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CHAPTER 5
Sampling random graph models

Abstract

In this Chapter we give a brief introduction to the problem of random graph sampling
and we will show simulations that support our findings of the previous Chapters.
Simulations were performed using the computational resources from the Academic
Leiden Interdisciplinary Cluster Environment (ALICE) provided by Leiden University.
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In Chapter 1 we spoke about the strong influence the abundance of real-world
data had on the flourishing of Network Science. The interplay between models and
data validation caused Network Science to emerge as a powerful interdisciplinary field
that studies the structure, dynamics and behavior of complex systems represented
as networks. As we pointed out, these networks can range from social interactions
and biological systems to technological infrastructures. Each network has peculiar
features that need to be captured by mathematical models that aim to emulate real-
ity.Typically, the size of the networks of interest is very large, and as a consequence
there is no hope to fully reconstruct real-world network structures from the data.
Indeed, with the large size of the networks come many problems, such as the im-
possibility to gather all the data needed, the amount of time and costs that this
would take, as well as accuracy and storage problems. Therefore, in the realm of
Network Science, sampling random graphs from given distributions plays a crucial
role, offering researchers a practical and efficient way to gain insight into large-scale
networks after the main features (i.e. the ones that are easily accessible) have been
incorporated. Once the model is chosen and is found to recreate the observed datas,
it becomes an efficient null model that can be used to test whether new gathered data
are consistent with it or require more sophisticated models.

As we already discussed, Network Science provides many versatile models that are
able to capture many different features. Sampling-wise a difference needs to be made
between sampling from distributions with soft constraints and from distributions with
hard constraint. Ultimately, we will specialize our discussion to the type of constraints
that we analyzed in this thesis, i.e., constraints on the degree sequence.

§5.1 Sampling from the Canonical Ensemble

Following [14, 16], fast sampling of the canonical model with constraint ~C(g) can be
obtained once the Shannon entropy maximization problem has been solved. Indeed,
once the functional form of the pij

(
~θ
)
as in (1.6.1) is obtained, it is easy to calculate

the value of the Lagrange multipliers ~θ through maximum likelihood. The precise
value of ~θ needed to express (1.6.1) must be chosen in order to match with what has
been measured from data. This is obtained by requiring that the logarithm of the
probability of observing ~C∗ given ~θ is maximal, i.e.,

max
~θ

lnP
(
~C(g) = ~C∗

∣∣∣ ~θ ) .
This is possible only when the dyadic probabilities pij can be expressed in closed form
from the entropy maximization. When this is not the case, other sampling procedures
should be taken into account, most of them based on Monte Carlo approaches (for
example, Hamiltonian Monte Carlo [1, 2]), or mean-field approaches (for example,
the solution for the Strauss model in [13]). See [3] for more examples. Constraints
on the degree sequence, i.e., the ones used in this thesis, allow for an explicit form of
(1.6.1), even in the directed case with reciprocity or weights. We will therefore use
the methodology and the packages developed in [14].
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(a) n = 500,
~d = (16, 18, 19, 20, 21),√
n ≈ 22.4, logn ≈ 6.2.

(b) n = 1000,
~d = (20, 23, 25, 28, 30),√
n ≈ 31.6, logn ≈ 6.9.

(c) n = 2000,
~d = (28, 33, 35, 38, 42),√
n ≈ 44.7, logn ≈ 6.21.
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=0.025
=1.426

(d) n = 5000,
~d = (48, 53, 57, 62, 64),√
n ≈ 70.7, logn ≈ 8.5.

Figure 5.1: Histograms of λ̄1 for different graph sizes n and degree sequences ~d. The sample
size for each regime is 104. Each element specified in the degree sequence appears n

5
times.

In red is plotted the Gaussian fit; µ is the sample mean (represented by a dashed line in the
histogram), σ is the sample standard deviation. We expect µ ≈ 0 and σ ≈

√
2.
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(a) n = 500,
~d = (16, 18, 19, 20, 21),√
n ≈ 22.4, logn ≈ 6.2.
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(b) n = 1000,
~d = (20, 23, 25, 28, 30),√
n ≈ 31.6, logn ≈ 6.9.
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(c) n = 2000,
~d = (28, 33, 35, 38, 42),√
n ≈ 44.7, logn ≈ 6.21.
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(d) n = 5000,
~d = (48, 53, 57, 62, 64),√
n ≈ 70.7, logn ≈ 8.5.

Figure 5.2: Histograms of v̄1(i) for different graph sizes n and degree sequences ~d. For each
of the images, i is chosen to be the last i such that di is equal to the 4th element of the
corresponding degree sequence (e.g. for n = 500, v1(400) was analysed with d400 = 20). The
sample size for each regime is 104. Each element in the degree sequence appears n

5
times.

In red is plotted the Gaussian fit; µ is the sample mean (represented by a dashed line in the
histogram), σ is the sample standard deviation. We expect µ ≈ 0 and σ ≈ 1.

.
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§5.1.1 Simulations of results of Chapter 3: Largest
eigenvalue.

Theorems 3.1.6–3.1.7 show that, after proper scaling and under certain conditions of
sparsity and homogeneity, the largest eigenvalue and the components of the largest
eigenvector exhibit Gaussian behaviour in the limit as n → ∞. A natural question
is how these quantities behave for finite n. Indeed, real-world networks have sizes
that range from n = 102 to n = 109. Another question is computational feasibility.
Indeed, our CLTs require the degrees to lie between (log n)4 (respectively, (log n)8)
and
√
n. In order to make this possible, n must be at least 1011 (respectively, 1029),

which is unrealistic. Let us therefore see what simulations have to say1.
In Figure 5.1 we show histograms for the quantity

λ̄1 =
m2

m1σ1
(λ1 − E[λ1]),

which should be close to normal with mean 0 and variance 2 (for E[λ1] the correction
term o(1) is neglected). The convergence is fast: already for n = 500 the Gaussian
shape emerges and represents an excellent fit: the sample mean µ is close to 0 and
the sample standard deviation σ is close to

√
2.

§5.1.2 Largest eigenvector.

In Figure 5.2 we show histograms for the quantity

v̄1(i) =
m

3/2
2

m1s1(i)
(v1(i)− di/

√
m2 ) ,

which should be close to normal with mean 0 and variance 1. The fit is again excellent.

§5.1.3 Degrees of order log n and
√
n.

What happens when the degrees are of order log n? As can be seen in Figure 5.3,
in that range the Gaussian approximation for the largest eigenvalue is visibly worse,
especially for the centering. The same happens for the components of the largest
eigenvector, as can be seen in Figure 5.4, where the Gaussian shape is lost and two
peaks appear.

1Simulations were performed using the computational resources from the Academic Leiden Inter-
disciplinary Cluster Environment (ALICE) provided by Leiden University.
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(a) n = 500,
~d = (4, 5, 8, 9),√
n ≈ 22.4, logn ≈ 6.2.
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(b) n = 5000,
~d = (6, 7, 9, 10),√
n ≈ 70.7, logn ≈ 8.5.

Figure 5.3: Histograms of λ̄1 for different graph sizes n and degree sequences ~d of order
logn. The sample size for each regime is 104. Each element specified in the degree sequence
appears n

4
times. In red is plotted the Gaussian fit; µ is the sample mean (represented by a

dashed line in the histogram), σ is the sample standard deviation. If Theorem 3.1.6 would
hold, then we would expect µ ≈ 0 and σ ≈

√
2.
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(a) n = 500,
~d = (4, 5, 8, 9),√
n ≈ 22.4, logn ≈ 6.2.
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(b) n = 5000,
~d = (6, 7, 9, 10),√
n ≈ 70.7, logn ≈ 8.5.

Figure 5.4: Histograms of v̄1(i) for different graph sizes n and degree sequences ~d of order
logn. For each of the images, i has been chosen to be the last i such that di is equal to
the 3rd element of the specified degree sequence (e.g. for n = 500, v1(375) was analysed with
d375 = 8). The sample size for each regime is 104. Each element specified in the degree
sequence appears n

4
; µ is the sample mean (represented by a dashed line in the histogram), σ

is the sample standard deviation. If Theorem 3.1.7 would hold, then we would expect µ ≈ 0
and σ ≈ 1.
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§5.2 Sampling from the Microcanonical Ensemble

Sampling from uniform distributions is known to be an hard problem. The main
reason for this, in graph theory, is the difficulty in estimating the cardinality of
the support (1.5.3) of the uniform distribution. Many approximate procedures have
been developed over time to overcome this obstacle. In general, there is an interplay
between biased sampling and complexity of the algorithm. While most of the pro-
cedures to sample with accuracy from Γ~C∗ require an exponential complexity time,
faster procedures rely on Monte Carlo approaches that suffer from two related types
of problems: bias and ergodicity. The latter refers to the fact that, depending on
the constraints on the dynamics of the Markov Chain, there can be configurations
that are never visited by the MCMC. Biased sampling refers to the fact that our
MCMC might sample certain graphs with higher probability, e.g. because of a lack of
ergodicity or a high mixing time for the Markov chain. This is usually solved, when
possible, by introducing importance sampling. For the case when the constraint is on
the degree sequence fast algorithms are available. These algorithm usually are divided
into two steps: the first generates an unbiased seed which then is fed to the MCMC
for the second step. For the case of constraints on the degree sequence the MCMC is
shown to mix fast enough to make this method efficient. Usually the shortcoming of
these approaches is the limitations on the density and inhomogeneity of our random
graphs.

Because of its importance in graph theory, sampling graphs with a given degree
sequence, i.e., when the constraint is on the degree sequence, has been studied since
the 60s. A good reference is [5]. Three main approaches are used. One is the use
of configuration model, which was shown in [8] to be efficient to generate simple
graphs only when m2 = O(m1

2

√
log n) and maxi di = o(m1/2) (for example, when

maxi di = O(
√

log n)). A rejection sampling when the degree sequence is above
these thresholds will lead to exponential complexity. To overcome this difficulty in
[12] Wormald and McKay showed a way to sample from the set of simple graphs
with a given degree sequence by implementing switching-based algorithms. In the
case of an homogeneous degree sequence, i.e., di = d for all i, the microcanonical
ensemble coincides with the random d-regular graph model. The problem was solved
by implementing the switching algorithm of [12] and was perfectioned in [11, 15, 4].
The algorithm is efficient when d = O(n−1/3). For inhomogeneous degree sequences,
it was proved in [9] that when

max
i
di = o(

√
n), m1 = Θ(n), m2 = O(n),

the switching algorithm asymptotically provides a uniform sampling. For the directed
case a sequential stub-matching procedure was shown in [17] to lead to asymptotic
uniform sampling when maxi di = O(m

1/4−ε
1 ), provided m1 =

∑
i d

in
i =

∑
i d

out
i .

MCMC methods usually rely on switching chain dynamics performed on a seed
graph generated via the Havel-Hakimi algorithm [6, 7]. The details of this method
and its variations can be found in [5, Chapter 6]. In particular, it was shown that the
mixing properties of the Markov chain are linked to P -stability of the degree sequence
[10].
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In our simulations, given the relatively small size of the graphs and the low density
and inhomogeneity of the degree sequences taken in account, we opted for a rejection
sampling using the configuration model. In Table 5.1 we report the details of the
simulated graphs and the rejection rate.

Configuration Model
Size n Degree Sequence Mean Degree

√
n log n Rejection Rate

1000 ~d = (20, 23, 25, 28, 30) 25.2 ≈ 31.6 ≈ 6.9 1.67%

2000 ~d = (28, 33, 35, 38, 42) 35.2 ≈ 44.7 ≈ 7.6 1.35%

5000 ~d = (48, 53, 57, 62, 64) 56.8 ≈ 70.7 ≈ 8.5 0.95%

10000 ~d = (78, 80, 83, 87, 90) 83.6 100 ≈ 9.2 0.73%

Table 5.1: Configuration model that have been sampled. Each element specified in the degree
sequence appears n

5
times. The rejection rate has been obtained by sampling 10000 graphs

for each different size and degree sequence and counting the non simple realizations.

§5.2.1 Simulations of results of Chapter 4: Largest
eigenvalue.

In Theorem 4.1.2 we proved that the expectation of λ1 in the configuration model
conditioned on simplicity satisfies

E[λ1] =
m2

m1
+
m1m3

m2
2

− 1 + o(1), n→∞.

In Figure 5.5 and Figure 5.6 we plot

λ̄1 = λ1 − E[λ1]

for some degree sequences compatible with the ones studied in Section 5.1.1. It can
be seen that, with an increasing size of the graph, the error in the above formula
becomes smaller and smaller. Furthermore it can be seen that the empirical standard
deviation of λ1 is much smaller than the one calculated for the Chung-Lu model from
the formula for σ2 in Theorem 3.1.6.

To capture the difference between the largest eigenvalues of the models in Chapter
3 and Chapter 4 we can define the following quantity on the probability space formed
by the product measure of the two models

λ̂1 = λCL
1 − λCM

1 .

In Figure 5.7 we plot λ̂1. The choice of the product measure corresponds to an
independent sampling of λCL

1 and λCM
1 . The histogram supports our conjecture for-

mulated in Chapter 2. Remarkably, the difference is 1, like in the homogenous case,
irrespective of the degrees.

108



§5.2. Sampling from the Microcanonical Ensemble

C
h
a
pter

5

(a) n = 1000,
~d = (20, 23, 25, 28, 30),√
n ≈ 31.6, logn ≈ 6.9.

(b) n = 2000,
~d = (28, 33, 35, 38, 42),√
n ≈ 44.7, logn ≈ 7.6.

Figure 5.5: Histograms of λ̄1 for different graph sizes n and degree sequences ~d. The sample
size for each regime is 104. Each element specified in the degree sequence appears n

5
times.

In red is plotted the Gaussian fit; µ is the sample mean (represented by a dashed line in the
histogram), σ is the sample standard deviation. We expect µ ≈ 0.

(a) n = 5000,
~d = (48, 53, 57, 62, 64),√
n ≈ 70.7, logn ≈ 8.5.

(b) n = 10000,
~d = (78, 80, 83, 87, 90),√
n = 100, logn ≈ 9.2.

Figure 5.6: Histograms of λ̄1 for different graph sizes n and degree sequences ~d. The sample
size for each regime is 104. Each element specified in the degree sequence appears n

5
times.

In red is plotted the Gaussian fit; µ is the sample mean (represented by a dashed line in the
histogram), σ is the sample standard deviation. We expect µ ≈ 0.
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Figure 5.7: Histograms of λ̂1 for n = 10000 and degree sequences ~d = (78, 80, 83, 87, 90).
The sample size is 104. Each element specified in the degree sequence appears n

5
times. In

red is plotted the Gaussian fit; µ is the sample mean (represented by a dashed line in the
histogram), σ is the sample standard deviation. We expect µ ≈ 1.
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