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CHAPTER 1
Introduction

The present thesis deals with random graph models and how to capture their differ-
ences via their spectral properties. The first four chapters are of theoretical nature,
while the fifth deals with sampling random graphs.
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The rapid development of Network Science in past years is part of the rising interest
in complex systems encountered in physics, chemistry, biology, the social sciences,
the medical sciences, and beyond. Mathematics provides a formidable framework for
understanding the complex forms of interconnectedness in these systems, empowered
by the increasing abundance of real-world data. The presence of these data, which
need to be explained and understood, required the development of powerful models,
not only to explain what could be extracted from the data, but also to forecast
properties of the network that lie hidden. Thus, modelling and testing of graph-like
structures were a main driving force of network theory, and in turn led to many new
questions of theoretical relevance. These questions gradually gained new territory,
making network theory into a vibrant and interdisciplinary research area. Important
questions are: What is the best way to model a network-like structure observed in
real life? What features need to be included to obtain a faithful model? How can the
functionality of the network be captured properly? Such questions naturally lead to
Random Graph Theory (RGT).

The mathematical field of graph theory has a long history that traces back to the
beginning of the 20th century. The birth of the probabilistic treatment of graphs
in RGT can be identified with the seminal paper of Erdős and Rényi [19], where
the by now most famous model of a random graph – the Erdős-Rényi random graph
(ERRG in the following) – was introduced. The original aim of the authors was to use
this probabilistic model to answer some graph-theroretic questions (Ramsey theory,
colouring problems, extremal graph theory, etc.). This approach is known today as
the probabilistic method (see [2] for a survey). Despite the versatility of the ERRG
and its successful application to solve some hard problems in discrete mathematics, its
simpleness made it unrealistic as a meaningful model for real-world systems. Indeed,
real networks are far from being describable as a set of independent random variables.
A first question in network theory was how to recreate the specific structures observed
in real-world networks and what is the distribution of the dependent random variables
that form the model. Most real-world networks have a clustering coefficient that
is higher than the one arising from ERRG (see [15]). Examples are the networks
formed by social interactions, which are naturally transitive (e.g. if A and B are
friends and B and C are friends, then A and C are likely to be friends as well)
and therefore tend to form triangles between the nodes, a property that is mostly
absent in simple network models. Another example is the difficulty to explain higher
network structures that appear naturally in society, such as communities, with the
help of only a few independent parameters. This complexity led researchers to develop
generalizations of ERRG that include inhomogeneities, clustering and other features of
real-world networks (see [28] for a review). A powerful and versatile network model
was developed in the seminal work [20], which was further developed especially in
[30] and led to creation of Exponential Random Graphs. This family of models has
many important properties, the most striking being the ability to create a probability
distribution that favors graphs with a pre-chosen set of features. Of course, this
does not come for free: the more complex are the features, the more difficult are the
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dependencies hidden in the model. It did not take much time to recognize that this
approach is powerful and not dissimilar to an old problem in Statistical Physics (SP).

SP was born with the aim of describing the statistical properties of physical sys-
tems consisting of a large number of interacting particles. By statistical properties
we mean the distribution of the relevant functions of the random variables defining
the system (e.g. classical quantities such as energy, density, pressure, temperature or
magnetization) which usually are linked to measurable macroscopic quantities. The
aim of SP is to describe the microscopic equilibrium states of the system (and the fluc-
tuations around these equilibria) when only a handful of these macroscopic quantities
are known and are fixed (i.e., measured in real experiments). One way to do this is to
create a probability distribution P whose equilibrium state (i.e., the expectation with
respect to P) has the required value of the relevant quantity, but still allows for many
microstates whose likelihood is smaller the farther they are from equilibrium. The
advantages of this approach are twofold: on the one side, the probability distribution
describing the system recreates the measurements that were made; on the other side,
we are not imposing any information on the model other than what we actually know.
The power of this approach was explained in full generality by Jaynes in [25] and was,
in the context of graph theory, further developed in what we call Maximum-Entropy
Networks (see [32]). Maximum-Entropy Networks offer a principled and versatile
framework for modeling probability distributions in a way that balances the need to
fit observed data with the desire to avoid unwarranted assumptions. This approach
has proven effective in addressing a wide range of problems where traditional models
may fall short, making them a valuable tool in the arsenal of probabilistic modeling
techniques. Restricting ourself to graph-like systems, the approach just described is
different from the approach of just sampling from the set of graphs that have exactly a
given property (e.g. sampling uniformly from all the graphs with 2028 vertices and 347

triangles). The dichotomy between the two approaches is well known in SP. Sampling
according to the uniform distribution from a set of objects with a prescribed property
leads to what is called the microcanoncal ensemble, while fixing the average subject
to maximal entropy leads to what is called the canonical ensemble.

§1.2 Comparison of ensembles

One question that might arise at this point is why the first construction, where we let
the defining features of our model fluctuate (= soft constraint), is preferable over the
second construction, where we select only those graphs with the desirable property (=
hard constraint). Indeed, one could argue that our empirical knowledge of the system
under study comes only from what we can measure, and therefore the construction
where we pick only the graphs that have exactly the measured feature must be the
best one. The reasons why this observation is not accurate are multiple. First, any
measurement comes with an error and, given that the microcanonical ensemble selects
only graphs with a hard constraint, this may lead to a possibly biased description.
Moreover, the majority of the networks that we want to analyze vary over time, so
sticking to a particular value of the measured feature can be questionable. A further
reason comes from the difficulty in sampling from the uniform distribution (see, for
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example, [24]), which often makes it hard to work with the microcanonical ensemble.
A model given by a uniform distribution over a very large set is hard to manipulate
mathematically. It is often the case that to say anything about these types of models
requires hard combinatorial estimates. Furthermore, the random variables that form
the model are typically highly dependent, with correlation patterns that are not easy
to capture. These arguments explain why network scientists often prefer to work with
the canonical ensemble.

In view of its preferable characteristics, a relevant question is: What is the asymp-
totic error if we use canonical instead of microcanonical? In mathematical terms this
amounts to studying the differences in the expectation, the variance and large devi-
ations of functions of the model with respect to the two different probability distribu-
tions. In SP, the widespread belief is that swapping microcanonical to canonical leads
to negligible corrections for very large systems. In other words, it is customary to as-
sume that for very large systems the two ensembles can be used interchangeably with
a negligible approximation error. While this can be shown to be true for systems with
a short-range interaction Hamiltonian subject to constraints on global quantities like
the energy, the relation between the two ensembles is more involved for systems with
long-range interactions subject to complicated constraints. Nevertheless, Ensemble
Equivalence in the Thermodynamic Limit is most of the time taken for granted. The
first appearance of systems where ensemble equivalence was failing was in [26], where
thermodynamic properties of certain stellar systems were considered. Since then,
many studies have appeared where ensemble equivalence was questioned. In particu-
lar, in [16] it was concluded that Breaking of Ensemble Equivalence (BEE) is deeply
connected to the large deviations properties of the two ensembles. In short, Large
Deviation Theory appears as the proper mathematical setting in which to analyse the
problem (see [37] for a review). In a series of papers [36, 38, 39], Touchette showed
that BEE can be characterized in three different but equivalent ways: Thermody-
namic BEE, Measure BEE, Macrostate BEE. While Thermodynamic BEE character-
izes BEE in a classical thermodynamic setting, in terms of non-concavity of certain
thermodynamic quantities such as entropy and free energy (relating the problem to
duality between a function and its Legendre-Fenchel transform), Measure BEE and
Macrostate BEE have an SP interpretation that we will describe in Chapter 1.4. Since
the work of Touchette, a series of paper by Garlaschelli, den Hollander, Squartini and
co-authors [31, 23, 22] has appeared that analyze BEE in random-graph ensembles,
with the main focus on Measure BEE. The main contributions in this area up to 2018
are summarized in A. Roccaverde’s PhD thesis [29].

§1.3 Random matrices

In the study of complex systems, the inherent randomness and complexity often defy
traditional analytical approaches. Random Matrix Theory (RMT), originating in the
mid-20th century, has proven to be an invaluable tool for characterizing the statistical
behavior of complex matrices that arise in diverse fields of science. This theory offers a
unique perspective, focusing on universal properties that transcend specific details of
system dynamics, allowing researchers to extract essential features and gain insights
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into the underlying complexity. The origins of RMT can be traced back to nuclear
physics, where it was developed by Wigner [41] to describe the statistical properties
of nuclear energy levels of large nuclei. Over time, the scope of RMT has expanded
significantly, evolving into a versatile and interdisciplinary tool that has found applic-
ations in fields such as quantum mechanics, statistical physics, information theory,
and even the analysis of large-scale financial systems, gradually gaining the status
of a powerful and versatile mathematical framework for understanding the statistical
properties of complex systems in various different settings (see [27, 3] for references
and [1] for applications). It did not take long before the interaction between RMT
and RGT appeared. The possibility of interpreting a graph as a matrix (adjacency,
incidence, Laplacian) suggests that certain features of the graph are well captured
by its spectrum (see, for example, the monographs [13, 32]). Soon, spectral graph
questions were linked to important graph-theoretic notions, such as expander graphs
and stochastic processes on graphs. It is thus natural to look at how BEE is linked
to spectral quantities, which is the main theme of the present PhD thesis.

In the remainder of this introduction we will formally introduce maximum entropy
graph models, canonical and microcanonical ensembles, BEE, and the role of RMT in
our study. We will close with a summary of the content of this thesis, some conclusions
and some directions of future research.

§1.4 Maximum entropy graph models and breaking
of ensemble equivalence

The fundamental idea behind Maximum Entropy Networks is to construct a probab-
ility distribution that is consistent with the observed data, i.e., respects some con-
straints, while maximizing the Shannon Entropy (which plays the role of uncertainty
in information theory). In other words, these network models seek to find the most
unbiased probability distribution that satisfies the available information. By maximiz-
ing the entropy, these networks aim to avoid making unnecessary assumptions about
the underlying structure of the data, allowing for a more flexible and data-driven
modeling approach. These network models have found applications in various fields,
including machine learning, statistics, sociology and computational biology. They
are particularly useful in situations where the relationships between variables are not
well understood or are highly complex. The flexibility of Maximum Entropy Networks
makes them valuable for capturing dependencies in diverse data sets, ranging from
biological networks to social interactions, and beyond.

§1.5 Maximum entropy ensembles and canonical vs.
microcanonical

Suppose that we are given a system that can be modeled through a graph G∗. While
the full knowledge and reconstruction of G∗ is almost never achievable, it is often
the case that we can measure different characteristics of G∗. For example, say that
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we know that our system has size n and that we can measure the degree d∗i of each
vertex. For example, think of a social network in which we can measure how many
friends each person has. This information on the degree sequence should be present
in the model, but we do not want to force any other information into our probability
distribution on Gn, the set of simple graphs of size n. More formally, given a graph
function ~C(G) → Rm, G ∈ Gn, and a vector of quantities ~C∗ = {Ci}mi=1 that is
graphical (i.e., there exist at least one graph in Gn such that ~C(G) = ~C∗), we want
to create a probability distribution Pn(G) on the space Gn of simple graphs of size n
such that ~C(G) is a sufficient statistics (in the example above, m = n, ~C = {Ci}mi=1,
Ci(G) = di is the degree of the vertex i) and maximizes the Shannon entropy

S[P] = −
∑
G∈Gn

P(G) lnP(G).

(In the sequel we will often suppress the dependence of the measure on n.) The
Pitman-Koopman-Darmois theorem states that this has to be an exponential family
of probability distributions, and its form can be calculated through a maximization
problem via the Karush–Kuhn–Tucker theorem. This gives

argmax
P

S[P] such that EP[Ci] =
∑
Gn

P(G)Ci(G) = C∗i ∀ 1 ≤ i ≤ m,

where the maximization problem is over the space of probability measures on Gn.
This leads to the Lagrangian function

L(P, ~θ) = S[P] +

m∑
i=0

θi

(
C∗i −

∑
G∈Gn

P(G)Ci(G)

)
, (1.5.1)

where C0 = 1 and C∗0 = 1 ensure that P is a probability measure:
∑
G∈Gn P(G) = 1.

The solution of the above maximization problem is an exponential family of measures
with parameters ~θ, playing the role of Lagrange multipliers, which are fixed ~θ∗ such
that

EP,~θ[Ci] = C∗i , 1 ≤ i ≤ m.

This solution goes by the name of canonical Gibbs ensemble, and takes the form

Pcan(G, ~θ∗) =
e−H(G,~θ∗)∑

G∈Gn e−H(G,~θ∗)
=

e−H(G,~θ∗)

Z~θ
, (1.5.2)

whereH(G, ~θ∗) =
∑m
i=1 θ

∗
iCi(G) is the interaction Hamiltonian and Z~θ is the partition

function. It is worth noting that the values of θ∗i are chosen from the data through
the log-likelihood maximization principle.

In contrast, the definition of the microcanonical is far easier. LetGn, ~C∗ = {Ci}mi=1

and ~C(G) be as above. Define the level set of the function ~C

Γ~C∗ = {G ∈ Gn : Ci(G) = C∗i ∀ 1 ≤ i ≤ m} , (1.5.3)
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and let |Γ~C∗ | be the cardinality of the above set. The microcanonical ensemble is the
probability distribution given by

Pmic(G, ~θ
∗) =

{
1
|Γ~C∗ |

, if G ∈ Γ~C∗

0, otherwise.
(1.5.4)

Despite its easy definition, the difficulty of the microcanonical ensemble lies in the
definition of (1.5.3), in particular, in the estimation of its cardinality |Γ~C∗ |. This
typically involves hard combinatorial computations that are linked to problems in
extremal graph theory (see [6] for an example). Is important to note that Pcan is con-
stant on the level sets of ~C, and so every graph with the same value of the constraint
is equally likely to be drawn. This fact will play a crucial role in Chapter 2.

§1.6 An example

To give an example, let us take ~C = ~d, where ~d = {d1, . . . , dn} is a given degree
sequence that satisfies the Erdős-Gallai criterion ([10]). Consider the Hamiltonian

H(G) =
∑
i

θidi =
∑
i

∑
j>i

(θi + θj)aij ,

where aij is the indicator function of the event that vertices i and j are connected,
written i ∼ j, i.e., aij is the ij-th entry of the adjacency matrix A(G). One can
use this precise form of the Hamiltonian to perform a trick (see [28]) and write the
partition function as

Z~θ∗ =
∑
G∈Gn

e−H(G,~θ∗) =
∑
G∈Gn

exp

−∑
i

∑
j>i

(θi + θj)aij

 =
∏
i<j

1∑
aij=0

exp (−(θi + θj)aij)

=
∏
i

∏
i<j

(
1 + e−(θi+θj)

)
=
∏
i

∏
i<j

(1 + xixj),

where we put xi = e−θi . Thus, putting pij =
xixj

1+xixj
, we can rewrite the probability

of a graph G as
P(G) =

∏
i

∏
i<j

p
aij
ij (1− pij)1−aij . (1.6.1)

As will be discussed in Chapter 3, for suitable degrees the above model becomes
a Chung-Lu inhomogeneous random graph, where the denominator 1 + xixj gives a
lower order correction to the connection probability. The microcanonical distribution
is, in this case, the uniform distribution on all the simple graphs with a given degree
sequence ~dn. This model can be described in different ways (see [42] for example).
One way is via the so-called configuration model conditioned on simplicity (the con-
figuration model produces a multigraph with a positive probability when the degrees
are bounded, and with a probability tending to one when the degrees diverge with
n).
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For the case di ≡ d, we have a homogeneous model for both the canonical and the
microcanonical ensemble. Is not difficult to see that (1.6.1) degenerates to an ERRG
with edge probability p = e−θ (by symmetry we have only one Lagrange multiplier
θ), while the microcanonical becomes an instance of a random regular graph.

§1.7 Breaking of Ensemble Equivalence

Breaking of Ensemble Equivalence measures the information-theoretic price we pay
asymptotically in exchanging the canonical and the microcanonical ensembles. BEE
can be defined in three different ways (in [38] it is proved that all three are equivalent).

• Thermodynamical BEE. As can be seen from (1.5.1), the non concavity of S[P]

can lead to problems in the solution of the maximization problem. Indeed, this type
of BEE focusses on the duality of two important thermodynamic potentials – the
free energy and the entropy – which play a key role in determining the properties
of the canonical and the microcanoncal ensembles, respectively. Under normal cir-
cumstances, these two quantities are related by a Legendre-Fenchel transform, but
concavity problems that may arise from the Hamiltonian can lead to a failure of this
duality, signaling the presence of BEE. This is intimately related to large deviation
properties as stated in the Gartner-Ellis theorem (see [35, Chapter V] for further
explanations), where entropy can be seen as a rate function and free energy as a
scaled cumulant generating function. Nevertheless, the relation between BEE and
large deviations are better captured through the next type of BEE.

• Measure BEE. This compares the canonical and the microcanonical ensembles in
an information-theoretic sense, namely, it measures the price we pay in describing
the microcanonical ensemble via the canonical ensemble. To do this, we take the
Kullback-Leibler divergence (or relative entropy) of the two probability measures:

Sn(Pmic | Pcan) = DKL(Pmic | Pcan) =
∑
G∈Gn

Pmic(G) log
Pmic(G)

Pcan(G)
.

Given a sequence αn � 1, we say that Pmic and Pcan are equivalent at scale αn if

lim
n→∞

sαnn = lim
n→∞

1

αn
Sn(Pmic | Pcan) = 0. (1.7.1)

It can of course happen that two ensembles are equivalent on given scale αn but not
on a scale βn = o(αn). The scale αn captures the difference in the large deviation
behaviour of the tails of Pmic and Pcan, much like Sanov theorem captures the price
we pay in describing the empirical distribution of a sample x∗i by the prior prob-
ability distribution pn(xi). In a series of papers [23, 22, 31] the scale αn at which
limn→∞ sαnn 6= 0 was studied. It was found that for non-dense graphs (i.e., with
degrees o(n)), when the constraint is on the degree sequence, the scale is αn = n and

1

n
Sn(Pmic | Pcan) = Θ(log n).
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•Macrostate BEE.While Measure BEE deals with the microstate description, i.e., the
analysis of every state the system can be in, Macrostate BEE analyzes the differences
between their ensembles at their equilibrium. In a probabilistic rephrasing of the
previous sentence, macrostate equivalence looks at the expectations of functions of
the system under study. Indeed, while equivalence at the measure level deals with
the differences in the tails of the two distributions, the presence of non-equivalence
tells us that for diverging n we can expect some tail events to behave differently, and
so there should exist some graph function (i.e., a measurable quantity of our network
model) that is different between the two models. For f(G) such a function, we can
rephrase Macrostate BEE as

lim
n→∞

|Ecan[f ]− Emic[f ]| > 0. (1.7.2)

An important aspect of the above characterization is that it gives no clue on how to
choose f . Indeed, the search for a universal quantity signalling BEE is non-trivial.
For example, when the constraint is applied to the degree sequence, any linear func-
tion of the degree sequence behaves in the same way in the two ensembles, while any
non-linear function is difficult to evaluate. Restricting ourselves to the case where the
constraint is on the degree sequence (like in the examples above), the main contribu-
tion of this thesis is the qualitative and quantitative evidence that a good choice for
f is the largest eigenvalue of the adjacency matrix of the random graph.

§1.8 Spectral theory of random graphs

RMT aims to characterize the behavior of eigenvalues of large matrix ensembles. The
collective behavior of eigenvalues was the main object of study in the work of Wigner
[41]. There the empirical spectral distribution (ESD) of a class of large matrices was
determined. Later works identified it as the universal behaviour for a wide class of
symmetric matrices with i.i.d. entries, called Wigner matrices. Let An be a symmetric
matrix of dimension n, and let aij , j ≥ i, be its elements, i.i.d.1 with E[aij ] = 0 and
Var[aij ] = 1. Define the ESD as

µ 1√
n
An =

n∑
i=1

δ
λi
(

1√
n
An
), (1.8.1)

where λi, 1 ≤ i ≤ n, are the eigenvalues of An. Then

lim
n→∞

µ 1√
n
An

a.s.−→ µsc, (1.8.2)

where µsc = 1
2π (4 − x2)

1/2
+ dx is the Wigner semicircle distribution. Interpreting the

graph as an adjacency matrix, we can analyze random graph models as a matrix
ensemble. For the Erdős-Rényi random graphs with a mean degree p(n − 1) = d >

(log n)a with a > 3, after a proper scaling and centering of the matrix elements, the
1In Wigner matrices the diagonal elements can be chosen independently from a different distri-

bution than the off-diagonal elements without changing the asymptotic behaviour of the ESD.
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ESD and many other spectral characteristic were extensively studied in [18, 17]. For
the case with fixed d, less is known. This is an active field of research with many
open problems. See [12, 4] and reference therein for an overview.

For a random regular graph with degree d > 3 a similar result applies, and the
convergence is to the Kesten-McKay distribution

µdKM(dx) =
d
√

4(d− 1)− x2

2π(d2 − x2)
dx, |x| ≤ 2

√
d− 1, (1.8.3)

where the adjacency matrix has been normalized by the square root sof the degree,√
d.

(a) In blue, histogram of the eigenvalues
of a random regular graph with d = 3
and 5000 nodes. In red, (scaled) Kesten-
McKay distribution with d = 3.

(b) In blue, histogram of the eigenvalues
of a random regular graph with d = 5
and 5000 nodes. In red, (scaled) Kesten-
McKay distribution with d = 5.

Further properties of spectral statistics of random regular graph with fixed degree
were studied in [7, 8]. For a growing d = d(n)� 1, it was proved in [40] that

lim
d→∞

µdKM = µsc. (1.8.4)

By (1.8.4) and the above observations, ESD cannot be the right quantity to look at
Macrostate BEE. Indeed, for sufficient large degrees, the ESDs of the microcanonical
and the canonical ensemble (i.e., the random regular graph and the ERRG in the
homogenous case) are asymptotically equivalent.

This is no surprise. Indeed, over time it has been understood that convergence
to the semicircle law is a universal phenomenon (a type of central limit theorem for
matrices) that does not depend on the particular distribution or characteristics of
the random variables that form the model. It turns out that the characteristics of
the model are better captured by the non-normalized largest eigenvalue of the non-
centered adjacency matrix. This object carries important information on the model,
and shows interesting behavior such as a phase transition dependent on the degree of
the graph [5]. In what follows we will explore to what extent the principal eigenvalue,
λ1, is a good indicator of breaking of ensemble equivalence, and we will prove the
following conjecture in the cases under study:

∆∞ 6= 0 =⇒ BEE,
BEE =⇒ ∆∞ 6= 0 apart from exceptional constraints, (1.8.5)
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(a) In blue, histogram of the eigenvalues
of an Erdős-Rényi random graph with
E[d] = 500 and 5000 nodes. In red, the
semicircle distribution.

(b) In blue, histogram of the eigenvalues
of a random regular graph with d = 500
and 5000 nodes. In red, (scaled) Kesten-
McKay distribution with d = 500 (which
is practically indistinguishable from a
semicircle law).

where
∆∞ = lim

n→∞

(
Ecan[λ1(n)]− Emic[λ1(n)]

)
. (1.8.6)

§1.9 Outline of the thesis

Chapters 2–5 deal with the following:

– In Chapter 2 we analyze the homogeneous case, when the degree sequence ~d is
constant and equal to d. We will show that, while spectral BEE appears for
the pair Erdős-Rényi random graph and random regular graph, it does not for
a model where we just fix the total number of edges. The latter is a less strong
constraint that does not give rise to measure BEE on scale n and, according to
(1.8.5), neither Spectral BEE. To prove this result we relate tail events under
Pcan and Pmic, namely, we will show that, for given event E , it is possible to
obtain a bound on the tail of this event in Pmic by just looking at the tail
decay of E in Pcan. This trick is possible only when the tail of Pcan(E) goes to
zero faster than exp (−S(Pmic|Pcan)). It generalizes the method used in [40], and
gives a general tool to prove concentration inequalities of matrix ensembles with
dependent entries that can be described in the canonical versus microcanonical
formalism.

– In Chapter 3 we study the inhomogeneous case, for a non-constant degree se-
quences ~d with some restrictions on the degree density and the degree inhomo-
geneity. The resulting model is the one described by (1.6.1), where the connec-
tion probability can be further simplified given the density assumptions. For
this model, we first show that λ1 can be expressed as a series expansion in terms
of the powers of the centered ajdacency matrix H = A − E[A]. Once this is
achieved, we can accurately compute the expectation of λ1 as a function of the
degree sequence, providing the leading and error terms coming from the series
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expansion. This is a first step in proving spectral BEE in the inhomogeneous
case, for which Ecan[λ1] was not known. We also derive a central limit theorem
for λ1, taking advantage of the particular form of the terms that appear in the
series expansion. Furthermore, the same formula that produces the expansion
of λ1 gives an analogous result for v1, the eigenvalue corresponding to λ1. We
derive a law of large numbers and a central limit theorem for each component
of this normalized eigenvector.

– In Chapter 4 we analyze the configuration model, and compute the expectation
of λ1 conditional on simplicity. This leads to the microcanonical ensemble of
the previous chapter. To do so, we need to perform a series expansion of λ1

similar to the one performed in Chapter 3. A key step to achieve this is to
analyze the spectral norm ‖H‖ of the centered matrix H = A− E[A], in order
to obtain good bounds. In particular, we need ‖H‖ to be O(

√
d) with a super-

polynomial small probability. Once this is solved, Emic[λ1] is calculated from
the terms of the series expansion. The result obtained, compared to the one
obtained in Chapter 3, confirms the conjecture in (1.8.5) for this model, and
provides a value of ∆∞ consistent with the homogeneous case.

– In Chapter 5 we offer a brief discussion of how to properly sample the graphs
that are considered in the present thesis, followed by some simulations that
helped us to understand the problem under study and that may serve as an
inspiration for future research.

§1.10 Conclusions

We analyzed breaking of ensemble equivalence from the macrostate perspective and
indentified a quantity that is capable to spot this phenomenon, for the classes of
random graphs studied in this thesis. Many natural questions remain to be solved.

A first question is how general the conjecture in (1.8.5) is. It is easy to cook up a
counterexample where the constraint appearing in the Hamiltonian is the eigenvalue
itself. At that point it is natural that Emic[λ1] = Ecan[λ1]. For constraints different
from the pure degree sequence, less is known, starting from the order of divergence
of sαnn in (1.7.1). It is fair to expect that if the constraint is a function of the graph
that forces the ensemble to pick specific degree sequences, then (1.8.5) holds. For
instance, ERRGs with an excessive number of triangles have clusters with very dense
vertices (with high degrees), forcing the model to pick realizations with peculiar degree
sequences. Given the type of arguments used in our proofs, it is reasonable to expect
that something like (1.8.5) happens even in this case, where the heart of the problem
is now the difficulty to obtain the connection probabilities of the canonical model in
closed form (like in (1.6.1)), in order to allow for explicit calculations.

Another question is whether there exist quantities different from λ1 that are able
to spot BEE at the macrostate level. Arguably, any function of the constraints that
contains in its definition the second moment of the constraints will have a discrepancy
between the expectations in the two ensembles. This is the case for λ1, for which the
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expansion we used to calculate its expectation is composed of simpler quantities and
contains a term related to the second moment of the degree sequence. Indeed, while
for the microcanonical ensemble the variance of the constraint function ~C is zero, for
the canonical it is not. For λ1 more is true. Every term in the expansion of λ1 contains
a combination of different moments of the degree sequence, so every constraint that
affects a moment of the degree distribution in a different way in the two ensembles
will be detected at some order. It is therefore difficult to conjecture a quantity other
than λ1 that has the right properties to be a universal BEE signature.

A deeper understanding of the relations between measure BEE and macrostate
BEE is also needed. Lemma 3.1 links the tail behaviour of events in the microca-
nonical ensemble to their tails in the canonical ensemble. This convenient approach
gives for free an upper bound on the scaling of the tail events of the microcanonical
ensemble if the tail of the same event goes to zero in the canonical ensemble faster
than e−Sn(Pmic|Pcan). Whether the latter is a necessary condition as well remains an
interesting and unanswered question. The combinatorial implications of the above
would be substantial, especially in view of the conjecture put forward in [33], where
a simple method to calculate the scaling of sαnn is described. Indeed, the canonical
ensemble is the model with less correlations between its entries, is easier to use for the
calculations of tail events, and provides a good way to obtain tail bounds on functions
of dependent random variables once the problem is embedded in the canonical versus
microcanonical framework.

A further research line that we are pursuing is to derive the CLT behaviour of
λ1 in the configuration model of Chapter 4, in the same way as this was obtained
in Chapter 3 for the Chung-Lu model. Furthermore, it would be interesting to see
whether the largest eigenvalues of the models analyzed in Chapter 3 and 4 do behave
as a Gaussian process when a suitable dynamics is defined on the respective graph
spaces (for example, a switching chain on the configuration model conditional on
simplicity).
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