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Virtual Patient Simulation Using Copula 
Modeling
Laura B. Zwep1 , Tingjie Guo1 , Thomas Nagler2 , Catherijne A.J. Knibbe1,3 ,  
Jacqueline J. Meulman4,5 and J. G. Coen van Hasselt1,*

Virtual patient simulation is increasingly performed to support model-based optimization of clinical trial designs 
or individualized dosing strategies. Quantitative pharmacological models typically incorporate individual-level 
patient characteristics, or covariates, which enable the generation of virtual patient cohorts. The individual-level 
patient characteristics, or covariates, used as input for such simulations should accurately reflect the values 
seen in real patient populations. Current methods often make unrealistic assumptions about the correlation 
between patient’s covariates or require direct access to actual data sets with individual-level patient data, which 
may often be limited by data sharing limitations. We propose and evaluate the use of copulas to address current 
shortcomings in simulation of patient-associated covariates for virtual patient simulations for model-based dose 
and trial optimization in clinical pharmacology. Copulas are multivariate distribution functions that can capture joint 
distributions, including the correlation, of covariate sets. We compare the performance of copulas to alternative 
simulation strategies, and we demonstrate their utility in several case studies. Our work demonstrates that copulas 
can reproduce realistic patient characteristics, both in terms of individual covariates and the dependence structure 
between different covariates, outperforming alternative methods, in particular when aiming to reproduce high-
dimensional covariate sets. In conclusion, copulas represent a versatile and generalizable approach for virtual 
patient simulation which preserve relationships between covariates, and offer an open science strategy to facilitate 
re-use of patient data sets.

Model-based approaches in pharmacometrics and quantitative sys-
tems pharmacology (QSP)1–3 have become of pivotal importance 
for the optimization of drug treatment strategies or clinical trial 
designs.4,5 These model-based approaches typically simulate the 
expected pharmacokinetic (PK) and/or pharmacodynamic (PD) 
response and the associated interindividual variability for a cohort 

of virtual patients. Here, the interindividual variability in the PK 
or PD response is often in part captured by patient-specific char-
acteristics, such as age, weight, organ function biomarkers, or spe-
cific genetic polymorphisms, incorporated in quantitative PK-PD 
or QSP models. The increasing public availability of quantitative 
PK-PD or QSP models for many important therapeutics thus 
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE 
TOPIC?
	; Trial and dose optimization for different types of patient 

populations can be informed simulations from pharmacoki-
netic and pharmacodynamic models. Typically, this virtual 
patient simulation requires simulation of realistic patient char-
acteristics and combinations of these characteristics.
WHAT QUESTION DID THIS STUDY ADDRESS?
	;How can copulas be used for simulation and sharing of real-

istic patient data?
WHAT DOES THIS STUDY ADD TO OUR 
KNOWLEDGE?

	; Copulas are able to simulate realistic patient characteristics 
in higher dimensions. The distribution-based approach allows 
for the interpolation to new patient populations of interest, and 
sharing of simulations and creating simulation tools.
HOW MIGHT THIS CHANGE CLINICAL PHARMA-
COLOGY OR TRANSLATIONAL SCIENCE?
	; Copula simulations can assist in clinical trial development 

and dose optimization through in silico studies of different vir-
tual (special) patient populations, by retaining the dependence 
structure between patient’s covariates. The copula approach al-
lows for sharing of simulated populations and simulation tools, 
removing the need to share the underlying patient data.
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offers extensive opportunities for the clinical pharmacology com-
munity to perform virtual patient simulations. These simulations 
may aid in design of (stratified) dosing strategies, in particular for 
new (special) patient population populations,6 such as pediatric7–9 
or pregnant patients,10 or to evaluate different potential trial de-
signs in specific types of patients or treatments11–13 (Figure 1a).

A key requirement to enable simulation of realistic virtual patients 
is to produce realistic sets of patient-associated characteristics or co-
variates used in the model. Such covariates can include demograph-
ics (e.g., body weight, and sex, age), organ function measures (e.g., 
renal or hepatic function), PD end points (cardiovascular readouts 
and biochemical biomarkers), and increasingly also high-dimen-
sional pharmacogenomic data. Importantly, such covariates may 
have various distributions, including an intricate dependency struc-
ture (i.e., correlation) that must be accounted for in virtual patient 
simulation to produce realistic patient-profiles (Figure 1b). Not 
considering such correlations leads to an inflation of the variability 
in covariates and hence unrealistic virtual patients. For example, a 
patient of 95 years old, with a high body weight and a very good 
kidney function is a combination that is not expected to actually 
exist. Next to more mechanistic simulation methods,14 various data 
analytical strategies are available to generate sets of realistic patient 
covariates for virtual patient simulation. These strategies are either 
based on methods that require direct access to the appropriate indi-
vidual patient-level covariate data, which may often not be available, 
or on methods that characterize the covariate distributions.

Covariate generation methods that utilize available pa-
tient-level covariate data include resampling methods, such as 

the bootstrap,15 which preserve the dependence structure of the 
patient covariates by directly resampling from the observed data. 
However, these methods are only able to simulate patients that are 
already present in the data set and require a large enough number 
of patients to be included. These shortcomings were addressed 
by a recently proposed imputation method using conditional dis-
tributions (CDs),16 although this method remains dependent on 
access to patient-level data. Distribution-based simulation meth-
ods for virtual patient simulation do not require patient-level 
data access. Although initially distributions are often derived 
from patient-level data, subsequent use of these distributional 
models to generate sets of patient-level covariates is indepen-
dent of access to such data. The most straightforward strategy is 
to capture the marginal density of covariates in univariate para-
metric distributions with associated means and variances for 
each covariate, and to subsequently draw random samples from 
these distributions. However, such an approach assumes that co-
variates are fully independent and do not show any correlation. 
Alternatively, multivariate normal distributions (MVNDs)17 do 
capture the correlation structure,18 but make strong assumptions 
regarding the (multivariate normal) distributional shape, which 
is commonly violated. Thus, depending on the distribution of the 
covariates of interest this again can lead to unrealistic sets of vir-
tual patient covariates.

Copulas are multivariate distribution functions that can cap-
ture the joint distribution, including the dependence structure for 
sets of covariates, and are thus of interest as a distribution-based 
approach for generating realistic sets of covariates. They address 

Figure 1  Pharmacometric workflow. (a) In order to optimize dosing for new medication or special patient populations, pharmacometric models, 
such as PK/PD models, are used to simulate new patient dosing regimens. Next to the developed pharmacometric model, simulation studies 
require covariate simulation. (b) An important challenge for covariate simulation is sampling realistic patients, where the dependency between 
covariates is preserved. PD, pharmacodynamic; PK, pharmacokinetic.

(a) (b)
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shortcomings of alternative distribution-based methods while not 
requiring access to patient-level data.19–21 In this study, we aim to 
evaluate and demonstrate the utility of copulas as a novel strategy 
to support realistic virtual patient simulation in the context of the 
field of clinical pharmacology. We first compare the performance 
of copula models in comparison to existing methods, including 
the bootstrap, CD, MVND, and marginal distribution. We then 
demonstrate the application of copulas in three case studies focus-
ing on PK simulations, time-varying covariates, and higher-dimen-
sional covariates.

METHODS
Data
Three different data sets of combined patient characteristics were used 
in this study to evaluate the performance and explore different applica-
tions (Figure S1). The first data set contains a special patient population 
of pediatric patients22 with 445 neonates and young children admitted 
to the intensive care unit (ICU), with 12 measured covariates, including 
body weight, serum creatinine (SCr) level, and age. These data were used 
to evaluate the simulation performance (data set 1, Table S1). A second 
data set on pregnancy data23 with 123 subjects, with biomarkers mea-
sured over time, was used to simulate longitudinal covariate profiles (data 
set 2, Table S2). Last, MIMIC,24 a large observational data set with ICU 
patients, was used to evaluate the correlation structure between a large set 
of 30 variables for > 53,000 patients (data set 3, Table S3).

Copula estimation and simulation
Vine copulas were used to estimate the joint density between all co-
variates. Vine copulas are multivariate densities constructed through a 
combination of copula pairs, which increases flexibility and reduces the 
computational burden for the estimation of the copulas.25 Kernel density 
estimation was used to estimate the marginal density of each covariate. 
Using the probability integral function, the covariates were transformed 
to a uniform scale, with values on the [0,1] domain.26 Based on the cor-
relations between the covariates, a vine structure was chosen, where the 
most correlated covariates were placed closer to each other in the vine 
structure.27 For each bivariate copula, a set of parametric distributions 
was fit and the best fitting distributions were chosen by minimizing the 
Akaike information criterion (AIC). Vine copulas with different distri-
butions were fit using the R library rvinecopulib.28 The resulting copula 
density was used to simulate covariates with uniform marginal densities. 
The earlier estimated marginal densities were used to transform these 
covariates back to their original scale, yielding the simulated covariate 
sets for virtual patients. All analyses were performed in R. Scripts and 
estimated copulas are available on GitHub (https://​github.​com/​vanha​
sselt​lab/​copula_​vps).

Evaluation of simulation performance
To evaluate how well copulas can be used for simulation of covariate 
sets, we calculated the performance of copula simulations on the pe-
diatric data22 (data set 1). The estimation and simulation were per-
formed in 2 differently sized covariate sets, with the same subjects, but 
a different number of covariates: one simulation on 3 covariates, age, 
SCr, and body weight, and one on 12 covariates. The distribution of 
the simulated population was compared with the distribution of the 
observed population in terms of the sample mean and sample standard 
deviation for each covariate and the sample correlation between each 
combination of covariates. A relative error was computed for each of 
these statistics (S) as

where Ŝ  denotes the statistic of the simulated population. The sim-
ulations were repeated 100 times.

The copula results were compared with four other simulation methods, 
of which two methods are based on patient-level data and two methods are 
based on characterization of the covariate distribution. Bootstrap simula-
tions were conducted by resampling full rows from the original data with 
replacement.15 The CD approach, which uses a multiple imputation algo-
rithm to iteratively impute covariate values for virtual patients, was used as 
implemented by the developers of the method.16 The standard multiple 
imputation method “predictive mean matching” was used, corresponding 
to their paper. The distribution-based methods used were the MVND and 
marginal distributions (MDs), through maximum likelihood estimation. 
The best fitting multivariate normal distribution was fitted. The univari-
ate MDs of each covariate was estimated using a kernel density estimation 
method.26,29 Covariate values were sampled from the respective density 
functions.

Applications

Pharmacokinetic simulation of vancomycin in pediatric patients. 
For the proposed copula approach, the effect of preserving the depen-
dence structure in covariate simulation methods was evaluated on PK 
predictions in pediatric patients. To this end, for data set 1, the per-
formances of the use of body weight and SCr from the three-covariate 
copula, the MDs, and the MVND simulation were compared in a pop-
ulation PK one-compartmental model for vancomycin.30 In case of the 
MVND, the covariates were log-transformed before fitting an MVND, 
to ensure non-negativity while simulating the body weight and SCr val-
ues. The simulated values were back-transformed to original scale.

This PK model was used to calculate the PK curves from the original 
pediatric covariate data (data set 1) and the simulated covariate data from 
the three-covariate copula and MD simulations. These PK profiles were 
compared using the area under the curve (AUC) of the first 24 hours 
after dosing, calculated using a trapezoidal method. The correlation be-
tween the AUC and the covariates, and the SCr and body weight, was 
evaluated to identify whether this correlation was recovered between the 
covariates and the PK curve.

Time-varying covariates in pregnancy data. One of the possible ap-
plications of using copulas is the simulation of time-varying covariates. 
Using data set 2 with 6 time-varying covariates ( y) over the gestational 
age (t) during pregnancy,23 including albumin concentration, bilirubin 
concentration, lymphocytes, neutrophils, platelets, and SCr, we fit a cop-
ula to simulate time-varying covariates in a two-step procedure. First, we 
fitted a second degree mixed effects polynomial regression model on the 
temporal data for each covariate j and extracted 3 individual parameters 
for each patient i, the intercept (�0j + b0ji), the linear term (�1j + b1ji), 
and the quadratic term (�2j + b1ji), resulting in a total of 18 dimensions.

Relative error =
Ŝ − S

S
,

dA

dt
= ko −

CL

V
⋅ A

CL =
3.56 ⋅WT

SCr

V = 0.669 ⋅WT

ŷij(t) = �0j + b0ji + �1j ⋅ t + b1ji ⋅ t + �2j ⋅ t
2 + b2ji ⋅ t

2

b0ji ∼ N
(

0, �0

)
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For example, yielding for albumin concentration:

Second, instead of fitting a copula directly on the longitudinal co-
variates, the copula was fitted on the set of individual parameter es-
timates, yielding the six new sets of intercepts, linear, and quadratic 
terms for each simulated patient. To create time-dependent covariates, 
the curves for each patient were retrieved from the simulated param-
eter sets. The performance of the copula simulation was evaluated 
by comparing the time-curves estimated from the copula simulated 
time curves with those estimated on the original pregnancy data. The 
performance was evaluated both in terms of the simulated individual 
parameters as the calculated time-curves. Next to simulation with 
the copula, the time-varying covariates were simulated in a similar 
two-step approach with MDs, to compare the differences between the 
MDs and copula.

Covariate distributions in large ICU data. To characterize the joint dis-
tributions in a large data set, copula simulation was used to characterize 
and simulate from the MIMIC database (data set 3).24 A copula model 
was fit to a large data set of 30 available patient-associated covariates with 
primary focus on clinical laboratory measurements from > 53,000 ICU 
patients. There were many values missing over the covariates and sub-
jects. To estimate the copula on missing data, for each combination of 
covariates needed for a node in the vine copula structure, the complete 
observations were used. This simulation was used to demonstrate how 
copulas can be used to characterize the underlying dependency structure 
of these covariates and evaluate the correlations.

RESULTS
Evaluation of simulation performance
The performance of the copulas was assessed on 2 differently sized 
data sets, one with 3 covariates, and one with 12 covariates (data 
set 1). First, for a set of 3 covariates, copulas show a low relative 
error of −0.02, −0.08, and −0.04 for the terms of correlations be-
tween age and body weight, age and SCr, and body weight and 
SCr, respectively (Figure 2a). Second, for the 12-covariate simu-
lations, the copula simulation slightly underestimates the covari-
ances with a median error of −0.05 over all covariate combinations 
(Figure 2b).

The performance of copulas was compared with four other 
simulation methods. For the 3-covariate simulation the copula 
yielded similar results to the conditional distributions, which 
has relative errors of −0.01, −0.12, and −0.03 (Figure 2a), 
but for the 12-covariate simulations, the CD simulations show 
a large median underestimation with a relative error of −0.60 
(Figure 2b, Table S4). The bootstrap shows the best perfor-
mance, because it can fully keep the dependence structure in-
tact, both in the 3-covariate (Figure 2a) and the 12-covariate 

simulation (Figure 2b). The MDs was unable to capture any 
correlation, which is seen in the relative error of around −1.0 for 
each covariate combination. The MVND shows a good perfor-
mance in the estimates for correlation, mean, and standard devi-
ation, but a visual check of the density plots shows a non-normal 
distribution of the covariates, which is not well covered by the 
simulated density (Figure S2).

Overall, copulas performed closest to the bootstrap, which can 
fully capture the dependence, but it was not able to capture all co-
variate combinations equally well, such as a large overestimation 
of the combination CREF and FRCR. The 12-covariate model 
showed a weakness in the conditional distributions, which the 
copulas did not show and, although the MVND shows very good 
summary metrics, the distributions themselves perform worse than 
the copula (Figure S2).

Applications

Pharmacokinetic simulation of vancomycin in pediatric patients. 
The effect of ignoring the correlation between covariates on PK 
simulations was evaluated by comparing the PK curves from 
the copula simulations with those from the MDs simulation. 
Covariate sets simulated for SCr and body weight from data 
set 1 were used to predict PK profiles and compute subsequent 
AUCs. The AUCs from the copula and the MDs simulations 
did not show differences in summary statistics, such as the 
median and quartiles (Figure 3a). For the log-MVND, a part 
of the simulated values was outside of the range of the original 
data and the normal distribution lead to a lower median AUC 
and higher 97.5 percentile. However, when comparing the 
correlations between the covariates and the AUC, we found 
that the original correlation between the AUC and body weight 
(r = −0.67) was lost in the MD simulations (r = −0.07), whereas 
the copula (r = −0.66) and the MVND (r = −0.58) mostly 
preserved their dependence (Figure 3b). If the dependence 
between variables is not taken into account, this can lead to 
unrealistic virtual patients, such as individuals with a high body 
weight having a high AUC.

Time-varying covariates. To evaluate how well copulas can be 
used to simulate time-varying covariates, a two-step simulation 
method was used to simulate patients, with and without taking 
the dependency into account, by simulating from a copula 
and MDs, respectively. For the time-varying covariates in 
the pregnancy data (data set 2), polynomial linear regression 
curves were fitted for each covariate, resulting in polynomial 
equations. The individual parameters were estimated, 
resulting in a set of 18 parameter estimations for all subjects. 
A set of virtual patients was simulated from the estimated 
individual parameters. The correlations between the individual 
parameters from the simulated patients were on average close 
to the correlations between the estimated parameters of the 
observed data. The simulated individual parameters were used 
to generate time-varying covariate values, by calculating the 
curves from the intercept and the linear and quadratic terms. 
Polynomial regression coefficients were simulated in a realistic 

b1ji ∼ N
(

0, �1

)

b2ji ∼ N
(

0, �2

)

̂Albumin conci(t) = 44.1 + b0i ± 0.269 ⋅ t + b1i ⋅ t + 0.0017 ⋅ t2 + b2i ⋅ t
2

b0i ∼ N (0, 1.86)

b1i ∼ N (0, 0.105)

b2i ∼ N (0, 0.00224)
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range, apparent from the calculated polynomial curves which 
overlap the observed polynomial curves, whereas simulating 
from an MD led to more extreme polynomial curves, with a 
five times higher error on the standard deviation of the AUC 
(Figure 4). This shows how covariate values can be inflated 
when simulating independent covariates.

Covariate distributions in large ICU data. To establish the use 
of copula for simulation in a larger data set, a simulation was 
conducted based on 30 covariates from the MIMIC database 
(data set 3). Copula estimation and simulation was feasible on this 
large data set, showing how copulas can be useful for simulation 
for extensive pharmacometric models. The higher dimension did 
increase the underestimation of the correlations to a relative error 
of −0.11, which was slightly worse compared with the estimation 

in the lower dimensional 12- and 3-covariate data sets (Figure S3).  
Some covariates show interesting dependency structures, which 
can be evaluated and be used in covariate selection decision 
making (Figure 5). The results from the larger data set also show 
that through the use of copulas, it is feasible to share hospital data 
distributions.

DISCUSSION
We showed a competitive or superior performance of copula simu-
lations compared with other simulation methods, and we demon-
strated multiple applications for covariate simulations using 
copulas. Copulas were able to preserve the correlations between 
covariates in lower and higher dimensional data sets. Preserving 
the dependence structure in copula simulations allows for sim-
ulating covariate sets for realistic PK predictions, time-varying 

Figure 2  Relative error over 100 simulations as compared with the statistics of the observed population for five different simulation methods. 
(a) Boxplots of the correlation, mean and standard deviation of three covariates. (b) Median relative error of a large covariate simulation for 
the correlations of each combination of 12 covariates. BW, body weight; SCr, serum creatinine.
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covariates, and in a large-scale data set, that is, the MIMIC data, 
thus making it a suitable method for virtual patient covariate sim-
ulations in a variety of settings. Copula simulation has apparent 
benefits over currently used methods, because these either neglect 
the dependence structure among the covariates, the shape of their 
distribution, or rely on real patient data in simulation.

We evaluated the performance of copulas compared with other 
simulation methods. Although performing well in lower dimen-
sions, we observed increasing underestimation in higher dimen-
sions for CD, making the method less suitable for simulations 
in higher dimension, which is an increasingly important feature, 
due to the rise in models which include multiple biomarkers and 
clinical covariates.31 The MVND showed very promising re-
sults in terms of capturing the correlation (Figure 2). However, 
this is an inherent feature of how the MVND is estimated, 
which is based on the mean, standard deviation, and covari-
ance. It does, on the other hand, not capture the actual shape 

of the distribution when covariates are not normally distributed 
(Figure S2). Although the bootstrap can fully preserve the de-
pendence structure between covariates, it cannot be used for 
simulation when actual data are unavailable. Additionally, due 
to the resampling nature of the bootstrap, one cannot simulate 
covariate values for virtual patients beyond which are present in 
the actual data set, which may result in simulating an unbalanced 
virtual patient population. Although copulas require the use of 
underlying data to be estimated, the simulated covariate values 
and the joint density functions can be shared without including 
any patient information, making it possible to publish the simu-
lated data sets and simulator. The application of MDs was shown 
to simulate unrealistic patients, in the three situations studied.

Preserving the dependence between covariates is required for 
simulation of realistic patients in terms of PK predictions in the 
pediatrics vancomycin model, used in this study. The copula was 
able to preserve the relationship between the body weight and the 

Figure 3  (a) Pharmacokinetic (PK) curves calculated for the observed population and the virtual patient populations from copula simulations, 
the multivariate normal distribution (MVND) and the marginal densities (MDs). The median and quantiles show a similar pattern between 
copula and MDs, however, the weight is randomly distributed over the PK profiles for the simulation with MDs. The MVND shows the same 
correlation, but a slightly different pattern in the median and quantiles. (b) Scatter plot of area under the PK curve (AUC) against body weight 
(log-scale).
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AUC, which is of high clinical relevance. This feature of copulas 
provides a significant insight into how PKs may differ between 
subgroups of patients. It allows one to optimize the dose for a par-
ticular patient group or to study the differences between patient 
groups. We found that PKs at the population level is not affected 
by the method used for virtual patient simulation (Figure 3). This 
is expected due to the negative correlation between SCr and body 
weight and the inversely proportional relation between these co-
variates in their effect on the PKs. An unrealistic individual, with 
high body weight and high SCr, would still have a PK profile 
within a realistic range. However, the impact of preserving the de-
pendence structure can differ per model, as can be seen in simulat-
ing the time-dependent covariates in the analysis of the pregnancy 
data. Here, polynomial regression coefficients need to be simulated 
in a realistic domain, in order to preserve the structure of the data, 
both on the individual and population levels. Simulating from a 
marginal distributions lead to extreme polynomial curves.

Access to real individual-level patient data is often hampered by 
personal data protection regulations, which is a significant obsta-
cle for community-driven design of optimized treatment strategies 

and trial designs.32 Although copulas are mostly estimated on 
data, resulting copulas can be easily shared without sharing patient 
data, allowing one to use established copulas for virtual patient 
simulation.33 Using copulas both opens opportunities for better 
replication and comparison studies, and copulas can facilitate in 
simulation platforms for sharing patient characteristics. As such, 
it is possible to simulate patients from the data used in this study 
using the vine copula objects and scripts shared on GitHub.

In pharmacometric models, covariates typically only explain 
part of the interindividual variation, with the remaining variation 
accounted for by the random effects. Depending on the model, the 
contribution of the covariates in explaining variability can vary. 
Therefore, in order to appropriately simulate virtual patient co-
horts using pharmacometric models, accurate modeling of interin-
dividual random effects parameters and their correlation structure 
can be considered of equal importance.

The sharing of models has become more common in the phar-
macometrics community, for example, through platforms for 
model sharing, such as DDMoRe. However, models often re-
quire covariate input. Copulas can be used to set up a large-scale 

Figure 4  Polynomial curves for the six biomarkers from pregnancy data. In gray are the estimated curves from the observed data. The copula 
(turquoise) shows very similar patterns, whereas the marginal distribution (yellow) shows extreme values, especially at the end of the curve. 
SCr, serum creatinine.
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covariate simulation platform, which can accompany the shared 
models to allow the clinical pharmacology community to simulate 
clinical trials and dosing regimens for (special) populations, even 

when there is no patient-level data available (Figure 6). For these 
sharing opportunities, it is of interest to share a larger number of 
covariates, even though not all covariates are used in the same phar-
macometric model.

The use of vine copulas allows for the estimation of flexible 
multidimensional densities. It, however, requires to choose a tree 
structure, which in this study was done using the AIC.27 The AIC 
penalizes the size of the model, in terms of number of parameters in 
the distribution, which prevents always choosing the distribution 
with more parameters, which is the case when using the log-likeli-
hood directly.20

This paper did not address simulation of categorical variables. 
Discrete, ordered categorical and binary covariates can be captured 
as a copula, by using rank-based distributions,34 however, the copula 
method is not able to deal with unordered categorical variables in 
a natural way, because the used copula functions are monotonic.35

Regardless of the method of simulation, further research would 
also require looking into the underestimation of the correlation 
by the different simulation techniques, because there are limits 
to the full characterization of the joint distribution. Visualization 
of the simulation through density plots allows to investigate how 
severe the discrepancy between the observed and population and 
the copula is and whether it seems clinically relevant. This can be 
evaluated on the level of the covariates, but also by looking at the 
outcomes of pharmacometric models.36

Figure 5  Set of selected covariate combinations with the densities of the observed population (gray dashed line) and the simulated population 
from a copula (blue solid lines), with marginal densities on the top and right sides of each plot. More overlap between the lines shows a better 
correspondence between the observed and simulated patient covariates.
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Figure 6  Community access pharmacometrics research pipeline. 
Data and pharmacometric models from (special) patient populations 
can be shared with the clinical pharmacology community. Through 
copulas, covariate sets can be simulated, which, when used in PK/PD 
models, can aid treatment and dosing optimization, ultimately improving 
treatment for the patients. PD, pharmacodynamic; PK, pharmacokinetic.
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In summary, copulas represent an attractive approach to capture 
multivariate covariate distributions, which can be readily imple-
mented for pharmacometric simulations, including PK, PD, and 
QSP simulations. Copulas show superiority in the combination 
of being a flexible framework for adequately simulating covariates 
and being a tool useful for anonymous data sharing. The distribu-
tion-based nature of copulas has the distinct advantage that access 
to original individual-level data sets is not required when applied 
for virtual patient simulation, in contrast to resampling-based 
strategies. To this end, copula models can address hurdles in access-
ing real clinical data by developing open access simulation mod-
els for distinct (special) patient populations, which can be readily 
shared with the community and support clinical trial simulations 
and treatment optimization.
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