, and u3 = Y − X1θ1 − X2θ2. Indeed,
after computing X1v1 and X2v2 in a first step, one can compute u′3 = −X1v1 −X2v2
and finally u′4 = u3u

′
3 = (Y −X1θ1 −X2θ2)(−X1v1 −X2v2) = −(Y −X⊤θ)X⊤v =

(∇L(θ))⊤v. For more background on the implementation, see for instance [12].

In [128], it has been shown that under appropriate conditions, Hebbian learning of
excitatory neurons in biological neural networks leads to a zeroth-order learning rule
that has the same structure as (4.2.4).

To complete this section, we briefly compare forward gradient descent with feedback
alignment as both methods are motivated by biological learning and are based on
additional randomness. Inspired by biological learning, feedback alignment proposes
to replace the learned weights in the backward pass by random weights chosen at
the start of the training procedure [88, 89]. The so-called direct feedback alignment
method goes even further: instead of back-propagating the gradient through all the
layers of the network by the chain-rule, layers are updated with the gradient of the
output layer multiplied with a fixed random weight matrix [106, 84]. (Direct) feedback
alignment causes the forward weights to change in such a way that the true gradient of
the network weights and the substitutes used in the update rule become more aligned
[88, 106, 89]. The linear model can be viewed as neural network without hidden
layers. The absence of layers means that in the backward step, no weight information
is transported between different layers. As a consequence, both feedback alignment
and direct feedback alignment collapse in the linear model into standard gradient
descent. The conclusion is that feedback alignment and forward gradient descent
are not comparable. The argument also shows that to unveil nontrivial statistical
properties of feedback alignment, one has to go beyond the linear model. We leave
the statistical analysis as an open problem.

4.3 Convergence rates in the linear regression model

We analyze weight-perturbed forward gradient descent for data generated from the
d-dimensional linear regression with Gaussian random design. In this framework, we
observe i.i.d. pairs (Xi, Yi) ∈ Rd × R, i = 1, 2, . . . satisfying

Xi ∼ N (0,Σ), Yi = X⊤
i θ⋆ + ϵi, i = 1, 2, . . . (4.3.1)

with θ⋆ the unknown d-dimensional regression vector, Σ an unknown covariance matrix,
and independent noise variables ϵi with mean zero and variance one.

130 Chapter 4. forward gradient descent

For the analysis, we consider the squared loss L(θk,Xk, Yk) =
1
2 (Yk − X⊤

k θk)
2.

The gradient is given by

∇L(θk) = −
(
Yk −X⊤

k θk
)
Xk. (4.3.2)

We now analyze the forward gradient estimator assuming that the initial value θ0
can be random or deterministic but should be independent of the data. We employ a
similar proving strategy as in the recent analysis of dropout in the linear model in
[31]. In particular, we will derive a recursive formula for E

[
(θk − θ⋆)(θk − θ⋆)⊤

]
. In

contrast to this work, we consider a different form of noise and non-constant learning
rates.

The first result shows that forward gradient descent does gradient descent in
expectation.

Theorem 4.3.1. We have E[θk]− θ⋆ =
(
Id − αkΣ

)(
E[θk−1]− θ⋆

)
and thus

E[θk] = θ⋆ +

(
k∏

ℓ=1

(Id − αℓΣ)

)
(
E[θ0]− θ⋆

)
. (4.3.3)

The proof does not exploit the Gaussian design and only requires that Xi is
centered and has covariance matrix Σ. The exogenous randomness induced by ξ1, ξ2, . . .
disappears in the expected values but heavily influences the recursive expressions for
the squared expectations.

Theorem 4.3.2. Consider forward gradient descent (4.2.2). If Ak :=
E
[
(θk − θ⋆)(θk − θ⋆)⊤

]
, then

Ak =(Id − αkΣ)Ak−1(Id − αkΣ)

+ 3α2
kΣAk−1Σ+ 2α2

kE
[
(θk−1 − θ⋆)⊤Σ(θk−1 − θ⋆)

]
Σ+ 2α2

kΣ

+ 2α2
k tr

(
ΣAk−1Σ

)
Id + α2

kE
[
(θk−1 − θ⋆)⊤Σ(θk−1 − θ⋆)

]
tr
(
Σ
)
Id

+ α2
k tr(Σ)Id.

Since Ak depends on θ2k, the fourth moments of the design vectors Xi and the
exogenous random vectors ξk play a role in this equation.

The risk E
[
∥θk − θ⋆∥22

]
is the trace of the matrix Ak. Setting

κ(Σ) :=
∥Σ∥S
λmin(Σ)

for the condition number and building on Theorem 4.3.2, we can establish the following
risk bound for forward gradient descent.

4.3. Convergence rates in the linear regression model 131

Theorem 4.3.3 (Mean squared error). Consider forward gradient descent (4.2.2) and
assume that Σ is positive definite. For constant a > 2, choosing the learning rate

αk =
aλmin(Σ)

kλ2min(Σ) + a∥Σ∥2S(d+ 2)2
, k = 1, 2, . . . , (4.3.4)

yields

E
[∥∥θk − θ⋆

∥∥2
2

]
≤
(
1 + aκ2(Σ)(d+ 2)2

k + aκ2(Σ)(d+ 2)2

)a

E
[∥∥θ0 − θ⋆

∥∥2
2

]

+
2eaκ(Σ)(d+ 2)2

λmin(Σ)(k + aκ2(Σ)(d+ 2)2)
.

Alternatively, the upper bound of Theorem 4.3.3 can be written as

E
[
∥θk − θ⋆∥22

]
≤
(
1− a−1λmin(Σ)(k − 1)αk

)a
E
[
∥θ0 − θ⋆∥22

]
+ 2eκ(Σ)(d+ 2)2αk.

In the upper bound, the risk E
[
∥θ0 − θ⋆∥22

]
of the initial estimate θ0 appears. A

realistic scenario is that the entries of θ⋆ and θ0 are all of order one. In this case, the
inequality ∥θ0 − θ⋆∥22 ≤ d∥θ0 − θ⋆∥2∞ shows that the risk of the initial estimate will
scale with the number of parameters d. Taking a = log(d) (for d ≥ 8 > e2 such that
a > log(e2) = 2), Theorem 4.3.3 implies that

E
[
∥θk − θ⋆∥22

]
≲ d

(
d2 log(d)

k

)log(d)

E
[
∥θ0 − θ⋆∥2∞

]
+
d2 log(d)

k
.

For k⋆ = e2d2 log(d), d2 log(d)/k⋆ = e−2 and d(d2 log(d)/k⋆)
log(d) = 1/d. Since d > e2,

this means that d
(
d2 log(d)/k⋆

)log(d)
< d2 log(d)/k⋆. Moreover, k− log(d) tends faster

to zero than k−1 as k → ∞. So, for k ≥ k⋆ = e2d2 log(d),

d

(
d2 log(d)

k

)log(d)

E
[
∥θ0−θ⋆∥2∞

]
+
d2 log(d)

k
≤ d2 log(d)

k

(
1+E

[
∥θ0−θ⋆∥2∞

])
. (4.3.5)

The rate for k ≥ e2d2 log(d) is thus d2 log(d)/k. This means that forward gradient
descent has dimension dependence d2 log(d). This is by a factor d log(d) worse than
the minimax rate for the linear regression problem, [144, 63, 98]. In contrast, methods
that have access to the gradient can achieve optimal dimension dependence in the
rate, [114, 82]. The obtained convergence rate is in line with results for zero-order
methods, which show that for convex optimization problems these methods have a
higher dimension dependence, [41, 92, 105].

132 Chapter 4. forward gradient descent

We believe that faster convergence rates are obtainable if the same datapoint is
assessed several times. This means that each data point is used for several updates of

the forward gradient θk+1 = θk − αk+1

(
∇L(θk)

)⊤
ξk+1ξk+1, for instance by running

multiple epochs. However, in every iteration a new random direction ξk+1 is sampled.
We expect that if every data point is used m ≤ d times, one should be able to achieve
the convergence rate d2/(km), up to some logarithmic terms. If this is true and
if m is of the order of d, one could even recover the minimax rate d/k. Using the
same datapoints multiple times induces additional dependence among the parameter
updates. To deal with this dependence is the key challenge to establish the convergence
rate d2/(km).

Assuming that the covariance matrix Σ is positive definite is standard for linear
regression with random design [63, 98, 132].

For k ≳ d2, the decrease of the learning rate αk is of the order 1/k, which is the
standard choice [81, 55, 17]. A constant learning rate is used for Ruppert-Polyak
averaging in [114, 55]. For least squares linear regression, it is possible to achieve
(near) optimal convergence with a constant (universal) stepsize [6]. Conditions under
which a constant (universal) stepsize in more general settings than linear least squares
works or fails are investigated in [82].

100 101 102 103 104 105 106

Iterations log 10 scale

10 4

10 2

100

102

M
SE

 lo
g

10
 sc

al
e

(a) d = 10

100 101 102 103 104 105 106

Iterations log 10 scale

10 3

10 1

101

103

105

M
SE

 lo
g

10
 sc

al
e

(b) d = 100

Figure 4.3.1: Comparison of the MSE of forward gradient descent (blue) and SGD
(red) for dimensions d = 10 and d = 100. The upper dashed line is k 7→ d2 log(d)/k,
the middle dashed line is k 7→ d2/k, and the lower dashed line is k 7→ d/k.

In a small simulation study, we investigated whether there is a discrepancy between
the derived convergence rates and the empirical decay of the risk. For dimensions
d = 10 and d = 100, data according to (4.3.1) with Σ = Id are generated. On these

4.4. Proofs 133

data, we run ten times weight perturbed forward gradient descent (4.2.2), and compare
the mean squared errors (MSEs) to one realization of SGD (4.2.1). For all simulations
of forward gradient descent and SGD, we use the same initialization θ0, drawn from
a N (0, Id) distribution, and the learning rate αk specified in (4.3.4) with a = log(d).
Thus, only the random perturbation vectors ξk in the forward gradient descent schemes
differ across different runs. The outcomes are reported in Figure 4.3.1. For each of
the 10+1 simulations, we report on a log-log scale the MSE for the first one million
iterations. The upper dashed line gives the derived convergence rate k 7→ d2 log(d)/k,
the middle dashed line is d2/k, and the lower dashed line is d/k. The ten paths from
the ten forward gradient descent runs are shown in blue. The path from the SGD is
displayed in red. We see three regimes. In the first regime, the risk remains nearly
constant. For dimension d = 100, this is true up to the first ten thousand of iterations.
Afterwards there is a sudden decrease of the risk. Eventually, for large number of
iterations k, the MSE of forward gradient descent concentrates near the line k 7→ d2/k,
while the MSE of SGD concentrates around k 7→ d/k. This suggest that up to the
log(d)-factor, the derived theory does in fact describe the rate of the MSE. Equation
(4.3.5) predicts that the rate d2 log(d)/k will occur for k ≥ k⋆ = e2d2 log(d). For
d = 10, k⋆ ≈ 1.7 × 103 and for d = 100, k⋆ ≈ 3.4 × 105. Thus, in terms of orders of
magnitude, there is a close agreement between theory and simulations.

Starting with a good initializer that lies already in the neighborhood of the true
parameter, one can avoid the long burn-in time in the beginning. Otherwise, it remains
an open problem, whether one can modify the procedure such that also for smaller
values of k, the risk behaves more like d2 log(d)/k.

Python code is available on Github [24].

4.4 Proofs

Proof of Theorem 4.3.1. By (4.3.2) and the linear regression model Yk−1 = X⊤
k−1θ⋆ +

ϵk−1, we have

∇L(θk−1) = −(Yk−1 −X⊤
k−1θk−1)Xk−1

= −(X⊤
k−1(θ⋆ − θk−1) + ϵk−1)Xk−1

= −ϵk−1Xk−1 −Xk−1X
⊤
k−1(θ⋆ − θk−1).

(4.4.1)

Since E[Xk−1X
⊤
k−1] = Σ, E[ϵk−1] = 0, and Xk−1, ϵk−1,θk−1 are jointly independent,

we obtain

E
[
∇L(θk−1)

∣∣θk−1

]
= E

[
− ϵk−1Xk−1 −Xk−1X

⊤
k−1(θ⋆ − θk−1)

∣∣θk−1

]

= −Σ(θ⋆ − θk−1).
(4.4.2)

134 Chapter 4. forward gradient descent

Combined with (4.2.3), we find

E
[
θk
]
= E

[
θk−1

]
− αkE

[
∇L(θk−1)

]
= E

[
θk−1

]
+ αkΣE

[
θ⋆ − θk−1

]
.

The true parameter θ⋆ is deterministic. Subtracting θ⋆ on both sides, yields the
claimed identity E[θk]− θ⋆ =

(
Id − αkΣ

)(
E[θk−1]− θ⋆

)
.

4.4.1 Proof of Theorem 4.3.2

Lemma 4.4.1. If Z ∼ N (0,Γ) is a d-dimensional random vector and U is a d-
dimensional random vector that is independent of Z, then

E
[
(U⊤Z)2ZZ⊤] = 2ΓE

[
UU⊤]Γ + E

[
U⊤ΓU

]
Γ.

Proof. Because U and Z are independent, the (i, j)-th entry of the d × d matrix
E
[
(U⊤Z)2ZZ⊤] is

d∑

ℓ,m=1

E
[
UℓUm

]
E
[
ZℓZmZiZj

]
.

Since Z ∼ N (0,Γ),

E
[
ZℓZmZiZj

]
= Γℓ,mΓi,j + Γℓ,iΓm,j + Γℓ,jΓm,i,

see for instance the example at the end of Section 2 in [143]. Thus

d∑

ℓ,m=1

E
[
UℓUm

]
E
[
ZℓZmZiZj

]
=

d∑

ℓ,m=1

E
[
UℓUm

](
Γℓ,mΓi,j + Γℓ,iΓm,j + Γℓ,jΓm,i

)
.

Because of

d∑

ℓ,m=1

E
[
UℓUm

]
Γℓ,mΓi,j =

d∑

ℓ,m=1

E
[
UℓΓℓ,mUm

]
Γi,j = E

[
U⊤ΓUΓi,j

]
,

d∑

ℓ,m=1

E
[
UℓUm

]
Γℓ,iΓm,j =

d∑

ℓ,m=1

E
[
UℓΓℓ,iUmΓm,j

]
= E

[(
U⊤Γ

)
i

(
U⊤Γ

)
j

]
,

and

d∑

ℓ,m=1

E
[
UℓUm

]
Γℓ,jΓm,i =

d∑

ℓ,m=1

E
[
UmΓm,iUℓΓℓ,j

]
= E

[(
U⊤Γ

)
i

(
U⊤Γ

)
j

]
,

4.4. Proofs 135

the (i, j)-th entry of the matrix E
[
(U⊤Z)2ZZ⊤] is

2E
[(
U⊤Γ

)
i

(
U⊤Γ

)
j

]
+ E

[
U⊤ΓUΓi,j

]
.

For a vector a = (a1, . . . , ad)
⊤, the scalar aiaj is the (i, j)-th entry of the matrix aa⊤.

Combined with the previous display, the result follows.

Proof of Theorem 4.3.2. As Theorem 4.3.2 only involves one update step, we can

simplify the notation by dropping the index k and analyzing θ′′ = θ′ −α
(
∇L(θ′)

)⊤
ξξ

for one data point (X, Y) and independent ξ ∼ N (0, Id). With A′ := E
[
(θ′ − θ⋆)(θ′ −

θ⋆)
⊤] and A′′ := E

[
(θ′′ − θ⋆)(θ′′ − θ⋆)⊤

]
, we then have to prove that

A′′ =(Id − αΣ)A′(Id − αΣ) + 3α2ΣA′Σ+ 2α2E
[
(θ′ − θ⋆)⊤Σ(θ′ − θ⋆)

]
Σ+ 2α2Σ

+ 2α2 tr
(
ΣA′Σ

)
Id + α2E

[
(θ′ − θ⋆)⊤Σ(θ′ − θ⋆)

]
tr
(
Σ
)
Id + α2 tr(Σ)Id.

Substituting the update rule (4.2.2) in Ak gives by the linearity of the transpose that

A′′ = E
[
(θ′′ − θ⋆)(θ′′ − θ⋆)⊤

]

= E
[(
θ′ − α

(
∇L(θ′)

)⊤
ξξ − θ⋆

)(
θ′ − α

(
∇L(θ′)

)⊤
ξξ − θ⋆

)⊤]

= A′ − αE
[(
θ − θ⋆

)((
∇L(θ′)

)⊤
ξξ
)⊤]

− αE
[((

∇L(θ′)
)⊤
ξξ
)(
θ′ − θ⋆

)⊤]

+ E
[(
α
(
∇L(θ′)

)⊤
ξξ
)(
α
(
∇L(θ′)

)⊤
ξξ
)⊤]

.

(4.4.3)
First, consider the terms with the minus sign in the above expression. The random

vector ξ is independent of all other randomness and hence Eξ
[(
∇L(θ′)

)⊤
ξξ
]
= ∇L(θ′).

Moreover, together with (4.4.2),

E
[((

∇L(θ′)
)⊤
ξξ
)(
θ′ − θ⋆

)⊤ ∣∣∣∣θ′
]
= E

[
∇L(θ′)

∣∣θ′
]
(θ′ − θ⋆)⊤

= Σ(θ′ − θ⋆)(θ′ − θ⋆)⊤.

Taking the transpose and tower rule, we find

− αE
[(
θ − θ⋆

)((
∇L(θ′)

)⊤
ξξ
)⊤]

− αE
[((

∇L(θ′)
)⊤
ξξ
)(
θ′ − θ⋆

)⊤]

= −αE
[
(θ′ − θ⋆)(θ′ − θ⋆)⊤

]
Σ− αΣE

[
(θ′ − θ⋆)(θ′ − θ⋆)⊤

]
.

(4.4.4)

136 Chapter 4. forward gradient descent

In a next step, we derive an expression for E
[(
α
(
∇L(θ′)

)⊤
ξξ
)(
α
(
∇L(θ′)

)⊤
ξξ
)⊤]

.

Since ξ ∼ N (0, Id) is independent of ∇L(θ′) we can apply Lemma 4.4.1 to derive

E
[(
α
(
∇L(θ′)

)⊤
ξξ
)(
α
(
∇L(θ′)

)⊤
ξξ
)⊤]

= α2E
[((

∇L(θ′)
)⊤
ξ
)2
ξξ⊤

]

= 2α2E
[(
∇L(θ′)

)(
∇L(θ′)

)⊤]
+ α2E

[(
∇L(θ′)

)⊤(∇L(θ′)
)]
Id

= 2α2E
[(
∇L(θ′)

)(
∇L(θ′)

)⊤]
+ α2 tr

(
E
[(
∇L(θ′)

)(
∇L(θ′)

)⊤]
)
Id.

(4.4.5)

Arguing as for (4.4.1) gives ∇L(θ′) = −ϵX−XX⊤(θ⋆ − θ′) and this yields

E
[(
∇L(θ′)

)(
∇L(θ′)

)⊤]
= E

[
Eϵ

[(
ϵX+XX⊤(θ⋆ − θ′)

)(
ϵX+XX⊤(θ⋆ − θ′)

)⊤]
]
.

Because ϵ has mean zero and variance one and is independent of (X,θ′), we conclude
that

E
[(
∇L(θ′)

)(
∇L(θ′)

)⊤]
= E

[(
XX⊤(θ⋆ − θ′)

)(
XX⊤(θ⋆ − θ′)

)⊤
+XX⊤

]

= E
[(
X⊤(θ⋆ − θ′)

)2
XX⊤

]
+Σ,

(4.4.6)

where for the last equality we used that X⊤(θ⋆ − θ′) is a scalar and that X ∼ N (0,Σ).
Since X ∼ N (0,Σ) is independent of θ′ we get by Lemma 4.4.1 that

E
[(
X⊤(θ⋆ − θ′)

)2
XX⊤

]
= 2ΣE

[
(θ′ − θ⋆)(θ′ − θ⋆)⊤

]
Σ+ E

[
(θ′ − θ⋆)⊤Σ(θ′ − θ⋆)

]
Σ.

Substituting this in (4.4.6) and (4.4.5) yields

E
[(
α
(
∇L(θ′)

)⊤
ξξ
)(
α
(
∇L(θ′)

)⊤
ξξ
)⊤]

= 4α2ΣE
[
(θ′ − θ⋆)(θ′ − θ⋆)⊤

]
Σ+ 2α2E

[
(θ′ − θ⋆)⊤Σ(θ′ − θ⋆)

]
Σ+ 2α2Σ

+ 2α2 tr
(
ΣE
[
(θ′ − θ⋆)(θ′ − θ⋆)⊤

]
Σ
)
Id + α2 tr

(
E
[
(θ′ − θ⋆)⊤Σ(θ′ − θ⋆)

]
Σ
)
Id

+ α2 tr(Σ)Id.
(4.4.7)

Combining (4.4.3) with (4.4.4) and (4.4.7) yields the statement of the theorem.

4.4. Proofs 137

4.4.2 Proof of Theorem 4.3.3

For two vectors u,v of the same length, tr(uv⊤) = u⊤v. Thus, E
[
∥θk − θ⋆∥22

]
=

tr
(
E
[
(θk − θ⋆)(θk − θ⋆)⊤

])
. Together with Theorem 4.3.2, tr(Id) = d and tr(AB) =

tr(BA) for square matrices A and B of the same size, this yields

E
[
∥θk − θ⋆∥22

]
= tr

(
(Id − αkΣ)E

[
(θk−1 − θ⋆)(θk−1 − θ⋆)⊤

]
(Id − αkΣ)

)

+ 3α2
k tr

(
ΣE
[
(θk−1 − θ⋆)(θk−1 − θ⋆)⊤

]
Σ
)

+ 2α2
k tr

(
E
[
(θk−1 − θ⋆)⊤Σ(θk−1 − θ⋆)

]
Σ
)
+ 2α2

k tr
(
Σ
)

+ 2α2
k tr

(
ΣE
[
(θk−1 − θ⋆)(θk−1 − θ⋆)⊤

]
Σ
)
tr
(
Id
)

+ α2
kE
[
(θk−1 − θ⋆)⊤Σ(θk−1 − θ⋆)

]
tr
(
Σ
)
tr
(
Id
)

+ α2
k tr(Σ) tr

(
Id
)

= E
[
(θk−1 − θ⋆)⊤(Id − 2αkΣ)

⊤(θk−1 − θ⋆)
]

+ 2(d+ 2)α2
k tr

(
ΣE
[
(θk−1 − θ⋆)(θk−1 − θ⋆)⊤

]
Σ
)

+ (d+ 2)α2
k

(
E
[
(θk−1 − θ⋆)⊤Σ(θk−1 − θ⋆)

]
tr
(
Σ
)
+ tr

(
Σ
))
.

(4.4.8)
If λ is an eigenvalue of Σ then (1−2αkλ) is an eigenvalue of Id−2αkΣ. By assumption,
0 < αk ≤ λmin(Σ)/

(
2∥Σ∥2S

)
≤ 1/

(
2λmax(Σ)

)
and therefore the matrix Id − 2αkΣ is

positive semi-definite and (1− 2αkλmin(Σ)) is the largest eigenvalue.

For a positive semi-definite matrix A and a vector v, the min-max theorem states
that v⊤Av ≤ λmax(A)∥v∥22 = ∥A∥S∥v∥22. Using that for a vector x it holds that
tr(xx⊤) = x⊤x, with x = Σ(θk−1 − θ⋆) in (4.4.8) and applying v⊤Av ≤ ∥A∥S∥v∥22
with v = θk−1 − θ⋆ and A ∈ {Σ, Id − 2αkΣ,Σ

2}, yields

E
[
∥θk − θ⋆∥22

]
≤
(
1− 2αkλmin(Σ)

)
E
[
∥θk−1 − θ⋆∥22

]

+ (d+ 2)α2
k

(
tr(Σ)∥Σ∥SE

[
∥θk−1 − θ⋆∥22

]
+ 2∥Σ∥2SE

[
∥θk−1 − θ⋆∥22

]
+ tr(Σ)

)
.

The spectral norm of a positive semi-definite matrix is equal to the largest eigenvalue
and so tr(Σ) =

∑d
i=1 λi ≤ dλmax = d∥Σ∥S . Therefore,

E
[
∥θk − θ⋆∥22

]
≤
(
1− 2αkλmin(Σ) + ∥Σ∥2S(d+ 2)2α2

k

)
E
[
∥θk−1 − θ⋆∥22

]

+ ∥Σ∥S(d+ 2)2α2
k.

138 Chapter 4. forward gradient descent

Using that αk ≤ λmin(Σ)/
(
∥Σ∥2S(d+ 2)2

)
yields

E
[
∥θk − θ⋆∥22

]
≤
(
1− αkλmin(Σ)

)
E
[
∥θk−1 − θ⋆∥22

]
+ ∥Σ∥S(d+ 2)2α2

k.

Rewritten in non-recursive, we obtain

E
[
∥θk − θ⋆∥22

]
≤E
[
∥θ0 − θ⋆∥22

] k∏

ℓ=1

(
1− αℓλmin(Σ)

)

+ ∥Σ∥S(d+ 2)2
k−1∑

m=0

α2
k−m

k∏

ℓ=k−m+1

(
1− αℓλmin(Σ)

)
,

(4.4.9)

where we use the convention that the (empty) product over zero terms is assigned the
value 1. For ease of notation define cd := aκ2(Σ)(d+2)2, with condition number κ(Σ) =
∥Σ∥S/λmin(Σ). From the definition of αk, (4.3.4), it follows that αk = a

λmin(Σ) · 1
k+cd

.

Using that for all real numbers x it holds that 1 + x ≤ ex, we get that for all integers
k∗ < k,

k∏

ℓ=k∗

(
1− αℓλmin(Σ)

)
≤ exp

(
− λmin(Σ)

k∑

ℓ=k∗

αℓ

)
= exp

(
− a

k∑

ℓ=k∗

1

ℓ+ cd

)
.

(4.4.10)
The function x 7→ 1/(x+ c) is monotone decreasing for x > 0 and c ≥ 0 and thus,

k∑

ℓ=k∗

1

ℓ+ cd
≥

k∑

ℓ=k∗

∫ ℓ+1

ℓ

1

x+ cd
dx

=

∫ k+1

k∗

1

x+ cd
dx

= log(k + 1 + cd)− log(k∗ + cd)

= log
(k + 1 + cd

k∗ + cd

)
.

(4.4.11)

Using (4.4.10) and (4.4.11) with k∗ = 1 gives

k∏

ℓ=1

(
1− αℓλmin(Σ)

)
≤ exp

(
− a log

(k + 1 + cd
1 + cd

))
=

(
1 + cd

k + 1 + cd

)a

. (4.4.12)

4.4. Proofs 139

Using (4.4.10) and (4.4.11) with k∗ = k −m+ 1 gives

k−1∑

m=0

α2
k−m

k∏

ℓ=k−m+1

(
1− αℓλmin(Σ)

)

≤ a2

λ2min(Σ)

k−1∑

m=0

1
(
(k −m) + cd

)2

(
k −m+ 1 + cd
k + 1 + cd

)a

=
a2

λ2min(Σ)(k + 1 + cd)a

k−1∑

m=0

(
k −m+ 1 + cd

)a
(
(k −m) + cd

)2

=
a2

λ2min(Σ)(k + 1 + cd)a

k∑

m=1

(
m+ 1 + cd

)a
(
m+ cd

)2 .

(4.4.13)

Observe that cd = aκ2(Σ)(d+2)2 ≥ a. This gives us that cd +1 ≤ (1+ 1/a)cd and
thus m+ 1 + cd ≤ (1 + 1/a)(m+ cd). For all real numbers x, (1 + x) ≤ ex and thus
(1 + 1/a)a ≤ e. Therefore,

k∑

m=1

(
m+ 1 + cd

)a
(
m+ cd

)2 ≤ e

k∑

m=1

(
m+ cd

)a−2
. (4.4.14)

For p > 0, the function x 7→ (x+ c)p is monotone increasing for x, c > 0, Hence,

k∑

ℓ=1

(ℓ+ c)p ≤
k∑

ℓ=1

∫ ℓ+1

ℓ

(x+ c)pdx

=

∫ k+1

1

(x+ c)pdx

=
(k + 1 + c)p+1

p+ 1
− (1 + c)p+1

p+ 1

≤ (k + 1 + c)p+1

p+ 1
.

Since a > 2, we can apply this with p = a− 2 > 0 to find

e

k∑

m=1

(
m+ cd

)a−2 ≤ e
(k + 1 + cd)

a−1

a− 1
.

140 Chapter 4. forward gradient descent

Combining (4.4.9), (4.4.12), (4.4.13) and (4.4.14) finally gives

E[∥θk − θ⋆∥22] ≤
(

1 + aκ2(Σ)(d+ 2)2

k + 1 + aκ2(Σ)(d+ 2)2

)a

E[∥θ0 − θ⋆∥22]

+
ea2κ(Σ)(d+ 2)2

λmin(Σ)
(
a− 1

)(
k + 1 + aκ2(Σ)(d+ 2)2

) .

Using that 0 < a/(a− 1) < 2 for a > 2, now yields the result.

141

Chapter 5

General discussion

In this thesis, risk bounds for deep learning have been established in various settings.
The central aim was to use statistical theory to obtain new insights into the performance
of deep neural networks. Chapter 2 showed that deep neural networks can achieve
optimal convergence rates under the (truncated) cross-entropy risk for the conditional
class probabilities in the classification model. Furthermore, this chapter includes
approaches to deal with the unboundedness of the cross-entropy loss for conditional
class probabilities near zero. The used approaches are truncation and the small-value
bound assumption. This last bound controls the probability that the conditional
probabilities are close to zero. In Chapter 3 a method was studied that transforms
the unsupervised density estimation problem into a supervised regression problem.
In this way, convergence rates were obtained using existing results for regression.
These rates show that deep neural networks can exploit a compositional structure
to partly circumvent the curse of dimensionality. Furthermore, it was demonstrated
that different existing density models indeed satisfy the compositional structure
assumption. Chapter 4 considered an optimization method motivated by biological
networks: forward gradient descent. It was shown that the extra randomness in
forward gradient descent leads to a convergence rate in the linear regression model
that is a dimension-dependent factor d log(d) slower than the optimal rate that can
be achieved by gradient descent.

These findings rely on certain assumptions. This chapter discusses some of these
underlying assumptions in more detail, relates them to existing literature on neural
networks and discusses whether and how these assumptions can be adapted to extend
the results in this thesis.

142 Chapter 5. General discussion

5.1 Statistical theory and training of neural net-
works

In Chapters 2 and 3 the risk bounds depend on the assumption that the estimator
has empirical risk close to the risk of an empirical risk minimizer. The analysis
of empirical risk minimizers without specifying how to obtain them is standard in
statistical literature on risk bounds for deep neural networks. Examples of this
approach include [67, 74, 76, 134]. In practice it is non-trivial to compute such an
estimator. One additional issue is that the constraints on the deep neural network
classes in Chapters 2 and 3 do not necessarily match the network structures considered
in the deep learning literature. Most importantly, overparametrized neural networks
are studied in practice because they can be trained relatively easily and successfully
by simple gradient methods [10, 15]. But such overparametrized neural networks do
not match the neural network classes studied in this thesis.

On the other hand, Chapter 4 considers forward gradient descent in the linear
regression model. In this case the training method is the focus of the analysis, including
an explicit (theoretical) learning rate. When the relevant properties of the covariance
matrix Σ are known, the theory provides all the information required to run the
method. This in contrast to the training of neural networks, as done in the simulation
study in Chapter 3, where various (training) parameters must be chosen before the
neural networks can be trained properly. The limitation here is that the results
of Chapter 4 are for the linear regression model, a setting that is much easier to
deal with than deep neural networks. There exists (optimization) literature on the
complexity of stochastic gradient descent and zero-order methods that expands results
for those methods to more general strongly convex-optimization problems, [115, 133].
This suggests the possibility for further research extending the results in Chapter 4
to general convex problems. The key challenge is to deal simultaneously with the
randomness from the data and the additional randomness introduced by forward
gradient descent. As training deep neural networks is a non-convex optimization
problem it remains unclear if it is feasible to extend the analysis to the deep neural
networks considered in Chapters 2 and 3.

5.2 Model assumptions

In this thesis various assumptions on the target function are imposed. In Chapter 2 it
is assumed that the conditional class probabilities are β-Hölder smooth. In Chapter 3
it is assumed that the densities have a compositional structure, where each function
in the composition is in some Hölder-smoothness class. The main motivation behind
the choice for these smoothness assumptions is that this makes comparison with

5.2. Model assumptions 143

existing risk bounds in the literature possible, as convergence of the risk under these
assumptions has been widely studied. The compositional structure in Chapter 3, as
well as the possible inclusion of a compositional structure as discussed in Chapter 2,
are motivated by existing results for regression [62, 72, 11, 127, 75]. In these works,
it is shown that deep neural networks can circumvent the curse of dimensionality
under compositional structure assumptions. This provides a possible explanation for
the observed good performance on high-dimensional input problems of deep neural
networks in practice.

For image classification there exists a related assumption, the hierarchical max-
pooling model considered in [74, 76]. This compositional model is tailored to the image
classification task in combination with convolutional neural networks. The principal
idea behind this model is that the question: “contains the image a prespecified object?”,
can be answered by estimating the probability that this is true for subparts of the
image and then taking the maximum of the probabilities over the subparts.

A different kind of model assumption is based on the observation that in many
practical datasets the data seem to lie around a low dimensional manifold. In [103]
it is shown for the regression problem that if the data are scattered around a lower
dimensional manifold, then deep neural networks can exploit this to obtain convergence
rates that depend on the intrinsic manifold dimension instead of the full dimension of
the input space. For this result it is also assumed that the regression function is Hölder-
smooth. This paper includes a numerical estimation of the intrinsic dimension of the
MNIST and CIFAR-10 benchmark datasets, showing that these datasets indeed have
an intrinsic dimension that is much smaller than their full dimension. An assumption
that is closer related to the composition structure assumption in this thesis is the
assumption of local low dimensionality studied in [73]. The idea of the local low
dimensionality assumption is that the function locally only depends on very few of its
components. Under this assumption it is shown that in the regression problem the
bounds depend on the local dimensionality instead of the full input dimension. These
works [103, 73] suggest that it should be possible to combine the idea of the data
lying around a lower dimensional manifold with the results for the classification and
density estimation models studied in this thesis. How to combine the composition and
manifold assumptions in a manner that is realistic for practical datasets and the exact
effects of such a combination on the risk bounds is an avenue for further research.

145

Bibliography

[1] Aas, K., Czado, C., Frigessi, A., and Bakken, H. Pair-copula constructions
of multiple dependence. Insurance Math. Econom. 44, 2 (2009), 182–198.

[2] Ahle, T. D. Sharp and simple bounds for the raw moments of the binomial
and Poisson distributions. Statist. Probab. Lett. 182 (2022), Paper No. 109306,
5.

[3] Amodei, D., Ananthanarayanan, S., Anubhai, R., Bai, J., Battenberg,
E., Case, C., Casper, J., Catanzaro, B., Cheng, Q., Chen, G., Chen,
J., Chen, J., Chen, Z., Chrzanowski, M., Coates, A., Diamos, G., Ding,
K., Du, N., Elsen, E., Engel, J., Fang, W., Fan, L., Fougner, C., Gao,
L., Gong, C., Hannun, A., Han, T., Johannes, L., Jiang, B., Ju, C.,
Jun, B., LeGresley, P., Lin, L., Liu, J., Liu, Y., Li, W., Li, X., Ma, D.,
Narang, S., Ng, A., Ozair, S., Peng, Y., Prenger, R., Qian, S., Quan,
Z., Raiman, J., Rao, V., Satheesh, S., Seetapun, D., Sengupta, S.,
Srinet, K., Sriram, A., Tang, H., Tang, L., Wang, C., Wang, J., Wang,
K., Wang, Y., Wang, Z., Wang, Z., Wu, S., Wei, L., Xiao, B., Xie, W.,
Xie, Y., Yogatama, D., Yuan, B., Zhan, J., and Zhu, Z. Deep speech
2 : End-to-end speech recognition in English and Mandarin. In Proceedings of
The 33rd International Conference on Machine Learning (New York, New York,
USA, 20–22 Jun 2016), M. F. Balcan and K. Q. Weinberger, Eds., vol. 48 of
Proceedings of Machine Learning Research, PMLR, pp. 173–182.

[4] Anderson, G. D., Vamanamurthy, M. K., and Vuorinen, M. Inequalities
for quasiconformal mappings in space. Pacific J. Math. 160, 1 (1993), 1–18.

[5] Audibert, J.-Y., and Tsybakov, A. B. Fast learning rates for plug-in
classifiers. Ann. Statist. 35, 2 (2007), 608–633.

[6] Bach, F., and Moulines, E. Non-strongly-convex smooth stochastic approx-
imation with convergence rate O (1/n). In Advances in Neural Information

146 Bibliography

Processing Systems (2013), C. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K. Weinberger, Eds., vol. 26, Curran Associates, Inc.

[7] Barron, A. R. Universal approximation bounds for superpositions of a sig-
moidal function. IEEE Trans. Inform. Theory 39, 3 (1993), 930–945.

[8] Barron, A. R. Approximation and estimation bounds for artificial neural
networks. Machine learning 14, 1 (1994), 115–133.

[9] Bartlett, P. L., Jordan, M. I., and McAuliffe, J. D. Convexity,
classification, and risk bounds. J. Amer. Statist. Assoc. 101, 473 (2006), 138–
156.

[10] Bartlett, P. L., Montanari, A., and Rakhlin, A. Deep learning: a
statistical viewpoint. Acta Numerica 30 (2021), 87–201.

[11] Bauer, B., and Kohler, M. On deep learning as a remedy for the curse of
dimensionality in nonparametric regression. Ann. Statist. 47, 4 (2019), 2261–
2285.

[12] Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and Siskind, J. M.
Automatic differentiation in machine learning: a survey. Journal of Machine
Learning Research 18, 153 (2018), 1–43.

[13] Baydin, A. G., Pearlmutter, B. A., Syme, D., Wood, F., and Torr, P.
Gradients without backpropagation. arXiv preprint arXiv:2202.08587 (2022).

[14] Bedford, T., and Cooke, R. M. Probability density decomposition for
conditionally dependent random variables modeled by vines. Ann. Math. Artif.
Intell. 32, 1-4 (2001), 245–268.

[15] Belkin, M., Rakhlin, A., and Tsybakov, A. B. Does data interpola-
tion contradict statistical optimality? In Proceedings of the Twenty-Second
International Conference on Artificial Intelligence and Statistics (16–18 Apr
2019), K. Chaudhuri and M. Sugiyama, Eds., vol. 89 of Proceedings of Machine
Learning Research, PMLR, pp. 1611–1619.

[16] Bennett, G. Probability inequalities for the sum of independent random
variables. Journal of the American Statistical Association 57, 297 (1962), 33–45.

[17] Benveniste, A., Métivier, M., and Priouret, P. Adaptive algorithms and
stochastic approximations, vol. 22 of Applications of Mathematics (New York).
Springer-Verlag, Berlin, 1990. Translated from the French by Stephen S. Wilson.

Bibliography 147

[18] Berend, D., and Tassa, T. Improved bounds on Bell numbers and on
moments of sums of random variables. Probab. Math. Statist. 30, 2 (2010),
185–205.

[19] Besag, J. Spatial interaction and the statistical analysis of lattice systems. J.
Roy. Statist. Soc. Ser. B 36 (1974), 192–236.

[20] Birgé, L., and Massart, P. Minimum contrast estimators on sieves: expo-
nential bounds and rates of convergence. Bernoulli 4, 3 (1998), 329–375.

[21] Bishop, C. M. Pattern recognition and machine learning. Information Science
and Statistics. Springer, New York, 2006.

[22] Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B.,
Goyal, P., Jackel, L. D., Monfort, M., Muller, U., Zhang, J., Zhang,
X., Zhao, J., and Zieba, K. End to end learning for self-driving cars. arXiv
e-prints (2016), arXiv:1604.07316.

[23] Bos, T., and Schmidt-Hieber, J. Simulation-code: A supervised deep
learning method for nonparametric density estimation. https://github.com/
Bostjm/Simulation-code, Apr. 2023.

[24] Bos, T., and Schmidt-Hieber, J. Simulation code: Convergence guarantees
for forward gradient descent in the linear regression model. https://github.
com/Bostjm/SimulationCodeForwardGradient, Jan. 2024.

[25] Boucheron, S., Lugosi, G., and Massart, P. Concentration inequalities.
Oxford University Press, Oxford, 2013.

[26] Brechmann, E. C., Czado, C., and Aas, K. Truncated regular vines in high
dimensions with application to financial data. Canad. J. Statist. 40, 1 (2012),
68–85.

[27] Breiman, L. Hinging hyperplanes for regression, classification, and function
approximation. IEEE Trans. Inform. Theory 39, 3 (1993), 999–1013.

[28] Cherubini, U., Luciano, E., and Vecchiato, W. Copula methods in finance.
Wiley Finance Series. John Wiley & Sons, Ltd., Chichester, 2004.

[29] Choromanska, A., Henaff, M., Mathieu, M., Ben Arous, G., and
LeCun, Y. The loss durfaces of multilayer networks. In Proceedings of the
Eighteenth International Conference on Artificial Intelligence and Statistics
(San Diego, California, USA, 09–12 May 2015), G. Lebanon and S. V. N.
Vishwanathan, Eds., vol. 38 of Proceedings of Machine Learning Research,
PMLR, pp. 192–204.

https://github.com/Bostjm/Simulation-code
https://github.com/Bostjm/Simulation-code
https://github.com/Bostjm/SimulationCodeForwardGradient
https://github.com/Bostjm/SimulationCodeForwardGradient

148 Bibliography

[30] Cireşan, D., Meier, U., and Schmidhuber, J. Multi-column deep neural
networks for image classification. In 2012 IEEE Conference on Computer Vision
and Pattern Recognition (2012), pp. 3642–3649.

[31] Clara, G., Langer, S., and Schmidt-Hieber, J. Dropout regularization ver-
sus ℓ2-penalization in the linear model. arXiv e-prints (2023), arXiv:2306.10529.

[32] Conn, A. R., Scheinberg, K., and Vicente, L. N. Introduction to derivative-
free optimization, vol. 8 of MPS/SIAM Series on Optimization. Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical
Programming Society (MPS), Philadelphia, PA, 2009.

[33] Crick, F. The recent excitement about neural networks. Nature 337 (1989),
129–132.

[34] Cybenko, G. Approximation by superpositions of a sigmoidal function. Math.
Control Signals Systems 2, 4 (1989), 303–314.

[35] Czado, C. Analyzing dependent data with vine copulas, vol. 222 of Lecture
Notes in Statistics. Springer, Cham, 2019. A practical guide with R.

[36] Czado, C., and Nagler, T. Vine copula based modeling. Annu. Rev. Stat.
Appl. 9 (2022), 453–477.

[37] Dauphin, Y. N., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S.,
and Bengio, Y. Identifying and attacking the saddle point problem in high-
dimensional non-convex optimization. In Advances in Neural Information Pro-
cessing Systems (2014), Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence,
and K. Weinberger, Eds., vol. 27, Curran Associates, Inc.

[38] Devroye, L., Györfi, L., and Lugosi, G. A probabilistic theory of pattern
recognition, vol. 31 of Applications of Mathematics (New York). Springer-Verlag,
New York, 1996.

[39] Drouet Mari, D., and Kotz, S. Correlation and dependence. Imperial
College Press, London; distributed by World Scientific Publishing Co., Inc.,
River Edge, NJ, 2001.

[40] Dua, D., and Graff, C. UCI machine learning repository, 2017.

[41] Duchi, J. C., Jordan, M. I., Wainwright, M. J., and Wibisono, A.
Optimal rates for zero-order convex optimization: the power of two function
evaluations. IEEE Trans. Inform. Theory 61, 5 (2015), 2788–2806.

Bibliography 149

[42] Dudley, R. M. A course on empirical processes. In École d’été de probabilités
de Saint-Flour, XII—1982, vol. 1097 of Lecture Notes in Math. Springer, Berlin,
1984, pp. 1–142.

[43] Durante, F., and Sempi, C. Copula theory: an introduction. In Copula theory
and its applications, vol. 198 of Lect. Notes Stat. Proc. Springer, Heidelberg,
2010, pp. 3–31.

[44] Efromovich, S. Nonparametric curve estimation. Springer Series in Statistics.
Springer-Verlag, New York, 1999.

[45] Efron, B., and Tibshirani, R. Using specially designed exponential families
for density estimation. Ann. Statist. 24, 6 (1996), 2431–2461.

[46] Funahashi, K.-I. On the approximate realization of continuous mappings by
neural networks. Neural Networks 2, 3 (1989), 183–192.

[47] Gänssler, P. Empirical processes, vol. 3 of Institute of Mathematical Statistics
Lecture Notes—Monograph Series. Institute of Mathematical Statistics, Hayward,
CA, 1983.

[48] Gao, Z., and Hastie, T. LinCDE: conditional density estimation via Lindsey’s
method. J. Mach. Learn. Res. 23 (2022), Paper No. [52], 55.

[49] Glorot, X., and Bengio, Y. Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics (2010), JMLR Workshop and
Conference Proceedings, pp. 249–256.

[50] Glorot, X., Bordes, A., and Bengio, Y. Deep sparse rectifier neural
networks. In Proceedings of the Fourteenth International Conference on Arti-
ficial Intelligence and Statistics (Fort Lauderdale, FL, USA, 11–13 Apr 2011),
G. Gordon, D. Dunson, and M. Dud́ık, Eds., vol. 15 of Proceedings of Machine
Learning Research, PMLR, pp. 315–323.

[51] Goodfellow, I., Bengio, Y., and Courville, A. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[52] Greenspan, H., van Ginneken, B., and Summers, R. M. Guest editorial
deep learning in medical imaging: Overview and future promise of an exciting
new technique. IEEE Transactions on Medical Imaging 35, 5 (2016), 1153–1159.

[53] Grossberg, S. Competitive learning: From interactive activation to adaptive
resonance. Cognitive Science 11, 1 (1987), 23–63.

http://www.deeplearningbook.org

150 Bibliography

[54] Györfi, L., Kohler, M., Krzyżak, A., and Walk, H. A distribution-free
theory of nonparametric regression. Springer Series in Statistics. Springer-Verlag,
New York, 2002.

[55] Györfi, L., and Walk, H. On the averaged stochastic approximation for
linear regression. SIAM J. Control Optim. 34, 1 (1996), 31–61.

[56] Hastie, T., Tibshirani, R., and Friedman, J. The elements of statistical
learning, second ed. Springer Series in Statistics. Springer, New York, 2009.
Data mining, inference, and prediction.

[57] Haussler, D., and Opper, M. Mutual information, metric entropy and
cumulative relative entropy risk. Ann. Statist. 25, 6 (1997), 2451–2492.

[58] He, K., Zhang, X., Ren, S., and Sun, J. Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification. In 2015 IEEE
International Conference on Computer Vision (ICCV) (2015), pp. 1026–1034.

[59] Heckerman, E., and Nathwani, N. Toward normative expert systems: Part
II. Probability-based representations for efficient knowledge acquisition and
inference. Methods of Information in medicine 31, 02 (1992), 106–116.

[60] Hinton, G. E., Osindero, S., and Teh, Y.-W. A fast learning algorithm
for deep belief nets. Neural Comput. 18, 7 (2006), 1527–1554.

[61] Hornik, K., Stinchcombe, M., and White, H. Multilayer feedforward
networks are universal approximators. Neural Networks 2, 5 (1989), 359–366.

[62] Horowitz, J. L., and Mammen, E. Rate-optimal estimation for a general
class of nonparametric regression models with unknown link functions. Ann.
Statist. 35, 6 (2007), 2589–2619.

[63] Hsu, D., Kakade, S. M., and Zhang, T. Random design analysis of ridge
regression. Found. Comput. Math. 14, 3 (2014), 569–600.

[64] Johnson, N. L., and Kotz, S. On some generalized Farlie-Gumbel-
Morgenstern distributions. II. Regression, correlation and further generalizations.
Comm. Statist.—Theory Methods A6, 6 (1977), 485–496.

[65] Jones, L. K. A simple lemma on greedy approximation in Hilbert space and
convergence rates for projection pursuit regression and neural network training.
Ann. Statist. 20, 1 (1992), 608–613.

Bibliography 151

[66] Kantorovitz, S. Several real variables. Springer Undergraduate Mathematics
Series. Springer, [Cham], 2016.

[67] Kim, Y., Ohn, I., and Kim, D. Fast convergence rates of deep neural networks
for classification. Neural Networks 138 (2021), 179–197.

[68] Kingma, D. P., and Welling, M. An introduction to variational autoencoders.
Foundations and Trends in Machine Learning 12, 4 (2019), 307–392.

[69] Kingman, J. F. C. Poisson processes, vol. 3 of Oxford Studies in Probability.
The Clarendon Press, Oxford University Press, New York, 1993. Oxford Science
Publications.

[70] Kirshner, S. Learning with tree-averaged densities and distributions. In
Advances in Neural Information Processing Systems (2007), J. Platt, D. Koller,
Y. Singer, and S. Roweis, Eds., vol. 20, Curran Associates, Inc.

[71] Kohler, M., and Krzyżak, A. Adaptive regression estimation with multilayer
feedforward neural networks. J. Nonparametr. Stat. 17, 8 (2005), 891–913.

[72] Kohler, M., and Krzyżak, A. Nonparametric regression based on hierarchical
interaction models. IEEE Trans. Inform. Theory 63, 3 (2017), 1620–1630.

[73] Kohler, M., Krzyżak, A., and Langer, S. Estimation of a function of low
local dimensionality by deep neural networks. IEEE Trans. Inform. Theory 68,
6 (2022), 4032–4042.

[74] Kohler, M., Krzyzak, A., and Walter, B. On the rate of convergence
of image classifiers based on convolutional neural networks. arXiv preprint
arXiv:2003.01526 (2020).

[75] Kohler, M., and Langer, S. On the rate of convergence of fully con-
nected very deep neural network regression estimates. arXiv e-prints (2019),
arXiv:1908.11133.

[76] Kohler, M., and Langer, S. Statistical theory for image classification using
deep convolutional neural networks with cross-entropy loss. arXiv preprint
arXiv:2011.13602 (2020).

[77] Kohler, M., and Langer, S. On the rate of convergence of fully connected
deep neural network regression estimates. Ann. Statist. 49, 4 (2021), 2231–2249.

[78] Koller, D., and Friedman, N. Probabilistic graphical models. Adaptive
Computation and Machine Learning. MIT Press, Cambridge, MA, 2009.

152 Bibliography

[79] Korb, K. B., and Nicholson, A. E. Bayesian artificial intelligence. Chapman
& Hall/CRC Computer Science and Data Analysis Series. Chapman & Hall/CRC,
Boca Raton, FL, 2004.

[80] Krizhevsky, A., Sutskever, I., and Hinton, G. E. ImageNet classification
with deep convolutional neural networks. In Advances in Neural Information
Processing Systems 25. Curran Associates, Inc., 2012, pp. 1097–1105.

[81] Kushner, H. J., and Yin, G. G. Stochastic approximation and recursive
algorithms and applications, second ed., vol. 35 of Applications of Mathematics
(New York). Springer-Verlag, New York, 2003.

[82] Lakshminarayanan, C., and Szepesvari, C. Linear stochastic approxima-
tion: How far does constant step-size and iterate averaging go? In Proceedings of
the Twenty-First International Conference on Artificial Intelligence and Statis-
tics (09–11 Apr 2018), A. Storkey and F. Perez-Cruz, Eds., vol. 84 of Proceedings
of Machine Learning Research, PMLR, pp. 1347–1355.

[83] Larson, J., Menickelly, M., and Wild, S. M. Derivative-free optimization
methods. Acta Numer. 28 (2019), 287–404.

[84] Launay, J., Poli, I., Boniface, F., and Krzakala, F. Direct feedback
alignment scales to modern deep learning tasks and architectures. In Advances
in Neural Information Processing Systems (2020), H. Larochelle, M. Ranzato,
R. Hadsell, M. Balcan, and H. Lin, Eds., vol. 33, Curran Associates, Inc.,
pp. 9346–9360.

[85] Lauritzen, S. L. Graphical models, vol. 17 of Oxford Statistical Science Series.
The Clarendon Press, Oxford University Press, New York, 1996. Oxford Science
Publications.

[86] Le Cun, Y. Learning process in an asymmetric threshold network. In Disordered
systems and biological organization, vol. 20. Springer, 1986, pp. 233–240.

[87] Leibig, C., Allken, V., Ayhan, M. S., Berens, P., and Wahl, S. Lever-
aging uncertainty information from deep neural networks for disease detection.
Scientific reports 7, 1 (2017), 1–14.

[88] Lillicrap, T. P., Cownden, D., Tweed, D. B., and Akerman, C. J.
Random synaptic feedback weights support error backpropagation for deep
learning. Nature communications 7, 1 (2016), 13276.

Bibliography 153

[89] Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J., and Hinton,
G. Backpropagation and the brain. Nature Reviews Neuroscience 21 (2020),
335–346.

[90] Lindsey, J. K. Comparison of probability distributions. J. Roy. Statist. Soc.
Ser. B 36 (1974), 38–47.

[91] Lindsey, J. K. Construction and comparison of statistical models. J. Roy.
Statist. Soc. Ser. B 36 (1974), 418–425.

[92] Liu, S., Chen, P.-Y., Kailkhura, B., Zhang, G., Hero III, A. O., and
Varshney, P. K. A primer on zeroth-order optimization in signal processing
and machine learning: Principals, recent advances, and applications. IEEE
Signal Processing Magazine 37, 5 (2020), 43–54.

[93] Loader, C. Local regression and likelihood. Statistics and Computing. Springer-
Verlag, New York, 1999.

[94] Mammen, E., and Tsybakov, A. B. Smooth discrimination analysis. Ann.
Statist. 27, 6 (1999), 1808–1829.

[95] McCulloch, W. S., and Pitts, W. A logical calculus of the ideas immanent
in nervous activity. The Bulletin of Mathematical Biophysics 5 (1943), 115–133.

[96] Mörters, P., and Peres, Y. Brownian motion, vol. 30 of Cambridge Se-
ries in Statistical and Probabilistic Mathematics. Cambridge University Press,
Cambridge, 2010.

[97] Moschopoulos, P., and Staniswalis, J. G. Estimation given conditionals
from an exponential family. Amer. Statist. 48, 4 (1994), 271–275.

[98] Mourtada, J. Exact minimax risk for linear least squares, and the lower tail
of sample covariance matrices. Ann. Statist. 50, 4 (2022), 2157–2178.

[99] Murphy, K. P. Machine Learning: a Probabilistic Perspective. MIT press,
2012.

[100] Nadaraya, E. A. On estimating regression. Theory of Probability & Its
Applications 9, 1 (1964), 141–142.

[101] Nagler, T., and Czado, C. Evading the curse of dimensionality in nonpara-
metric density estimation with simplified vine copulas. J. Multivariate Anal.
151 (2016), 69–89.

154 Bibliography

[102] Nair, V., and Hinton, G. E. Rectified linear units improve restricted
Boltzmann machines. In Proceedings of the 27th international conference on
machine learning (ICML-10) (2010), pp. 807–814.

[103] Nakada, R., and Imaizumi, M. Adaptive approximation and generalization
of deep neural network with intrinsic dimensionality. J. Mach. Learn. Res. 21
(2020), Paper No. 174, 38.

[104] Nelsen, R. B. An introduction to copulas, second ed. Springer Series in
Statistics. Springer, New York, 2006.

[105] Nesterov, Y., and Spokoiny, V. Random gradient-free minimization of
convex functions. Found. Comput. Math. 17, 2 (2017), 527–566.

[106] Nøkland, A. Direct feedback alignment provides learning in deep neural
networks. In Advances in Neural Information Processing Systems (2016), D. Lee,
M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, Eds., vol. 29, Curran
Associates, Inc.

[107] Nussbaum, M. Asymptotic equivalence of density estimation and Gaussian
white noise. Ann. Statist. 24, 6 (1996), 2399–2430.

[108] Parzen, E. On estimation of a probability density function and mode. Ann.
Math. Statist. 33 (1962), 1065–1076.

[109] Pearl, J. Causality, second ed. Cambridge University Press, Cambridge, 2009.

[110] Petersen, P., and Voigtlaender, F. Optimal approximation of piecewise
smooth functions using deep ReLU neural networks. Neural Networks 108 (2018),
296–330.

[111] Petersen, P., and Voigtlaender, F. Optimal learning of high-
dimensional classification problems using deep neural networks. arXiv preprint
arXiv:2112.12555 (2021).

[112] Pinelis, I. L’Hospital type results for monotonicity, with applications. JIPAM.
J. Inequal. Pure Appl. Math. 3, 1 (2002), Article 5, 5.

[113] Poggio, T., Mhaskar, H., Rosasco, L., Miranda, B., and Liao, Q. Why
and when can deep-but not shallow-networks avoid the curse of dimensionality:
A review. International Journal of Automation and Computing 14, 5 (2017),
503–519.

Bibliography 155

[114] Polyak, B. T., and Juditsky, A. B. Acceleration of stochastic approximation
by averaging. SIAM J. Control Optim. 30, 4 (1992), 838–855.

[115] Rakhlin, A., Shamir, O., and Sridharan, K. Making gradient descent opti-
mal for strongly convex stochastic optimization. arXiv preprint arXiv:1109.5647
(2011).

[116] Ray, K., and Schmidt-Hieber, J. The Le Cam distance between density
estimation, Poisson processes and Gaussian white noise. Math. Stat. Learn. 1, 2
(2018), 101–170.

[117] Ren, M., Kornblith, S., Liao, R., and Hinton, G. Scaling forward gradient
with local losses. arXiv preprint arXiv:2210.03310 (2022).

[118] Resnick, S. Adventures in stochastic processes. Birkhäuser Boston, Inc., Boston,
MA, 1992.

[119] Rice, J. A. Mathematical Statistics and Data Analysis (Third Edition).
Brooks/Cole,Cengage Learning, 2007.

[120] Robbins, H. A remark on Stirling’s formula. Amer. Math. Monthly 62 (1955),
26–29.

[121] Rosenblatt, F. The perceptron: A probabilistic model for information storage
and organization in the brain. Psychological Review 65, 6 (1958), 386–408.

[122] Rosenblatt, F. Principles of neurodynamics: Perceptrons and the theory of
brain mechanisms. Spartan books Washington, DC, 1962.

[123] Rosenblatt, M. Remarks on some nonparametric estimates of a density
function. Ann. Math. Statist. 27 (1956), 832–837.

[124] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learning repre-
sentations by back-propagating errors. Nature 323 (1986), 533–536.

[125] Saxe, A. M., McClelland, J. L., and Ganguli, S. Exact solutions to the
nonlinear dynamics of learning in deep linear neural networks. In ICLR (2014).

[126] Schmidhuber, J. Deep learning in neural networks: An overview. Neural
Networks 61 (2015), 85–117.

[127] Schmidt-Hieber, J. Nonparametric regression using deep neural networks
with ReLU activation function. Ann. Statist. 48, 4 (2020), 1875–1897.

156 Bibliography

[128] Schmidt-Hieber, J. Interpreting learning in biological neural networks as
zero-order optimization method. arXiv preprint arXiv:2301.11777 (2023).

[129] Schmidt-Hieber, J., and Koolen, W. Hebbian learning inspired estimation
of the linear regression parameters from queries. arXiv preprint (2023).

[130] Schmidt-Hieber, J., and Zamolodtchikov, P. Local convergence rates of
the least squares estimator with applications to transfer learning. arXiv e-prints
(2022), arXiv:2204.05003.

[131] Scott, D. W. Multivariate density estimation, second ed. Wiley Series in
Probability and Statistics. John Wiley & Sons, Inc., Hoboken, NJ, 2015. Theory,
practice, and visualization.

[132] Shaffer, J. P. The Gauss-Markov theorem and random regressors. Amer.
Statist. 45, 4 (1991), 269–273.

[133] Shamir, O. On the complexity of bandit and derivative-free stochastic convex
optimization. In Proceedings of the 26th Annual Conference on Learning Theory
(Princeton, NJ, USA, 12–14 Jun 2013), S. Shalev-Shwartz and I. Steinwart, Eds.,
vol. 30 of Proceedings of Machine Learning Research, PMLR, pp. 3–24.

[134] Shen, G., Jiao, Y., Lin, Y., and Huang, J. Non-asymptotic excess risk
bounds for classification with deep convolutional neural networks. arXiv preprint
arXiv:2105.00292 (2021).

[135] Spall, J. C. Introduction to stochastic search and optimization. Wiley-
Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience
[John Wiley & Sons], Hoboken, NJ, 2003. Estimation, simulation, and control.

[136] Stöber, J., Joe, H., and Czado, C. Simplified pair copula constructions—
limitations and extensions. J. Multivariate Anal. 119 (2013), 101–118.

[137] Stone, C. J. Optimal rates of convergence for nonparametric estimators. Ann.
Statist. 8, 6 (1980), 1348–1360.

[138] Stone, C. J. Optimal global rates of convergence for nonparametric regression.
Ann. Statist. 10, 4 (1982), 1040–1053.

[139] Stone, C. J. Additive regression and other nonparametric models. Ann. Statist.
13, 2 (1985), 689–705.

[140] Tarigan, B., and van de Geer, S. A. A moment bound for multi-hinge
classifiers. J. Mach. Learn. Res. 9 (2008), 2171–2185.

Bibliography 157

[141] Telgarsky, M. Benefits of depth in neural networks. In 29th Annual Conference
on Learning Theory (Columbia University, New York, New York, USA, 23–26
Jun 2016), V. Feldman, A. Rakhlin, and O. Shamir, Eds., vol. 49 of Proceedings
of Machine Learning Research, PMLR, pp. 1517–1539.

[142] Trappenberg, T. P. Fundamentals of Computational Neuroscience: Third
Edition. Oxford University Press, 12 2022.

[143] Triantafyllopoulos, K. On the central moments of the multidimensional
Gaussian distribution. Math. Sci. 28, 2 (2003), 125–128.

[144] Tsybakov, A. B. Optimal rates of aggregation. In Learning Theory and Kernel
Machines (Berlin, Heidelberg, 2003), B. Schölkopf and M. K. Warmuth, Eds.,
Springer Berlin Heidelberg, pp. 303–313.

[145] Tsybakov, A. B. Optimal aggregation of classifiers in statistical learning. Ann.
Statist. 32, 1 (2004), 135–166.

[146] Tsybakov, A. B. Introduction to Nonparametric Estimation. Springer Series
in Statistics. Springer New York, 2008.

[147] van de Geer, S. A. Empirical Processes in M-Estimation. Cambridge Series
in Statistical and Probabilistic Mathematics. Cambridge University Press, 2000.

[148] van der Vaart, A. W., and Wellner, J. A. Weak convergence and empirical
processes. Springer Series in Statistics. Springer-Verlag, New York, 1996. With
applications to statistics.

[149] van Erven, T., and Harremoës, P. Rényi divergence and Kullback-Leibler
divergence. IEEE Trans. Inform. Theory 60, 7 (2014), 3797–3820.

[150] Vapnik, V. N. The nature of statistical learning theory, second ed. Statistics
for Engineering and Information Science. Springer-Verlag, New York, 2000.

[151] Wand, M. P., and Jones, M. C. Kernel smoothing, vol. 60 of Monographs on
Statistics and Applied Probability. Chapman and Hall, Ltd., London, 1995.

[152] Wasserman, L. All of statistics. Springer Texts in Statistics. Springer-Verlag,
New York, 2004.

[153] Wasserman, L. All of nonparametric statistics. Springer Texts in Statistics.
Springer, New York, 2006.

[154] Watson, G. S. Smooth regression analysis. Sankhyā Ser. A 26 (1964), 359–372.

158 Bibliography

[155] Whittington, J. C. R., and Bogacz, R. An approximation of the error
backpropagation algorithm in a predictive coding network with local Hebbian
synaptic plasticity. Neural Comput. 29, 5 (2017), 1229–1262.

[156] Widrow, B., and Hoff, M. E. Adaptive switching circuits. In IRE WESCON
convention record (1960), vol. 4, New York, pp. 96–104.

[157] Wong, W. H., and Severini, T. A. On maximum likelihood estimation in
infinite-dimensional parameter spaces. Ann. Statist. 19, 2 (1991), 603–632.

[158] Wong, W. H., and Shen, X. Probability inequalities for likelihood ratios and
convergence rates of sieve MLEs. Ann. Statist. 23, 2 (1995), 339–362.

[159] Yang, Y., and Barron, A. Information-theoretic determination of minimax
rates of convergence. Ann. Statist. 27, 5 (1999), 1564–1599.

[160] Yarotsky, D. Error bounds for approximations with deep ReLU networks.
Neural Networks 94 (2017), 103–114.

159

Summary

In this thesis, deep learning is studied from a statistical perspective. Bounds are
obtained for the worst-case risk of neural network estimators in the classification,
density estimation and linear regression model. Special attention is given to the role
of the input dimension since in practice, neural networks have shown promising results
for high dimensional input settings.

In Chapter 1 an introduction to nonparametric statistics and deep learning is
provided. Chapter 2 considers the problem of estimating the conditional class prob-
abilities in the classification model. This is done using the cross-entropy loss. This
loss can be derived from the likelihood of the conditional class probabilities. One
challenge with this loss is that it becomes unbounded near zero. To deal with this
a truncated version of the risk is introduced. Convergence rates are obtained for a
neural network estimator under this truncated risk. These rates depend on a new
criterion, the small value bound, controlling the probability that the conditional class
probabilities are near zero. The truncated risk provides an upper bound on the risk
related to the Hellinger loss. This connection implies that the obtained convergence
rates are optimal for conditional class probabilities that are bounded away from zero.

Chapter 3 considers density estimation. A two-step procedure is proposed for this
problem. Since density estimation is an unsupervised learning problem, the first step
is to transform it into a supervised regression problem: An undersmoothed kernel
density estimator is constructed using half of the data. This estimator is then used to
generate fake response variables for the other half of the data. In the second step, a
deep neural network is fitted to the supervised learning problem obtained in the first
step. As the obtained supervised data-pairs are dependent on each other, standard
theory for i.i.d. data cannot be applied directly. Using a Poissonization argument, an
oracle inequality for this setting is derived. Based on existing approximation results,
convergence rates for the two-step procedure for the squared risk are obtained. These
rates show that if the underlying density has a compositional structure, then the
proposed procedure achieves faster convergence rates. A simulation study explores
the two-step method for finite sample sizes. This simulation study uses structured

160 Summary

multivariate densities from the Bayesian network and copula models.
Forward gradient descent is studied in Chapter 4. This is a biologically motivated

alternative for gradient descent. Forward gradient descent has additional randomness
compared to gradient descent. Furthermore, it can be seen as an intermediate step
between gradient descent and derivative free zero-order methods. We prove convergence
rates for this method in the linear regression model with random design. The obtained
rates are a dimension dependence factor d log(d) slower than the rates achieved by
gradient descent. However, the obtained rates are the same as the rates achieved by
zero-order methods.

161

Samenvatting

In dit proefschrift wordt diep leren (in het Engels: deep learning) bestudeerd vanuit een
statistisch perspectief. Bovengrenzen worden bewezen voor het risico in het slechtste
geval van neurale netwerk schatters in de classificatie, kansdichtheidsschatting en
lineaire regressie modellen. Neurale netwerken hebben in de praktijk veel belovende
resultaten behaald voor hoog-dimensionale input problemen. Speciale aandacht wordt
daarom gegeven aan de rol van de dimensie.

In hoofdstuk 1 worden non-parametrische statistiek en diep leren gëıntroduceerd.
Hoofdstuk 2 behandelt het probleem van het schatten van de voorwaardelijke cate-
gorielidmaatschapskansen in het classificatie model. Hiervoor wordt de kruisentropie
verliesfunctie (in het Engels: Cross-Entropy loss) gebruikt. Deze verliesfunctie kan
worden afgeleid van de aannemelijkheidsfunctie van de conditionele categorielidmaat-
schapskansen. Deze verliesfunctie kan oneindig groot worden dichtbij nul. Extra
voorzichtigheid is daarom geboden voor conditionele categorielidmaatschapskansen
dichtbij nul. We introduceren een afgeknotte versie van de verliesfunctie om de onbe-
grensdheid in de buurt van nul te verhelpen. Convergentiesnelheden voor het risico
gebaseerd op deze afgeknotte verliesfunctie van een neuraal netwerk schatter worden
bewezen. Deze snelheden hangen af van een nieuw criterium, de kleine waarde grens
(in het Engels: small value bound). Dit criterium bepaalt hoe snel de conditionele
categorielidmaatschapskansen naar nul mogen gaan. Het door ons gebruikte afge-
knotte risico begrenst het risico gebaseerd op de Hellinger verliesfunctie van boven.
Uit deze verwantschap volgt dat de bewezen convergentiesnelheden optimaal zijn als
de conditionele categorielidmaatschapskansen wegbegrensd zijn van nul.

Hoofdstuk 3 gaat over kansdichtheidsschatting, een leertaak zonder voorbeeld/leraar
(in het Engels: unsupervised learning). Een tweestapsmethode voor dit probleem
wordt gëıntroduceerd. Eerst wordt het probleem getransformeerd in een regressie
probleem: een leertaak met voorbeeld/leraar (in het Engels: supervised learning).
Een kernel kansdichtheidsschatter (in het Engels: kernel density estimator) met een
te kleine brandbreedte wordt geconstrueerd op basis van de helft van de data. Deze

162 Samenvatting

schatter wordt vervolgens gebruikt om uitkomstvariabelen te genereren voor de andere
helft van de data. In de tweede stap van de methode wordt een diep neuraal netwerk
getraind op de data die gegenereerd is in de eerste stap. Standaard theorie voor
onafhankelijke identiek verdeelde (in het Engels: independent identically distributed,
i.i.d.) variabelen is niet meteen toepasbaar. De uitkomstvariabelen zijn namelijk
onderling afhankelijk van elkaar. Met behulp van een argumentatie gebaseerd op de
Poisson-verdeling wordt een orakelongelijkheid bewezen. Convergentiesnelheden voor
deze tweestapsmethode voor het kwadratische risico worden bewezen met behulp van
bestaande benaderingsresultaten voor diepe neurale netwerken. Deze snelheden tonen
aan dat als de kansdichtheid een samengestelde structuur heeft, dan is de tweestapsme-
thode in staat om hiervan gebruik te maken om een hogere convergentiesnelheid te
bereiken. Een verkennende simulatiestudie bestudeerd de tweestapsmethode voor
eindige data hoeveelheden. De simulatiestudie gebruikt hiervoor gestructureerde
multivariate kansdichtheden uit de Bayesiaanse netwerk en copula modellen.

Voorwaartse gradiënt afdaling (in het Engels: Forward gradient descent) wordt
bestudeerd in hoofdstuk 4. Dit is een biologisch gemotiveerd alternatief voor gradiënt
afdaling. Deze methode bevat extra ruis ten opzichte van gradiënt afdaling. Het kan
gezien worden als een tussenstap tussen gradiënt afdaling en afgeleide vrije nulde-
order methoden (in het Engels: zero-order methods). Convergentiesnelheden voor het
kwadratenrisico van deze methode worden bewezen in het lineaire regressie model
met gerandomiseerd ontwerp. Deze snelheden zijn een dimensie afhankelijke factor
d log(d) trager dan de convergentiesnelheden die bereikt worden door gradiënt afdaling.
Echter, de bewezen snelheden zijn gelijk aan de convergentiesnelheden behaalt door
nulde-order methoden.

163

Acknowledgements

In 2018 begon ik met mijn onderzoek voor mijn PhD. Onderzoek dat al een aanvang
genomen had met mijn masterscriptie. Op deze plaats wil ik de mensen bedanken die
hebben bijgedragen aan dit traject. Johannes, bedankt voor de mogelijkheid die je mij
gegeven hebt om dit onderzoek te doen. Mijn interesse in statiek werd gewekt door
het door jouw gegeven en ontwikkelde vak Mathematical Statistics. Bedankt voor al
de jaren van begeleiding. Bedankt voor jouw bereidheid om rekening te houden met
mijn beperkingen en mee te denken over praktische oplossingen.

Peter, bedankt dat je bereid was om de rol van begeleider op je te nemen nadat
bleek dat er nog een begeleider met aanstelling in Leiden nodig was. Bedankt ook
voor het delen van je kennis en ervaringen. Iets dat je al deed toen we af en toe het
kantoor deelden, lang voordat je mijn begeleider werd.

Valentina, thank you for our very nice cooperation on the course Mathematical
Statistics. Together we managed to deal with the practical challenges related to classes
and exams.

Emiel en Marieke, bedankt voor het meedenken tijdens onze periodieke overleggen
en voor het uitzoeken van hoe al de regels nu precies in elkaar zitten.

Lisanne, Angela, Kees en Inge mijn coaches vanuit Stichting studeren en werken
op maat, bedankt voor jullie begeleiding bij de praktische zaken, communicatieve
uitdagingen en stress die komen kijken bij het hebben van werk.

Wies, bedankt dat je mij met jouw taalgevoel geholpen hebt om de leesbaarheid
van mijn teksten te vergroten.

Inge en Meike, bedankt voor jullie steun en het delen van jullie ervaringen, ook
op die momenten dat een PhD niet alleen maar leuk was. Bedankt ook voor al de
gezelligheid en ontspanning die er altijd is als we samen zijn.

Pap en mam, bedankt voor jullie warmte en steun elke dag weer. Bedankt ook
voor al jullie inspanningen om de uitdagende puzzel te helpen leggen die onderwijs of
werk soms voor mij is.

165

Curriculum Vitae

Thijs Bos was born in Bergschenhoek, the Netherlands, on 18 September 1991. From
2004 to 2008 he attended the Auris College Rotterdam, where he obtained his VMBO-
TL diploma. From 2008 to 2011 he attended the VAVO Rijnmond College in Capelle
aan den IJssel, where he obtained his HAVO diploma in 2010 and his VWO diploma
in 2011. In 2011 he continued his education at Leiden University. There he completed
his bachelor Wiskunde in 2015. He continued his studies there and obtained his master
Applied Mathematics (cum laude) in 2018.

In 2018 Thijs started working as PhD candidate in Leiden under supervision of
Prof.dr. A.J. Schmidt-Hieber. During his work as PhD candidate, he was teaching
assistant for the course Mathematical Statistics for 5 years. Furthermore, he co-
supervised one master thesis.

167

List of publications

� Thijs Bos and Johannes Schmidt-Hieber (2022). Convergence rates of deep
ReLU networks for multiclass classification. In Electronic Journal of Statistics
16, 2724-2773. (Chapter 2)

� Thijs Bos and Johannes Schmidt-Hieber (2023). A supervised deep learning
method for nonparametric density estimation. Preprint arXiv:2306.10471. (Chap-
ter 3)

� Thijs Bos and Johannes Schmidt-Hieber. Convergence guarantees for forward
gradient descent in the linear regression model. To appear in Journal of Statistical
Planning and Inference, Volume 233. (Chapter 4)

	Introduction
	Statistical background
	Nonparametric statistics
	Loss, risk and minimax rates
	Empirical risk minimization
	Curse of dimensionality

	Deep learning
	Training of neural networks

	Introduction for Chapter 2: Classification
	Introduction for Chapter 3: Multivariate density estimation
	Introduction for Chapter 4: Optimization motivated by biological neural networks

	Convergence rates of deep ReLU networks for multiclass classification
	Introduction
	The multiclass classification model
	Deep ReLU networks

	Main Results
	Relationship with Hellinger distance
	Oracle Inequality

	Proofs
	Approximation related results
	Oracle inequality related results

	Basic network properties and operations
	Embedding properties of neural network function classes
	Scaling numbers
	Negative numbers

	Neural networks approximating the logarithm
	Taylor approximation
	Partition of unity

	Further technicalities

	A supervised deep learning method for nonparametric density estimation
	Introduction
	Notation

	Conversion into a supervised learning problem
	Main results
	Neural networks
	Structural constraints: compositions of functions

	Examples of multivariate densities with compositional structure
	Copulas
	Mixture distributions

	Simulations
	Methods
	Densities
	Neural network training setup
	Simulation Results

	Proofs for Section 3.3
	Proof of Theorem 3.3.1
	Proof of Theorem 3.3.4

	Proofs for Section 3.4
	Proof of Theorem 3.4.5

	Proofs for Section 3.5
	Proofs for Section 3.6

	Convergence guarantees for forward gradient descent in the linear regression model
	Introduction
	Weight-perturbed forward gradient descent
	Convergence rates in the linear regression model
	Proofs
	Proof of Theorem 4.3.2
	Proof of Theorem 4.3.3

	General discussion
	Statistical theory and training of neural networks
	Model assumptions

	Bibliography
	Summary
	Samenvatting
	Acknowledgements
	Curriculum Vitae
	List of publications

