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Single-cell RNA sequencing (scRNA-seq) has massively increased our understanding of tissue 
compositions, cellular interactions, and developmental processes. Especially in heterogeneous 
tissues such as the brain, this single-cell resolution led to many newly discovered cell types, 
insights into the specificity of cell types for particular brain regions or layers, and the 
proportions of cell types across the brain [1–5]. Besides generating massive datasets, smaller 
publicly available datasets are combined into tissue-specific reference atlases, such as the 
Human Lung Cell Atlas [6]. However, analyzing individual datasets or creating these atlases is 
still mainly done using unsupervised methods. 

In this thesis, we introduced several supervised methods to solve two broad tasks: 1) 
automatic cell-type identification in scRNA-seq data, and 2) understanding cell-type-specific 
(post-)transcriptional regulation. In part I, we benchmarked different cell-type classification 
methods for scRNA-seq data (chapter 2), developed scHPL (chapter 3) and treeArches 
(chapter 4) to automatically match cell types across datasets to construct a reference atlas 
with corresponding cellular hierarchy, and developed TACTiCS to match cell types across 
species (chapter 5). In part II, we showed how scRNA-seq with the corresponding cell-type 
labels can improve our understanding of transcriptional regulation (chapter 6) and alternative 
splicing (chapter 7) by developing cell-type-specific feature-prediction models. However, for 
both tasks, several challenges remain that we will discuss in the sections below.

8.1 What is a cell type?
In simple eukaryotic organisms, such as C. Elegans, every adult consists of the same amount 
of cells - 959 in hermaphrodites and 1031 in males [7,8]. This low and consistent number of 
cells allows researchers to study every cell individually. Studying more complex organisms, 
such as humans, similarly is challenging since we consist of approximately 37 trillion cells, 
and this number varies across individuals due to, for instance, differences in height [9]. 
Categorizing all these cells into cell types enhances our understanding of cells and facilitates 
effective communication and comparison of results across studies. 

Is this discrete grouping that we use repeatedly throughout this thesis optimal, or would a 
continuous spectrum be beneficial? At least at a high level, cell types seem separate categories. 
For example, a muscle fiber differs from a neuron regarding its function, morphology, and the 
genes expressed. Still, both arise from the same stem cell and become continuously more 
specialized. At what stage during development would one consider these cells differentiated 
enough to call them different cell types?

Furthermore, due to perturbations, such as stimulations or pathogens, cells can transition to 
another cell type or state. Should these possible responses be considered in our definition as 
well [10]? In the pancreas, some alpha cells can, for instance, change into beta cells, which 
can occur naturally in persons with diabetes [11]. Also in the immune system, naive T-cells 
transition into memory cells after activation [12]. Both are considered different cell types 
with a gradient containing the transitioning cells in between. 
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Despite this evidence for a more continuous spectrum, we still focus on cell-type classification 
since most downstream methods require cells from the same cell type or cell-type labels as 
input. This downstream analysis can be a relatively simple task, such as testing for differentially 
expressed genes between healthy and diseased cells of the same cell type. But for more 
complex tasks, such as detecting expression quantitative trait loci (eQTLs), the cell-type labels 
may be beneficial as well. A cell-type-specific eQTL analysis can reveal the effect of variants 
that were previously hidden when analyzing the complete sample [13]. Also in Chapters 6 and 
7, we rely on the cell-type labels to improve our understanding of transcriptional regulation 
and alternative splicing. Especially for heterogeneous tissues, using this increased cell-type-
specific resolution improved the performance. 

A potential alternative could be to redevelop current downstream methods such that they 
produce similar results, but do not rely on cell-type labels. An example is Milo, which tests for 
differential abundance between two samples [14]. First, cells are assigned to neighborhoods 
and afterwards, Milo tests whether cells from a certain condition are enriched or depleted 
within each neighborhood. Cell-type labels are unneeded during this analysis and will thus 
not bias the results. For the sequence-based models, this problem could be overcome by 
predicting the features at the cell instead of cell-type resolution as is done by scBasset [15] 
and seq2cells [16]. As datasets grow bigger and bigger, this might become computationally 
too expensive at some point. However, the results of cell-type-agnostic methods might be 
harder to interpret. As a solution, cells could be aggregated into cell types again solely for 
interpretation. Then, at least the cell-type labels do not bias the analysis itself.

Since cells exist in a continuous spectrum, a second alternative is moving from binary to fuzzy 
cell-type labels. Using fuzzy labels, a cell can belong to multiple cell types simultaneously with 
different probabilities. A probability above zero for two cell types can indicate that a cell is 
transitioning between these two. For scRNA-seq data, this approach has been explored for 
clustering methods [17,18], but not yet for classification methods. During classification, the 
posterior probability could easily indicate which cell types a cell belongs to.

8.2 Consistent cell-type classification
Since most downstream methods rely on discrete cell-type labels, cells must be labeled con-
sistently to enable combining or comparing information from different datasets. For instance, 
the sc-eQTL consortium aims to find how variants affect gene expression in immune cell 
types by combining datasets from multiple labs containing hundreds of individuals [19]. In 
every individual, the cell types should thus be defined similarly. A high precision in cell-type 
annotations might be even more important than a high accuracy. Since unsupervised meth-
ods are subjective and time-consuming, an automatic supervised approach is needed here.

Ideally, such a classifier is trained on a reference atlas that combines data from enough 
individuals so that inter-individual variation and rare cell types are captured. The cell types 
in such a reference atlas should not be characterized as in a periodic table but in a hierarchy 
[20]. A hierarchical classifier divides the classification problem into smaller subproblems 
which improves the classification performance. We showed that a hierarchical linear SVM 

Thesis_LM_final.indd   179Thesis_LM_final.indd   179 24-04-2024   18:55:4124-04-2024   18:55:41



CHAPTER 8

180

outperforms a flat linear SVM in Chapter 3. Besides, when using a hierarchical classifier, 
users can easily choose their resolution of interest. Using Azimuth [21], an easy-to-use web 
portal, cells can also be annotated at different resolutions. However, these resolutions are 
not connected in a hierarchy. Consequently, a cell can, for instance, be labeled as a CD8+ 
T-cell and CD4+ memory T-cell, which is impossible and therefore inconsistent.

Reference atlases exist for many human and mouse tissues and can be downloaded from 
platforms, such as Azimuth [21] or CELLxGENE [22,23]. For these reference atlases, either 1) 
one big dataset is used (e.g. the human PBMC reference containing eight individuals [21]), 
2) multiple datasets are combined and re-annotated manually (e.g. the human lung cell 
atlas containing 107 individuals from 14 datasets [6]), or 3) multiple annotated datasets are 
combined using scHPL and their labels are manually refined (e.g. the mouse kidney atlas 
combining data from 59 mice from 8 datasets [24]). 

However, many datasets are still annotated using unsupervised methods even though a 
reference atlas for that specific tissue is available [25–27]. Why is this the case? Researchers 
might not trust supervised methods since their performance is not perfect yet. In Chapter 
2, however, we showed that cell-type classification is a relatively easy problem at a low 
resolution since almost all methods perform (nearly) perfectly. The performance of most 
methods drops when increasing the resolution or complexity of the data. For most reference 
atlases, however, the performance is not benchmarked per resolution, making it hard to 
know how consistent label transfer will be. 

Another complicating factor is the batch effects between the reference atlas and the 
unlabeled dataset. Batch effects are technical variations between datasets due to variations 
in labs, protocols, sequencing depths, etc. This technical variation has to be removed while 
preserving the biological variation. This is a complex problem since the effects are usually 
non-linear and the ground truth is unknown. Benchmark studies showed that methods 
including scVI [28] and Harmony [29] perform well for this task. For most methods, however, 
parameters have to be tuned for optimal performance, which might decrease the usability.

Interestingly, researchers are imperfect when annotating a scRNA-seq dataset manually as 
well. In Chapter 3, we applied scHPL to multiple annotated PBMC datasets, which resulted 
in a hierarchy with unexpected edges. Visualizing marker genes in the individual datasets 
indicated that cells had been wrongly annotated in the original datasets. Amongst others, 
the authors had swapped two cell-type labels, which explained the incorrect hierarchy. We 
experienced that scHPL is a great tool for discovering such misannotations. Cells can be 
relabeled based on this unexpected hierarchy.

Besides being subjective and time-consuming, another problem with manual annotation 
is a missing naming convention for cell types. CELLxGENE resolves this problem by forcing 
users to use Cell Ontology terminology when uploading their datasets. A downside of the 
Cell Ontology is that this hierarchy only consists of names but lacks information about the 
cell type, such as its function, morphology, or transcriptomic profile. Consequently, cell types 
from different datasets with the same name could have a different underlying expression 
pattern. The most straightforward solution might seem to add marker genes to Cell Ontology, 
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which can be used to identify cell types. In the benchmark in Chapter 2, however, we noticed 
that methods relying on marker genes perform worse during cell-type identification, most 
likely because of the sparsity of scRNA-seq data.

Ideally, all datasets from a similar tissue in CELLxGENE are not harmonized based on the 
names but based on the expression profile in a data-driven way using tools such as scHPL 
and treeArches. These tools can be enhanced by reflecting (inter-individual) variation in the 
width of a branch and allowing for fuzzy labels at the leaf nodes. The growing amount of data 
poses a challenge and as such both methods must become computationally more efficient. 
The resulting reference atlases should be updated continuously with newly generated data. 

8.3 Automatically detecting new cell types
Even though many reference atlases are being constructed [6,21,24], these will never be 
complete since rare and diseased cell types might be missing. In the human lung cell atlas, 
for instance, six rare cell types were not defined in any of the individual datasets and had 
not been defined in the lung before, but could be discovered when combining multiple 
datasets [6]. Besides, new viruses, such as SARS-Cov-2, can infect cells from different tissues 
and perturb these cells [30,31]. Identifying such diseased cell types is important for drug or 
therapy development. Adding such data to a reference atlas leads to new insights in both 
healthy and diseased samples. 

To detect rare or diseased cell types automatically, a classifier needs a rejection option. 
In Chapter 2, we benchmarked the rejection options of scRNA-seq cell-type identification 
methods by removing a cell type completely from the data. Here, we noticed that the linear 
SVM, which had the highest classification performance, performed poorly since it relied 
on the posterior probability. In Chapters 3 and 4, we introduced scHPL and improved the 
rejection option by incorporating distance metrics. This improved the detection of unknown 
cells but still did not perform perfectly. Diseased cells, such as inflamed monocyte-derived 
macrophages, are immediately rejected (labeled “unknown”) instead of labeled as internal 
node (e.g. macrophages), which would be preferred. 

A hierarchical classifier that can return internal nodes of the hierarchy, so-called “partial 
rejection”, is beneficial according to a recent benchmark [32]. Here, they only evaluated how 
a full or partial rejection option affected the classification performance and not whether 
new cell types could be detected. Detecting new cell types using reference atlases should 
be benchmarked properly in upcoming benchmarks. An example experiment would be to 
remove one cell type from the training data and test whether the classifier correctly rejects 
cells from that cell type in the test dataset.

Ideally, cell-type identification and data integration methods should be benchmarked 
simultaneously. Data integration considerably influences whether these new cell types can 
be detected. During data integration biological variation should be preserved and technical 
variation should be removed. If the difference between a diseased and healthy cell type of 
two samples is seen as a technical artifact, this difference can be removed as well. Regardless 
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of the cell-type identification method used afterwards, the cell type will never be detected as 
a new cell type. Ideally, a diseased and healthy sample are sequenced together, so there are 
no batch effects. As such the difference between biological and technical variations between 
the reference atlas and these new samples can be detected more easily [33]. 

8.4 Towards cell-type-specific sequence-based models
Studying tissues untargeted and at a high resolution using scRNA-seq has led to the discovery 
of many new cell types. Since these cell types are defined based on their transcriptional 
profile, the underlying transcriptional regulation must be unique for every cell type. In 
Chapter 6, we aimed to unravel these cell-type-specific mechanisms by training sequence-
based models using scRNA-seq data with the corresponding cell-type labels to predict gene 
expression. In Chapter 7, we focused on alternative splicing mechanisms by training models 
to predict cell-type-specific exon inclusion in the brain. Interpreting which motifs guide the 
model to make certain predictions, increases our understanding of the biological mechanisms 
underlying transcriptional regulation and alternative splicing. 

Furthermore, these models aid in understanding how variants affect a cell type. Approximately 
95% of the GWAS variants fall in non-coding regions [34]. Usually, only an association between 
a group of variants and a trait is discovered, but it remains unclear which variant causes a trait 
due to linkage disequilibrium, through which mechanism a variant acts, and which cell type is 
most disrupted. Models that use the genome to predict, for instance, transcription or splicing 
in a cell-type-specific way can address these problems.

In Chapter 6, we showed that cell-type-specific models always outperformed the tissue-
specific models when predicting cell-type-specific gene expression levels. The difference in 
performance becomes most apparent if a tissue and cell type are dissimilar. Even though this 
increase was significant, we were unable to pinpoint what caused this increase such as cell-
type-specific transcription factor binding sites. 

To reliably predict the cell-type-specific effect of variants, our models, as well as other state-
of-the-art sequence-based models, such as Enformer [35] and SpliceAI [36], have to overcome 
several limitations: 1) missing cell-type-specificity, 2) ignoring distal regulatory elements, and 
3) incorrectly predicting personalized gene expression. I will discuss these limitations and 
potential solutions in the coming sections. 

8.5 Missing cell-type-specificity of sequence-based models
The cell-type-specificity or tissue-specificity of sequence-based models is not thoroughly 
evaluated. Enformer is trained on 5,313 genomic tracks including different tissues and 
measurement techniques such as CAGE and DNase-seq reads, and predicts different values 
for very dissimilar cell types, such as keratinocytes and monocytes. However, an evaluation 
for more similar tracks, such as 77 CAGE tracks related to the brain, is missing. We noticed 
the same for Pangolin [37], a model to predict tissue-specific splicing. Pangolin outperformed 
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SpliceAI, the tissue-agnostic model, but no tissue-specific regulatory elements were discussed. 
Ideally, the models should be evaluated using cell-type-specific variants, but the ground truth 
for most variants is missing. A missing ground truth makes proper benchmarking impossible. 
A feasible alternative is to evaluate the models’ performance on marker genes for specific 
cell types or whether the models correctly learn in which cell type a gene is higher expressed 
using for instance the log-fold change or the difference between two cell types.

Exploiting the current models as pre-trained models could be beneficial for learning cell-type-
specific mechanisms. Some cell types are so similar that it is challenging to train a complete 
model with millions of parameters from scratch to learn these subtle differences. Seq2cells, 
for instance, extracts an embedding from Enformer and trains a simple model, a multi-layer 
perceptron, to predict the cell-type-specific gene expression [16]. Seq2cells assumes that all 
regulatory features are stored in the embeddings and the simpler model only needs to learn 
how to combine these during the fine-tuning step.

8.6 Limited context of sequence-based models
In our models, the region around the transcription start site and splice sites contributed most 
to the predictions of gene expression and exon inclusion. These regions are most important for 
transcription and splicing since RNA polymerase and the spliceosome bind there respectively. 
However, this signal dominates the predictions entirely, and as such the predicted effect of 
mutations further away is negligible. While mutations in enhancers far away or deep intronic 
variants can cause a disease [38–40]. A recent benchmark showed that other models do not 
capture distal regulatory elements either [41]. Even though Enformer inputs a sequence of 
196kb, it incorrectly predicts the effect of variants in distal regulatory elements. 

For splicing models, this has yet to be investigated, but since the model architectures and 
training strategies are similar, we can assume the models suffer here as well. Interestingly, 
SpliceAI, which inputs 10kb around the splice sites, was recently outperformed by Splam [42], 
a model that only uses 400 bp, indicating that regions further away might not be needed to 
predict splicing accurately. However, SpliceAI and Splam are both classification methods that 
predict whether a certain site is a splice junction instead of how often the junction is used. 
Distal variants may affect the latter more.

8.7 Sequence-based models are data-hungry
Current sequence-based models still suffer from limited training data. For instance, only a few 
genes are cell-type-specific or regulated by distal regulatory elements. Few examples in the 
training data make it difficult for models to learn the patterns. However, the number of genes 
or exons in the human genome limits the size of the training data, so this cannot be easily 
increased. To overcome this, several models, including Enformer, are trained on human and 
mouse data simultaneously to increase the size of the training data [35,43]. The weights of 
the first layers in the model are shared across the species exploiting that regulatory elements 
are partially conserved. The final fully connected layer is species-specific to allow learning of 
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species-specific mechanisms as well. In Chapter 7, we applied this trick when training exon-
inclusion models, which improved their performance. In general, the current models only 
combine human and mouse, while data from more closely related species is available. For 
instance, for a cell-type-specific model predicting gene expression in the brain, scRNA-seq 
data from five primates could be combined [44]. 

8.8 Personalized sequence-based models
The third limitation is that current sequence-based models cannot predict variation of gene 
expression across individuals yet [45,46]. Ideally, for every individual genome, these models 
would predict the correct expression level, i.e. making personalized predictions. However, 
when evaluating models using variants found across individual genomes, Enformer predicted 
the wrong direction of effect for one-third of the tested variants. We did not evaluate making 
personalized predictions in our models, but since our models rely on models that were 
evaluated in the benchmark, we assume they incorrectly predict this as well.

State-of-the-art expression and splicing prediction models are all trained on the reference ge-
nome. However, the predicted genomic features were measured in individuals with specific 
variants in their genomes. Recent benchmarks suggested that training on individual genomes 
could improve personalized gene expression predictions [45,46]. Training on individual ge-
nomes might enhance learning of the effect of distal regulatory elements as well because of 
the increased variance in the training data. Recently, BigRNA [47] was released which predicts 
gene expression in 51 tissues for 70 individuals. For each individual, both haplotypes are in-
put to identical instances of the model and the output is combined. Their results look prom-
ising, but the personalized gene expression task has not been evaluated for this model yet. 

8.9 What should sequence-based models predict?
One might also question whether predicting gene expression or exon inclusion directly from 
the sequence is the most optimal approach to reach the goal of predicting the effect of 
mutations. Measurement techniques are noisy and the measured gene expression does not 
directly reflect how often a gene is transcribed in a cell. A gene can be highly transcribed but 
rapidly degraded as well due to (aberrant) splicing isoforms. Also in healthy tissues or cell 
types, alternative splicing is a way to control gene expression levels [48,49]. If the inclusion 
of an exon activates nonsense-mediated decay, this exon might not be measured or only in 
low levels even though it was originally highly included. An alternative would be to train the 
models on RNA-sequencing data of samples where nonsense-mediated decay was blocked, 
but this data is scarce.

Instead of predicting gene expression directly, it might be beneficial to predict intermediate 
layers, such as chromatin accessibility. Models trained to predict cell-type-specific chromatin 
accessibility in the drosophila brain [50] or for human melanoma [51] could be used to 
design cell-type-specific enhancers [52]. These models are not limited by the number of 
genes in the genome but are trained on differentially accessible regions between cell types. 
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This increased the size of the training data and might explain the cell-type-specificity of the 
models. However, the designed enhancers are only 500 bp. The effect of these enhancers 
was tested using a luciferase assay which means that these enhancers are inserted before the 
transcription start site of the luciferase gene. The effect of distal enhancers is thus not tested 
during the design. ExPecto [53] and their recent successor ExPectoSC [54] try to overcome 
this by first predicting 2002 regulatory features for the 40kb region around the transcription 
start site and using this to train a simpler model to predict gene expression. 

An alternative could be to input chromatin accessibility measurements, or similar regulatory 
features, to the models [55]. This improves the cell-type-specificity since the input data 
is different now for every cell type or tissue. Another advantage is that these models can 
extrapolate to new cell types as long as chromatin accessibility data is available for that cell 
type. Evaluating the effect of variants or model interpretation becomes more complicated 
though since the input sequence cannot be in-silico mutated anymore as it is unknown how 
a mutation will affect the chromatin accessibility input track.

ENCODE-rE2G [56] combines a cell-type-specific input with an interesting training strategy: 
instead of training on healthy data, the model is trained on perturbation data. This logistic 
regressor predicts whether an element, a part of the DNA sequence, regulates a gene based 
on extracted features from the cell-type-specific DNase and cell-type-agnostic features, such 
as the distance between the element and the gene of interest. Since the model learns the 
relation between an element and the gene, it is not biased towards features close to the 
transcription start site and learns distal regulatory elements as well. However, they assume 
that a variant that falls in an element is always linked to the gene, and the direction of effect is 
not predicted. Instead of using the extracted features, a sequence-based model with a similar 
training strategy might be beneficial here. 

8.10 Final remarks
Single-cell RNA sequencing has revolutionized our understanding of heterogeneous tissues. 
In this thesis, we presented several methods to automatically identify cell types in scRNA-seq 
data and use scRNA-seq data to increase the resolution of current sequence-based models. 
However, when analyzing scRNA-seq data, or using this data to train sequence-based models, 
we should remember that cells or cell types are not isolated compartments, but that they 
interact and communicate with each other. Many spatial transcriptomics datasets are now 
generated to focus on this. Ideally, we integrate this spatial information into the sequence-
based models.

Not only do neighboring cells influence which genes are expressed, but the expression of 
other genes in a cell can influence the gene of interest as well. A more holistic view might 
be needed instead of predicting the expression of one gene at a time. Also when predicting 
splicing, we know that exons are very often coordinated. Using a different transcription start 
site might determine the complete isoform used. Predicting the inclusion of individual exons 
might be very difficult or near impossible in such a case. Ideally, sequence-based models 
would predict the expression of multiple isoforms simultaneously in the future.
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