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Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast
number of tree species presents aformidable challenge to understanding these
forests, including their response to environmental change, as very little is known
about most tropical tree species. A focus on the common species may circumvent this
challenge. Here we investigate abundance patterns of common tree species using
inventory dataon1,003,805 trees with trunk diameters of at least 10 cm across 1,568
locations'®in closed-canopy, structurally intact old-growth tropical forests in Africa,

Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species
comprise 50% of the tropical trees in these regions, respectively. Extrapolating across
all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of
Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite
differing biogeographic, climatic and anthropogenic histories’, we find notably
consistent patterns of common species and species abundance distributions across
the continents. This suggests that fundamental mechanisms of tree community
assembly may apply to all tropical forests. Resampling analyses show that the most
common species are likely to belong to a manageable list of known species, enabling
targeted efforts to understand their ecology. Although they do not detract from the
importance of rare species, our results open new opportunities to understand the
world’s most diverse forests, including modelling their response to environmental
change, by focusing on the common species that constitute the majority of their trees.

Tropicalforests areacrucial component of the Earth system; they cover
around10% of the Earth’s land surface®but contribute approximately
33% of terrestrial net primary productivity®. They account for around
40% of the carbonstored in live vegetation'® and are globally important
carbon sinks". Tropical forests are also extraordinarily biodiverse,
harbouring two-thirds of all known species™ and the majority of the
world’s biodiversity hotspots®. Of note, as many tree species can be
foundinasingle hectare of tropical forest asin the entire native Western
Europeantree flora'. Recent estimates suggest that there are approxi-
mately 37,900 named tropical tree species in the scientific literature®,
with potentially thousands more yet to be identified by scientists™. This
extraordinary diversity means thatlittle is known about the biology of
the vast majority of tropical tree species. Our understanding of tropi-
calforest ecology, productivity and carbon storage and how they may
respond to environmental change is hindered by this lack of knowledge.
This limited understanding also curtails scientificinputinto land use,
biodiversity, climate and other forest-related policy and management.

Our understanding of tropical forests may improve through afocus
on the most common tree species. This is a promising avenue, given
that species abundance distributions (SADs) showing a modest num-
ber of common species and much larger numbers of rare species have
been documented across taxa globally” . Indeed, analyses of tropi-
cal forest inventory data from Amazonia have shown that a relatively
small number of common species comprise a majority of trees in the
region®?°*, However, whether such patterns hold in other tropical
forestsis unknown, as there have been no comparable analyses for Afri-
canor Southeast Asian tropical forests. Perhaps, given the substantial

differences in total tree species richness?, forest structure', contem-
porary climate® and biogeographic and human-occupancy histories’
among continents, important contrasts in patterns of common species
would be expected. Alternatively, if the same processes or mecha-
nisms apply to all tropical forests?, highly consistent patterns may be
expected. Crucially, ifatractably modest number of common species
do comprise the majority of tropical trees on Earth, this could open new
ways of understanding tropical forests by investigating the ecology of
the common species.

Cross-continental comparisons of common species patterns are
complicated by unresolved differences in the results from published
Amazon forest studies®?>??, Estimates of hyperdominance—describ-
ing the minimum number of species required to account for 50% of
all trees in a sample—range from 1.4% to 8.2% of the total number of
species found in each of the Amazon forest datasets analysed (cor-
responding to 224 and 1,312 hyperdominant species respectively,
assuming 16,000 Amazon tree species). Therefore, here we: (1) inves-
tigate sample-related biases and standardize our sampling to enable
meaningful comparisons among datasets; (2) test whether patterns of
hyperdominance differ across Amazonia, Africa and Southeast Asia;
(3) extrapolate our results to assess how many species comprise half
ofall Earth’s tropical trees; (4) assess species abundance patterns, with
differing classifications of ‘common species’ beyond hyperdominance;
and (5) use resampling techniques to assess which sampled species are
likely to be hyperdominant.

We analyse species abundance data from networks of inventory
plots across three continents. We limit our analysis to closed canopy
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Fig.1|Locationofthel,568 plots, tropical forest regions, and tropical
forest biome extent usedin the study. Dots show thelocation ofthe plots
analysed, coloured by continental region. Dark green shows the Amazonia,

structurally intact old-growth tropical forests. For Amazonia, defined
as the lowland Amazon Basin and Guiana Shield, we use the Amazon
Tree Diversity Network and RAINFOR datasets (n =1,097 plots). For
Africa, encompassing West, central and East Africa, we use the African
Tropical Rainforest Observatory Network (AfriTRON)', Central African
Plot Network, and two smaller networks®* (n = 368 plots). For Southeast
Asia, defined as extending from Myanmar inthe West to Sulawesiin the
East, we use atree diversity*and a carbon monitoring® network (n =103
plots). We limit our analysis to trees with trunk diameter of at least
10 cmatbreast height (1.3 m along the stem or above any buttresses or
deformities), the widely used minimum size for inventorying tropical
trees. The combined datasetincludes1,003,805, trees, of which 93.3%
areidentified to species (Fig.1and Extended Data Table 1).

Consistent patterns of commonness

The Africa, Amazoniaand Southeast Asia datasets differ in thenumber
and size of plots sampled and the number of trees sampled (Extended
DataTable1). We therefore excluded small plots (below 0.9 ha; Extended
DataFig.1and Methods) and used rarefaction—that is, repeated random
subsampling of plots to comparable numbers of trees—to standardize
sampling across the three datasets (Fig. 2).

Rarefying to a common sample size of 77,587 stems, the size of the
Asiadataset (equivalentto150,116 and 103 plotsin Africa, Amazoniaand
Southeast Asia respectively), we find that 77 species (95% confidence
interval: 62-92) in Africa comprise 50% of individual trees, compared
with 174 species (95% confidence interval: 134-215) in Amazonia and
172 species (95% confidence interval:125-217) in Southeast Asia (Table 1
and Fig. 2). However, the substantially lower number of hyperdominant
species in Africa compared with Amazonia and Southeast Asia scales
with the substantially lower number of total species. We find just 1,132
speciesinourstandardized 77,587 tree sample in Africa, compared with
2,565 and 2,585 species in Amazonia and Southeast Asia, respectively
for the same sample size. Consequently, percentage hyperdominance
is statistically indistinguishable among the continents at 6.79% (95%
confidence interval: 5.39%-8.20%), 6.80% (95% confidence interval:
5.24%-8.36%) and 6.65% (95% confidence interval: 4.59%-8.71%) in
Africa, Amazoniaand Southeast Asia, respectively (Table1). This consist-
encyisnot affected by the aggregated spatial distribution of plots within
eachregion (Extended Data Fig. 2) and holds true for analyses based

Africaand Southeast Asiaregions that we extrapolate to. Light green shows
‘tropical and subtropical moist broadleaf forests™°, which we extrapolate to as
the closed canopy tropical forest biome.

solely on 1-ha plots (Methods). Thus, once sampling is standardized,
thereis marked pan-tropical consistency in the proportion of the total
number of tree species accounted for by the most common species.

The consistency of commonness is not limited to defining common
species as those that account for 50% of allindividual treesin adataset.
The proportions of the total number of species required to account
for thresholds between10% and 90% of individual trees are also highly
consistentacross the rarefied data for the three continents (Fig.3 and
Extended Data Table 3). Thus, the datafrom the three continents appear
to result from the same underlying statistical distribution.

Our rarefaction analysis shows that the number of hyperdominants,
the total number of species and the percentage hyperdominance are
dependent on sample size. This is because as plots—and therefore
trees—are added to the sample, increasing numbers of rare species
start to appear. Meanwhile, most common species have, by definition,
already appeared, but their abundances increase. Thus, with increas-
ing sample size, the number of hyperdominants increases, but at an
ever-decreasingrate that tends towards saturation (Fig. 2 and Extended
DataFig.3). The total number of species increases ata decreasing rate
withincreasing sample size, without apparent saturation. Therefore, as
samplesizesincrease, the percentage hyperdominance decreases grad-
ually, butdoes not appear to saturate (Fig. 2 and Extended Data Fig. 3).
This sample size dependence is likely to explain the published differ-
ences in percentage hyperdominance in Amazonian forests, which
follow expectations given the sample size in each study®**?,

Amazonia and Southeast Asia show remarkably similar patterns of
commonness and diversity. The rarefaction curves of the number of
species accounting for 50% of all trees (Fig. 2a), total number of spe-
cies (Fig.2b), percentage hyperdominance (Fig. 2c) and Fisher’s a—the
parameter of the log series distribution shown to best describe tropical
tree species abundance distributions® (Fig. 2d)—are almost identi-
cal between the two datasets. Furthermore, the numbers of species
required toaccount for any threshold between 10% and 90% of trees in
therespective rarefied samples of 77,587 trees are statistically indistin-
guishable (Table1and Extended Data Tables 2 and 3). Thisequivalence
in overall tropical forest diversity patterns between these similarly
species-rich regions is particularly striking given their very different
biogeographic, climatic and anthropogenic histories, and the fact that
Amazoniais one large contiguous region, whereas Southeast Asiais a
series of islands and island-like regions.
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Fig.2|Rarefaction curves showing the effect ofincreasing sample size on
thenumber of hyperdominants, total species, hyperdominant percentage
andfitted values of Fisher’s a in tropical tree communities. a-d, The effect
ofincreasing sample size on the number of hyperdominants (a), total species (b),
hyperdominant percentage (c) and fitted values of Fisher’s a (d) in tropical
Africa (magenta), Amazonia (cyan), Southeast Asia (blue). Rarefied data (mean

In contrast to the similarity between Amazonia and Southeast
Asia, our results provide sample size-corrected validation of the
‘odd-one-out’ observation®? of much lower tree species richness in
Africa compared with Amazonia and Southeast Asia. Here we add a
similar odd-one-out observation of amuch lower number of common
species in Africa than in Amazonia and Southeast Asia. However, in
combination these two results lead to an almost identical percent-
age hyperdominance in the African, Amazonian and Southeast Asian
rarefied data. This consistency extends to the proportion of species
required toaccount for all thresholds between10% and 90% of trees in
therarefied data (Fig. 3 and Extended Data Table 3). This pan-tropical
invariance recasts the tropical forests of Africa from ‘odd’ in terms of

Table 1| Tree species hyperdominance results for African,
Amazonian and Southeast Asian tropical forests, resampled
to the common sample size of 77,587 trees

Number of Total species Hyperdominant Fisher'sa
hyperdominants percentage
Africa 7762, 92] 1,132[1,069, 6.79[5.39,8.20] 191[161,220]
1,194]
Amazonia 174 [134, 215] 2,565[2,419, 6.80[5.24,8.36] 525[475,575]
2,711]
Southeast 172 [125, 219] 2,585[2,440, 6.65[4.59,871] 526[476,577]
Asia 2,730]

Numbers in brackets are confidence intervals derived from the s.d. across iterations of
subsamples taken with replacement at the sample size of the Asia dataset. Resampling
done by plot; 77,587 is the size of the Southeast Asia dataset.
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values across iterations of subsamples) are shown as points joined by lines for
clarity, shaded areas represent 95% confidence intervals (derived viathes.d.
acrossiterations of subsamples taken with replacement ateach sampling
point). Note that resampling for rarefaction was by subsampling of plots, but
curvesarere-plotted onanxaxis of number of stems.

species richness to statistically indistinguishable from those in Amazo-
niaand Southeast Asiain terms of proportional patterns of abundance.
Overall, using standardization by rarefaction, we find consistent pat-
terns of species abundance across Africa, Amazoniaand Southeast Asia.

Scaling to the study region

Next, we estimate commonness patterns in each of our three study
regions: Africa, Amazonia and Southeast Asia. We extrapolate log
series fits to the empirical Africa, Amazonia and Southeast Asia data-
sets (Extended Data Fig. 4), including a correction to account for the
clumped spatial occurrence of species, to the total number of trees
withtrunk diameter of at least 10 cmin each study region. We estimate
that just 104 species (95% confidence interval: 101-107) account for
50% of the 113 billion trees in Africa’s closed canopy tropical forests
(Table 2). We also estimate that just 299 species (95% confidence inter-
val: 295-304) account for 50% of the 344 billion trees in Amazonia’s
closed canopy tropical forest, and 278 (95% confidence interval: 268-
289) account for 50% of the 129 billion trees in Southeast Asia’s closed
canopy tropical forests (Table 2). Our results from Amazonia match
those derived using a different extrapolation approach®.

Our extrapolations again outline consistent percentage hyperdomi-
nance: just 2.2% of African, 2.2% Amazonian and 2.3% of Southeast
Asian species account for 50% of all trees with trunk diameters of at
least 10 cm in each region (Table 2). The dominant proportions of
total species required to account for 10% to 90% of trees are also very
similar across continents (Fig. 3 and Extended Data Table 5). The lower
percentage dominance values from the extrapolated data compared
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with those from the rarefied data are consistent with the pattern,
described above, of many more rare species being added as the num-
ber of trees increases while many fewer common species are added
(Fig.2). Overall, the extrapolated results show that there are a tractable
number of common species in tropical forests in Africa, Amazoniaand
Southeast Asia.

Scaling to the tropics

We next estimate the number of common tropical tree species on Earth
by multiplying the pan-tropical proportion of common species by the
total number of tropical tree species on Earth. Our results suggest a
pan-tropical hyperdominant percentage of 2.24% (Table 2). However,
our extrapolations cannot provide an estimate of the total number of
tropical tree species because we do not—for this study—have datafrom
alltropicalregions, including alack of data from Central America, New
Guinea and Micronesia. Furthermore, there is no consensus estimate
of the total number of tropical tree species on Earth.

A compilation oflists of species known to science suggests a total of
60,065 tree species globally®™. Tropical forest biomes likely comprise
63% of this list (E. Beech, personal communication, 2021),implying that
there are around 37,900 known tropical tree species. This minimum
estimate does notaccount for species that are yet to beidentified and
described by scientists. An alternative extrapolation method estimated
that there are 46,900 species for the closed canopy tropical forest
biome? (range 40,500-53,300 species), implying that there are 9,000
yet-to-be-identified species. This is in agreement with arecent global
study suggesting that there are around 9,200 tree species remaining yet
tobe formally named, almostall in the tropics'. Thus, together, these
studies suggest there are likely to be approximately 47,000 tropical
tree species in the world’s closed canopy tropical forests.

Ourbest estimateisthat1,053 tree species (2.24% of 47,000 species)
account for half of Earth’s 800 billion trees with trunk diameters of at
least10 cm found in the closed-canopy tropical forest biome. Although
the true number may be lower or higher, the conclusion that atractable

Table 2 | Extrapolated tree species hyperdominance results
for African, Amazonian, Southeast Asian tropical forests at
the regional scale

Number of Total species Hyperdominant

hyperdominants percentage
Africa 104 [101,107] 4,638 (4,511, 4,764] 2.23
Amazonia 299[295,304] 13,826 [13,615,14,036] 2.16
Southeast Asia 278 [268, 289] 11,963 [11,451,12,475] 2.32
Total® 681[664, 700] 30,427 [29,577,31,275] 2.24

“Calculated as the sum of the number of hyperdominants and total species across the three
major tropical forest regions with hyperdominance percentage derived therefrom. Prediction
intervals (in brackets) combine uncertainty from the standard error of predicted means and
the residual s.d. of the regression of the bias correction fit.

number of species dominate tropical forests is clear. Some of these spe-
cies are likely to be extraordinarily common: our best estimate is that
just 6l speciesaccount for 80 billionindividual trees (0.13% of 47,000
species). At the other end of the spectrum, we estimate that the rarest
approximately 39,500 species account for just 80 billion trees, or 10%
of individuals. Meanwhile, the other 90% of all trees are estimated to
belong to just 7,487 species (15.93% of 47,000 species). Thus, these
results open the possibility of focusing efforts on understanding the
biology of atractable number of species in tropical forests to approxi-
mate the whole stand.

Identifying the most common species

Our analyses showing that 104,299 and 278 common species account
for 50% of the trees in our African, Amazonian and Southeast Asian
study regions, respectively, do not yield a list of named species. To
assess which named species are likely to be hyperdominant, we use a
subsampling procedure similar to the rarefaction methodology above.
We randomly subsample from approximately 10,000 trees per subsam-
ple (drawnby plot) and increase the size of the subsamplein10,000-tree
increments until the size of eachregional dataset is reached, and repeat
this process 100 times. For each sampled increment of 10,000 trees
we then calculate the proportion of random subsamplesin which each
species qualifies as hyperdominant (Supplementary Table1). We then
assign the species to one of four groups:

(1) Both hyperdominant in the full data and hyperdominant in the
majority of subsamples even at very small sample sizes. These 50, 95
and 105 speciesin our Africa, Amazonia and Southeast Asia datasets,
respectively, represent 3.5%, 2.1% and 4.1% of sampled species ineach
dataset. These species are likely to be geographically widespread
and abundant.

(2) Both hyperdominant in the full data and hyperdominant in the
majority of subsamples, but at the smallest sample sizes only
occasionally hyperdominant. These 32,129 and 67 species in our
Africa, Amazoniaand Southeast Asia datasets, respectively, repre-
sent2.3%,2.9% and 2.6% of sampled species in each dataset. These
species are likely to be geographically widespread but not always
abundant.

(3) Not quite hyperdominant in the full data, but hyperdominantin
asubstantial proportion of subsamples. These 102, 339 and 200
species in our Africa, Amazonia and Southeast Asia datasets,
respectively, represent 7.2%, 7.5% and 7.7% of sampled species in
each dataset. These species are probably locally abundant but not
necessarily geographically widespread.

(4) Not hyperdominantin the full dataand almost never hyperdominant
inthe subsamples. These1,232,3,929 and 2,213 species in our Africa,
Amazoniaand Southeast Asia datasets, respectively, represent 87%,
87.5% and 85.6% of sampled species in each dataset. These species
are probably neither geographically widespread nor abundant.
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Wesuggest thatifall treesin aregion were sampled, the hyperdomi-
nant species would be drawn from the first three groups, which are
listed in Supplementary Table 2. This candidate list 0of 1,119 hyperdomi-
nant species contains 184 species in Africa, 563 species in Amazonia
and 372 speciesin Southeast Asia, with no species appearing on more
thanoneregion’slist. Thus, the list of species that are likely candidates
for hyperdominance is manageably small.

There is uncertainty in our candidate hyperdominant list owing to
the limitations of the underlying samples of plots across the landscape.
Specifically, some species that always have low local abundance but are
geographically widespread and lack habitat restrictions may require
larger sample sizes for their hyperdominance to become clear. Simi-
larly, species that combine low local abundance and habitat specificity
pose challenges. If the distribution and extent of specialist habitat
is great enough to result in hyperdominance of specialists but is not
sufficiently captured in our sampling, such species might not appear
inour candidate list. By contrast, some species inour candidate hyper-
dominantlist willnot be true hyperdominants. Of particular note, some
apparently common species may actually comprise agroup of cryptic
species, with none of these cryptic species being hyperdominant by
itself*"33, However, the striking similarly in species abundance pat-
ternsacross the Africa, Amazonia and Southeast Asia datasets, despite
differing sampling intensity on each continent, suggests that these
potential limitations do not substantially affect the overall patterns
found. We therefore expect a high overlap between our list of candi-
date hyperdominant species and eventual elucidation of the actual
hyperdominants of these three regions and the pan-tropics.

Our list of 1,119 candidate hyperdominant species represents a trac-
table number of species on which to prioritize autecological research.
Indeed, given their commonness, ecological data already exists for
many of these species: 95% have some autecological datarecordedina
large global database*; 83% have at least 10 different types of measure-
ment, typically including their growth form, maximum height, wood
density and aspects of leaf chemistry. Thisindicates that these species
are already relatively well known. Therefore, only limited additional
datamayberequired to open new approachesto better understanding
tropical forests throughtheir most commontree species, including how
they may react to today’s era of rapid global environmental change.

Discussion

Charles Darwinwrotein The Origin of Species that “rarity is the attribute
of avast number of species of all classes and in all countries”. If this is
the case, then common species are themselves rare. Our results concur:
despite their formidable diversity, the trees in tropical forestsfit the ‘rare
is common, common is rare’ pattern® which has been documented in
many other taxa” °*¢*”. Beyond this, our analyses reveal highly consist-
ent patterns of commonness across three major tropical forest regions.
Notably, despite substantialinter-continental variationin biogeographic
history, contemporary environment, forest structure and species com-
position, we have found an emergent property of the tropical forest
system. For the trees that structure tropical forests, a consistent ~2.2%
ofthe total species pool accounts for 50% of allindividual treesin Africa,
Amazonia and Southeast Asia. This consistency is all the more notable
given relatively lower tree species richness of African tropical forests
compared with Amazonianand Southeast Asian forests, probably owing
to higher extinction rates in African forests, with evidence of major
losses of African species at the Oligocene-Miocene boundary?®, and
contractions of rainforest area due to drier conditions during repeated
glacial-interglacial cycles over the past 2.6 million years®.

We find common diversity patterns despite the very different histo-
ries of human occupancy in Amazonian, African and Southeast Asian
tropical forests*’. The relatively recentarrival of humansin Amazonia
approximately 20,000 years ago has been linked to greater Pleisto-
ceneextinctions, in contrast to much longer human occupancy inthe
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tropical forests of Africa and Southeast Asia*'. Some have also sug-
gested that Amazonian forest composition was altered by humans
through the incipient domestication of tree species, increasing the
abundance of a small number of favoured species*’. Others have
reported large areas of deforestation associated with the AfricanIron
Age*.How cansuch different human histories resultin near-identical
patterns of tree species dominance? The most parsimonious explana-
tionis that the system tends to return to a state with a similar species
abundance pattern.

Nevertheless, consistent patterns of commonness do not necessarily
imply the same causal mechanisms. The ubiquity of the broad ‘rare is
common, common is rare’ pattern in ecology, which is also found in
non-biological complex systems**, meansinferences as to the cause of
this broad pattern are challenging®*. Although combinatoric meth-
ods* and models that maximize the entropy of information***” both
produce the ubiquitous ‘reverse lazy-J’ pattern, empirical observations
show fewer common species and more rare species than expected by
statistical controls alone*. Similarly, neutral models produce the same
broad pattern, but produce too few individuals of the most common
Amazonian tree species*. This suggests that biological mechanisms
influence tree community assembly to produce a consistent propor-
tion of common species across continents.

Recent analyses have revealed that the same few families contribute
most of the species richness in Africa and Amazonia*, which when
combined with analyses showing that more diverse families have more
common species®®, may indicate a role for deep evolutionary mecha-
nisms driving the patterns we find. Yet, considering the substantially
smaller regional species pool in Africa compared with Amazonia and
Southeast Asia, one might expect differing continental patterns of spe-
cies dominance if evolutionary drivers were the primary mechanism,
not the highly consistent patterns that we find. Similarly, if environ-
mental filtering were a key mechanism, the different contemporary
environments, with Africa much drier on average than the other two
continents?, and Southeast Asia consisting of scattered island-like
areas of forest compared with the contiguous forested region of
Amazonia, would also imply differing continental patterns of species
dominance, not the near-identical patterns that we find. These con-
straints limit the potential mechanisms that could apply across our
three-continent context.

One potential cross-continental mechanismis dispersal limitation,
where the dispersal capabilities of species resultin some suitable habi-
tat patches remaining unoccupied. Another mechanism s density- or
distance-dependent mortality, which appears widespread across tropi-
cal forests™. Here, specialist species-specific natural enemies such as
pathogens and herbivores reduce seed or juvenile conspecific survival
rates near conspecific adults or in areas of high juvenile conspecific
density, thereby reducing competitive exclusion and contributing to
the maintenance of high tree species richness in tropical forests™. It
is possible that common species have largely evaded density- and/or
distance-dependent mortality. Analyses showing that species abun-
dance can be either high or low within given genera® support this
hypothesis. Further progress on putative mechanisms can be made,
for example, by exploring whether ecological or functional traits dif-
fer between common and rare species, and assessing the consistency
of any differences among tropical continents®. Although deducing
mechanisms is complex, the identification of a tractable number of
common species in tropical forests will facilitate progress in under-
standing of tropical forests beyond species abundance distributions.

Refining our results, particularly the naming of common species,
requires improved sampling of tropical forests, both in terms of
geographic scope and taxonomic identification of trees within plots.
Expanding sampling to include Central America, New Guinea, Micro-
nesia and other regions would improve the generality of our results.
Better identifying trees in existing plots would increase the utility of
available samples: in our Southeast Asia region we excluded 142 plots



(approximately 120,000 stems) because they did not have more than
80% of treesidentified to species. Furthermore, additional taxonomic
research on eventhe most common speciesis needed giventhat some
of the most common Amazonian® and African®** tree species have
been found tobe complexes of several distinct species that are difficult
todistinguishin the field. However, the similarity of our results across
the three continental regions suggests that the occurrence of such
species complexes may also be similar across the continental regions,
again implying the operation of fundamental processes in differing
forests. Overall, our work underscores the need for investmentin tax-
onomy, particularly given the thousands of rare species we and others™
document, but also when considering the most common species.

Our best estimate, using extrapolation, that for the tropics asawhole
just 1,053 species account for half of Earth’s 800 billion tropical trees
has potentially profound implications. Rather than attempting to
understand tens of thousands of species of tropical trees, afocus on
just afew hundred of the most common species can provide a simpli-
fied characterization of these otherwise complex forests. Our analyses
indicate that the most common of these species are reliably named
and relatively well known. Our list of candidate hyperdominants can
therefore readily serve new research, includingin facilitating targeted
autecological data collection to understand their role in providing
ecological functions and services. Practically, this species-specific
information could enhance tropical forest modelling by focusing on
commonspecies instead of relying on functional types or traits, thereby
potentially improving predictions of future forest change.

Inthe future, analyses should be extended to investigate forest car-
bon stocks and hyperdominant species and their role in the provision
ofecosystemservices.In Amazonia, even fewer tree species were found
to account for 50% of aboveground carbon stocks than the minimum
number required to account for 50% of trees?2. More generally, the set
of common speciesiis likely to include foundation species that define
broader community assemblages, the environmental sensitivity of
which will probably drive tropical forest responses to environmen-
tal change’®. Of course, striving to understand and protect rare and
non-hyperdominant species remains crucial, particularly as they face
greater extinctionrisk and probably also contribute to the functioning
of ecosystems, particularly when more functions”, longer timescales™
and imposed environmental changes® are considered, and given that
the hyperdominants of the future may be rarer today. Nonetheless,
with acomplementary grasp of the most common species, mapping,
understanding and modelling of the world’s tropical forests will be a
much more tractable proposition.
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Methods

Data compilation and pre-processing

We collated datafrom forest inventory plots >0.2 hainsize, situatedin
structurally intact (no detectable past logging or fire), closed canopy
(notdryforest or savanna) tropical forest, with enumeration of all stems
>10 cm diameter, inwhich > 80% of stems are identified to the species
level. Following Sullivan et al.®!, small (0.5 ha) plots within 1 km of each
other were grouped for analysis to minimize the effect of stochastic tree
fall events in smaller areas®’. These criteria allow direct comparisons
to be made with hyperdominance results from Amazonia®*. The data
from each continent comprise the following:

Africa: 483 plots, covering a total of 504 ha (mean plot areal.04 ha,
median 1ha, range 0.2-10 ha). These data are from four sources: 299
plots from the African Tropical Rainforest Observatory Network"®?
(AfriTRON: www.afritron.org, accessed 1 March 2020), curated at
http://www.ForestPlots.net®*; 127 plots from the Central African Plot
Network (https://central-african-plot-network.netlify.app); 52 plots
from the TEAM network? and 5 x 1 ha plots from 5 different soil types,
extracted from one 50-ha plot in Korup, Cameroon from the SIGEO/
CTFS network?.

Amazonia: 1,417 plots, covering a total of 1,591 ha (mean plot area
1.12 ha, median1ha, range 0.1-78.8 ha) from the Amazon Tree Diversity
Network (ATDN: http://atdn.myspecies.info/, includes plots from the
RAINFOR network), accessed 8 January 2020.

Southeast Asia: 230 plots, covering atotal of 202 ha (mean plot area
0.88 ha, median 0.49 ha, range 0.21-4.5 ha). These data are from two
sources: 143 plots from Slik et al.***—a decrease from the published
Indo-Pacific datasetin Slik et al.** due to our 280% species identifica-
tion criterion and our Southeast Asia study region excluding Australia,
India, and Papua New Guinea; and 87 plots from the T-Forces network®*
curated at http://www.ForestPlots.net, accessed 03/02/2021.

Species names were checked for orthography and standardized
(synonymsidentified from the reference databases corrected to their
accepted names) using the African Flowering Plants Database (https://
www.ville-ge.ch/musinfo/bd/cjb/africa), Taxonomic Name Resolution
Service®, and Asian Plant Synonym Lookup (F. Slik, personal commu-
nication), for Africa, Amazonia and Southeast Asia, respectively. Trees
notidentified to specieslevel (7.3%, 6.3% and 8.4% of stems in the Africa,
Southeast Asia datasets respectively) were classed as ‘indeterminate’
(Indet). Indet stems contributed to plot-level and dataset-wide stem
abundance totals but are necessarily absent from species totals.

For the purposes of our study we delimited tropical forestsaccording
tothe ‘tropical and subtropical moist broadleaf forests’ biome delinea-
tion from the World Wildlife Fund ecoregion map®. The total number
oftropicaltrees >10 cmtrunk diameterineach of our regionswas then
estimated by summing tree abundancesin countriesin which we have at
least one sampled plot from the ‘map of Global Tree Density®® (derived
from 429,775 ground-based estimates of tree density) and masking
accordingtothe ‘tropical and subtropical moist broadleaf forests’ bor-
dersusing ArcGIS v3.10.1%. Thus, we estimate that there are -92billion,
~331billion trees, and ~217 billion trees in our Africa, Amazonia, and
Southeast Asiaregions, respectively, totalling 640 billion trees. Includ-
ing abundance from countries in the ‘tropical and subtropical moist
broadleaf forests’ biome in which we have no sampled plots, we esti-
mate~799 billion total trees across all of Earth’s moist tropical forests.

Data format, commonness and diversity parameters

The species abundance distribution (SAD), defined as a vector of abun-
dances (number of individuals observed) of all species encounteredin
acommunity”, formed the basis for our analyses of the three tropical
forest datasets. For each dataset, we tallied the number of trees of
each speciesin each plot to give plot-level SADs and combined these
SADs across all plots to get regional-level abundance matrices with
rows representing plots, columns representing species, and entries

representing the abundance of each species in each plot. To capture
patterns of commonness and species composition we calculated the
number of hyperdominants (H#), defined as the minimum number
of species required to account for 50% of the population of an assem-
blage®, hyperdominant species identities, total number of species (TS),
hyperdominant percentage of total species (H% = H#/TS) and Fisher’s
o (ref. 68). To investigate the sensitivity of results to the ‘hyperdomi-
nant’ definition of the most common species, we looked beyond the
50% threshold used for hyperdominance, at the minimum number of
species required to account for10%, 20%, 30%, ..., 90% of the popula-
tion, here termed ‘dominants’.

Sampling standardization, subsampling and comparison of
continental data

We identified variations in the number of plots, stems, and species,
and the size and spatial clustering of plots as potential confounding
factorsliable to skew dominance and diversity results from our regional
datasets and impede rigorous comparisons between them. We used
sample-based rarefaction to quantify and account for the effect of
differencesinsample size (number of plots and stems) on our diversity
measures of interest; namely species richness, number, ranking and
identity of hyperdominants, hyperdominant percentage of total spe-
cies, and Fisher’s a. To quantify the effect of plot size, whichis smallerin
Southeast Asia data (mean 0.88 ha, median 0.49 ha) thanin Amazonia
and Africa data (both mean -1 ha, median 1 ha) we compared results
fromthe full datato those from plots >0.9 ha. We found that small plots
(x1ha)inflate per-plot species totals relative to larger plots (because
the rate of encountering new species is higher the smaller the plot
size; Extended Data Fig. 1), so we limited our analyses to plots >0.9 ha
to enable like-for-like comparison.

For Africa, we retained 368 plots covering 450 ha (mean plot area
1.22 ha, median1 ha, range 0.92-10 ha; 2% of plots 0.9-0.99 ha, 88%
of plots1ha, 8% of plots 1.01-5 ha, 1% of plots >5 ha) with mean tem-
perature of 24.3 °C (range 16.2-27.6 °C), mean annual precipitation
1,802 mmyr™, (range1,066-2,747 mm yr '), and mean elevation of 511 m
abovesealevel (range 41-2,070 m) per WorldClim®’. For Amazoniawe
retained 1,097 plots covering 1,434 ha (mean plot area1.31 ha, median
1ha, range 0.9-78.8 ha; 2% of plots 0.9-0.99 ha, 90% of plots 1 ha, 7%
of plots 1.01-5 ha, 1% of plots >5 ha) with mean temperature of 26.0 °C
(range 20.9-27.6 °C), mean annual precipitation 2,397 mm yr™ (range
1,119-4,284 mm yr™), and mean elevation of 154 m (range 0-1,142 m).
For Southeast Asia we retained 103 plots covering 164 ha (mean plot
area1l.59 ha, median 1 ha, range 0.96-4.5 ha; 1% of plots 0.9-0.99 ha,
48% of plots 1 ha, 52% of plots 1.01-5 ha, 0% of plots >5 ha) with mean
temperature of 25.7 °C (range 20.1-27.5 °C), mean precipitation
2,680 mmyr(range1,466-3,941mmyr™),and meanelevation of288 m
(range 10-934 m). We assessed if the remaining differences in plot
size affected theresults, using only the 1 ha plots from Africa (n = 323)
and Amazonia (n = 988), rarefied to the size of the Asia dataset, again
finding near-identical per cent hyperdominance on the two continents
(Africa: 7.30%, 95% confidence interval: 6.56-8.04; Amazonia: 7.35%,
95% confidence interval: 6.61-8.10).

To quantify the effect of the spatial clustering of plots, we compared
results from the full Amazonia data, as the largest dataset, to those from
subsets of the Amazonia datain which 1,2,3,...,10 plots were sampled
fromeach spatial cluster. We found that spatial clustering had a negli-
gible and not statistically significant effect on hyperdominant percent-
age and fitted values of Fisher’s a (Extended Data Fig. 2). Therefore, we
retainall plots for our analyses to maximize sample sizes. Computation
of percentage hyperdominance and dominance accounts for the effects
of variations in species richness on the number of hyperdominants
and dominants.

For sample-based rarefaction, 200 subsamples of 1, 2, ..., N, plots
were drawn, without replacement, from the N, totalnumber of plotsin
the pth dataset, the stems contained in each subsample were pooled,
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and the mean total species, number of hyperdominants, hyperdomi-
nance percentage, and Fisher’s a were calculated across the subsam-
ples. Similarly, we tallied the number of subsamples in which each
speciesinthe dataset qualified as hyperdominant at each level of sub-
sampling and compared results between datasets at subsample sizes
equating to amean 10,000, 20,000, ..., /, individual trees, where /, is
thetotal number of treesin the pth dataset. Confidence intervals were
calculated as confidence interval = u + 1.96 x g, where p values are the
means of the diversity metrics calculated across the 200 iterations of
subsamples taken without replacement, and o values are the s.d. of
the mean of diversity metrics calculated across the 200 iterations of
subsamples taken with replacement (to reduce the degree to which
confidence intervals were conditional on the sample). For point esti-
mates, all datasets were compared at the common sample size of the
Southeast Asia dataset (77,587 stems equivalent to 150, 116 and 103
plotsin Africa, Amazonia and Southeast Asia, respectively).

Extrapolation and bias correction of log series fits to the
empirical data

We extrapolated our empirical SADs to SADs at the scale of the entire
Amazonian, African, and Southeast Asian regional level via analytical
expansion and bias correction of Fisher’s log series fits following the
methodology of ter Steege et al.” developed using the ATDN data that
comprise our Amazonia dataset.

Ter Steege® et al. found that simulations of sampling of plots with
conspecific aggregation from log series-modelled SADs provide
extremely good approximations of the processes that generate tropi-
cal forest inventory data—that is, non-random sampling of plots con-
taining species with limited dispersal and/or ecological preferences.
They further found that estimates of species richness derived from
samples taken with conspecific aggregation from the simulated SADs
substantially underestimated the true species richness of the simulated
SADs, butthatalinear relationship with low variance existed between
the true and sample-derived values. Thus, although conspecific aggre-
gationinthe empirical dataintroducesbiasin the log series-modelled
SADs extrapolated therefrom, quantification and correction of the
effects of this bias on regional estimates of species richness is possible.
Therefore, to estimate speciesrichness at the regional level, they fitted
Fisher’slogseries to empirical species abundance data, quantified the
effect of conspecific aggregation on these estimates via simulation,
and applied quantified corrections to give more accurate estimates of
regional species richness taking into conspecific aggregation. Thus,
this approach corrects for species-specific aggregation at the plot
scale depending on species density.

To estimate regional numbers and proportions of dominants and
hyperdominants as well as species richness, we extended the method-
ology of ter Steege et al.” to log series-derived estimates of regional
numbers and proportions of dominants and hyperdominants. Initially,
values of Fisher’s a were fitted to the empirical species abundance
vectors from each region using maximum likelihood and numerical
optimization in the ‘sads’ R package™ and fits visualized with Preston
plots”and rank abundance distributions (RAD)** (Extended Data Fig.4).
Regional species totals S, not accounting for bias introduced by con-
specific aggregation, were then estimated® via S=a x In(1+ % with
total number of trees >10 cm trunk diameter at the continental level
(N) from the Global Tree Density map of Crowther et al.®® with each
tropical region delineated within the ‘tropical and subtropical moist
broadleaf forests’ biome of Olson et al.®°. Aninverse quantile function
from the sads R package’® was thenapplied to generate (uncorrected)
continental-scale SADs for each region using the above fitted a, esti-
mated Sand N.

For the quantification of bias and computation of corrections, we
firstsimulated 250 log series SADs with known values of total species,
S randomly drawn from the range of plausible regional species totals
(10,000-25,000 in Amazonia and Southeast Asia; 2,000-10,000 in

Africa) and N, the number of trees in each region =10 cm trunk diam-
eter from Crowther et al.®. We calculated known values of numbers of
hyperdominants, H,, and percentage hyperdominance, P,, from each
ofthese simulated distributions. Using a negative binomial distribution
to simulate conspecific aggregation per ter Steege et al.”, we then
simulatedjrandom samples of 1-ha plots from each of the 250 simulated
SADs, withjequal to the number of plots in the empirical data, and the
expected abundance of each species in each plot equal to its mean
regional density (total abundance/regional area). We then estimated
(uncorrected) speciesrichness, S, fromeach of the samples by fitting
Fisher’s ato the sampled dataand applying the formulas,=a xIn (1 + g)
From each of the samples we also derived continental-scale uncor-
rected SADs (see above), from which the number of hyperdominants,
H,, and percentage hyperdominance, P,, could be directly calculated,
via analytical expansion of the log series using the fitted values of ¢
and corresponding values of S,.. We then regressed the known values
of S;, H,and P, from the simulated SADs against the estimated (uncor-
rected) values S, H,and P, from the samples drawn with conspecific
aggregationacross all 250 simulations—thatis, fit linear models of the
formA,=mxA,+cforA=S,H,P.Thissame procedure was also applied
to the number and proportion of dominants.

Across all three regional datasets, the above procedure outlined a
linear relationship with low variance between known values of species
richness, number of dominants and hyperdominants, and percentage
hyperdominance and dominance, and values thereof estimated from
sampling with conspecific aggregation (Extended Data Fig. 5). Thus,
constant terms with low variance were readily applicable to correct
for bias in the point estimates of species richness, number of domi-
nants/hyperdominants, and percentage hyperdominance/dominance,
derived from the empirical Africa, Amazonia, and Southeast Asia data.
To capture uncertainty around each bias-corrected point estimate,
prediction intervals (PI) were derived as Pl = 4 +1.96 x g,,, where utis
the predicted mean value of the point estimate according to thelinear
regression, and gy, is the Pl standard error, calculated as op = /02 + 03,
where gis the standard error of predicted means and gy is the residual
s.d. (and 1.96 is the 0.05 quantile of a ¢-distribution).

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Thespeciesabundance data thatsupport the findings of this study are
available from https://doi.org/10.6084/m9.figshare.21670883 (format-
ting notes: a column for each species, rows for each plot, entries are
the number of trees =10 cm diameter of each species in each plot).
WorldClim® bioclimatic data are available from https://www.worldclim.
org/data/bioclim.html.

Code availability

R code (version 4.3.1) to run the analyses and produce the figures and
tables is available from https://github.com/declancooper/Common-
Species2022.git.
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Extended DataFig. 5| Bias correction of estimates of species richness

(first column), number of hyperdominants (second column), percentage
hyperdominance (third column) for the Amazonia (first row), Africa
(second row) and Southeast Asia (third row) datasets. X-axes show estimated
values derived from samples of the simulated communities taken with
conspecificaggregation, Y-axes show true values of the simulated communities.
Points show estimated true values for each of the 250 simulated communities.

1:1equivalence shown by straightline in each plot. For number of
hyperdominants and total species plots, simulated communities containing
100t025,000 speciesin Amazoniaand Southeast Asia, 100 to 10,000 species
in Africaareshown. For percentage hyperdominance, simulated communities
containing10,000t0 25,000 speciesin Amazoniaand Southeast Asia, 2,000 to
10,000 speciesinAfricaareshown.
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Extended Data Table 1| Empirical summary statistics and hyperdominance results for tree species data in Africa, Amazonia,
and Southeast Asia

Plots Stems %ID H# TS H% a

Africa 368 189,948 92.7 82 1,416 5.79 210
Amazonia 1,097 736,270 93.7 224 4492 499 644
Southeast Asia 103 77587 916 172 2,585 6.65 526

#H = Number of hyperdominants, TS = Total Species, H% = Percentage hyperdominance, a = Fisher’s a, Stems = Total number of stems, Plots = Total number of plots, %ID = Percentage of stems
identified to the species level.



Extended Data Table 2 | Rarefied minimum number of species required to account for 10%, 20%, ..., 90% of trees in the Africa,
Amazonia, and Southeast Asia data, resampled to the common sample size of the Asia dataset (77,587 stems)

10% 20% 30%  40% 50% 60% 70% 80% 90%
Africa 4 13 26 46 77 121 186 296 592

[2,7] [8,17] [19,33] [36,57] [62,92] [102,139] [163,209] [264,328] [494,689]
Amazonia 8 28 60 106 174 276 434 709 1413

[4,13] [17,38] [42,77] [79,133] [134,215] [214,337] [339,528] [553,864] [1029,1797]
Southeast 9 26 54 98 172 285 468 790 1778
Asia [5,13] [17,35] [36,72] [66,130] [125,219] [220,350] [380,556] [670,910] [1427,2129]

Percentage headings represent the different dominance thresholds. Confidence intervals are derived from the standard deviation across iterations of subsamples taken with replacement at the
sample size of the Asia dataset.
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Extended Data Table 3 | Rarefied proportion of total species required to account for 10%, 20%, ..., 90% of trees in the Africa,
Amazonia, and Southeast Asia data, resampled to the common sample size of the Asia dataset (77,587 stems)

10% 20% 30% 40% 50% 60% 70% 80% 90%

Africa 0.36 1.11 2.28 4.09 6.79 10.67 16.47 26.18 52.28
[0.12,0.61] [0.71,1.51] [1.64,2.93] [3.1,5.07] [5.39,8.20] [8.89,12.44] [14.28,18.65] [23.22,29.15] [43.00,61.56]

Amazonia 0.33 1.09 2.32 414 6.80 10.74 16.90 27.63 55.06
[0.15,0.51] [0.67,1.50] [1.63,3.01] [3.09,5.19] [5.24,8.36] [8.40,13.09] [13.30,20.50] [21.68,33.58] [40.37,69.76]

Southeast 0.35 1.01 2.09 3.79 6.65 11.03 18.10 30.56 68.78

Asia [0.19,0.51] [0.61,1.41] [1.27,2.91] [2.38,5.20] [4.59,8.71] [8.24,13.82] [14.47,21.73] [25.78,35.34] [52.50,84.97]

Percentage headings represent the different dominance thresholds. Confidence intervals are derived from the standard deviation across iterations of subsamples taken with replacement at the
sample size of the Asia dataset.



Extended Data Table 4 | Extrapolated minimum number of species required to account for 10%, 20%, ..., 90% of trees in
Africa, Amazonia, Southeast Asia, and the cross-regional total at the regional scale

10%  20% 30% 40% 50% 60% 70% 80% 90%
Africa 7 22 41 69 104 154 228 354 713
[4,10] [19,25] [38,44] [66,71] [101,107] [151,157] [225,231] [351,357] [709,717]
Amazonia 20 62 120 196 299 443 651 1000 1892
[16,25] [58,66] [116,124] [192,201] [295,304] [438,447] [647,656] [995,1005] [1886,1899]
Southeast 12 51 106 179 278 417 625 988 2243
Asia [1,23] [40,62] [95,116] [168,189] [268,289] [406,427] [614,636] [977,1000] [2225,2262]
Total 39 135 267 444 681 1014 1504 2342 4848

[21,58] [117,153] [249,284] [426,461] [664,700] [995,1031] [1486,1523] [2323,2362] [4820,4878]

Percentage headings represent the different dominance thresholds. Prediction intervals combine uncertainty from the standard error of predicted means and the residual standard deviation
of the regression of the bias correction fit. ‘Total” minimum number of species required to account for 10%-90% of trees across all of the regions are calculated as the sum of the number of
hyperdominants across the three major tropical forest regions.
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Extended Data Table 5 | Extrapolated proportion of total species required to account for 10%, 20%, 30%, ..., 90% of trees in
Africa, Amazonia, Southeast Asia, and the cross-regional total at the regional scale

10%

20%

30% 40%

50%

60% 70%

80%

90%

Africa 0.16
Amazonia 0.14
Southeast Asia 0.14

Total 0.13

0.48
0.44
0.46
0.44

0.90 1.48
0.86 1.41
091 15

0.88 1.46

2.23
2.16
2.32
2.24

3.31 4.90
3.21 4.72
345 5.14
3.33 4.94

7.60
7.25
8.10

7.70

15.29
13.73
18.34
15.93

Percentage headings represent the different dominance thresholds. ‘Total’ minimum proportion of total species required to account for 10%-90% of trees across all of the regions are calcu-

lated as the proportion between the sum of the number of hyperdominants and the sum of total species across the three major tropical forest regions.
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are available from https://www.worldclim.org/data/bioclim.html.
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Sample size No sample size calculation was performed. We selected all available plots meeting the following criteria: forest inventory plots >0.2 ha in size,
situated in structurally intact (no logging or fire), closed canopy (not dry forest or savanna) tropical forest, with enumeration of all stems > 10
cm diameter, in which > 80% of stems are identified to the species level. These criteria allow direct comparisons to be made with results from
previous studies investigating common species abundances in Amazonia. The major tropical forest regions of Amazonia, Africa, and Southeast
Asia are adequately represented. This is the largest dataset of repeatedly measured plots ever used to calculate long-term trends in African
forest carbon dynamics.

Data exclusions  Plots not meeting the following criteria were excluded from analysis: forest inventory plots >0.2 ha in size, situated in structurally intact (no
logging or fire), closed canopy (not dry forest or savanna) tropical forest, with enumeration of all stems > 10 cm diameter, in which > 80% of
stems are identified to the species level. These conditions were pre-established in line with previous studies.

Replication Replication of repeated random subsampling 200 times ensured that derived results were stable and reproducible.

Randomization  Forest inventory data were partitioned into the the Amazonia, Africa, and Southeast Asia study regions by location. In all of the analyses,
sampling and sub-sampling by plots and by trees within plots was done completely randomly within regions.
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