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Single-cell	RNA	sequencing	(scRNA-seq)	has	massively	increased	our	understanding	of	tissue	
compositions,	cellular	interactions,	and	developmental	processes.	Especially	in	heterogeneous	
tissues	such	as	the	brain,	this	single-cell	resolution	led	to	many	newly	discovered	cell	types,	
insights	 into	 the	 specificity	 of	 cell	 types	 for	 particular	 brain	 regions	 or	 layers,	 and	 the	
proportions	of	cell	types	across	the	brain	[1–5].	Besides	generating	massive	datasets,	smaller	
publicly	available	datasets	are	combined	 into	tissue-specific	reference	atlases,	such	as	the	
Human	Lung	Cell	Atlas	[6].	However,	analyzing	individual	datasets	or	creating	these	atlases	is	
still	mainly	done	using	unsupervised	methods.	

In	 this	 thesis,	 we	 introduced	 several	 supervised	 methods	 to	 solve	 two	 broad	 tasks:	 1)	
automatic	cell-type	identification	in	scRNA-seq	data,	and	2)	understanding	cell-type-specific	
(post-)transcriptional	regulation.	In	part	I,	we	benchmarked	different	cell-type	classification	
methods	 for	 scRNA-seq	 data	 (chapter	 2),	 developed	 scHPL	 (chapter	 3)	 and	 treeArches	
(chapter	4)	to	automatically	match	cell	types	across	datasets	to	construct	a	reference	atlas	
with corresponding cellular hierarchy, and developed TACTiCS to match cell types across 
species	(chapter	5).	In	part	II,	we	showed	how	scRNA-seq	with	the	corresponding	cell-type	
labels	can	improve	our	understanding	of	transcriptional	regulation	(chapter	6)	and	alternative	
splicing	(chapter	7)	by	developing	cell-type-specific	feature-prediction	models.	However,	for	
both	tasks,	several	challenges	remain	that	we	will	discuss	in	the	sections	below.

8.1 What is a cell type?
In	simple	eukaryotic	organisms,	such	as	C.	Elegans,	every	adult	consists	of	the	same	amount	
of cells - 959 in hermaphrodites and 1031 in males [7,8]. This low and consistent number of 
cells allows researchers to study every cell individually. Studying more complex organisms, 
such as humans, similarly is challenging since we consist of approximately 37 trillion cells, 
and	 this	 number	 varies	 across	 individuals	 due	 to,	 for	 instance,	 differences	 in	 height	 [9]. 
Categorizing all these cells into cell types enhances our understanding of cells and facilitates 
effective	communication	and	comparison	of	results	across	studies.	

Is	this	discrete	grouping	that	we	use	repeatedly	throughout	this	thesis	optimal,	or	would	a	
continuous	spectrum	be	beneficial?	At	least	at	a	high	level,	cell	types	seem	separate	categories.	
For	example,	a	muscle	fiber	differs	from	a	neuron	regarding	its	function,	morphology,	and	the	
genes	expressed.	Still,	both	arise	from	the	same	stem	cell	and	become	continuously	more	
specialized.	At	what	stage	during	development	would	one	consider	these	cells	differentiated	
enough	to	call	them	different	cell	types?

Furthermore,	due	to	perturbations,	such	as	stimulations	or	pathogens,	cells	can	transition	to	
another	cell	type	or	state.	Should	these	possible	responses	be	considered	in	our	definition	as	
well [10]?	In	the	pancreas,	some	alpha	cells	can,	for	instance,	change	into	beta	cells,	which	
can occur naturally in persons with diabetes [11]. Also in the immune system, naive T-cells 
transition	 into	memory	cells	after	activation	 [12].	Both	are	considered	different	 cell	 types	
with	a	gradient	containing	the	transitioning	cells	in	between.	
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Despite	this	evidence	for	a	more	continuous	spectrum,	we	still	focus	on	cell-type	classification	
since most downstream methods require cells from the same cell type or cell-type labels as 
input.	This	downstream	analysis	can	be	a	relatively	simple	task,	such	as	testing	for	differentially	
expressed genes between healthy and diseased cells of the same cell type. But for more 
complex	tasks,	such	as	detecting	expression	quantitative	trait	loci	(eQTLs),	the	cell-type	labels	
may	be	beneficial	as	well.	A	cell-type-specific	eQTL	analysis	can	reveal	the	effect	of	variants	
that were previously hidden when analyzing the complete sample [13]. Also in Chapters 6 and 
7,	we	rely	on	the	cell-type	labels	to	improve	our	understanding	of	transcriptional	regulation	
and	alternative	splicing.	Especially	for	heterogeneous	tissues,	using	this	increased	cell-type-
specific	resolution	improved	the	performance.	

A	potential	alternative	could	be	to	redevelop	current	downstream	methods	such	that	they	
produce similar results, but do not rely on cell-type labels. An example is Milo, which tests for 
differential	abundance	between	two	samples	[14]. First, cells are assigned to neighborhoods 
and	afterwards,	Milo	tests	whether	cells	from	a	certain	condition	are	enriched	or	depleted	
within each neighborhood. Cell-type labels are unneeded during this analysis and will thus 
not bias the results. For the sequence-based models, this problem could be overcome by 
predicting	the	features	at	the	cell	instead	of	cell-type	resolution	as	is	done	by	scBasset	[15] 
and seq2cells [16].	As	datasets	grow	bigger	and	bigger,	this	might	become	computationally	
too	expensive	at	some	point.	However,	the	results	of	cell-type-agnostic	methods	might	be	
harder	to	interpret.	As	a	solution,	cells	could	be	aggregated	into	cell	types	again	solely	for	
interpretation.	Then,	at	least	the	cell-type	labels	do	not	bias	the	analysis	itself.

Since	cells	exist	in	a	continuous	spectrum,	a	second	alternative	is	moving	from	binary	to	fuzzy	
cell-type	labels.	Using	fuzzy	labels,	a	cell	can	belong	to	multiple	cell	types	simultaneously	with	
different	probabilities.	A	probability	above	zero	for	two	cell	types	can	indicate	that	a	cell	is	
transitioning	between	these	two.	For	scRNA-seq	data,	this	approach	has	been	explored	for	
clustering methods [17,18],	but	not	yet	for	classification	methods.	During	classification,	the	
posterior probability could easily indicate which cell types a cell belongs to.

8.2 Consistent cell-type classification
Since most downstream methods rely on discrete cell-type labels, cells must be labeled con-
sistently	to	enable	combining	or	comparing	information	from	different	datasets.	For	instance,	
the	 sc-eQTL	 consortium	aims	 to	 find	 how	 variants	 affect	 gene	 expression	 in	 immune	 cell	
types	by	combining	datasets	from	multiple	labs	containing	hundreds	of	 individuals	[19]. In 
every	individual,	the	cell	types	should	thus	be	defined	similarly.	A	high	precision	in	cell-type	
annotations	might	be	even	more	important	than	a	high	accuracy.	Since	unsupervised	meth-
ods	are	subjective	and	time-consuming,	an	automatic	supervised	approach	is	needed	here.

Ideally,	 such	 a	 classifier	 is	 trained	 on	 a	 reference	 atlas	 that	 combines	 data	 from	 enough	
individuals	so	that	inter-individual	variation	and	rare	cell	types	are	captured.	The	cell	types	
in such a reference atlas should not be characterized as in a periodic table but in a hierarchy 
[20].	 A	 hierarchical	 classifier	 divides	 the	 classification	 problem	 into	 smaller	 subproblems	
which	 improves	 the	classification	performance.	We	showed	that	a	hierarchical	 linear	SVM	
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outperforms	 a	 flat	 linear	 SVM	 in	 Chapter	 3.	 Besides,	 when	 using	 a	 hierarchical	 classifier,	
users	can	easily	choose	their	resolution	of	interest.	Using	Azimuth	[21], an easy-to-use web 
portal,	cells	can	also	be	annotated	at	different	resolutions.	However,	these	resolutions	are	
not	connected	 in	a	hierarchy.	Consequently,	a	cell	can,	 for	 instance,	be	 labeled	as	a	CD8+	
T-cell	and	CD4+	memory	T-cell,	which	is	impossible	and	therefore	inconsistent.

Reference	atlases	exist	 for	many	human	and	mouse	tissues	and	can	be	downloaded	 from	
platforms,	such	as	Azimuth	[21]	or	CELLxGENE	[22,23].	For	these	reference	atlases,	either	1)	
one	big	dataset	is	used	(e.g.	the	human	PBMC	reference	containing	eight	individuals	[21]),	
2)	multiple	 datasets	 are	 combined	 and	 re-annotated	manually	 (e.g.	 the	 human	 lung	 cell	
atlas containing 107 individuals from 14 datasets [6]),	or	3)	multiple	annotated	datasets	are	
combined	using	 scHPL	and	 their	 labels	 are	manually	 refined	 (e.g.	 the	mouse	 kidney	atlas	
combining data from 59 mice from 8 datasets [24]).	

However,	 many	 datasets	 are	 still	 annotated	 using	 unsupervised	 methods	 even	 though	 a	
reference	atlas	for	that	specific	tissue	is	available	[25–27].	Why	is	this	the	case?	Researchers	
might not trust supervised methods since their performance is not perfect yet. In Chapter 
2,	 however,	 we	 showed	 that	 cell-type	 classification	 is	 a	 relatively	 easy	 problem	 at	 a	 low	
resolution	 since	 almost	 all	methods	 perform	 (nearly)	 perfectly.	 The	 performance	 of	most	
methods	drops	when	increasing	the	resolution	or	complexity	of	the	data.	For	most	reference	
atlases,	 however,	 the	 performance	 is	 not	 benchmarked	 per	 resolution,	making	 it	 hard	 to	
know how consistent label transfer will be. 

Another	 complicating	 factor	 is	 the	 batch	 effects	 between	 the	 reference	 atlas	 and	 the	
unlabeled	dataset.	Batch	effects	are	technical	variations	between	datasets	due	to	variations	
in	labs,	protocols,	sequencing	depths,	etc.	This	technical	variation	has	to	be	removed	while	
preserving	the	biological	variation.	This	 is	a	complex	problem	since	the	effects	are	usually	
non-linear and the ground truth is unknown. Benchmark studies showed that methods 
including scVI [28]	and	Harmony	[29] perform well for this task. For most methods, however, 
parameters	have	to	be	tuned	for	optimal	performance,	which	might	decrease	the	usability.

Interestingly,	researchers	are	 imperfect	when	annotating	a	scRNA-seq	dataset	manually	as	
well.	In	Chapter	3,	we	applied	scHPL	to	multiple	annotated	PBMC	datasets,	which	resulted	
in a hierarchy with unexpected edges. Visualizing marker genes in the individual datasets 
indicated that cells had been wrongly annotated in the original datasets. Amongst others, 
the	authors	had	swapped	two	cell-type	labels,	which	explained	the	incorrect	hierarchy.	We	
experienced	 that	 scHPL	 is	 a	 great	 tool	 for	 discovering	 such	misannotations.	 Cells	 can	 be	
relabeled based on this unexpected hierarchy.

Besides	 being	 subjective	 and	 time-consuming,	 another	 problem	 with	manual	 annotation	
is	a	missing	naming	convention	for	cell	 types.	CELLxGENE	resolves	this	problem	by	forcing	
users	to	use	Cell	Ontology	terminology	when	uploading	their	datasets.	A	downside	of	 the	
Cell	Ontology	is	that	this	hierarchy	only	consists	of	names	but	lacks	information	about	the	
cell	type,	such	as	its	function,	morphology,	or	transcriptomic	profile.	Consequently,	cell	types	
from	different	datasets	with	 the	 same	name	could	have	a	different	underlying	expression	
pattern.	The	most	straightforward	solution	might	seem	to	add	marker	genes	to	Cell	Ontology,	
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which	can	be	used	to	identify	cell	types.	In	the	benchmark	in	Chapter	2,	however,	we	noticed	
that	methods	relying	on	marker	genes	perform	worse	during	cell-type	 identification,	most	
likely because of the sparsity of scRNA-seq data.

Ideally,	 all	 datasets	 from	a	 similar	tissue	 in	CELLxGENE	are	not	 harmonized	based	on	 the	
names	but	based	on	the	expression	profile	 in	a	data-driven	way	using	tools	such	as	scHPL	
and	treeArches.	These	tools	can	be	enhanced	by	reflecting	(inter-individual)	variation	in	the	
width of a branch and allowing for fuzzy labels at the leaf nodes. The growing amount of data 
poses	a	challenge	and	as	such	both	methods	must	become	computationally	more	efficient.	
The	resulting	reference	atlases	should	be	updated	continuously	with	newly	generated	data.	

8.3 Automatically detecting new cell types
Even though many reference atlases are being constructed [6,21,24], these will never be 
complete since rare and diseased cell types might be missing. In the human lung cell atlas, 
for	 instance,	six	rare	cell	types	were	not	defined	in	any	of	the	individual	datasets	and	had	
not	 been	 defined	 in	 the	 lung	 before,	 but	 could	 be	 discovered	 when	 combining	multiple	
datasets [6].	Besides,	new	viruses,	such	as	SARS-Cov-2,	can	infect	cells	from	different	tissues	
and perturb these cells [30,31].	Identifying	such	diseased	cell	types	is	important	for	drug	or	
therapy development. Adding such data to a reference atlas leads to new insights in both 
healthy and diseased samples. 

To	 detect	 rare	 or	 diseased	 cell	 types	 automatically,	 a	 classifier	 needs	 a	 rejection	 option.	
In	Chapter	2,	we	benchmarked	 the	 rejection	options	of	 scRNA-seq	cell-type	 identification	
methods	by	removing	a	cell	type	completely	from	the	data.	Here,	we	noticed	that	the	linear	
SVM,	 which	 had	 the	 highest	 classification	 performance,	 performed	 poorly	 since	 it	 relied	
on	 the	posterior	probability.	 In	Chapters	3	and	4,	we	 introduced	scHPL	and	 improved	 the	
rejection	option	by	incorporating	distance	metrics.	This	improved	the	detection	of	unknown	
cells	but	still	did	not	perform	perfectly.	Diseased	cells,	such	as	inflamed	monocyte-derived	
macrophages,	are	immediately	rejected	(labeled	“unknown”)	instead	of	labeled	as	internal	
node	(e.g.	macrophages),	which	would	be	preferred.	

A	 hierarchical	 classifier	 that	 can	 return	 internal	 nodes	 of	 the	 hierarchy,	 so-called	 “partial	
rejection”,	is	beneficial	according	to	a	recent	benchmark	[32].	Here,	they	only	evaluated	how	
a	 full	 or	 partial	 rejection	 option	 affected	 the	 classification	 performance	 and	 not	whether	
new	cell	 types	could	be	detected.	Detecting	new	cell	 types	using	reference	atlases	should	
be benchmarked properly in upcoming benchmarks. An example experiment would be to 
remove	one	cell	type	from	the	training	data	and	test	whether	the	classifier	correctly	rejects	
cells from that cell type in the test dataset.

Ideally,	 cell-type	 identification	 and	 data	 integration	 methods	 should	 be	 benchmarked	
simultaneously.	Data	integration	considerably	influences	whether	these	new	cell	types	can	
be	detected.	During	data	integration	biological	variation	should	be	preserved	and	technical	
variation	should	be	removed.	If	the	difference	between	a	diseased	and	healthy	cell	type	of	
two	samples	is	seen	as	a	technical	artifact,	this	difference	can	be	removed	as	well.	Regardless	
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of	the	cell-type	identification	method	used	afterwards,	the	cell	type	will	never	be	detected	as	
a new cell type. Ideally, a diseased and healthy sample are sequenced together, so there are 
no	batch	effects.	As	such	the	difference	between	biological	and	technical	variations	between	
the reference atlas and these new samples can be detected more easily [33]. 

8.4 Towards cell-type-specific sequence-based models
Studying	tissues	untargeted	and	at	a	high	resolution	using	scRNA-seq	has	led	to	the	discovery	
of	many	new	 cell	 types.	 Since	 these	 cell	 types	 are	 defined	based	on	 their	 transcriptional	
profile,	 the	 underlying	 transcriptional	 regulation	 must	 be	 unique	 for	 every	 cell	 type.	 In	
Chapter	6,	we	aimed	to	unravel	these	cell-type-specific	mechanisms	by	training	sequence-
based models using scRNA-seq data with the corresponding cell-type labels to predict gene 
expression.	In	Chapter	7,	we	focused	on	alternative	splicing	mechanisms	by	training	models	
to	predict	cell-type-specific	exon	inclusion	in	the	brain.	Interpreting	which	motifs	guide	the	
model	to	make	certain	predictions,	increases	our	understanding	of	the	biological	mechanisms	
underlying	transcriptional	regulation	and	alternative	splicing.	

Furthermore,	these	models	aid	in	understanding	how	variants	affect	a	cell	type.	Approximately	
95%	of	the	GWAS	variants	fall	in	non-coding	regions	[34].	Usually,	only	an	association	between	
a group of variants and a trait is discovered, but it remains unclear which variant causes a trait 
due to linkage disequilibrium, through which mechanism a variant acts, and which cell type is 
most	disrupted.	Models	that	use	the	genome	to	predict,	for	instance,	transcription	or	splicing	
in	a	cell-type-specific	way	can	address	these	problems.

In	 Chapter	 6,	 we	 showed	 that	 cell-type-specific	models	 always	 outperformed	 the	 tissue-
specific	models	when	predicting	cell-type-specific	gene	expression	levels.	The	difference	in	
performance	becomes	most	apparent	if	a	tissue	and	cell	type	are	dissimilar.	Even	though	this	
increase	was	significant,	we	were	unable	to	pinpoint	what	caused	this	increase	such	as	cell-
type-specific	transcription	factor	binding	sites.	

To	reliably	predict	the	cell-type-specific	effect	of	variants,	our	models,	as	well	as	other	state-
of-the-art sequence-based models, such as Enformer [35] and SpliceAI [36], have to overcome 
several	limitations:	1)	missing	cell-type-specificity,	2)	ignoring	distal	regulatory	elements,	and	
3)	 incorrectly	predicting	personalized	gene	expression.	 I	will	 discuss	 these	 limitations	and	
potential	solutions	in	the	coming	sections.	

8.5 Missing cell-type-specificity of sequence-based models
The	 cell-type-specificity	 or	 tissue-specificity	 of	 sequence-based	models	 is	 not	 thoroughly	
evaluated.	 Enformer	 is	 trained	 on	 5,313	 genomic	 tracks	 including	 different	 tissues	 and	
measurement	techniques	such	as	CAGE	and	DNase-seq	reads,	and	predicts	different	values	
for	very	dissimilar	cell	types,	such	as	keratinocytes	and	monocytes.	However,	an	evaluation	
for	more	similar	tracks,	such	as	77	CAGE	tracks	related	to	the	brain,	is	missing.	We	noticed	
the same for Pangolin [37],	a	model	to	predict	tissue-specific	splicing.	Pangolin	outperformed	
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SpliceAI,	the	tissue-agnostic	model,	but	no	tissue-specific	regulatory	elements	were	discussed.	
Ideally,	the	models	should	be	evaluated	using	cell-type-specific	variants,	but	the	ground	truth	
for most variants is missing. A missing ground truth makes proper benchmarking impossible. 
A	feasible	alternative	is	to	evaluate	the	models’	performance	on	marker	genes	for	specific	
cell types or whether the models correctly learn in which cell type a gene is higher expressed 
using	for	instance	the	log-fold	change	or	the	difference	between	two	cell	types.

Exploiting	the	current	models	as	pre-trained	models	could	be	beneficial	for	learning	cell-type-
specific	mechanisms.	Some	cell	types	are	so	similar	that	it	is	challenging	to	train	a	complete	
model	with	millions	of	parameters	from	scratch	to	learn	these	subtle	differences.	Seq2cells,	
for	instance,	extracts	an	embedding	from	Enformer	and	trains	a	simple	model,	a	multi-layer	
perceptron,	to	predict	the	cell-type-specific	gene	expression	[16]. Seq2cells assumes that all 
regulatory features are stored in the embeddings and the simpler model only needs to learn 
how	to	combine	these	during	the	fine-tuning	step.

8.6 Limited context of sequence-based models
In	our	models,	the	region	around	the	transcription	start	site	and	splice	sites	contributed	most	
to	the	predictions	of	gene	expression	and	exon	inclusion.	These	regions	are	most	important	for	
transcription	and	splicing	since	RNA	polymerase	and	the	spliceosome	bind	there	respectively.	
However,	this	signal	dominates	the	predictions	entirely,	and	as	such	the	predicted	effect	of	
mutations	further	away	is	negligible.	While	mutations	in	enhancers	far	away	or	deep	intronic	
variants can cause a disease [38–40]. A recent benchmark showed that other models do not 
capture distal regulatory elements either [41]. Even though Enformer inputs a sequence of 
196kb,	it	incorrectly	predicts	the	effect	of	variants	in	distal	regulatory	elements.	

For	splicing	models,	this	has	yet	to	be	investigated,	but	since	the	model	architectures	and	
training	strategies	are	similar,	we	can	assume	the	models	suffer	here	as	well.	 Interestingly,	
SpliceAI, which inputs 10kb around the splice sites, was recently outperformed by Splam [42], 
a	model	that	only	uses	400	bp,	indicating	that	regions	further	away	might	not	be	needed	to	
predict	splicing	accurately.	However,	SpliceAI	and	Splam	are	both	classification	methods	that	
predict	whether	a	certain	site	is	a	splice	junction	instead	of	how	often	the	junction	is	used.	
Distal	variants	may	affect	the	latter	more.

8.7 Sequence-based models are data-hungry
Current	sequence-based	models	still	suffer	from	limited	training	data.	For	instance,	only	a	few	
genes	are	cell-type-specific	or	regulated	by	distal	regulatory	elements.	Few	examples	in	the	
training	data	make	it	difficult	for	models	to	learn	the	patterns.	However,	the	number	of	genes	
or exons in the human genome limits the size of the training data, so this cannot be easily 
increased. To overcome this, several models, including Enformer, are trained on human and 
mouse data simultaneously to increase the size of the training data [35,43]. The weights of 
the	first	layers	in	the	model	are	shared	across	the	species	exploiting	that	regulatory	elements	
are	partially	conserved.	The	final	fully	connected	layer	is	species-specific	to	allow	learning	of	

Thesis_LM_final.indd   183Thesis_LM_final.indd   183 24-04-2024   18:55:4124-04-2024   18:55:41



CHAPTER 8

184

species-specific	mechanisms	as	well.	In	Chapter	7,	we	applied	this	trick	when	training	exon-
inclusion models, which improved their performance. In general, the current models only 
combine human and mouse, while data from more closely related species is available. For 
instance,	for	a	cell-type-specific	model	predicting	gene	expression	 in	the	brain,	scRNA-seq	
data	from	five	primates	could	be	combined	[44]. 

8.8 Personalized sequence-based models
The	third	limitation	is	that	current	sequence-based	models	cannot	predict	variation	of	gene	
expression across individuals yet [45,46]. Ideally, for every individual genome, these models 
would	predict	 the	correct	expression	 level,	 i.e.	making	personalized	predictions.	However,	
when	evaluating	models	using	variants	found	across	individual	genomes,	Enformer	predicted	
the	wrong	direction	of	effect	for	one-third	of	the	tested	variants.	We	did	not	evaluate	making	
personalized	 predictions	 in	 our	 models,	 but	 since	 our	 models	 rely	 on	 models	 that	 were	
evaluated in the benchmark, we assume they incorrectly predict this as well.

State-of-the-art	expression	and	splicing	prediction	models	are	all	trained	on	the	reference	ge-
nome.	However,	the	predicted	genomic	features	were	measured	in	individuals	with	specific	
variants in their genomes. Recent benchmarks suggested that training on individual genomes 
could	 improve	personalized	gene	expression	predictions	[45,46]. Training on individual ge-
nomes	might	enhance	learning	of	the	effect	of	distal	regulatory	elements	as	well	because	of	
the increased variance in the training data. Recently, BigRNA [47] was released which predicts 
gene	expression	in	51	tissues	for	70	individuals.	For	each	individual,	both	haplotypes	are	in-
put	to	identical	instances	of	the	model	and	the	output	is	combined.	Their	results	look	prom-
ising, but the personalized gene expression task has not been evaluated for this model yet. 

8.9 What should sequence-based models predict?
One	might	also	question	whether	predicting	gene	expression	or	exon	inclusion	directly	from	
the	 sequence	 is	 the	most	 optimal	 approach	 to	 reach	 the	 goal	 of	 predicting	 the	 effect	 of	
mutations.	Measurement	techniques	are	noisy	and	the	measured	gene	expression	does	not	
directly	reflect	how	often	a	gene	is	transcribed	in	a	cell.	A	gene	can	be	highly	transcribed	but	
rapidly	degraded	as	well	due	to	(aberrant)	splicing	 isoforms.	Also	 in	healthy	tissues	or	cell	
types,	alternative	splicing	is	a	way	to	control	gene	expression	levels	[48,49]. If the inclusion 
of	an	exon	activates	nonsense-mediated	decay,	this	exon	might	not	be	measured	or	only	in	
low	levels	even	though	it	was	originally	highly	included.	An	alternative	would	be	to	train	the	
models on RNA-sequencing data of samples where nonsense-mediated decay was blocked, 
but this data is scarce.

Instead	of	predicting	gene	expression	directly,	it	might	be	beneficial	to	predict	intermediate	
layers,	such	as	chromatin	accessibility.	Models	trained	to	predict	cell-type-specific	chromatin	
accessibility in the drosophila brain [50] or for human melanoma [51] could be used to 
design	 cell-type-specific	 enhancers	 [52]. These models are not limited by the number of 
genes	in	the	genome	but	are	trained	on	differentially	accessible	regions	between	cell	types.	
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This	increased	the	size	of	the	training	data	and	might	explain	the	cell-type-specificity	of	the	
models.	However,	the	designed	enhancers	are	only	500	bp.	The	effect	of	these	enhancers	
was tested using a luciferase assay which means that these enhancers are inserted before the 
transcription	start	site	of	the	luciferase	gene.	The	effect	of	distal	enhancers	is	thus	not	tested	
during the design. ExPecto [53] and their recent successor ExPectoSC [54] try to overcome 
this	by	first	predicting	2002	regulatory	features	for	the	40kb	region	around	the	transcription	
start site and using this to train a simpler model to predict gene expression. 

An	alternative	could	be	to	input	chromatin	accessibility	measurements,	or	similar	regulatory	
features, to the models [55].	 This	 improves	 the	 cell-type-specificity	 since	 the	 input	 data	
is	different	now	for	every	cell	 type	or	tissue.	Another	advantage	 is	 that	 these	models	can	
extrapolate	to	new	cell	types	as	long	as	chromatin	accessibility	data	is	available	for	that	cell	
type.	Evaluating	the	effect	of	variants	or	model	 interpretation	becomes	more	complicated	
though since the input sequence cannot be in-silico mutated anymore as it is unknown how 
a	mutation	will	affect	the	chromatin	accessibility	input	track.

ENCODE-rE2G	[56]	combines	a	cell-type-specific	input	with	an	interesting	training	strategy:	
instead	of	training	on	healthy	data,	the	model	is	trained	on	perturbation	data.	This	logistic	
regressor predicts whether an element, a part of the DNA sequence, regulates a gene based 
on	extracted	features	from	the	cell-type-specific	DNase	and	cell-type-agnostic	features,	such	
as the distance between the element and the gene of interest. Since the model learns the 
relation	between	an	element	and	the	gene,	 it	 is	not	biased	 towards	 features	close	 to	 the	
transcription	start	site	and	learns	distal	regulatory	elements	as	well.	However,	they	assume	
that	a	variant	that	falls	in	an	element	is	always	linked	to	the	gene,	and	the	direction	of	effect	is	
not predicted. Instead of using the extracted features, a sequence-based model with a similar 
training	strategy	might	be	beneficial	here.	

8.10 Final remarks
Single-cell	RNA	sequencing	has	revolutionized	our	understanding	of	heterogeneous	tissues.	
In	this	thesis,	we	presented	several	methods	to	automatically	identify	cell	types	in	scRNA-seq	
data	and	use	scRNA-seq	data	to	increase	the	resolution	of	current	sequence-based	models.	
However,	when	analyzing	scRNA-seq	data,	or	using	this	data	to	train	sequence-based	models,	
we should remember that cells or cell types are not isolated compartments, but that they 
interact	and	communicate	with	each	other.	Many	spatial	transcriptomics	datasets	are	now	
generated	to	focus	on	this.	Ideally,	we	integrate	this	spatial	information	into	the	sequence-
based models.

Not	only	do	neighboring	cells	 influence	which	genes	are	expressed,	but	 the	expression	of	
other	genes	in	a	cell	can	influence	the	gene	of	interest	as	well.	A	more	holistic	view	might	
be	needed	instead	of	predicting	the	expression	of	one	gene	at	a	time.	Also	when	predicting	
splicing,	we	know	that	exons	are	very	often	coordinated.	Using	a	different	transcription	start	
site	might	determine	the	complete	isoform	used.	Predicting	the	inclusion	of	individual	exons	
might	be	very	difficult	or	near	 impossible	 in	 such	a	 case.	 Ideally,	 sequence-based	models	
would	predict	the	expression	of	multiple	isoforms	simultaneously	in	the	future.
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