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CHAPTER 3
Central limit theorem for the

principal eigenvalue and eigenvector
of Chung-Lu random graphs

This chapter is based on:
P. Dionigi, D. Garlaschelli, R.S. Hazra, F. den Hollander, M. Mandjes. Central limit
theorem for the principal eigenvalue and eigenvector of Chung-Lu random graphs.
Journal of Physics: Complexity, 2023.

Abstract

A Chung-Lu random graph is an inhomogeneous Erdős-Rényi random graph in which
vertices are assigned average degrees, and pairs of vertices are connected by an edge
with a probability that is proportional to the product of their average degrees, in-
dependently for different edges. We derive a central limit theorem for the principal
eigenvalue and the components of the principal eigenvector of the adjacency matrix
of a Chung-Lu random graph. Our derivation requires certain assumptions on the
average degrees that guarantee connectivity, sparsity and bounded inhomogeneity of
the graph.
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§3.1 Introduction, main results and discussion

§3.1.1 Introduction
The spectral properties of adjacency matrices play an important role in various areas
of network science. In the present paper we consider an inhomogeneous version of
the Erdős-Rényi random graph called the Chung-Lu random graph and we derive a
central limit theorem for the principal eigenvalue and eigenvector of its adjacency
matrix.

Setting

Recall that the homogeneous Erdős-Rényi random graph has vertex set [n] = {1, . . . , n},
and each edge is present with probability p and absent with probability 1 − p, inde-
pendently for different edges, where p ∈ (0, 1) may depend on n (in what follows we
often suppress the dependence on n from the notation; the reader is however warned
that most quantities depend on n). The average degree is the same for every vertex
and equals (n − 1)p when self-loops are not allowed, and np when self-loops are al-
lowed (and are considered to contribute to the degrees of the vertices). In [15] the
following generalisation of the Erdős-Rényi random graph is considered, called the
Chung-Lu random graph, with the goal to accommodate general degrees. Given a se-
quence of degrees ~dn = (di)i∈[n], consider the random graph Gn(~dn) in which to each
pair i, j of vertices an edge is assigned independently with probability pij = didj/m1,
where m1 =

∑n
i=1 di (for computational simplicity we allow self-loops). Here, the

degrees can act as vertex weights. Vertices with low weights are more likely to have
less neighbours than vertices with high weights which act as hubs (see [33, Chapter
6] for a general introduction to generalised random graphs). If m2

∞ ≤ m1 with
m∞ = maxi∈[n] di, then pij ≤ 1 for all i, j ∈ [n], and the sequence ~dn is graphical.
Note that in Gn(~dn) the expected degree of vertex i is di. The classical Erdős-Rényi
random graph (with self-loops) corresponds to di = np for all i ∈ [n].

Principal eigenvalue and eigenvector

The largest eigenvalue of the adjacency matrix A and its corresponding eigenvector,
written as (λ1, v1), contain important information about the random graph. Several
community detection techniques depend on a proper understanding of these quantities
[32], [25], [1], which in turn play an important role for various measures of network
centrality [26], [27] and for the properties of dynamical processes (such as the spread
of an epidemic) taking place on networks [12, 28]. For Erdős-Rényi random graphs,
it was shown in [24] that with high probability (whp in the following) λ1 scales like

λ1 ∼ max{
√
D∞, np}, n→∞, (3.1.1)

where D∞ is the maximum degree. This result was partially extended to Gn(~dn) in
[16], and more recently to a class of inhomogeneous Erdős-Rényi random graphs in
[5], [6]. For a related discussion on the behaviour of (λ1, v1) in real-world networks,
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see [12, 28]. In the present paper we analyse the fluctuations of (λ1, v1). We will be
interested specifically in the case where λ1 is detached from the bulk, which for Erdős-
Rényi random graphs occurs when λ1 ∼ np whp, and for Chung-Lu random graphs
when λ1 ∼ m2/m1, where m2 =

∑
i∈[n] d

2
i . Note that the quotient m2/m1 arises

from the fact that the average adjacency matrix is rank one and that its only non-
zero eigenvalue is m2/m1. Such rank-one perturbations of a symmetric matrix with
independent entries became prominent after the work in [4]. Later studies extended
this work to finite-rank perturbations [3], [7], [11], [10], [20], [21]. Erdős-Rényi random
graphs differ, in the sense that perturbations live on a scale different from

√
n. For

Chung-Lu random graphs we assume that m2/m1 →∞.
In the setting of inhomogeneous Erdős-Rényi random graphs, finite-rank perturba-

tions were studied in [13]. In that paper the connection probability between between
i and j is given by pij = εnf(i/n, j/n), where f : [0, 1]2 → [0, 1] is almost every-
where continuous and of finite rank, εn ∈ [0, 1] and nεn � (log n)8. However, for
a Chung-Lu random graph with a given degree sequence it is not always possible to
construct an almost everywhere continuous function f independent of n such that
εnf(i/n, j/n) = didj/m1. In the present paper we extend the analysis in [13] to
Chung-Lu random graphs by focussing on (λ1, v1). For Erdős-Rényi random graphs
it was shown in [19], [18] that λ1 satisfies a central limit theorem (CLT) and that v1

aligns with the unit vector. These papers extend the seminal work carried out in [22].

Chung-Lu random graphs

In the present paper, subject to mild assumptions on ~dn, we extend the CLT for λ1

from Erdős-Rényi random graphs to Chung-Lu random graphs, and derive a point-
wise CLT for v1 as well. It was shown in [16] that if m2/m1 �

√
m∞ (log n), then

λ1 ∼ m2/m1 whp, while if
√
m∞ � (m2/m1)(log n)2, then λ1 = m∞ whp. In fact,

examples show that a result similar to (3.1.1) does not hold, and that λ1 does not
scale like max{m2/m1,

√
m∞}. These facts clearly show that the behaviour of λ1 is

controlled by subtle assumptions on the degree sequence. In what follows we stick to
a bounded inhomogeneity regime where m2/m1 � m∞.

The behaviour of v1 is interesting and challenging, and is of major interest for
applications. One of the crucial properties to look for in eigenvectors is the phe-
nomenon of localization versus delocalization. An eigenvector is called localized when
its mass concentrates on a small number of vertices, and delocalized when its mass
is approximately uniformly distributed on the vertices. The complete delocalization
picture for Erdős-Rényi random graphs was given in [19]. In fact, it was proved that
λ1 is close to the scaled unit vector in the `∞-norm. In the present paper we do not
study localization versus delocalization for Chung-Lu random graphs in detail, but we
do show that in a certain regime there is strong evidence for delocalization because
v1 is close to the scaled unit vector. In [9, Corollary 1.3 ] the authors found that
the eigenvectors of a generalized Wigner matrix are distributed according to a Haar
measure on the orthogonal group, and the coordinates have Gaussian fluctuations
after appropriate scaling. Our work shows that the coordinate-wise fluctuations hold
as well for the principal eigenvector of the non-centered Chung-Lu adjacency matrix
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and that they are Gaussian after appropriate centering and scaling.

Outline

In Section 3.1.2 we define the Chung-Lu random graph, state our assumption on the
degree sequence, and formulate two main theorems: a CLT for the largest eigenvalue
and a CLT for its associated eigenvector. In Section 3.1.3 we discuss these theorems
and place them in their proper context. Section 3.2 contains the proof of the CLT of
the eigenvalue and Section 3.3 studies the properties of the principal eigenvector.

§3.1.2 Main results

Set-up

Let Gn be the set of simple graphs with n vertices. Let ~dn = (di)i∈[n] be a sequence
of degrees, such that di ∈ N for all i ∈ [n] and abbreviate

mk =
∑
i∈[n]

(di)
k, m∞ = max

i∈[n]
di, m0 = min

i∈[n]
di,

Note that these numbers depend on n, but in the sequel we will suppress this de-
pendence. For each pair of vertices i, j (not necessarily distinct), we add an edge
independently with probability

pij =
didj
m1

. (3.1.2)

The resulting random graph, which we denote by Gn(~dn), is referred to in the literature
as the Chung-Lu random graph. In [15] it was assumed that m2

∞ ≤ m1 to ensure that
pij ≤ 1. In the present paper we need sharper restrictions.

Assumption 3.1.1. Throughout the paper we need two assumptions on ~dn as n→
∞:

(D1) Connectivity and sparsity: There exists a ξ > 2 such that

(log n)2ξ � m∞ � n1/2.

(D2) Bounded inhomogeneity: m0 � m∞.

♠

The lower bound in Assumption 3.1.1(D1) guarantees that the random graph is con-
nected whp and that it is not too sparse. The upper bound is needed in order to have
m∞ = o(

√
m1), which implies that (3.1.2) is well defined. Assumption 3.1.1(D2) is a

restriction on the inhomogeneity of the model and requires that the smallest and the
largest degree are comparable.
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Remark 3.1.2. The lower bound on m∞ in Assumption 3.1.1(D1) can be seen as an
adaptation to our setting of the main condition in [16, Theorem 2.1] for the asymp-
totics of λ1. As mentioned in Section 3.1.1, under the assumption

m2

m1
�
√
m∞ (log n)ξ,

[16] shows that λ1 = [1 + o(1)]m2/m1 whp. It is easy to see that the above condition
together with Assumption 3.1.1(D2) gives the lower bound in Assumption 3.1.1(D1).
♠

Remark 3.1.3. When m∞ � n1/6, [33, Theorem 6.19] implies that our results also
hold for the Generalized Random Graph (GRG) model with the same average degrees.
This model is defined by choosing connection probabilities of the form

pij =
didj

m1 + didj
,

and arises in statistical physics as the canonical ensemble constrained on the expected
degrees, which is also called the canonical configuration model. Note that in the above
connection probability, di plays the role of a hidden variable, or a Lagrange multiplier
controlling the expected degree of vertex i, but does not in general coincide with
the expected degree itself. However, under the assumptions considered here, di does
coincide with the expected degree asymptotically. The reader can find more about
GRG and their use in [33, Chapter 6], and about their role in statistical physics in
[31]. In the corresponding microcanonical ensemble the degrees are not only fixed
in their expectation but they take a precise deterministic value, which corresponds
to the microcanonical configuration model. The two ensembles were found to be
nonequivalent in the limit as n → ∞ [30]. This result was shown to imply a finite
difference between the expected values of the largest eigenvalue λ1 in the two models
[17] when the degree sequence was chosen to be constant (di = d for all i ∈ [n]). In
this latter case the canonical ensemble reduces to the Erdős-Rényi random graph with
p = d/n, while the microcanonical ensemble reduces to the d-regular random graph
model. Although ensemble nonequivalence is not our main focus here, we will briefly
relate some of our results to this phenomenon. ♠

Notation

Let A be the adjacency matrix of Gn(~dn) and E[A] its expectation. The (i, j)-th entry
of E[A] equals to pij in (3.1.2). The (i, j)-th entry of A − E[A] is an independent
centered Bernoulli random variable with parameter pij . Let λ1 ≥ . . . ≥ λn be the
eigenvalues of A and let v1, . . . , vn be the corresponding eigenvectors. The vector e
will be the n-dimensional column vector

e =
1
√
m1

(d1, · · · , dn)t, (3.1.3)

where t stands for transpose. It is easy to see that E[A] = eet.
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Definition 3.1.4. Following [19], we say that an event E holds with (ξ, ν)-high prob-
ability (written (ξ, ν)-hp) when there exist ξ > 2 and ν > 0 such that

P(Ec) ≤ e−ν(logn)ξ . (3.1.4)

♠

Note that this is different from the classical notion of whp, because it comes with a
specific rate.

Remark 3.1.5. Our results hold for any ν > 0 as soon as ξ > 2 (think of ν = 1).
The role of ν becomes important when we consider specific subsets S of the event
space and split into S ∩ E and S ∩ Ec (see e.g. [19]). ♠

We write w−→ to denote weak convergence as n → ∞, and use the symbols o,O to
denote asymptotic order for sequences of real numbers.

CLT for the principal eigenvalue

Our first theorem identifies two terms in the expectation of the largest eigenvalue,
and shows that the largest eigenvalue follows a central limit theorem.

Theorem 3.1.6. Under Assumption 3.1.1, the following hold:

(I)
E[λ1] =

m2

m1
+
m1m3

m2
2

+ o(1), n→∞.

(II)
m2

m1

(
λ1 − E[λ1]

σ1

)
w−→ N (0, 2), n→∞,

where

σ2
1 =

∑
i,j

(pij)
3(1− pij) ∼

m2
3

m3
1

, n→∞.

CLT for the principal eigenvector

Our second theorem shows that the principal eigenvector is parallel to the normalised
degree vector, and is close to this vector in `∞-norm. It also identifies the expected
value of the components of the principal eigenvector, and shows that the components
follow a central limit theorem.

Theorem 3.1.7. Let ẽ = e
√
m1/m2 be the `2-nomalized degree vector. Let v1 be the

eigenvector corresponding to λ1 and let v1(i) denote the i-th coordinate of v1. Under
Assumption 3.1.1, the following hold:

(I) 〈v1, ẽ〉 = 1 + o(1) as n→∞ with (ξ, ν)-hp .

(II) ‖v1 − ẽ‖∞ ≤ O
(

(logn)ξ√
nm∞

)
as n→∞ with (ξ, ν)-hp .
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(III) E[v1(i)] = di√
m2

+ O
(

(logn)2ξ√
m2

)
as n→∞.

Moreover, if the lower bound in Assumption 3.1.1(D1) is strengthened to (log n)4ξ �
m∞, then for all i ∈ [n],

(IV)
m

3/2
2

m1

(
v1(i)− di/

√
m2

s1(i)

)
w−→ N (0, 1), n→∞,

where
s2

1(i) =
∑
j

d2
jpij(1− pij) ∼ di

m3

m1
, n→∞.

§3.1.3 Discussion
We place the theorems in their proper context.

1. Theorems 3.1.6–3.1.7 provide a CLT for λ1, v1. We note that m2/m1 is the leading
order term in the expansion of λ1, while m1m3/m

2
2 is a correction term. We observe

that Theorem 3.1.6(I) does not follow from the results in [16], because the largest
eigenvalue need not be uniformly integrable and also the second order expansion is
not considered there. We also note that in Theorem 3.1.6(II) the centering of the
largest eigenvalue, E[λ1], cannot be replaced by its asymptotic value as the error
term is not compatible with the required variance.

2. The lower bound in Assumption 3.1.1(D1) is needed to ensure that the random
graph is connected, and is crucial because the largest eigenvalue is very sensitive to
connectivity properties. Assumption 3.1.1(D2) is needed to control the inhomogeneity
of the random graph. It plays a crucial role in deriving concentration bounds on the
central moments 〈e, (A−E[A])ke〉, k ∈ N, with the help of a result from [19]. Further
refinements may come from different tools, such as the non-backtracking matrices used
in [5], [6]. While Assumption 3.1.1(D1) appears to be close to optimal, Assumption
3.1.1(D2) is far from optimal. It would be interesting to allow for empirical degree
distributions that converge to a limiting degree distribution with a power law tail.

3. As already noted, if the expected degrees are all equal to each other, i.e., di = d

for all i ∈ [n], then the Chung-Lu random graph, or canonical configuration model,
reduces to the homogeneous Erdős-Rényi random graph with p = d/n, while the
corresponding microcanonical configuration model reduces to the homogeneous d-
regular random graph model (here, all models allow for self-loops). This implies
that, for the homogeneous Erdős-Rényi random graph with connection probability
p� (log n)2ξ/n, ξ > 2, Theorem 3.1.6(I) reduces to

E[λ1] = np+ 1 + o(1), n→∞,

while Theorem 3.1.6(II) reduces to

1
√
p

(λ1 − E[λ1])
w−→ N (0, 2), n→∞.
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Both these properties were derived in [18] for homogeneous Erdős-Rényi random
graphs and also for rank-1 perturbations of Wigner matrices. In [17], the fact that
E[λ1] in the canonical ensemble differs by a finite amount from the corresponding ex-
pected value (here, d = np) in the microcanonical ensemble (d-regular random graph)
was shown to be a signature of ensemble nonequivalence.

4. In case di = d for all i ∈ [n], Theorem 3.1.7(III) reduces to the following CLT,
which was not covered by [18] and [17].

Corollary 3.1.8. For the Erdős-Rényi random graph with (log n)4ξ/n� p� n−1/2

for some ξ > 2,

n

√
p

1− p

(
v1(i)− 1√

n

)
w−→ N (0, 1), n→∞.

Note that, in the corresponding microcanonical ensemble (d-regular random graph),
v1 coincides with the constant vector where v1(i) = 1/

√
n for all i ∈ [n]. Therefore

in the canonical ensemble each coordinate v1(i) has Gaussian fluctuations around the
corresponding deterministic value for the microcanonical ensemble. This behaviour
is similar to the degrees having, in the canonical configuration model, either Gaus-
sian (in the dense setting) or Poisson (in the sparse setting) fluctuations around the
corresponding deterministic degrees for the microcanonical configuration model [23].

5. One way to satisfy Assumption 3.1.1 is to specify functions ω, c1, . . . , cn, satisfying
(log n)2ξ � ω(n)�

√
n and c ≤ c1(n) ≤ . . . ≤ cn(n) ≤ C with c, C ≥ 0, such that

di(n) = ci(n)ω(n), pij =
cicj

1
n

∑
k ck

ω

n
.

The reason why we avoid such a description is that our setting is potentially broader.
The concentration estimate in Lemma 3.2.4 requires us to assume homogeneous de-
gree sequences as above, while Theorem 3.1.6(I) holds for much more general degree
sequences. A further refinement of Lemma 3.2.4 may be possible. The advantage
of the above description is that it makes the scale ω(n) on which the degrees live
explicit. However, most of the bounds in our proofs depend on some power of m∞,
up to some multiplicative constant. This means that, in the bounded inhomogeneity
setting, expressing the asymptotics through ω(n) or m∞ are equivalent. Bounds ex-
pressed through ω(n) would cease to be meaningful as soon as we manage to push
beyond the bounded inhomogeneity setting of our model, while the skeleton of our
proof would still hold.

6. In [14] the empirical spectral distribution of A was considered under the assumption
that

(m∞)2/m1 � 1� n(m∞)2/m1,

which is weaker than Assumption 3.1.1. It was shown that if µn
w−→ µ with µn =

n−1
∑n
i=1 δdi/m∞ and µ some probability distribution on R, then

ESD

(
A√

n(m∞)2/m1

)
w−→ µ� µsc
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with µsc the Wigner semicircle law and � the free multiplicative convolution. Since
µ� µsc is compactly supported, this shows that the scaling for the largest eigenvalue
and the spectral distribution are different.

§3.2 Proof of Theorem 3.1.6

In what follows we use the well-known method of writing the largest eigenvalue of a
matrix as a rank-1 perturbation of the centered matrix. This method was previously
successfully employed in [22, 29, 19].

Given the adjacency matrix A of our graph G, we can write A = H + E[A] with
H = A− E[A]. Let v1 be the eigenvector associated with the eigenvalue λ1. Then

Av1 = λ1v1, (H + E[A])v1 = λ1v1, (λ1I −H)v1 = E[A]v1.

Using that E[A] = eet, we have (λ1I −H)v1 = 〈e, v1〉 e, where I is the n× n identity
matrix. It follows that if λ1 is not an eigenvalue of H, then the matrix (λ1I −H) is
invertible, and so

v1 = 〈e, v1〉 (λ1I −H)−1e. (3.2.1)

Eliminating the eigenvector v1 from the above equation, we get

1 =
〈
e, (λ1I −H)−1e

〉
,

where we use that 〈e, v1〉 6= 0 (since λ1 is not an eigenvalue of H). Note that this can
be expressed as

λ1 =

〈
e,

(
I − H

λ1

)−1

e

〉
=

∞∑
k=0

〈
e,

(
H

λ1

)k
e

〉
with (ξ, ν)-hp , (3.2.2)

where the validity of the series expansion will be an immediate consequence of Lemma
3.2.2 below.

Section 3.2.1 derives bounds on the spectral norm of H. Section 3.2.2 analyses
the expansion in (3.2.2) and prove the scaling of E[λ1]. Section 3.2.3 is devoted to the
proof of the CLT for λ1, Section 3.3 to the proof of the CLT for v1. In the expansion
we distinguish three ranges: (i) k = 0, 1, 2; (ii) 3 ≤ k ≤ L; (iii) L < k <∞, where

L = blog nc.

We will show that (i) controls the mean and the variance in both CLTs, while (ii)-(iii)
are negligible error terms.

§3.2.1 The spectral norm
In order to study λ1, we need good bounds on the spectral norm of H. The spectral
norm of matrices with inhomogeneous entries has been studied in a series of papers
[5], [6], [2] for different density regimes.
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An important role is played by λ1(E[A]). In recent literature this quantity has
been shown to play a prominent role in the so-called BBP-transition [4]. Given our
setting (3.1.2), it is easy to see that

λ1(E[A]) =
m2

m1
, (3.2.3)

while all other eigenvalues of E[A] are zero.

Remark 3.2.1. Since m0 ≤ m2

m1
≤ m∞, Assumption 3.1.1(D2) implies that

m2

m1
� m∞. (3.2.4)

♠

We start with the following lemma, which ensures concentration of λ1 and is a
direct consequence of the results in [6] (which matches Assumption 3.1.1). In partic-
ular, we use [6, Theorem 3.2] to check that the boundaries of the bulk of the spectral
distribution live on a scale smaller than the scale of λ1.

Lemma 3.2.2. Under Assumption 3.1.1, with (ξ, ν)-hp∣∣∣∣λ1(A)− λ1(E[A])

λ1(E[A])

∣∣∣∣ = O

(
1

√
m∞

)
, n→∞,

and consequently
λ1(A)

λ1 (E[A])

P→ 1, n→∞.

Proof. In the proof it is understood that all statements hold with (ξ, ν)-hp in the
sense of (3.1.4). Let A = H + E[A]. Due to Weyl’s inequality, we have that

λ1(E[A])− ‖H‖ ≤ λ1(A) ≤ λ1(E[A]) + ‖H‖.

From [6, Theorem 3.2] we know that there is a universal constant C > 0 such that

E [‖A− E[A]‖] = E [‖H‖] ≤
√
m∞

2 +
C

q

√√√√ log n

1 ∨ log
(√

logn
q

)
 ,

where
q =
√
m∞ ∧ n1/10κ−1/9

with κ defined by
κ = max

ij

pij
m∞/n

=
nm∞
m1

.

Thanks to Assumption 3.1.1(D2), we have κ = O(1). By Remark 3.1 of [6, Remark
3.1] (which gives us that q =

√
m∞ for n large enough) and Assumption 3.1.1, we get

that

E [‖H‖] ≤


√
m∞

(
2 + C

√
logn√
m∞

)
, (log n)2ξ ≤ √m∞ ≤ n1/10κ−1/9,

√
m∞

(
2 + C′

√
logn

n1/10

)
,

√
m∞ ≥ n1/10κ−1/9.

(3.2.5)
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Using [8, Example 8.7] or [6, Equation 2.4] (the Talagrand inequality), we know that
there exists a universal constant c > 0 such that

P (|‖H‖ − E[‖H‖]| > t) ≤ 2e−ct
2

.

For t =
√
ν(log n)ξ,

E[‖H‖]−
√
ν(log n)ξ/2 ≤ ‖H‖ ≤ E[‖H‖] +

√
ν(log n)ξ/2. (3.2.6)

Thus, we have

|λ1(A)− λ1(E[A])| ≤ ‖H‖ ≤
√
m∞(2 + o(1)) +

√
ν(log n)ξ/2. (3.2.7)

Using that λ1(E[A]) = m2/m1, we have that with (ξ, ν)-hp the following bound
holds:∣∣∣∣λ1(A)− λ1(E[A])

λ1(E[A])

∣∣∣∣ ≤ √m∞m2/m1
(2 + o(1)) +

√
ν(log n)ξ/2

m2/m1
= O

( √
m∞

m2/m1

)
.

Via Assumption 3.1.1 and (3.2.4) the claim follows.

Remark 3.2.3.

(a) The proof of Lemma 3.2.2 works well if we replace Assumption 3.1.1(D2) by a
milder condition. Indeed, the former is directly linked to the parameter κ that
appears in the proof of Lemma 3.2.2 and in the proof of [6, Theorem 3.2], which
contains a more general condition on the inhomogeneity of the degrees.

(b) Note that a consequence of proof of Lemma 3.2.2 is that with (ξ, ν)-hp

‖H‖
λ1(A)

≤ 1− C0 (3.2.8)

for some C0 ∈ (0, 1). This allows us to claim that with (ξ, ν)-hp the inverse(
I − H

λ1(A)

)−1

(3.2.9)

exists.

♠

Lemma 3.2.4. Let 1 ≤ k ≤ L. Then, under Assumption 3.1.1, with (ξ, ν)-hp

∣∣〈e,Hke
〉
− E

[〈
e,Hke

〉]∣∣ ≤ Cm2

m1

m
k
2∞(log n)kξ√

n
,

i.e.,

max
1≤k≤L

P

(∣∣〈e,Hke
〉
− E

[〈
e,Hke

〉]∣∣ > C(log n)kξm
k
2∞√

n

m2

m1

)
≤ e−ν(logn)ξ , n ≥ n1(ν, ξ).
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Lemma 3.2.4 is a generalization to the inhomogeneous setting of [19, Lemma 6.5]. We
skip the proof because it requires a straightforward modification of the arguments in
[19].

Lemma 3.2.5. Under Assumption 3.1.1, for 2 ≤ k ≤ L, there exists a constant
C > 0 such that

E
[〈
e,Hke

〉]
≤ m2

m1
(Cm∞)k/2. (3.2.10)

Proof. Let E be the high probability event defined by (3.2.6), i.e.,

‖H‖ ≤ E[‖H‖] +
√
ν(log n)ξ/2 ≤ m∞

(
1 + O

(
(log n)ξ/2

m∞

))
.

Due to Assumption 3.1.1(D1) we can bound the right-hand side by Cm∞. Since
‖e‖22 = m2/m1, on this event we have

E
[(〈

e,Hke
〉)

1E
]
≤ ‖e‖22 E[‖H‖k1E ] ≤

m2

m1
(Cm∞)k/2.

We show that the expectation when evaluated on the complementary event is negli-
gible. Indeed, observe that

E
[〈
e,Hke

〉]
= E

 n∑
i1,...,ik+1=1

ei1eik+1

k∏
j=1

H(ij , ij+1)

2

≤
(
nk+1m2

∞
m1

)2

≤ Ce(2k+2) logn ≤ e2(logn)2 ,

where in the last inequality we use that m∞ = o(
√
m1). This, combined with the

exponential decay of the event Ec, gives

E
[〈
e,Hke

〉
1Ac

]
≤ Ce−ν(logn)ξ ,

and so the claim follows.

§3.2.2 Expansion for the principal eigenvalue
We denote the event in Lemma 3.2.2 by E , which has high probability. As noted in
Remark 3.2.3(b), I − H

λ1
is invertible on E . Hence, expanding on E , we get

λ1 =

∞∑
k=0

〈
e,
Hk

λk1
e

〉
.

We split the sum into two parts:

λ1 =

L∑
k=0

〈
e,Hke

〉
λk1

+

∞∑
k=L+1

〈
e,Hke

〉
λk1

. (3.2.11)
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First we show that we may ignore the second sum. To that end we observe that,
by Assumption 3.1.1 (D1), on the event E we can estimate∣∣∣∣∣

∞∑
k=L+1

〈
e,Hke

〉
λk1

∣∣∣∣∣ ≤
∞∑

k=L+1

‖e‖22‖H‖k

λk1
≤

∞∑
k=L+1

m2

m1

m
k/2
∞

(Cm2/m1)k

≤
∞∑

k=L+1

C ′

m
k/2−1
∞

= O
(

e−c log
√
n
)
. (3.2.12)

Because of (3.2.12) and the fact that E(〈e,He〉) = 0, (3.2.11) reduces to

λ1 =

L∑
k=3

E
[〈
e,Hke

〉]
λk1

+

L∑
k=3

〈
e,Hke

〉
− E

[〈
e,Hke

〉]
λk1

+ 〈e, e〉+
1

λ1
〈e,He〉+

1

λ2
1

〈
e,H2e

〉
+ o(1).

Next, we estimate the second sum in the above equation. Using Lemma 3.2.2, we
get ∣∣∣∣∣

L∑
k=3

〈
e,Hke

〉
− E

[〈
e,Hke

〉]
λk1

∣∣∣∣∣
≤

L∑
k=3

Cm
k
2∞(log n)kξ√

n(m2/m1)k−1
≤

L∑
k=3

C(log n)kξ

√
nm

k/2−1
∞

≤ O

(
C(log n)ξ+1

√
nm∞

)
= o(1).

From Lemma 3.2.5 we have
L∑
k=3

E
〈
e,Hke

〉
λk1

≤
L∑
k=3

m2

m1
(Cm∞)k/2

(m2/m1)
k

= O

(
1

√
m∞

)
= o(1),

where the last estimate follows from Assumption 3.1.1(D1). Hence, on E ,

λ1 = 〈e, e〉+
1

λ1
〈e,He〉+

〈
e,H2e

〉
λ2

1

+ o(1).

Iterating the expression for λ1 in the right-hand side, we get

λ1 = 〈e, e〉+ 〈e,He〉
(
〈e, e〉+

1

λ1
〈e,He〉+

1

λ2
1

〈
e,H2e

〉
+ o(1)

)−1

+
〈
e,H2e

〉(
〈e, e〉+

1

λ1
〈e,He〉+

1

λ2
1

〈
e,H2e

〉
+ o(1)

)−2

+ o(1),

Expanding the second and third term we get,

λ1 = 〈e, e〉+
〈e,He〉
〈e, e〉

(
1− 〈e,He〉

λ1 〈e, e〉
−
〈
e,H2e

〉
λ2

1 〈e, e〉
+ o(1)

)

+

〈
e,H2e

〉
(〈e, e〉)2

(
1− 2 〈e,He〉

λ1 〈e, e〉
−

2
〈
e,H2e

〉
λ2

1 〈e, e〉
+ o(1)

)
+ o(1),

= 〈e, e〉+
〈e,He〉
〈e, e〉

− 〈e,He〉
2

λ1 〈e, e〉2
+

〈
e,H2e

〉
〈e, e〉2

+ o(1).
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Here we use that 〈e, e〉 = m2/m1 → ∞, and we ignore several other terms because
they are small with (ξ, ν)-hp , for example,

〈e,He〉
〈
e,H2e

〉
λ2

1 〈e, e〉
2 = O

(
m

3/2
∞

(m2/m1)4

)
= o(1).

One more iteration gives

λ1 = 〈e, e〉+
〈e,He〉
〈e, e〉

+

〈
e,H2e

〉
〈e, e〉2

− 〈e,He〉
2

〈e, e〉2

(
〈e, e〉+

1

λ1
〈e,He〉+

1

λ2
1

〈
e,H2e

〉
+ o(1)

)−1

+ o(1)

= 〈e, e〉+
〈e,He〉
〈e, e〉

+

〈
e,H2e

〉
〈e, e〉2

− 〈e,He〉
2

〈e, e〉3
+

〈
e,H2e

〉2 〈e,He〉
λ1 〈e, e〉3

+

〈
e,H2e

〉3
λ2

1 〈e, e〉
3 + o(1).

Proof of Theorem 3.1.6 (I). Since the probability of Ec decays exponentially with
n, taking the expectation of the above term and using that E[〈e,He〉] = 0, we obtain

E[λ1] = 〈e, e〉+
E[
〈
e,H2e

〉
]

〈e, e〉2
− E[〈e,He〉2]

〈e, e〉3
+ o(1) =

m2

m1
+
m1m3

m2
2

− m2
3

m3
2

+ o(1).

Note that

m2
3

m2
2

≤ m2
∞
n

= o(1),
m1m3

m2
2

≤
(
m∞
m0

)4

= O(1),

and so we can write
E[λ1] =

m2

m1
+
m1m3

m2
2

+ o(1). (3.2.13)

§3.2.3 CLT for the principal eigenvalue
Again consider the high probability event on which (3.2.9) holds. Recall that from
the series decomposition in (3.2.11) we have

λ1 =
〈e,He〉
λ1

+

L∑
k=0

E
〈
e,Hke

〉
λk1

+

L∑
k=2

〈
e,Hke

〉
− E

〈
e,Hke

〉
λk1

+
∑
k>L

〈
e,Hke

〉
λk1

.

(3.2.14)

Lemma 3.2.6. The equation

x =

L∑
k=0

E
〈
e,Hke

〉
xk

(3.2.15)

has a solution x0 satisfying
lim
n→∞

x0

m2/m1
= 1.
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Proof. Define the function h : (0,∞)→ R by

h(x) =

logn∑
k=0

E
〈
e,Hke

〉
xk

.

Since E[e′He] = 0, we have

h

(
xm2

m1

)
=
m2

m1
+

logn∑
k=2

E
〈
e,Hke

〉
(xm2/m1)k

.

For x > 0, ∣∣∣∣∣
logn∑
k=2

E[
〈
e,Hke

〉
]

(xm2/m1)k

∣∣∣∣∣ ≤
∞∑
k=2

1

(xm2/m1)k
m2

m1
(Cm∞)k/2

= o

(
m2

m1

∞∑
k=2

1

xk(log n)kξ

)
= o

(
m2

m1
x−2

)
.

This shows that

lim
n→∞

1

m2/m1

logn∑
k=0

E
〈
e,Hke

〉
(xm2/m1)k

= 1.

Hence, for any 0 < δ < 1,

lim
n→∞

1

m2/m1

[
m2

m1
(1 + δ)− h

(
(1 + δ)

m2

m1

)]
= δ.

So, for large enough n,

h

(
(1 + δ)

m2

m1

)
<
m2

m1
(1 + δ).

Similarly, for any 0 < δ < 1,

h

(
(1− δ)m2

m1

)
>
m2

m1
(1− δ).

This shows that there is a solution for (3.2.15), which lies in the interval [m2

m1
(1 −

δ), m2

m1
(1− δ)].

Lemma 3.2.7. Let x0 be a solution for (3.2.15). Define

Rn = λ1 − x0 −
〈e,He〉
m2/m1

.

Then

Rn = oP

(
m3

m2
√
m1

)
, E [|Rn|] = o

(
m3

m2
√
m1

)
.
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Proof of Theorem 3.1.6 (II). From the previous lemmas we have

λ1 = x0 +
〈e,He〉
m2/m1

+Rn.

Therefore
E[λ1] = x0 + E[Rn]

and

λ1 − E[λ1] =
〈e,He〉
m2/m1

+ o

(
m3

m2
√
m1

)
.

Hence
m2

m1
(λ1 − E[λ1]) = 〈e,H, e〉+ o

(
m3

m
3/2
1

)
. (3.2.16)

Observe that

〈e,He〉 =

N∑
i,j=1

hi,j
didj
m1

= 2
∑
i≤j

hi,j
didj
m1

Let

σ2
1 =

∑
i≤j

Var

(
2

m1
hi,jdidj

)
=
∑
i≤j

4d3
i d

3
j

m3
1

(
1− didj

m1

)
∼ 2

m2
3

m3
1

(
1 + O

(
m2
∞
n

))
,

where we use the symmetry of the expression in the last equality. We can apply
Lyapunov’s central limit theorem, because {hi,j : i ≤ j} is an independent collection
of random variables and Lyapunov’s condition is satisfied, i.e.,

lim
n→∞

1

σ3
n

∑
i>j

E
[
|H(i, j)didj |3

]
≤ K lim

n→∞

m
3/2
1

m3
3

m2
4

m1
= 0,

where K is a constant that does not depend on n. Hence

m
3/2
1 〈e,He〉√

2m3

w−→ N(0, 1).

Returning to the eigenvalue equation in (3.2.16) and dividing by σ1, we have

√
m1m2

m3
(λ1 − E[λ1]) =

m
3/2
1 〈e,He〉
m3

+ o(1)
w−→ N(0, 2).

We next prove Lemma 3.2.7, on which the proof of the central limit theorem relied.

Proof. Note that by (3.2.14) and (3.2.15) we can write

λ1 − x0 =
〈e,He〉
λ1

+

L∑
k=2

E
〈
e,Hke

〉( 1

λk1
− 1

xk0

)
+ Ln, (3.2.17)
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where

Ln =

L∑
k=2

〈
e,Hke

〉
− E

〈
e,Hke

〉
λk1

+
∑
k>L

〈
e,Hke

〉
λk1

.

Thanks to Lemma 3.2.2, Lemma 3.2.4 and (3.2.12) we have

Ln = O

(
m∞(log n)2ξ

√
nm2/m1

)
.

Note that Ln = o( m3

m2
√
m1

). Indeed, using m3 ≥ nm3
0 and Assumption 3.1.1(D1), we

get

m∞(log n)2ξm2
√
m1√

n(m2/m1)m3
≤ m

5/2
∞ n3/2(log n)2ξ

√
nm0nm3

0(log n)ξ
=
m

5/2
∞ (log n)ξ

m4
0

= O

(
(log n)ξ

m
3/2
0

)
.

Observe that (3.2.17) can be rearranged as

(λ1 − x0) =
〈e,He〉
λ1

−
L∑
k=2

(λ1 − x0)E
〈
e,Hke

〉
λ−k1 x−k0

k−1∑
j=0

xk−1−j
0 + Ln.

Hence, bringing the second term from the right to the left, we have

(λ1 − x0)

1 +

L∑
k=2

E
〈
e,Hke

〉
λ−k1 x−k0

k−1∑
j=0

xk−1−j
0

 =
〈e,He〉
λ1

+ Ln.

Using the bounds on λ1 and x0, we get∣∣∣∣∣∣
L∑
k=2

E
〈
e,Hke

〉
λ−k1 x−k0

k−1∑
j=0

xk−1−j
0

∣∣∣∣∣∣ ≤
L∑
k=2

k

(m2/m1)k+1
E
〈
e,Hke

〉
≤

L∑
k=2

k

(m2/m1)k+1

m2

m1
(Cm∞)k/2 = O

(
m∞

(m2/m1)2(log n)2ξ−1

)
= o(1).

We can therefore write
λ1 − x0 =

〈e,He〉
λ1

+ Ln,

where Ln = oP ( m3

m2
√
m1

). Finally, to go to Rn, note that

Rn = λ1 − x0 −
〈e,He〉
m2/m1

= 〈e,He〉
(

1

λ1
− 1

m2/m1

)
+ Ln. (3.2.18)

To bound Rn, it is enough to show that the first term on the right-hand side is with
(ξ, ν)-hp bounded by m3

m2
√
m1

. Using Lemma 3.2.4 (for k = 1) and (3.2.7), we have
with (ξ, ν)-hp

|〈e,He〉| |λ1 −m2/m1|
λ1m2/m1

≤
√
m∞(log n)ξ√

n

√
m∞

(m2/m1)
. (3.2.19)
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Using again Assumption 3.1.1(D1), m3 ≥ nm3
0, m1 ≤ nm∞ and m2 ≤ nm2

∞, we get
that

m∞(log n)ξ√
n(m2/m1)

m2
√
m1

m3
≤
(
m∞
m0

)3
c

√
m∞

= o(1).

This controls the right-hand side of (3.2.19), and hence Rn = o( m3

m2
√
m1

) with (ξ, ν)-
hp .

We want to show that the latter is negligible both pointwise and in expectation.
We already have that this is so with (ξ, ν)-hp on Rn. We want to show that the same
bound holds in expectation. Let A be the high probability event of Lemma 3.2.2 and
3.2.4, and write

E[|Rn|] = E[|Rn|1Ac ] + E[|Rn|1A],

where 1A is the indicator function of the event A. Since all the bounds hold on the
high probability event A, it is immediate that

E[|Rn|1A] = o

(
m3√
m1m2

)
.

The remainder can be bounded via the Cauchy-Schwarz inequality, namely,

E[|Rn|1Ac ] ≤
(
E[|Rn|2]E[1Ac ]

) 1
2 ≤

(
E
[
|Rn|2

]
e−ν(logn)ξ

) 1
2

.

We see that if E[|Rn|2] = o(e−ν(logn)ξ), then we are done. Expanding, we see that

E[|Rn|2] = E

[∣∣∣∣λ1 − x0 −
〈e,He〉
m2/m1

∣∣∣∣2
]
≤ nC

for some C > 0, where we use that

E[(λ2
1)] ≤ E[TrA2] =

N∑
i,j=1

E[(A(i, j))2] ≤ m∞n

and the trivial bound | 〈e,He〉 | ≤ nC∗ for some C∗ < C. Hence we have
(
E[|Rn|2]E[1Ac ]

) 1
2 ≤

e−ν(logn)ξ and

E[|Rn|] = o

(
m3√
m1m2

)
.

§3.3 Proof of Theorem 3.1.7

In this section we study the properties of the principal eigenvector. Let v1 be the
normalized principal eigenvector, i.e., ‖v1‖ = 1, and let e be as defined in (3.1.3).
Recall from (3.2.1) that

λ1

(
1− H

λ1

)
v1 = e〈e, v1〉,
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and after inversion (which is possible on the high probability event) we have

v1 =
〈e, v1〉
λ1

(1−H/λ1)−1e.

If K denotes the normalization factor, then we can rewrite the above equation with
(ξ, ν)-hp as the series

v1 =
K

λ1

∞∑
k=0

Hke

λk1
. (3.3.1)

Our first step is to determine the value of K in (3.3.1). We adapt the results from
[19] to derive a component-wise central limit theorem in the inhomogeneous setting
described by (3.1.2) under Assumption 3.1.1. By the normalization of v,

1 = 〈v1, v1〉 =
K2

λ2
1

〈 ∞∑
k=0

Hk

λk1
e,

∞∑
`=0

H`

λ`1
e

〉
=
K2

λ2
1

∞∑
k=0

(k + 1)
〈
e,Hke

〉
λk1

, (3.3.2)

where we use the symmetry of H.
The following lemma settles Theorem 3.1.7(I).

Lemma 3.3.1. Under Assumption 3.1.1, and with ẽ = e
√

m1

m2
, with (ξ, ν)-hp

〈ẽ, v1〉 = 1 + o(1). (3.3.3)

Proof. Recall that L = blog nc. We rewrite (3.3.2) as(
λ1

K

)2

=

L∑
k=0

(k + 1)

λk1
E
[〈
e,Hke

〉]
+

L∑
k=1

(k + 1)

λk1

∣∣〈e,Hke
〉
− E

[〈
e,Hke

〉]∣∣
+

∞∑
k=L+1

(k + 1)

λk1

〈
e,Hke

〉
.

(3.3.4)

We first show that the last two parts are negligible and then show that the main term
of the first part is the term with k = 0, i.e., 〈e, e〉 = m2/m1.

The last term in (3.3.4) is dealt with as follows. Using (3.2.8), we have with
(ξ, ν)-hp

∞∑
k=L+1

(k + 1)

λk
〈
e,Hke

〉
≤

∞∑
k=L+1

(k + 1)
‖e‖2‖H‖k

(m2/m1)k
≤ m2

m1

∞∑
k=L+1

(k + 1)(1− C0)k

≤ m2

m1
(log n+ 2)e−c

′ logn 1

C2
0

with c′ = − log(1−C0), where we use that
∑∞
k=0(k+1)(1− c)k = 1/c2 for |1− c| < 1.

We tackle the second sum in (3.3.4) by using Lemma 3.2.4. Indeed, with (ξ, ν)-
hp we have
L∑
k=1

(k + 1)

λk1

∣∣〈e,Hke
〉
− E

[〈
e,Hke

〉]∣∣ ≤ L∑
k=1

(k + 1)
Cm

k/2
∞ (log n)kξ√

n

(
m2

m1

)1−k

≤
C ′
√
m∞(log n)ξ(log n+ 1)√

n
≤
C ′
√
m∞(log n)2ξ

√
n

,
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where the constant varies in each step. By Assumption 3.1.1(D1), the last term goes
to zero.

As to the first term, note that by (3.2.5) for k ≥ 3 we have

L∑
k=3

(k + 1)

λk1
E
[〈
e,Hke

〉]
≤

L∑
k=3

(k + 1)

(
m2

m1

)−k+1

(Cm∞)k/2

≤
L∑
k=3

Cm
k/2
∞

(m2/m1)(k−1)
= O

(
1

√
m∞

)
.

The term with k = 1 is zero, while for k = 2 we have

3
E〈e,H2e〉

λ2
1

≤ cm1m3

m2
2

= O (1)

for some constant c. After substituting these results into (3.3.4), we find(
λ1

K

)2

=
m2

m1

(
1 + O

(
1

m2/m1

))
(3.3.5)

and the proof follows by normalizing the vector e and using (3.3.1).

The following lemma is an immediate consequence of (3.3.1) and Lemma 3.3.1.

Lemma 3.3.2. Under Assumptions 3.1.1, with (ξ, ν)-hp

v1 =

(
1 + O

(
m1

m2

))√
m1

m2

∞∑
k=0

Hk

λk1
e. (3.3.6)

In order to estimate how the components of v1 concentrate, we need the following
lemma.

Lemma 3.3.3. For 1 ≤ k ≤ L, with (ξ, ν)-hp

|Hke(i)| =

∣∣∣∣∣∣ 1
√
m1

∑
i1,...,ik

hii1hi1i2 . . . hik−1ikdik

∣∣∣∣∣∣ ≤ m∞√
m1

(
(log n)ξ

√
m∞

)k
.

The proof of this lemma is a direct consequence of Lemma 3.2.4, is similar to [19,
Lemma 7.10] and therefore we skip it. An immediate corollary of the above estimate
is the delocalized behaviour of the largest eigenvector stated in Theorem 3.1.7(II).

Lemma 3.3.4. Let v1 be the normalized principal eigenvector, and ẽ = e
√

m1

m2
. Then

with (ξ, ν)-hp

‖v1 − ẽ‖∞ ≤ O

(
(log n)ξ
√
nm∞

)
.
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Proof. Recall from (3.3.4) that

v1(i) =
K

λ1

∞∑
k=0

Hke(i)

λk1
=
K

λ1
e(i) +

K

λ1

L∑
k=1

Hke(i)

λk1
+
K

λ1

∞∑
k=L+1

Hke(i)

λk1
.

The last term is negligible with (ξ, ν)-hp , because it is the tail sum of a geometrically
decreasing sequence. For the sum over 1 ≤ k ≤ L fwe can use Lemma 3.3.3 and the
fact that K/λ1 =

√
m1

m2
+ o(1) with (ξ, ν)-hp . So we have

K

λ1

L∑
k=1

Hke(i)

λk1
≤ m∞√

nm0

(log n)ξ
√
m∞

≤ O

(
(log n)ξ
√
nm∞

)
.

The first term with (ξ, ν)-hp is

K

λ1
e(i) = ẽ(i) + o(1)

and the error is uniform over all i. Indeed, with (ξ, ν)-hp∣∣∣∣Kλ1
e(i)− K

m2/m1
e(i)

∣∣∣∣ ≤ Kdi√
m1

|λ1 −m2/m1|
(m2/m1)2

≤
√
m2

m1

cm
3/2
∞√
m0n

c′

m2
∞

= O

(
1

√
nm∞

)
,

(3.3.7)
where we use Assumption 3.1.1, Remark 3.2.1 and (3.2.7). Since the detailed compu-
tations are similar to the previous arguments, we skip the details.

We next prove the central limit theorem for the components of the eigenvector
stated in Theorem 3.1.7(IV).

Theorem 3.3.5. Under Assumption 3.1.1, with the extra assumtionm∞ � (log n)4ξ,√
m3

2

dim3m1

(
v1(i)− di√

m2

)
w→ N (0, 1).

Proof. First we compute E[v1(i)], and afterwards we show that the CLT holds com-
ponentwise.

We use the law of total expectation. Conditioning on the high probability event
E in Lemma 3.2.2, we can write the expectation of the normalized eigenvector v1 as

E[v1(i)] = E[v1(i)|E ]P(E) + E[v1(i)|Ec]P(Ec).

Because the components of a normalized n-dimensional vector are bounded, we know
that

E[v1(i)] = E[v1(i)|E ]P(E) + O
(
e−cν(logn)ξ

)
for some suitable constant cν > 0, dependent on ν and on the the bound on v1(i).
On E , we can expand v1 as

v1(i) =
K

λ1

(
e(i) +

(He)(i)

λ1
+

(H2e)(i)

λ2
1

+

∞∑
k=3

(Hke)(i)

λk1

)
.
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Using the notation EE for the conditional expectation on the event E , we have

EE [v1(i)] = EE
[
K

λ1
e(i)

]
+ EE

[
K

λ1

(He)(i)

λ1

]
+ +EE

[
K

λ1

∞∑
k=2

(Hke)(i)

λk1

]
.

For the first term we have, using (3.3.5),

EE
[
K

λ1
ei

]
= EE

[
1√

m2/m1

ei

]
+ O

(
di√

m1(m2/m1)3/2

)
=

di√
m2

+ O

(
di√

m1(m2/m1)3/2

)
.

For the term corresponding to k = 1, we know that E[(He)(i)] = 0 by construction
on the whole space. However, under the event E we can show that its contribution is
exponentially negligible. We have

EE
[
K

λ1

(He)(i)

λ1

]
= EE

[
K

λ1

∑
j hijdj√
m1λ1

]
= EE


(

1 + O
(

1
m2/m1

))
√
m2/m1

( ∑
j hijdj√

m1(m2/m1)

+

∑
j hijdj√
m1

|λ1 − (m2/m1)|
(m2/m1)2

)]
.

Since m2/m1 →∞, there exists a constant C̃ such that

(1 + O (1/(m2/m1)))√
m2/m1

≤ C̃ 1√
m2/m1

.

We can therefore write

EE
[
K

λ1

∑
j hijdj√
m1λ1

]
≤ C̃ 1√

m2/m1

EE
[ ∑

j hijdj√
m1(m2/m1)

+

∑
j hijdj√
m1

|λ1 − (m2/m1)|
(m2/m1)2

]
≤ EE

[ ∑
j hijdj√

m1(m2/m1)

]
+ EE

[∑
j hijdj√
m1

|λ1 − (m2/m1)|
(m2/m1)2

]

≤ EE

∑
j

hijdj

( 1
√
m1(m2/m1)

+

√
m∞√

m1(m2/m1)

)
.

Here we use (3.2.7) to bound the difference |λ1 − (m2/m1)|. Next, write

0 = E

∑
j

hijdj

 = EE

∑
j

hijdj

P(E) + EEc

∑
j

hijdj

P(Ec)

≤ EE

∑
j

hijdj

P(E) +m1P(Ec) = EE

∑
j

hijdj

P(E) + O
(
e−cν(logn)ξ

)
,

where cν is a constant depending on ν, and we use that |hij | ≤ 1 and m1 =

O
(
e3/2 logn

)
. We can therefore conclude that

EE
[

(He)(i)

λ1

]
= O

(
e−c

′
ν(logn)ξ

)
,
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where c′ν > 0 is a suitable constant depending on ν, and possibly different from cν .
To bound the remaining expectation terms, we use Lemma 3.3.3, which gives

a bound on (Hke)(i) on the event E . As before, we break up the sum into two
contributions:

EE

[
K

λ1

∞∑
k=2

(Hke)(i)

λk1

]
= EE

[
K

λ1

L∑
k=2

(Hke)(i)

λk1

]
+ EE

[
K

λ1

∞∑
k=L

(Hke)(i)

λk1

]
.

For the second term we have
∞∑

k=L+1

(
Hke

)
(i)

λk1
≤ C

√
m2

m1
e−Cc logn, (3.3.8)

where we use (3.2.8) and Cc = | log(1 − C0)|. The first term can be bounded via
Lemma 3.3.3, which gives

L∑
k=2

(Hke)(i)

λk1
≤

L∑
k=2

m∞
(
(log n)ξ

√
m∞

)k
√
m1(m2/m1)k

= O

(
(log n)2ξ

√
m1

)
. (3.3.9)

Using the above bounds, taking expectations and using (3.3.5), we get

EE

[
K

λ1

∞∑
k=2

(Hke)(i)

λk1

]
= O

(
(log n)2ξ

√
m2

)
.

Thus, we have obtained that

E[v1(i)] =
di√
m2

+ O

(
(log n)2ξ

√
m2

)
,

which settles Theorem 3.1.7(III).
We can write

v1(i)− di√
m2

=

(
1 + O

(
1

m2/m1

))
e(i)√

m2/m1

− di√
m2

+
K

λ1

(He)(i)

λ1
+ O

(
(log n)2ξ

√
m2

)
,

where we replace the last terms of the expansion of v1 by the bounds derived above
(note that these bounds are of the same order as the ones obtained for the same terms
in expectation). The first term of the centered quantity v1(i)− di/

√
m2 is given by(

1 + O
(

1
m2/m1

))
e(i)√

m2/m1

= O

(
di√

m1(m2/m1)3/2

)
.

This last error can be easily seen to be o
(

(logn)2ξ√
m2

)
. We can therefore write

v1(i)− E[v1(i)] =
K

λ1

(He)(i)

λ1
+ O

(
(log n)2ξ

√
m2

)
.
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We proceed to show that the first term on the right-hand side of the above equality
gives a CLT when the expression is rescaled by an appropriate quantity, and the error
term goes to zero. It turns out that

s2
n(i) = Var

∑
j

hijdj

 =
∑
j

did
3
j

m1

(
1 + O

(
1

m0

))
∼ dim3

m1
.

Multiplying by
√

m3
2

dim3m1
, we have√

m3
2

dim3m1

(
v1(i)− 〈ẽ, v1〉ẽ(i)

)
=

1

sn

∑
j

hijdj + O

√m2
2(log n)4ξ

dim3m1

 .

The error term is √
m2

2(log n)4ξ

dim3m1
= O

(
(log n)2ξ

√
m0

)
= o(1),

where last inequality follows from the assumption thatm0 � (log n)4ξ. We now apply
Lindeberg’s CLT to the term

∑
j hijdj

sn
. The Lindeberg condition for the CLT reads

lim
n→∞

1

s2
n(i)

n∑
j

E
[
(hijdj)

2 1{|hijdj |≥εsn(i)}
]

= 0. (3.3.10)

Defining σ2
j (i) = Var(hijdj), we note that

lim
n→∞

σ2
j (i)

s2
n(i)

= lim
n→∞

did
3
jm1

m1m3di
≤ lim
n→∞

m3
∞

m3
≤ lim
n→∞

m3
∞

nm3
0

= 0.

Let us finally examine the event

|hijdj | ≥ εsn(i) = ε

√
dim3

m1
⇐⇒ |hij | ≥ ε

√
m3

m1

di
d2
j

.

By definition, |hij | < 1. If we show that

lim
n→∞

√
m3

m1

di
d2
j

=∞,

then for all ε > 0 there exists nε such that the event

ε

√
m3

m1

di
d2
j

> 1 > |hij |

has probability 1. Indeed,

lim
n→∞

ε

√
m3

m1

di
d2
j

> lim
n→∞

ε

√
nm4

0

nm3
∞
≥ lim
n→∞

εC
√
m0 =∞

for a suitable constant C. Thus, (3.3.10) holds.
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