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CHAPTER 7

Alternative splicing contributes to molecular diversity across brain cell types. RNA-binding 
proteins (RBPs) regulate splicing, but the genome-wide mechanisms remain poorly 
understood. Here, we used RBP binding sites and/or the genomic sequence to predict 
exon inclusion in neurons and glia as measured by long-read single-cell data in human 
hippocampus and frontal cortex. We found that alternative splicing is harder to predict in 
neurons compared to glia in both brain regions. Comparing neurons and glia, the position of 
RBP binding sites in alternatively spliced exons in neurons differ more from non-variable exons 
indicating distinct splicing mechanisms. Model interpretation pinpointed RBPs, including 
QKI, potentially regulating alternative splicing between neurons and glia. Finally, using our 
models, we accurately predict and prioritize the effect of splicing QTLs. Taken together, our 
models provide new insights into the mechanisms regulating cell-type-specific alternative 
splicing and can accurately predict the effect of genetic variants on splicing.

7.1 Introduction
During RNA splicing, introns are removed from the precursor mRNA. Different combinations of 
exons result in different mRNA isoforms, which may differ in function [1–3]. This mechanism, 
called alternative splicing, causes most of the complexity of human tissues and cell types; 
approximately 95% of all human genes are believed to be spliced in multiple ways [4,5]. 
Across different tissues, the brain has the highest levels of exon skipping and one of the most 
distinctive patterns of alternative splicing [6]. 

Alternative splicing (AS) is partly regulated by RNA-binding proteins (RBPs) [7,8], which 
can activate or inhibit spliceosome assembly or splice site recognition. RBFOX proteins, for 
instance, instruct neuronal differentiation by regulating splicing of NIN which in turn affects 
the localization of the corresponding Ninein protein [9,10]. Additionally, splicing regulation 
often relies on the combinatorial binding of multiple RBPs. For example, the inclusion of 
exon 9 of Gabrg2 is dependent on the binding of RBFOX and NOVA [11]. Splicing simulators 
have taken into account splicing enhancers and silencers [12] and a splicing code for tissue-
dependent splicing has been elaborated [13–15]. However, the genome-wide mechanisms 
regulating splicing across different cell types remain largely unknown.

Long-read sequencing is an emerging technology that has made important contributions to 
RNA biology since its inception [16–20]. Long-read single-cell and single-nuclei sequencing 
in fresh [21,22] and frozen [23] tissue allows the study of alternative splicing at the cell-
type level in the brain and other complex tissues. Such analyses revealed that most mouse 
genes show differential isoform expression across at least one pair of cell types, regions, 
and/or developmental time points in the brain [24,25]. In accordance with prior studies [26–
28], single-nuclei isoform RNA sequencing (SnISOr-Seq) of the human adult frontal cortex 
revealed that exons associated with autism spectrum disorder (ASD) are variably included 
across cell types [23]. 

To understand (alternative) splicing mechanisms and the influence of RBPs, several 
computational methods have been developed. AVISPA, for instance, predicts alternative 
splicing in four tissues by extracting regulatory features, such as the length of the exon or 
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the presence of RBP binding sites, from the mRNA sequence [14]. Other methods, including 
SpliceAI, DNABERT, Pangolin, and MTSplice, directly use the pre-mRNA sequence as input 
to their models [29–32]. However, none of the current methods predict cell-type-specific 
alternative splicing in a genome-wide manner, which is crucial for understanding splicing in 
heterogeneous tissues such as the brain. 

Here, we present two methods to predict cell-type-specific exon inclusion using the pre-
mRNA sequence and/or the presence of RBP binding sites in the hippocampus and frontal 
cortex. After training our machine learning models, we used model interpretation to study 
the mechanisms governing cell-type-specific exon inclusion. We focused on variable exons 
which we defined as exons for which the inclusion rates differ in neurons and glia. We found 
that the presence of RBP binding sites in variable exons compared to non-variable exons 
differs more in neurons than in glia. This indicates that the alternative splicing mechanism 
in neurons deviates more from the non-variable mechanism. Furthermore, we show that 
some RBPs, including QKI, have a big effect on exon inclusion in glia, that the regions close to 
the splice sites are most important for predicting exon inclusion, and that we can correctly 
predict and prioritize the effect of splicing QTLs and prioritize their effects.

7.2 Results

7.2.1 Predicting exon inclusion is more difficult in neurons than 
in glia

To define the rules governing exon inclusion in distinct cell types, we trained different models 
to predict cell-type-specific percent spliced-in (Ψ) values in the brain (Figure 1A). We focused 
on neurons and glia in two human brain regions, hippocampus (HPC) and frontal cortex 
(FC), and calculated Ψ values per exon by aggregating single-nuclei isoform RNA sequencing 
(SnISOr-Seq) reads from multiple individuals (Table 1, Methods) [23,25]. Most exons are 
either almost always included (Ψ ≈ 1) or excluded (Ψ ≈ 0) in an mRNA molecule (Figure 1B, 
S1A-C). Furthermore, most exons have similar values in neurons and glia (Figure 1C, S1D). 
We define exons with different inclusion rates in neurons and glia ( | | .�� glia neur� � 0 25 ) as 
variable exons. In HPC and FC, 2,244 and 943 exons are variable respectively (Table 1). In 
contrast to non-variable exons, these values show a uniform distribution of Ψ (Figure 1B). 
Even though we used a minimum of 10 reads per exon to calculate a Ψ value (Methods), we 
believe these values are reliable. When comparing the Ψ values of the variable exons per 
individual in neurons and glia, there is a clear separation between neurons and glia (Figure 
S2). Since most exons are almost always included, we downsampled these exons when 
training the models (Methods).

First, we used a logistic regression (LR) model to predict Ψ values from RBP binding sites of 
122 RBPs from the ENCODE project [8]. These RBPs were measured in two cell lines (K562, 
HepG2), implying that this data is not brain cell-type-specific. We generated a count matrix, 
indicating the number of binding sites per exon for each RBP. Since the position of an RBP 
can influence its function [33,34], we split these binding sites based on six possible binding 
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locations: 1) upstream of the exon (up to 400bp), 2) overlapping the 3’ splice site, 3) in the 
exon, 4) spanning the exon, 5) overlapping the 5’ splice site, and 6) downstream of the exon 
(up to 400bp) (Figure 1A). 

Any model is strongly influenced by its training data. A model trained on all exons might 
be dominated by the rules governing non-variable exons, while cell-type-specific inclusion 
effects might be overlooked. Therefore, we trained three different models using 10-fold 
cross-validation and either: A) all exons (LRall), B) exons with | | .�� glia neur� � 0 1 (LRvar0.1), or 
C) exons with | | .�� glia neur� � 0 25 (LRvar0.25) as training data (Table S1). When evaluating the 
models on all exons, LRall showed the highest median Spearman correlation between true 
and predicted Ψ values on all four datasets followed by LRvar0.1 and LRvar0.25 (Figure 1D, S3). 
On hippocampal variable exons, however, LRvar0.1 outperformed the other models (Figure 
1D). The performance increase when training on variable exons indicates that the splicing 
mechanism in these variable exons is somewhat different from the mechanism in non-variable 
exons. In the frontal cortex, the performance on neurons increased when the training data 
became more specific, while the performance on glia decreased (Figure S3). Surprisingly, 
we predicted Ψ values more accurately in glia than neurons in both brain regions (median 
Spearman correlation of 0.54 vs. 0.23 in HPC, and 0.57 vs. 0.10 in FC) (Figure 1D-F, S3-4). 
Furthermore, using LRvar0.25 to predict Ψ values of all exons resulted in lower performance 
for neurons compared to glia in both HPC and FC (Figure 1D, S3). Indicating that the learned 
splicing patterns for variable exons in neurons do not generalize to non-variable exons - likely 
because the underlying molecular grammar is different in the two exon sets. 

7.2.2 Primary sequence is more informative for neurons

The RBP binding sites used to train the logistic regression models were measured in immune 
and liver cancer cell lines and are thus not cell-type specific  - and may reflect glial more 
than neuronal splicing as shown above. Furthermore, some RBPs known to be important 
for splicing in the brain, such as NOVA1 and NOVA2, are not included in the ENCODE data 
[35,36]. To test whether this caused the low performance of the models on neurons, we 
trained sequence-based models - which are independent of any RBP data and comparable 
across different cell types. We adapted the Saluki model, a hybrid convolutional and recurrent 
neural network that uses mRNA sequences to predict mRNA degradation rates [37], to predict 
Ψ values (Methods) (Figure 1A, S5). The input sequence is 6,144 bp with the exon of interest 
centered in the middle. Since deep learning models need large training datasets, we trained 
a model using all exons (DLall-seq) and a model using exons with | | .�� glia neur� � 0 1 (DLvar0.1-seq). 

Individuals Measured exons Variable exons

HPC [25] 6 68,215 2,244

FC [23] 2 56,427 943

Table 1. The number of measured exons (exons for which at least 10 reads were sequenced in both the neurons and 
glia) and variable exons (| | .��

glia neur�
� 0 25) in the hippocampus (HPC) and frontal cortex (FC). 
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Figure 1. Overview and performance of the Ψ prediction models. A) Schematic overview of the models used to 
predict cell-type-specific Ψ values. B) Distribution of Ψ values of glia in the hippocampus. C) Distribution of ΔΨglia-neur 
for the hippocampus. D) Performance of the different models during 10-fold cross-validation on all exons and the 
variable exons in glia and neurons in the hippocampus. E-F) Scatterplot showing the predictions of LRvar0.1 for variable 
exons in glia and neurons. 
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In HPC, the LRall model outperformed the DL models when evaluating performance on 
all exons, but on variable exons, DLall-seq outperformed LRvar0.1 for neurons (Figure 1D). For 
the variable exons in neurons, primary sequence is more informative than the measured 
ENCODE-derived RBP-binding-site data. Even though the performance increases for neurons, 
the performance gap between neurons and glia remains. Thus, neuronal splicing patterns 
probably have more complex regulation mechanisms that we do not capture with the 
current models. In FC, the performance of the DL models on all exons and variable exons was 
considerably lower compared to HPC (Figure 1D, S6). This is likely related to the size of the 
training data which is significantly smaller for FC than HPC (Table S1). 

Next, we combined sequence and RBP binding sites by adding a channel for every RBP which 
indicates the presence of a binding site (DLall-seq-RBP) (Figure 1A, S5). This outperformed the LR 
models and resulted in the best-performing model for glia (median Spearman correlation of 
0.54 vs. 0.57 in HPC, and 0.57 vs. 0.65 in FC) (Figure 1D, S3, S6). This improvement indicates 
that we can capture regulatory information from sequence beyond those present in RBP data 
alone. For neurons, however, DLall-seq-RBP had lower performance than DLall-seq, again confirming 
that the ENCODE RBP data is more informative for glia than neurons. 

We also trained DL models that do not use splice sites or only use RBPs as input for the 
neurons and glia in HPC to understand how the input channels affect performance (Figure 
S7). Omitting splice sites only slightly decreased the performance, which indicates that the 
model can recognize the splice sites quite easily from the sequence itself. For glia, using the 
RBPs as the only input feature results in a comparable performance to the LRall model (median 
Spearman correlation of 0.55 vs. 0.54) and an even better performance than sequence and 
splice sites only (median Spearman correlation of 0.49). However, for neurons, we observe 
the opposite; using RBP binding sites reduces performance compared to the DLall-seq model 
(median Spearman correlation of 0.23 vs. 0.30). 

7.2.3 Exon inclusion mechanisms are conserved between human 
and mouse

As cell-type-specific alternative splicing is partially conserved between humans and mice [25], 
we hypothesized that adding mouse data to our model would increase performance. We 
combined human HPC data with mouse HPC [25]. Since mouse FC data is not available, we 
combined human FC with data from the mouse visual cortex (VIS). While these two cortical 
regions are not identical, they do share many common characteristics. Especially in mouse 
HPC, few exons are variable (528) compared to VIS (1,404) (Table S2, Figure S8). Although 
DLall-seq-RBP performed best in glia, we only trained models with sequence and splice sites as 
input channels (DLall-seq-m, DLvar01-seq-m) since RBP binding sites were not measured in mouse 
cell lines. In HPC, the performance on variable exons of both cell types slightly increased by 
adding the mouse data (Figure 1D). On FC, the performance on all exons increased as well 
(Figure S6), supporting our hypothesis that not enough training data was available to train 
these models on human exons alone. Similar to the human data, glial Ψ values were easier to 
predict than neuronal ones in mice (Figure S9). 
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7.2.4 The splicing mechanisms in neurons diverged more than in 
glia

Our above results show that neuronal Ψ values are harder to predict than glial regardless of 
the model or input data. Hence, splicing mechanisms in neurons might be different than in 
glia and more complex. However, Ψ values could be biased, making it easier to predict in glia. 
To exclude the latter, we used the hippocampus data to assess whether glia and neurons are 
similar in terms of 1) Ψ -value distributions, 2) heterogeneity within each cell type, and 3) 
variation across individuals. 

First, comparing Ψ distributions, more values are close to 0 or 1 in glia than neurons (Figure 
S10AB), which is most apparent for the non-variable exons (two-sided Kolmogorov-Smirnov 
test, p-value < 2.2e-16). For variable exons (Figure S10B), however, both distributions are 
not different (two-sided Kolmogorov-Smirnov test, p-value = 0.44). Thus, data distribution 
differences cannot explain all observed differences between neurons and glia. 

Second, to quantify the heterogeneity within a cell type, we measured the difference in Ψ 
values between finer cell-type classifications. For neurons, we compared the inhibitory and 
excitatory neurons, and for glia, we compared oligodendrocytes and astrocytes. Within glia, 
we have more variable exons (| | .�� � 0 25) compared to neurons (831 vs. 745). In neurons, 
more exons have an extreme difference (| | .�� � 0 5) (92 vs. 70) (Figure S10CD). Compared 
to the total exon number defined for both cell types in neurons and glia (28,296 and 27,047 
respectively), both numbers are small. Thus, this cannot explain the difference in performance 
between neurons and glia. 

Third, to compare the variance across individuals for glia and, separately, for neurons, we 
calculated Ψ values per individual instead of using the aggregated counts. We calculated the 
variance for an exon only if ≥3 individuals have ≥10 reads for that exon in both neurons and 
glia. For both non-variable and variable exons, the variance is higher in glia (two-sided paired 
Wilcoxon signed-rank test, p-value = 1.3e-28 and 8.9e-5 respectively) (Figure S10E). Thus, the 
data do not explain observed differences in performance between neurons and glia. 

We then hypothesized that splicing mechanisms regulating variable exons in neurons 
might differ from the non-variable exons. To test this hypothesis, we compared the RBP 
binding profiles between variable and non-variable exons in neurons and glia (Figure 2A). 
We performed these comparisons for exons with a high (≥ 0 5. ) and a low Ψ value (< 0 5. ) 
separately. The binding profiles between variable and non-variable exons differ significantly 
more in neurons compared to glia in HPC (Figure 2B) and FC (Figure 2C). Non-variable exons 
with high Ψ values more often have a binding site at the 3’ splice site for splicing factors such 
as U2AF1, U2AF2, and SF3B4 compared to non-variable exons with low Ψ values (Figure 2D, 
S11AB). In glia, variable exons show a similar pattern (Figure 2E, S11AB). However, binding 
sites for these splicing factors cannot differentiate between exons with high and low Ψ values 
in neurons (Figure 2F, S11AB), indicating that these RBP binding sites are likely not used in 
neurons. In the hippocampus, PTBP1 differs the most between neurons and glia (Figure S11C). 
PTBP1 is a position-dependent RBP: binding within or upstream of an exon represses splicing 
while binding downstream activates splicing in HeLa cells [38]. Our RBP binding profiles 
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contradict these known mechanisms. In HeLa cells, however, PTBP1 is highly and PTBP2 is 
lowly expressed, while this is vice versa in the hippocampus (Figure S12). PTBP1 RBP binding 
profiles obtained from non-brain cell lines are thus less likely to reflect splicing mechanisms 
in the hippocampus. Strikingly, the binding profile of PTBP1 in variable exons in neurons is 
again considerably different from the variable exons in glia and the non-variable exons. There 
is no position-dependent regulation and no difference between exons with a high and low Ψ 
value. In the hippocampus, only one RBP, HNRNPC, showed the opposite pattern with larger 
differences in glia compared to neurons (Figure S11D). 

7.2.5 Interpretation of LR models reveals cell-type-specific splicing 
mechanisms

To further pinpoint the factors underlying differences in splicing between glia and neurons, 
we analyzed the coefficients of the logistic regression models. These coefficients reflect the 
importance of each RBP binding position in regulating cell-type-specific splicing. We compared 
the coefficients of four models for the hippocampus (two cell types, and two training sets) 
and focused on features present in at least 50 exons and with a coefficient > 0.05 in at least 

Figure 2. The difference in RBP binding profiles between non-variable and variable exons. A) Schematic over-
view showing how to generate the RBP binding profiles of non-variable (| | .��

glia neur�
� 0 25) and variable 

( | | .��
glia neur�

� 0 25 ) exons in neurons in the hippocampus. We generated these RBP binding profiles for every RBP 
and split the exons based on their Ψ value (threshold = 0.5) and their variability. We calculated the mean-squared 
error (MSE) between the profiles in non-variable and variable exons. We do this for the exons with a high and low Ψ 
value resulting in four comparisons per RBP. B-C) Boxplot showing the MSE between the RBP profiles in non-variable 
and variable exons in neurons (blue) and non-variable and variable exons in glia (orange) for the B) hippocampus 
and C) frontal cortex. Every point in the boxplot is one RBP. P-values are calculated using a two-sided paired Wilcox-
on signed-rank test. D-F) Binding profile of U2AF1 in D) non-variable exons, E) variable exons in glia, and F) variable 
exons in neurons. 
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one model (191 out of 732 features). The model coefficients first cluster based on which 
exons are used during training (all vs. variable) (Figure 3A). This clustering indicates that the 
mechanisms for non-variable and variable exons, represented by the LRall and LRvar0.1, differ 
more than the cell-type-specific mechanisms. The RBPs cluster into two groups: features with 
positive and features with negative coefficients (Figure 3A). As expected, splicing repressors, 
which are part of the heterogeneous nuclear ribonucleoproteins (hnRNP) family [39], have 
a largely negative weight in all models (Figure 3B). PTBP1, for which we saw a difference 
between the non-variable and variable exons in the hippocampus, is a member of the hnRNP 
family and has a potential position-dependent effect in glia based on the RBP binding profiles 
(Figure S11C). The LRvar0.1-glia-HPC model correctly learned this effect: PTBP1 binding at the 3’ 
splice site and within the exon have coefficients of -0.05 and 0.01 respectively. The model 
coefficient for PTBP1 binding at the 3’ splice site is among the ten features that differ the 
most between glia and neurons (Figure 3C, LRvar0.1-glia-HPC vs LRvar0.1-neur-HPC) which indicates a 
potential cell-type-specific effect corresponding to the established switch between PTBP1 
and PTBP2 [40–42]. 

Figure 3. Interpretation of the logistic regression models. A) Heatmap showing the coefficients for the RBP-location 
features in the different logistic regression models. The input features are filtered using a minimum of 50 RBP sites 
and a value of at least 0.05 in one of the models. The values are clipped between  -0.2 and 0.2. B) Heatmap showing 
coefficients of hnRNPs in the different models. C) Heatmap showing the top 10 cell-type-specific input features with 
the biggest difference between HPC-glia (var) and HPC-neur (var). D-E) Binding profiles of QKI in variable exons in 
neurons and glia.
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QKI binding at the 3’ splice site has the strongest cell-type-specific effect in the hippocampus 
(model coefficient = -0.15 vs. 0.12 for glia and neurons respectively), which reflects differences 
in the RBP binding profiles (Figure 3D-E). In glia, a binding site that overlaps the 3’ splice site 
leads to lower inclusion rates, while the opposite happens in neurons. In the scRNA-seq data, 
QKI has higher expression in glia compared to neurons in the hippocampus (Wilcoxon rank 
sum test, adj. p-value < 2.2e-16) (Figure S13). Both observations correspond to the known 
mechanism of QKI, which inhibits splicing by competing with the core splicing machinery 
[10,43]. In mice, QKI is important during myelination and oligodendrocyte differentiation 
[44,45]. Its role in the human brain is less studied, but a role in oligodendrocyte formation 
and Schizophrenia has been suggested [46,47]. Interestingly, variable exons are enriched for 
QKI binding sites compared to non-variable exons (Fisher’s exact test, adj. p-value = 1.6e-13). 
Besides the 3’ splice site, QKI binding downstream of an exon is also in the top 10 cell-type-
specific features. The effect of QKI downstream of an exon is the opposite compared to QKI 
binding at the 3’ splice site, which indicates a potential position-dependent effect of QKI. 
Such position-dependent regulation of QKI has been shown in lung cancer [48] but, to our 
knowledge, not in the brain. 

In contrast to QKI, most of the cell-type-specific RBPs identified using our LR models are 
neither differentially expressed nor differentially spliced. Exceptions are STAU2, which is 
upregulated in neurons (Wilcoxon rank sum test, adj. p-value < 3.39e-16), and EWSR1, which 
is differentially spliced (Table S3). The latter could indicate that distinct isoforms of EWSR1 
influence RNA splicing in different ways. 

7.2.6 The sequence close to the splice sites is most important for 
predicting exon inclusion 

Given that the RBP-binding-site data is not brain-specific and that it lacked measurements 
from some key RBPs, we set out to identify sequence features that influence Ψ predictions 
in the deep learning models. We used in-silico saturation mutagenesis (ISM, Methods) 
to systematically predict how nucleotide substitutions in the input sequence affect the 
predicted Ψ value [49–52]. Since DLvar0.1 performed considerably worse than DLall (Figure 1D), 
we focused on interpreting DLall for glia in the hippocampus, which had higher prediction 
accuracy than neurons, instead of looking for cell-type-specific effects. 

Since ISM is computationally expensive, we mutated the input sequence of the 9,929 exons 
with | | .�� glia neur� � 0 1  instead of all exons. The ISM score indicates how much a mutation 
increases or decreases the predicted Ψ value compared to the average prediction at that 
position for that sequence (Methods). As expected, mutations around the splice sites and 
within the exon strongly affect the predicted Ψ value (Figure 4A). These results reflect the 
known importance of the splice site’s consensus sequence to be recognized by the splicing 
machinery. The two nucleotides before and after the exon  -the AG acceptor and GU donor 
dinucleotides- have the strongest predicted effects. Looking at the maximum absolute 
ISM score, only mutations within a range of 50bp upstream of the 3’ splice site and 150bp 
downstream of the 5’ splice site have a value > 0.1 (Figure S14). This is in line with a recent 
computational model that predicted human splice sites using a window of 400bp on each 
side of the splice site and obtained an overall accuracy of 96% [53]. However, smaller values 
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of >0.05 could be observed across almost the whole input sequence. Although distant 
splicing regulators have been reported [54], potential variability in distant motifs and/or their 
position may prevent their detection by our model.

Besides the region around the exon of interest, we observed higher-than-average ISM scores 
within nearby exons and their flanking region (Figure S15). The enrichment of RBP binding 

Figure 4. Interpretation of the deep learning model for glia in the hippocampus. A) Average absolute ISM score 
across the 9,929 exons. The mutations within the exons are binned in 300 bins. The zoomed-in plot ranges from 
200bp upstream of the 3’ splice site to 200bp downstream of the 5’ splice site. B) Mutation profile for an exon in 
XRN2. The colors of the exons below the profile indicate the exon of interest and the neighboring exons which have 
an ISM score in the top 10. C) Single-cell long reads for XRN2. Each line is a single cDNA molecule. The bottom black 
track shows the Gencode annotation. D) Mutation profile for an exon in TPCN1. In the exon, a motif corresponding 
to RBM45 is found. E) Schematic overview of the sQTL analysis. F) Scatterplot showing the predicted effect for each 
variant. The color of the points indicates the distance to the closest splice site. A grey dot means that a variant falls 
within the exon of interest. The numbers in black and red indicate the number of predictions in a quadrant when no 
threshold and a threshold of 0.005 are used respectively. G) ISM scores for two variants related to the same exon of 
RARS1. A negative effect, corresponding to the positive slope, is predicted for the first variant. A smaller, but positive 
effect is predicted for the second variant.
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sites in these regions could explain the higher scores. Alternatively, our model potentially 
recognized coordinated events between exons. To test this, we selected the top 10 exons 
with the highest absolute ISM scores within their neighboring exons and visualized the 
single-cell long reads from our data that span both exons (Methods). These reads can inform 
whether the two exons pair non-randomly (thus in coordination [21,23,55,56]) or randomly. 
Exon 24 in XRN2 appeared twice in the top 10 list with two neighboring exons (exons 21 
and 22) strongly influencing its Ψ value (Table S4). All three exons (21, 22, and 24) have a 
Ψ value of around 0.8 and the exons are either all included or all excluded in the single-
cell long-read data, suggesting these exons are mutually associated (Figure 4BC). Mutations 
affecting the inclusion of one of these exons will most likely affect the other exons as well. In 
the top 10 scores, four other cases could pinpoint exon coordination events (Figure S16-19). 
In the remaining four cases, the exons pair randomly, so there is no evidence of exon-exon 
coordination (Figure S20-23). 

To further interpret sequences with a high ISM score, we used TF-MoDISco [57] to identify 
motifs in sequences with large effects on exon inclusion. Since the region around the splice 
site had the highest ISM scores, many of the top motifs identified by TF-MoDISco correspond 
to the consensus splice sites and associated motifs, including the well-known AG acceptor 
dinucleotide, the poly-pyrimidine tract (PPT) upstream of the exon, and the extended splice 
donor motif with the GU dinucleotide (Supplementary File 1, Figure S24). We also found 
motifs that match known RBP binding motifs, which were not in our input data for the LR 
model, and hence could not be tested for cell-type-specific effects. For example, we found 
a motif corresponding to RBM45 in exon 12 of TPCN1 (Figure 4D, Table S4), which seems 
to promote exon inclusion. RBM45 regulates constitutive splicing and can probably activate 
or repress the inclusion of an exon, but the exact mechanisms are currently unknown [58]. 
Taken together, characterizing important sequence features from DL models can identify 
splicing regulators beyond those we can identify based on available RBP measurements. 

7.2.7 Prioritizing the effect of splice QTLs using the DL models

So far, we showed how LR and DL model interpretations can be used to reveal the regulatory 
mechanisms of RBPs governing cell-type-specific exon inclusion. Besides this fundamental 
knowledge, we can use our DL models to predict the effects of genetic variants on splicing. 
Accurately predicting these effects can help prioritize variants of interest. To test the rele-
vance of our model predictions for genetic variants, we used splicing quantitative trait loci 
(sQTLs) from the hippocampus data from GTEx v8 [59]. Variants in this dataset are linked to 
intron-excision ratios instead of exon inclusion. We extracted introns and their corresponding 
variant(s) that span an exon in our data and predicted the effect of the variant(s) on that exon 
(Figure 4E). In total, 326 variants are within the input range of our model. These variants 
correspond to 122 introns and 158 exons. Some introns thus span multiple exons and most 
introns have multiple variants linked. For every variant, a slope indicates whether the corre-
sponding intron is excised more or less compared to the reference allele. We expect negative 
slopes to correspond to an increased Ψ value of the exon of interest which would result in 
�ISMalt ref� � 0. Conversely a positive slope would result in�ISMalt ref� � 0 (Figure 4E). How-
ever, more complex scenarios, such as a variant affecting adjacent exons, may arise as well. 
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Using our model, we predicted an effect (| | .�ISMalt ref� � 0 005) for 71 out of 326 variants 
which corresponds to 61 of the 122 introns. For 83% (59 out of 71) of these variants, our 
model predicts the expected effect correctly (Figure 4F, S25). Most of the variants with an 
effect are very close to the splice sites: 74.6% are within the exon or a distance of 15bp to 
either the 3’ or 5’ splice site. These cases most likely affect exonic splicing enhancers or the 
binding of U1 and U2 snRNA. For 14 of 61 introns where our model did not predict an effect, 
all corresponding variants are outside of the intron itself. Here, the splicing of adjacent exons 
is most likely altered instead of our exon of interest. For 2 of these 14 exons, all variants are 
even outside of the gene itself.

Three exons have multiple corresponding variants with a predicted effect. For exon 15 in 
ZNF880 (Table S4), three variants have a predicted expected effect. The other two exons, 
however, have two variants with a contradicting predicted effect. In both cases, the variant 
with the biggest predicted effect is in line with the slope of the sQTL of the intron. For exon 
25 in RARS1 (Table S4), for instance, variant one is located in the exon (168,498,025; G → 
T) and variant two is located before the exon (168,497,923; C → T). For variant one, our 
model predicted the expected effect, while our model predicted the opposite for variant two 
(Figure 4G). Variant one, the variant with the biggest and correctly predicted effect, is located 
in a binding site for SRSF1 according to eCLIP data [8]. RNA recognition motif 2 (RRM2) of 
SRSF1 interacts with the GGA motif. A G → T mutation in the first nucleotide will thus hinder 
the binding of SRSF1 [60]. Variant two is located in a stretch of G’s. At this location, there’s 
a binding site for ELAVL1, a protein regulating mRNA stability, and hnRNP family member 
HNRNPK, which tends to repress splicing [8]. Using the DL models, we can thus correctly 
predict the effect for most sQTLs and prioritize their effects. 

7.3 Discussion
We trained logistic regression and deep learning models to predict cell-type-specific exon 
inclusion in human brain samples. Since this is the first attempt to leverage long-read single-
cell sequencing data for this task, we can use our models to decipher the grammar underlying 
cell-type specificity of splicing. Using model interpretation, we pinpointed interesting RBPs, 
such as QKI, that could drive differential splicing between neurons and glia. Furthermore, we 
show that the location of RBP binding sites differs more between variable and non-variable 
exons in neurons compared to glia. This indicates that the splicing mechanisms controlling 
exon inclusion in neurons are more different compared to the general mechanism. 

For most RBPs, RBP binding profiles of non-variable exons with high and low Ψ values 
showed distinct patterns. Considering U2AF1 for example, exons with a high Ψ value are 
more likely to have a binding site close to the 3’ splice site compared to exons with a low 
Ψ value. These RBPs behave differently in variable exons in neurons, and for most RBPs the 
difference between exons with a low and high Ψ value is missing. These features are thus 
not informative for neurons, which explains the low performance of the logistic regression 
models on neurons. The U2AF heterodimer, composed of U2AF1 and U2AF2, is believed to 
bind every polypyrimidine tract and AG dinucleotide in 3’ splice site regions [61–63]. Binding 
may not happen on specific sites repressed by other factors. The potential binding sites are 
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still there, but they might be used by a competing RBP in neurons. Interestingly, most RBPs are 
not differentially expressed or differentially spliced between neurons and glia. For these RBPs, 
post-translational modifications, such as phosphorylation, might differ between neurons and 
glia and could change their function [64,65]. Furthermore, RBP binding sites measured in 
non-brain cell lines might not always be representative of splicing in the hippocampus and 
frontal cortex. The expression of RBPs can differ dramatically between the non-brain and 
brain tissues as was seen for PTBP1.

The deep learning models, however, also perform poorly on the variable exons in neurons. 
The model trained on all exons focuses only on learning the general splicing mechanisms, 
and the model trained on the variable exons might not have enough training data. In glia, 
the model trained on all exons performs well on the variable exons. Again indicating that the 
variable exons in glia follow the rules of the general splicing mechanisms more. The worse 
performance of the DLall-seq models on neurons, in combination with the distinct RBP binding 
profiles, supports our conclusion that the splicing mechanisms in variable exons in neurons 
diverged from the mechanisms in non-variable exons. 

A potential explanation, in line with the diverged RBP binding sites, is that splicing in neurons 
is less sequence-dependent. Other factors, such as chromatin features and polymerase speed 
[66–79], RNA methylation [80–82] as well as other modifications, and transcription factor 
binding sites [83], influence splicing as well. These features might explain the difference 
between neurons and glia. Altered chromatin accessibility or RNA methylation, could, for 
instance, explain why certain RBP binding sites are not used in neurons anymore. Furthermore, 
neuronal genes - by definition more expressed in neurons - are more susceptible to missplicing 
[84]. While we did not focus on missplicing, this indicates that splicing mechanisms might be 
different in neurons. Also, the gene expression of human neurons diverged faster from other 
primates compared to glia [85]. A similar divergence could have occurred with the splicing 
mechanisms.

For the deep learning model, we tested the effect of different lengths for the input sequence. 
Even though all lengths showed a very similar performance, we used a relatively long input 
sequence (6,144 bp) which had the advantage that we could predict the effect of more 
mutations. When predicting the effect of sQTLs, however, we predict a strong effect mainly 
for variants close to the exon of interest. The region close to the splice sites, however, still 
contributes the most to the predictions. This is in contrast to splice site predictions from 
SpliceAI, for which an input sequence of 10kb significantly outperforms 400 bp [29]. SPLAM, 
however, outperforms SpliceAI while only using 400 bp [53]. Of note, this does not preclude 
the mechanistic influence on splicing decisions by motifs further upstream. Rather, these data 
suggest that such distant RNA binding sites are highly variable regarding their position to the 
exon. This variability in position could prevent the model from detecting such motifs. Similar 
observations have been made for models that predict gene expression. Even though the best-
performing model uses a long input sequence (196kb), only one-third of the receptive field is 
used during predictions and distal enhancers are not captured by the model [51,86].

Another possible advantage of a longer input sequence is that it would be possible to look 
at coordinated events. Exons in the human brain are often mutually associated or mutually 
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exclusive [23,55,87–89]. Such events can even be cell-type-specific. For instance, two 
neighboring exons in WDR49 are perfectly coordinated in astrocytes only [23]. Using our 
model, the ISM scores within neighboring exons are higher than the ISM scores of the rest of 
the sequence. For some exons, these higher scores indeed indicate that there is exon-exon 
coordination. Since exon-exon coordination is so common, predicting such events might be 
more beneficial than focusing on individual exons. 

Furthermore, the longer input sequence enables predicting the effect of more sQTLs. 
However, most variants the model predicted an effect for are near the splice sites. For these 
variants, the model obtained a high accuracy (83%) and could be used to prioritize the effect 
of sQTLs as well. Nonetheless, a limitation of the current DL models is that they lack cell-type 
specificity. The DL models need substantial training data, so training on all exons yielded 
the highest performance. As a consequence, these models focused on the general splicing 
mechanisms and yielded better performance on variable exons in glia than neurons.

In conclusion, to increase our understanding of (alternative) splicing in the brain, we trained 
two types of models to predict exon inclusion in neurons and glia of the hippocampus and 
frontal cortex. Ideally, these models make perfect predictions such that they can be used 
in the clinic for predicting the effects of variants or for personal splicing predictions. The 
performance of our models, however, is not optimal yet. Nevertheless, we show how model 
interpretation yields important biological discoveries including the different mechanisms in 
neurons and glia. This demonstrates the potential of using long-read single-cell data for this 
task. 

7.4 Methods

7.4.1 Calculating cell-type-specific Ψ values

For the human data, we combined SnISOr-Seq data from 6 individuals for the hippocampus 
and 2 individuals for the frontal cortex (Table 1). For the mouse data, we combined ScISOr-
Seq2 data from two mice for the hippocampus and two mice for the visual cortex (Table S2). 
Scisorseqr was used to map and align reads to GRCh38 for human and mm10 for mouse to 
identify splice sites for each dataset separately [24]. We used IsoQuant to correct the splice 
sites [90]. Using all exons appearing as an internal exon in a read, we calculated:

●	 The number of long-read molecules containing this exon (both splice sites included): 
Xin 

●	 The number of long-read molecules assigned to the same gene as the exon, which 
skipped the exon but includes 50 bases on both sides: Xout 

●	 The number of long-read molecules supporting the acceptor of the exon and ending 
on the exon: Xacc In

●	 The number of long-read molecules supporting the donor of the exon and ending 
on the exon: Xdon In

●	 The number of long-read molecules overlapping the exon: Xtot
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Non-annotated exons with one or two annotated splice sites, ≥70 bases of non-exonic (in the 
annotation) bases, were excluded as intron-retention events or alternative acceptors/donors 
We then calculated: 

●	 �overall
X X X

X X X X
in accIn donIn

in accIn donIn out
� � �

� � �

●	 �acceptor
X X

X X X
in accIn

in accIn out
� �

� �

●	 �donor
X X

X X X
in donIn

in donIn out
� �

� �
 

If 0.02 ≤ Ψi ≤ 0.98 where i ∈ {overall,acceptor,donor} in the pseudo-bulk data, the exon was 
kept. Next, we filtered exons based on the number of reads. We only calculate Ψoverall for 
a cell type in a certain brain region if at least 10 long-read UMIs are sequenced across the 
different individuals (Xtot ≥ 10). Since individuals of different datasets were sequenced using 
a different read depth, we normalized the read counts by dividing it by the total number of 
reads for an individual before calculating Ψoverall. We then calculated Ψoverall for each cell type 
(Ψneur and Ψglia) for the hippocampus and frontal cortex. If there were not enough reads, for 
that exon and cell type Ψoverall was set to “NA”. We used the cell-type labels defined in the 
original datasets. For neurons, we grouped the inhibitory and excitatory neurons. For glia, we 
grouped the oligodendrocytes, astrocytes, and oligodendrocyte precursor cells. 

7.4.2 Downsampling cell-type-specific Ψ values

In the human data, many exons (30,273 out of 68,215 for the hippocampus and 45,680 
out of 56,427 for the frontal cortex) have Ψneur > 0.9, Ψglia > 0.9, and | | .�� glia neur� � 0 03. 
We downsampled these to 5,000 to make the distribution less skewed towards one. In the 
mouse hippocampus data, 18,351 out of 23,857 exons have Ψ = 1 in neurons and glia, so we 
downsampled these to 5,000 as well. For the visual cortex, 27,073 out of 48,515 exons have 
Ψneur > 0.9, Ψglia > 0.9, and | | .�� glia neur� � 0 03. We downsampled these to 5,000.

7.4.3 RBP-binding-site data

We downloaded the eCLIP data for 122 RBPs from the ENCODE portal (https://www.
encodeproject.org/metadata/?status=released&internal_tags=ENCORE&assay_title=e-
CLIP&biosample_ontology.term_name=K562&target.investigated_as=RNA+binding+pro-
tein&biosample_ontology.term_name=HepG2&assembly=GRCh38&type=Experiment&files.
processed=true). From this file list, we used the BED files that store the peaks per replicate. 
We merged peaks from different replicates or cell lines to ensure one BED file per RBP. 

7.4.4 Logistic regression models

The logistic regression model is implemented as one fully connected layer between the input 
features (the RBP binding sites) and the output (the Ψ value) with a sigmoid activation function 
to scale the output between 0 and 1. The models are single-task models which means that 
a separate model was trained for each cell type. When training the model, we use a binary 
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cross entropy loss with L1 and L2 regularization (alpha = 0.001, and L1-ratio = 0.7), a learning 
rate of 0.005, and a batch size of 256. As input for the logistic regression models, we counted 
the number of peaks in the BED files for every RBP and exon at six locations: 1) upstream of 
the exon (maximum 400 bp away from the splice site), 2) overlapping the 3’ splice site, 3) 
within the exon, 4) spanning the exon, 5) overlapping the 5 splice site, and 6) downstream of 
the exon (maximum 400 bp away from the splice site). Since we used the eCLIP data of 122 
RBPs and there are 6 possible locations, this resulted in 732 input features for every exon 
(Figure 1A). If peaks of different replicates were overlapping, we counted those peaks only 
once. The logistic regression model is implemented in PyTorch Lightning [91,92]. 

7.4.5 Deep learning models

We adapted the architecture of the Saluki model [37] by removing one convolutional layer, 
shortening the maximum sequence from 12,288 to 6,144 bp, and changing the final activation 
function to a sigmoid activation function (Figure S5). The exon of interest was centered in 
the middle of the input sequence. The input channels of the model depend on the input 
features used (sequence, splice sites, and/or RBP binding sites). For the sequence, we one-
hot encoded the sequence which results in four channels. If the splice sites were used as 
input, this added an extra channel that indicates the start and end of the exon of interest. 
When adding the RBP binding sites, we add a channel for every RBP which one-hot encodes 
whether there is a binding site in any of the replicates of the eCLIP data for that RBP based on 
the BED files. Similar to the logistic regression models, we trained a model for every cell type 
separately. Even though we adapted the Saluki model, we retrained all the weights in the 
model. When adding the mouse data, we adapted the same approach as Saluki and made the 
model a multi-head model where the weights of the convolutional and recurrent neuronal 
network layers are shared and the weights of the fully connected layer are species-specific 
(Figure S5).When training the model, we used the same hyperparameters, including the 
learning rate, batch size, etc., as the original Saluki model (Figure S5). For the hippocampus, 
we tested how input-sequence length and the number of convolutional layers affect the 
performance. The benefit of a longer input sequence is that the model can learn how long-
distance interactions of regulatory elements affect splicing, but these models contain more 
parameters and are more difficult to train. The different models performed similarly which 
indicates that the most important information is close to the splice sites of the exon (Figure 
S26). The model using 6,144 bp and five channels performed slightly better for both neurons 
and glia and therefore we used it during all the experiments. 

7.4.6 Evaluation

We evaluated the performance of the models using a 10-fold cross-validation. We ensured 
that the same set of exons was always in the same test fold such that we could compare 
the performance of the models. Exons from the same gene were always in the same test 
fold. When training the deep learning models on human and mouse data simultaneously, we 
ensured that human-mouse homologs were in the same test fold. We used biomart to obtain 
the human-mouse homologs. Some exons do not have any binding sites measured for any 
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of the RBPs (5,560 exons in the hippocampus and 3,462 in the frontal cortex). This could for 
instance happen if certain genes were not expressed in the cell lines when the RBP binding 
sites were measured. Since the logistic regression model could not predict a Ψ value for these 
exons, we filtered these from the training set used for the logistic regression model and from 
all test sets (to enable a fair comparison between the logistic regression and deep learning 
models). The deep learning models are thus trained on more exons (Table S1). In the test set, 
there are 1,827 and 1,072 variable exons for the hippocampus and frontal cortex respectively.
We trained all models five times for every fold and averaged the predictions across these five 
runs. We evaluated the performance by calculating the Spearman correlation between the 
true and predicted Ψ values. 

7.4.7 RBP binding profiles

We generated RBP binding profiles by calculating the fraction of exons with an RBP binding 
site at every location (400 bp upstream of the exon - 400 bp downstream of the exon). Since 
exons have variable lengths, we bin the exons in 50 bins and only include exons that are 
at least 50 bp long in the analysis. We also filter out exons without RBP binding sites. We 
calculate these profiles for four different groups of exons: 1) non-variable exons with Ψ ≥ 0.5, 
2) non-variable exons with Ψ < 0.5, 3) variable exons with Ψ ≥ 0.5, and 4) variable exons 
with Ψ < 0.5. To define how much the mechanisms in the variable exons diverged from non-
variable exons, we calculate the mean-squared error between the RBP binding profiles of the 
non-variable and variable exons. We do this for the exons with a high and low Ψ separately.

7.4.8 RBP expression data

We used the 10X scRNA-seq data from the same samples to look at the gene expression 
of the RBPs that were measured using the eCLIP data. We used Seurat v4 for the analysis 
[93]. To create the heatmap in Figure S13, we normalized the data per dataset using log 
normalization and a scale factor of 1e6. Next, we averaged the expression over all the cells. 
We plotted the log(x + 1) values. We used the FindConservedMarkers() function 
using the default parameters (including Bonferroni multiple testing correction) from Seurat 
to find differentially expressed RBPs between neurons and glia. This tests for differentially 
expressed genes per individual and merges the results.

7.4.9 Interpretation of logistic regression model

For the interpretation of the logistic regression models, we looked at the coefficients of the 
input features. To obtain one value per input feature, we average the coefficients of the 10 
folds and 5 runs per fold (so the average across 50 models in total). We only compared the 
coefficients across models, if there were at least 50 exons with a binding site for that input 
feature. 
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7.4.10 In-silico saturation mutagenesis

We used in-silico saturation mutagenesis (ISM) to interpret how nucleotide substitutions in 
the input sequence affect the predictions. We did this for 9,929 exons using the DLall-seq-m 
model trained on glia in the hippocampus. For every exon, we used the fold for which that 
exon was in the test set. We averaged the predictions across the 5 runs. The ISM score is 
defined as follows:

 ISMe p n pred e p n pred e p ii A C G T, , , , , , , ,, , ,
� �

��� �1

4
 

where e is the exon we predict the Ψ value for, and p and n are the position and nucleotide 
used at that position respectively. To visualize the ISM scores across the input sequence, we 
binned the upstream region, exon, and downstream region since they all had varying lengths.

7.4.11 Analysis of neighboring exons

We compared the ISM scores at the exon of interest, the neighboring exons, and the remaining 
sequence. We extracted the locations of annotated exons from GENCODE v35 [94]. The ISM 
scores for the exon of interest and the neighboring exons include the flanking sequence of 
150 bp upstream and downstream of the exon. Next, we selected ten exons on the positive 
strand with the highest absolute ISM scores in a neighboring exon. We visualized the long-
reads spanning both exons using ScisorWiz [95]

7.4.12 Motif discovery

We used TF-MoDISco-lite (v2.2.0) [57] to discover motifs using the ISM scores as input. When 
creating the report, we compare the found motifs to the position weight matrices from 
oRNAment which includes motifs found using RNAcompete and RNA-bind-n-seq experiments 
[8,96,97]. TF-MoDISco-lite is designed for DNA instead of RNA and tries both the forward 
strand and its reverse complement when finding seqlets (parts of the sequence with high 
ISM scores). We used the results file, to check whether the forward or reverse complement 
was used to generate a motif. We kept forward motifs if at least for 25 sequences the 
forward strand was used. We kept the reverse motif if at least for 25 sequences the reverse 
complement was used. 

7.4.13 sQTL analysis

We used the sQTLs defined for the hippocampus in GTEx v8. These variants are linked to 
introns instead of exons. We predicted the effect for variants that are linked to an intron that 
spans an exon in our dataset (Figure 4E). For most introns, there are multiple variants linked 
to them. We only predicted the effect for the best variants (the variants with the lowest 
p-value for an intron). For most introns, there were still more than two after this filter. 
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7.4.14 Exon naming

We named exons after their position in the transcript by counting their position in the GTF 
file. A conversion from exon names to genomic coordinates can be found in Table S4.

7.5 Code and data availability
The Ψ values, predictions, and RBP binding profiles are available on Zenodo: https://zenodo.
org/doi/10.5281/zenodo.10669666. The code to reproduce the figures, and train your 
logistic regression or deep learning models can be found on GitHub: https://github.com/
lcmmichielsen/PSI_pred.
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