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CHAPTER 7

Alternative	splicing	contributes	 to	molecular	diversity	across	brain	cell	 types.	RNA-binding	
proteins	 (RBPs)	 regulate	 splicing,	 but	 the	 genome-wide	 mechanisms	 remain	 poorly	
understood.	 Here,	 we	 used	 RBP	 binding	 sites	 and/or	 the	 genomic	 sequence	 to	 predict	
exon inclusion in neurons and glia as measured by long-read single-cell data in human 
hippocampus	and	frontal	cortex.	We	found	that	alternative	splicing	 is	harder	 to	predict	 in	
neurons	compared	to	glia	in	both	brain	regions.	Comparing	neurons	and	glia,	the	position	of	
RBP	binding	sites	in	alternatively	spliced	exons	in	neurons	differ	more	from	non-variable	exons	
indicating	 distinct	 splicing	 mechanisms.	 Model	 interpretation	 pinpointed	 RBPs,	 including	
QKI,	potentially	regulating	alternative	splicing	between	neurons	and	glia.	Finally,	using	our	
models,	we	accurately	predict	and	prioritize	the	effect	of	splicing	QTLs.	Taken	together,	our	
models	 provide	new	 insights	 into	 the	mechanisms	 regulating	 cell-type-specific	 alternative	
splicing	and	can	accurately	predict	the	effect	of	genetic	variants	on	splicing.

7.1 Introduction
During	RNA	splicing,	introns	are	removed	from	the	precursor	mRNA.	Different	combinations	of	
exons	result	in	different	mRNA	isoforms,	which	may	differ	in	function [1–3]. This mechanism, 
called	alternative	splicing,	causes	most	of	the	complexity	of	human	tissues	and	cell	 types;	
approximately	 95%	of	 all	 human	 genes	 are	 believed	 to	 be	 spliced	 in	multiple	ways [4,5]. 
Across	different	tissues,	the	brain	has	the	highest	levels	of	exon	skipping	and	one	of	the	most	
distinctive	patterns	of	alternative	splicing [6]. 

Alternative	 splicing	 (AS)	 is	 partly	 regulated	 by	 RNA-binding	 proteins	 (RBPs) [7,8], which 
can	activate	or	inhibit	spliceosome	assembly	or	splice	site	recognition.	RBFOX	proteins,	for	
instance,	instruct	neuronal	differentiation	by	regulating	splicing	of	NIN which	in	turn	affects	
the	localization	of	the	corresponding	Ninein	protein [9,10].	Additionally,	splicing	regulation	
often	 relies	 on	 the	 combinatorial	 binding	 of	multiple	 RBPs.	 For	 example,	 the	 inclusion	 of	
exon 9 of Gabrg2 is	dependent	on	the	binding	of	RBFOX	and	NOVA [11]. Splicing simulators 
have taken into account splicing enhancers and silencers [12]	and	a	splicing	code	for	tissue-
dependent splicing has been elaborated [13–15].	However,	the	genome-wide	mechanisms	
regulating	splicing	across	different	cell	types	remain	largely	unknown.

Long-read	sequencing	is	an	emerging	technology	that	has	made	important	contributions	to	
RNA	biology	since	its	inception [16–20]. Long-read single-cell and single-nuclei sequencing 
in fresh [21,22] and frozen [23]	 tissue	 allows	 the	 study	of	 alternative	 splicing	 at	 the	 cell-
type	level	in	the	brain	and	other	complex	tissues.	Such	analyses	revealed	that	most	mouse	
genes	 show	differential	 isoform	expression	 across	 at	 least	 one	pair	 of	 cell	 types,	 regions,	
and/or	developmental	time	points	in	the	brain [24,25]. In accordance with prior studies [26–
28],	 single-nuclei	 isoform	RNA	sequencing	 (SnISOr-Seq)	of	 the	human	adult	 frontal	 cortex	
revealed	that	exons	associated	with	autism	spectrum	disorder	 (ASD)	are	variably	 included	
across cell types [23]. 

To	 understand	 (alternative)	 splicing	 mechanisms	 and	 the	 influence	 of	 RBPs,	 several	
computational	 methods	 have	 been	 developed.	 AVISPA,	 for	 instance,	 predicts	 alternative	
splicing	in	four	tissues	by	extracting	regulatory	features,	such	as	the	length	of	the	exon	or	
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the presence of RBP binding sites, from the mRNA sequence [14].	Other	methods,	including	
SpliceAI, DNABERT, Pangolin, and MTSplice, directly use the pre-mRNA sequence as input 
to their models [29–32].	However,	none	of	 the	 current	methods	predict	 cell-type-specific	
alternative	splicing	in	a	genome-wide	manner,	which	is	crucial	for	understanding	splicing	in	
heterogeneous	tissues	such	as	the	brain.	

Here,	we	 present	 two	methods	 to	 predict	 cell-type-specific	 exon	 inclusion	 using	 the	 pre-
mRNA	sequence	and/or	the	presence	of	RBP	binding	sites	in	the	hippocampus	and	frontal	
cortex.	After	training	our	machine	learning	models,	we	used	model	interpretation	to	study	
the	mechanisms	governing	cell-type-specific	exon	inclusion.	We	focused	on	variable	exons	
which	we	defined	as	exons	for	which	the	inclusion	rates	differ	in	neurons	and	glia.	We	found	
that the presence of RBP binding sites in variable exons compared to non-variable exons 
differs	more	in	neurons	than	in	glia.	This	indicates	that	the	alternative	splicing	mechanism	
in neurons deviates more from the non-variable mechanism. Furthermore, we show that 
some	RBPs,	including	QKI,	have	a	big	effect	on	exon	inclusion	in	glia,	that	the	regions	close	to	
the	splice	sites	are	most	important	for	predicting	exon	inclusion,	and	that	we	can	correctly	
predict	and	prioritize	the	effect	of	splicing	QTLs	and	prioritize	their	effects.

7.2 Results

7.2.1 Predicting exon inclusion is more difficult in neurons than 
in glia

To	define	the	rules	governing	exon	inclusion	in	distinct	cell	types,	we	trained	different	models	
to	predict	cell-type-specific	percent	spliced-in	(Ψ)	values	in	the	brain	(Figure	1A).	We	focused	
on	 neurons	 and	 glia	 in	 two	 human	 brain	 regions,	 hippocampus	 (HPC)	 and	 frontal	 cortex	
(FC),	and	calculated	Ψ	values	per	exon	by	aggregating	single-nuclei	isoform	RNA	sequencing	
(SnISOr-Seq)	 reads	 from	multiple	 individuals	 (Table	 1,	Methods) [23,25]. Most exons are 
either	almost	always	included	(Ψ ≈ 1)	or	excluded	(Ψ ≈ 0)	in	an	mRNA	molecule	(Figure	1B,	
S1A-C).	Furthermore,	most	exons	have	similar	values	 in	neurons	and	glia	(Figure	1C,	S1D).	
We	define	exons	with	different	inclusion	rates	in	neurons	and	glia	( | | .�� glia neur� � 0 25 )	as	
variable	exons.	 In	HPC	and	FC,	2,244	and	943	exons	are	variable	 respectively	 (Table	1).	 In	
contrast	to	non-variable	exons,	these	values	show	a	uniform	distribution	of	Ψ	 (Figure	1B).	
Even though we used a minimum of 10 reads per exon to calculate a Ψ	value	(Methods),	we	
believe	these	values	are	reliable.	When	comparing	the	Ψ values of the variable exons per 
individual	in	neurons	and	glia,	there	is	a	clear	separation	between	neurons	and	glia	(Figure	
S2).	 Since	 most	 exons	 are	 almost	 always	 included,	 we	 downsampled	 these	 exons	 when	
training	the	models	(Methods).

First,	we	used	a	logistic	regression	(LR)	model	to	predict	Ψ values from RBP binding sites of 
122	RBPs	from	the	ENCODE	project [8].	These	RBPs	were	measured	in	two	cell	lines	(K562,	
HepG2),	implying	that	this	data	is	not	brain	cell-type-specific.	We	generated	a	count	matrix,	
indicating	the	number	of	binding	sites	per	exon	for	each	RBP.	Since	the	position	of	an	RBP	
can	influence	its	function [33,34], we split these binding sites based on six possible binding 
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locations:	1)	upstream	of	the	exon	(up	to	400bp),	2)	overlapping	the	3’	splice	site,	3)	in	the	
exon,	4)	spanning	the	exon,	5)	overlapping	the	5’	splice	site,	and	6)	downstream	of	the	exon	
(up	to	400bp)	(Figure	1A).	

Any	model	 is	 strongly	 influenced	by	 its	 training	data.	A	model	 trained	on	all	 exons	might	
be	dominated	by	the	rules	governing	non-variable	exons,	while	cell-type-specific	 inclusion	
effects	 might	 be	 overlooked.	 Therefore,	 we	 trained	 three	 different	 models	 using	 10-fold	
cross-validation	and	either:	A)	all	exons	(LRall),	B)	exons	with	 | | .�� glia neur� � 0 1	 (LRvar0.1),	or	
C)	exons	with	 | | .�� glia neur� � 0 25	(LRvar0.25)	as	training	data	(Table	S1).	When	evaluating	the	
models on all exons, LRall showed	 the	highest	median	Spearman	correlation	between	 true	
and predicted Ψ values on all four datasets followed by LRvar0.1 and LRvar0.25	 (Figure	1D,	S3).	
On	 hippocampal	 variable	 exons,	 however,	 LRvar0.1 outperformed	 the	 other	 models	 (Figure	
1D).	The	performance	 increase	when	training	on	variable	exons	 indicates	that	the	splicing	
mechanism	in	these	variable	exons	is	somewhat	different	from	the	mechanism	in	non-variable	
exons. In the frontal cortex, the performance on neurons increased when the training data 
became	more	 specific,	while	 the	 performance	on	 glia	 decreased	 (Figure	 S3).	 Surprisingly,	
we predicted Ψ	values	more	accurately	in	glia	than	neurons	in	both	brain	regions	(median	
Spearman	correlation	of	0.54	vs.	0.23	 in	HPC,	and	0.57	vs.	0.10	 in	FC)	 (Figure	1D-F,	S3-4).	
Furthermore, using LRvar0.25 to predict Ψ values of all exons resulted in lower performance 
for	neurons	compared	to	glia	in	both	HPC	and	FC	(Figure	1D,	S3).	Indicating	that	the	learned	
splicing	patterns	for	variable	exons	in	neurons	do	not	generalize	to	non-variable	exons	-	likely	
because	the	underlying	molecular	grammar	is	different	in	the	two	exon	sets.	

7.2.2 Primary sequence is more informative for neurons

The	RBP	binding	sites	used	to	train	the	logistic	regression	models	were	measured	in	immune	
and	 liver	 cancer	 cell	 lines	and	are	 thus	not	 cell-type	 specific	 	-	 and	may	 reflect	glial	more	
than neuronal splicing as shown above. Furthermore, some RBPs known to be important 
for	splicing	in	the	brain,	such	as	NOVA1	and	NOVA2,	are	not	included	in	the	ENCODE	data 
[35,36]. To test whether this caused the low performance of the models on neurons, we 
trained sequence-based models - which are independent of any RBP data and comparable 
across	different	cell	types.	We	adapted	the	Saluki	model,	a	hybrid	convolutional	and	recurrent	
neural	network	that	uses	mRNA	sequences	to	predict	mRNA	degradation	rates [37], to predict 
Ψ	values	(Methods)	(Figure	1A,	S5).	The	input	sequence	is	6,144	bp	with	the	exon	of	interest	
centered in the middle. Since deep learning models need large training datasets, we trained 
a	model	using	all	exons	(DLall-seq)	and	a	model	using	exons	with | | .�� glia neur� � 0 1 (DLvar0.1-seq).	

Individuals Measured exons Variable exons

HPC	[25] 6 68,215 2,244

FC [23] 2 56,427 943

Table 1.	The	number	of	measured	exons	(exons	for	which	at	least	10	reads	were	sequenced	in	both	the	neurons	and	
glia)	and	variable	exons	(| | .��

glia neur�
� 0 25)	in	the	hippocampus	(HPC)	and	frontal	cortex	(FC).	
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Figure 1. Overview and performance of the Ψ prediction models. A) Schematic	overview	of	the	models	used	to	
predict	cell-type-specific	Ψ values. B) Distribution	of	Ψ values of glia in the hippocampus. C) Distribution	of	ΔΨglia-neur 
for the hippocampus. D)	Performance	of	the	different	models	during	10-fold	cross-validation	on	all	exons	and	the	
variable exons in glia and neurons in the hippocampus. E-F) Scatterplot	showing	the	predictions	of	LRvar0.1 for variable 
exons in glia and neurons. 
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In	 HPC,	 the	 LRall	 model	 outperformed	 the	 DL	 models	 when	 evaluating	 performance	 on	
all exons, but on variable exons, DLall-seq outperformed LRvar0.1 for	 neurons	 (Figure	 1D).	 For	
the	 variable	 exons	 in	 neurons,	 primary	 sequence	 is	more	 informative	 than	 the	measured	
ENCODE-derived	RBP-binding-site	data.	Even	though	the	performance	increases	for	neurons,	
the	performance	gap	between	neurons	and	glia	 remains.	Thus,	neuronal	 splicing	patterns	
probably	 have	 more	 complex	 regulation	 mechanisms	 that	 we	 do	 not	 capture	 with	 the	
current models. In FC, the performance of the DL models on all exons and variable exons was 
considerably	lower	compared	to	HPC	(Figure	1D,	S6).	This	is	likely	related	to	the	size	of	the	
training	data	which	is	significantly	smaller	for	FC	than	HPC	(Table	S1).	

Next, we combined sequence and RBP binding sites by adding a channel for every RBP which 
indicates	the	presence	of	a	binding	site	(DLall-seq-RBP)	(Figure	1A,	S5).	This	outperformed	the	LR	
models	and	resulted	in	the	best-performing	model	for	glia	(median	Spearman	correlation	of	
0.54	vs.	0.57	in	HPC,	and	0.57	vs.	0.65	in	FC)	(Figure	1D,	S3,	S6).	This	improvement	indicates	
that	we	can	capture	regulatory	information	from	sequence	beyond	those	present	in	RBP	data	
alone. For neurons, however, DLall-seq-RBP had lower performance than DLall-seq,	again	confirming	
that	the	ENCODE	RBP	data	is	more	informative	for	glia	than	neurons.	

We	also	 trained	DL	models	 that	do	not	use	 splice	 sites	or	only	use	RBPs	as	 input	 for	 the	
neurons	and	glia	in	HPC	to	understand	how	the	input	channels	affect	performance	(Figure	
S7).	Omitting	splice	sites	only	slightly	decreased	the	performance,	which	indicates	that	the	
model can recognize the splice sites quite easily from the sequence itself. For glia, using the 
RBPs as the only input feature results in a comparable performance to the LRall model	(median	
Spearman	correlation	of	0.55	vs.	0.54)	and	an	even	better	performance	than	sequence	and	
splice	sites	only	(median	Spearman	correlation	of	0.49).	However,	for	neurons,	we	observe	
the opposite; using RBP binding sites reduces performance compared to the DLall-seq model 
(median	Spearman	correlation	of	0.23	vs.	0.30).	

7.2.3 Exon inclusion mechanisms are conserved between human 
and mouse

As	cell-type-specific	alternative	splicing	is	partially	conserved	between	humans	and	mice [25], 
we	hypothesized	 that	 adding	mouse	data	 to	our	model	would	 increase	performance.	We	
combined	human	HPC	data	with	mouse	HPC [25]. Since mouse FC data is not available, we 
combined	human	FC	with	data	from	the	mouse	visual	cortex	(VIS).	While	these	two	cortical	
regions	are	not	identical,	they	do	share	many	common	characteristics.	Especially	in	mouse	
HPC,	few	exons	are	variable	(528)	compared	to	VIS	(1,404)	(Table	S2,	Figure	S8).	Although	
DLall-seq-RBP performed best in glia, we only trained models with sequence and splice sites as 
input	channels	 (DLall-seq-m, DLvar01-seq-m)	 since	RBP	binding	sites	were	not	measured	 in	mouse	
cell	lines.	In	HPC,	the	performance	on	variable	exons	of	both	cell	types	slightly	increased	by	
adding	the	mouse	data	(Figure	1D).	On	FC,	the	performance	on	all	exons	increased	as	well	
(Figure	S6),	supporting	our	hypothesis	that	not	enough	training	data	was	available	to	train	
these models on human exons alone. Similar to the human data, glial Ψ values were easier to 
predict	than	neuronal	ones	in	mice	(Figure	S9).	
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7.2.4 The splicing mechanisms in neurons diverged more than in 
glia

Our	above	results	show	that	neuronal	Ψ values are harder to predict than glial regardless of 
the	model	or	input	data.	Hence,	splicing	mechanisms	in	neurons	might	be	different	than	in	
glia	and	more	complex.	However,	Ψ values could be biased, making it easier to predict in glia. 
To	exclude	the	latter,	we	used	the	hippocampus	data	to	assess	whether	glia	and	neurons	are	
similar	 in	terms	of	1)	Ψ	-value	distributions,	2)	heterogeneity	within	each	cell	type,	and	3)	
variation	across	individuals.	

First, comparing Ψ	distributions,	more	values	are	close	to	0	or	1	in	glia	than	neurons	(Figure	
S10AB),	which	is	most	apparent	for	the	non-variable	exons	(two-sided	Kolmogorov-Smirnov	
test,	p-value	<	2.2e-16).	 For	 variable	exons	 (Figure	S10B),	however,	both	distributions	are	
not	different	 (two-sided	Kolmogorov-Smirnov	 test,	p-value	=	0.44).	Thus,	data	distribution	
differences	cannot	explain	all	observed	differences	between	neurons	and	glia.	

Second,	to	quantify	the	heterogeneity	within	a	cell	type,	we	measured	the	difference	in	Ψ 
values	between	finer	cell-type	classifications.	For	neurons,	we	compared	the	inhibitory	and	
excitatory	neurons,	and	for	glia,	we	compared	oligodendrocytes	and	astrocytes.	Within	glia,	
we	have	more	variable	exons	(| | .�� � 0 25)	compared	to	neurons	(831	vs.	745).	In	neurons,	
more	exons	have	an	extreme	difference	(| | .�� � 0 5)	(92	vs.	70)	(Figure	S10CD).	Compared	
to	the	total	exon	number	defined	for	both	cell	types	in	neurons	and	glia	(28,296	and	27,047	
respectively),	both	numbers	are	small.	Thus,	this	cannot	explain	the	difference	in	performance	
between neurons and glia. 

Third, to compare the variance across individuals for glia and, separately, for neurons, we 
calculated Ψ	values	per	individual	instead	of	using	the	aggregated	counts.	We	calculated	the	
variance	for	an	exon	only	if	≥3	individuals	have	≥10	reads	for	that	exon	in	both	neurons	and	
glia.	For	both	non-variable	and	variable	exons,	the	variance	is	higher	in	glia	(two-sided	paired	
Wilcoxon	signed-rank	test,	p-value	=	1.3e-28	and	8.9e-5	respectively)	(Figure	S10E).	Thus,	the	
data	do	not	explain	observed	differences	in	performance	between	neurons	and	glia.	

We	 then	 hypothesized	 that	 splicing	 mechanisms	 regulating	 variable	 exons	 in	 neurons	
might	 differ	 from	 the	 non-variable	 exons.	 To	 test	 this	 hypothesis,	 we	 compared	 the	 RBP	
binding	profiles	between	variable	and	non-variable	exons	 in	neurons	and	glia	 (Figure	2A).	
We	performed	these	comparisons	 for	exons	with	a	high	 (≥ 0 5. )	and	a	 low	Ψ	 value	 (< 0 5. )	
separately.	The	binding	profiles	between	variable	and	non-variable	exons	differ	significantly	
more	in	neurons	compared	to	glia	in	HPC	(Figure	2B)	and	FC	(Figure	2C).	Non-variable	exons	
with high Ψ	values	more	often	have	a	binding	site	at	the	3’	splice	site	for	splicing	factors	such	
as U2AF1, U2AF2, and SF3B4 compared to non-variable exons with low Ψ	values	(Figure	2D,	
S11AB).	In	glia,	variable	exons	show	a	similar	pattern	(Figure	2E,	S11AB).	However,	binding	
sites	for	these	splicing	factors	cannot	differentiate	between	exons	with	high	and	low	Ψ values 
in	neurons	(Figure	2F,	S11AB),	indicating	that	these	RBP	binding	sites	are	likely	not	used	in	
neurons.	In	the	hippocampus,	PTBP1	differs	the	most	between	neurons	and	glia	(Figure	S11C).	
PTBP1	is	a	position-dependent	RBP:	binding	within	or	upstream	of	an	exon	represses	splicing	
while	 binding	 downstream	 activates	 splicing	 in	 HeLa	 cells [38].	 Our	 RBP	 binding	 profiles	
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contradict	these	known	mechanisms.	 In	HeLa	cells,	however,	PTBP1	is	highly	and	PTBP2	is	
lowly	expressed,	while	this	is	vice	versa	in	the	hippocampus	(Figure	S12).	PTBP1	RBP	binding	
profiles	obtained	from	non-brain	cell	lines	are	thus	less	likely	to	reflect	splicing	mechanisms	
in	the	hippocampus.	Strikingly,	the	binding	profile	of	PTBP1	in	variable	exons	in	neurons	is	
again	considerably	different	from	the	variable	exons	in	glia	and	the	non-variable	exons.	There	
is	no	position-dependent	regulation	and	no	difference	between	exons	with	a	high	and	low	Ψ 
value.	In	the	hippocampus,	only	one	RBP,	HNRNPC,	showed	the	opposite	pattern	with	larger	
differences	in	glia	compared	to	neurons	(Figure	S11D).	

7.2.5 Interpretation of LR models reveals cell-type-specific splicing 
mechanisms

To	further	pinpoint	the	factors	underlying	differences	in	splicing	between	glia	and	neurons,	
we	analyzed	the	coefficients	of	the	logistic	regression	models.	These	coefficients	reflect	the	
importance	of	each	RBP	binding	position	in	regulating	cell-type-specific	splicing.	We	compared	
the	coefficients	of	four	models	for	the	hippocampus	(two	cell	types,	and	two	training	sets)	
and	focused	on	features	present	in	at	least	50	exons	and	with	a	coefficient	>	0.05	in	at	least	

Figure 2. The difference in RBP binding profiles between non-variable and variable exons. A) Schematic	over-
view	 showing	 how	 to	 generate	 the	 RBP	 binding	 profiles	 of	 non-variable	 (| | .��

glia neur�
� 0 25)	 and	 variable	

( | | .��
glia neur�

� 0 25 )	exons	in	neurons	in	the	hippocampus.	We	generated	these	RBP	binding	profiles	for	every	RBP	
and split the exons based on their Ψ	value	(threshold	=	0.5)	and	their	variability.	We	calculated	the	mean-squared	
error	(MSE)	between	the	profiles	in	non-variable	and	variable	exons.	We	do	this	for	the	exons	with	a	high	and	low	Ψ 
value	resulting	in	four	comparisons	per	RBP.	B-C)	Boxplot	showing	the	MSE	between	the	RBP	profiles	in	non-variable	
and	variable	exons	in	neurons	(blue)	and	non-variable	and	variable	exons	in	glia	(orange)	for	the	B) hippocampus 
and C)	frontal	cortex.	Every	point	in	the	boxplot	is	one	RBP.	P-values	are	calculated	using	a	two-sided	paired	Wilcox-
on signed-rank test. D-F)	Binding	profile	of	U2AF1	in	D) non-variable exons, E) variable exons in glia, and F) variable 
exons in neurons. 
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one	model	 (191	out	of	732	 features).	The	model	 coefficients	first	 cluster	based	on	which	
exons	are	used	during	training	(all	vs.	variable)	(Figure	3A).	This	clustering	indicates	that	the	
mechanisms for non-variable and variable exons, represented by the LRall and LRvar0.1,	differ	
more	than	the	cell-type-specific	mechanisms.	The	RBPs	cluster	into	two	groups:	features	with	
positive	and	features	with	negative	coefficients	(Figure	3A).	As	expected,	splicing	repressors,	
which	are	part	of	the	heterogeneous	nuclear	ribonucleoproteins	(hnRNP)	family [39], have 
a	 largely	negative	weight	 in	all	models	 (Figure	3B).	PTBP1,	 for	which	we	 saw	a	difference	
between the non-variable and variable exons in the hippocampus, is a member of the hnRNP 
family	and	has	a	potential	position-dependent	effect	in	glia	based	on	the	RBP	binding	profiles	
(Figure	S11C).	The	LRvar0.1-glia-HPC	model	correctly	 learned	this	effect:	PTBP1	binding	at	the	3’	
splice	site	and	within	the	exon	have	coefficients	of	-0.05	and	0.01	respectively.	The	model	
coefficient	for	PTBP1	binding	at	the	3’	splice	site	 is	among	the	ten	features	that	differ	the	
most	 between	 glia	 and	 neurons	 (Figure	 3C,	 LRvar0.1-glia-HPC	vs LRvar0.1-neur-HPC)	which	 indicates	 a	
potential	 cell-type-specific	effect	 corresponding	 to	 the	established	 switch	between	PTBP1	
and PTBP2 [40–42]. 

Figure 3. Interpretation of the logistic regression models. A) Heatmap	showing	the	coefficients	for	the	RBP-location	
features	in	the	different	logistic	regression	models.	The	input	features	are	filtered	using	a	minimum	of	50	RBP	sites	
and a value of at least 0.05 in one of the models. The values are clipped between  -0.2 and 0.2. B)	Heatmap	showing	
coefficients	of	hnRNPs	in	the	different	models.	C)	Heatmap	showing	the	top	10	cell-type-specific	input	features	with	
the	biggest	difference	between	HPC-glia	(var)	and	HPC-neur	(var).	D-E)	Binding	profiles	of	QKI	in	variable	exons	in	
neurons and glia.
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QKI	binding	at	the	3’	splice	site	has	the	strongest	cell-type-specific	effect	in	the	hippocampus	
(model	coefficient	=	-0.15	vs.	0.12	for	glia	and	neurons	respectively),	which	reflects	differences	
in	the	RBP	binding	profiles	(Figure	3D-E).	In	glia,	a	binding	site	that	overlaps	the	3’	splice	site	
leads to lower inclusion rates, while the opposite happens in neurons. In the scRNA-seq data, 
QKI	has	higher	expression	in	glia	compared	to	neurons	in	the	hippocampus	(Wilcoxon	rank	
sum	test,	adj.	p-value	<	2.2e-16)	(Figure	S13).	Both	observations	correspond	to	the	known	
mechanism	of	QKI,	which	 inhibits	 splicing	by	 competing	with	 the	 core	 splicing	machinery 
[10,43].	 In	mice,	 QKI	 is	 important	 during	myelination	 and	 oligodendrocyte	 differentiation 
[44,45].	Its	role	in	the	human	brain	is	less	studied,	but	a	role	in	oligodendrocyte	formation	
and Schizophrenia has been suggested [46,47].	Interestingly,	variable	exons	are	enriched	for	
QKI	binding	sites	compared	to	non-variable	exons	(Fisher’s	exact	test,	adj.	p-value	=	1.6e-13).	
Besides the 3’ splice site, QKI binding downstream of an exon is also in the top 10 cell-type-
specific	features.	The	effect	of	QKI	downstream	of	an	exon	is	the	opposite	compared	to	QKI	
binding	at	 the	3’	 splice	 site,	which	 indicates	a	potential	position-dependent	effect	of	QKI.	
Such	position-dependent	regulation	of	QKI	has	been	shown	in	lung	cancer [48] but, to our 
knowledge, not in the brain. 

In	 contrast	 to	QKI,	most	 of	 the	 cell-type-specific	RBPs	 identified	using	our	 LR	models	 are	
neither	 differentially	 expressed	 nor	 differentially	 spliced.	 Exceptions	 are	 STAU2,	 which	 is	
upregulated	in	neurons	(Wilcoxon	rank	sum	test,	adj.	p-value	<	3.39e-16),	and	EWSR1,	which	
is	differentially	spliced	(Table	S3).	The	latter	could	indicate	that	distinct	isoforms	of	EWSR1	
influence	RNA	splicing	in	different	ways.	

7.2.6 The sequence close to the splice sites is most important for 
predicting exon inclusion 

Given	that	the	RBP-binding-site	data	is	not	brain-specific	and	that	 it	 lacked	measurements	
from	some	key	RBPs,	we	set	out	to	identify	sequence	features	that	influence	Ψ	predictions	
in	 the	 deep	 learning	 models.	 We	 used	 in-silico saturation	 mutagenesis	 (ISM,	 Methods)	
to	 systematically	 predict	 how	 nucleotide	 substitutions	 in	 the	 input	 sequence	 affect	 the	
predicted Ψ value [49–52]. Since DLvar0.1 performed considerably worse than DLall	(Figure	1D),	
we	 focused	on	 interpreting	DLall for	 glia	 in	 the	hippocampus,	which	had	higher	prediction	
accuracy	than	neurons,	instead	of	looking	for	cell-type-specific	effects.	

Since	ISM	is	computationally	expensive,	we	mutated	the	input	sequence	of	the	9,929	exons	
with | | .�� glia neur� � 0 1 	instead	of	all	exons.	The	ISM	score	indicates	how	much	a	mutation	
increases or decreases the predicted Ψ	 value	compared	 to	 the	average	prediction	at	 that	
position	for	that	sequence	(Methods).	As	expected,	mutations	around	the	splice	sites	and	
within	the	exon	strongly	affect	the	predicted	Ψ	value	(Figure	4A).	These	results	reflect	the	
known importance of the splice site’s consensus sequence to be recognized by the splicing 
machinery.	The	two	nucleotides	before	and	after	the	exon		-the	AG	acceptor	and	GU	donor	
dinucleotides-	 have	 the	 strongest	 predicted	 effects.	 Looking	 at	 the	 maximum	 absolute	
ISM	score,	only	mutations	within	a	range	of	50bp	upstream	of	the	3’	splice	site	and	150bp	
downstream	of	the	5’	splice	site	have	a	value	>	0.1	(Figure	S14).	This	is	in	line	with	a	recent	
computational	model	that	predicted	human	splice	sites	using	a	window	of	400bp	on	each	
side of the splice site and obtained an overall accuracy of 96% [53].	However,	smaller	values	
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of	 >0.05	 could	 be	 observed	 across	 almost	 the	 whole	 input	 sequence.	 Although	 distant	
splicing regulators have been reported [54],	potential	variability	in	distant	motifs	and/or	their	
position	may	prevent	their	detection	by	our	model.

Besides the region around the exon of interest, we observed higher-than-average ISM scores 
within	nearby	exons	and	their	flanking	region	(Figure	S15).	The	enrichment	of	RBP	binding	

Figure 4. Interpretation of the deep learning model for glia in the hippocampus. A) Average absolute ISM score 
across	the	9,929	exons.	The	mutations	within	the	exons	are	binned	in	300	bins.	The	zoomed-in	plot	ranges	from	
200bp upstream of the 3’ splice site to 200bp downstream of the 5’ splice site. B)	Mutation	profile	for	an	exon	in	
XRN2.	The	colors	of	the	exons	below	the	profile	indicate	the	exon	of	interest	and	the	neighboring	exons	which	have	
an ISM score in the top 10. C) Single-cell long reads for XRN2.	Each	line	is	a	single	cDNA	molecule.	The	bottom	black	
track	shows	the	Gencode	annotation.	D)	Mutation	profile	for	an	exon	in	TPCN1.	In	the	exon,	a	motif	corresponding	
to RBM45 is found. E)	Schematic	overview	of	the	sQTL	analysis.	F)	Scatterplot	showing	the	predicted	effect	for	each	
variant. The color of the points indicates the distance to the closest splice site. A grey dot means that a variant falls 
within	the	exon	of	interest.	The	numbers	in	black	and	red	indicate	the	number	of	predictions	in	a	quadrant	when	no	
threshold	and	a	threshold	of	0.005	are	used	respectively.	G) ISM scores for two variants related to the same exon of 
RARS1.	A	negative	effect,	corresponding	to	the	positive	slope,	is	predicted	for	the	first	variant.	A	smaller,	but	positive	
effect	is	predicted	for	the	second	variant.

Thesis_LM_final.indd   163Thesis_LM_final.indd   163 24-04-2024   18:55:3024-04-2024   18:55:30



164

CHAPTER 7

sites	 in	 these	 regions	could	explain	 the	higher	scores.	Alternatively,	our	model	potentially	
recognized coordinated events between exons. To test this, we selected the top 10 exons 
with the highest absolute ISM scores within their neighboring exons and visualized the 
single-cell	long	reads	from	our	data	that	span	both	exons	(Methods).	These	reads	can	inform	
whether	the	two	exons	pair	non-randomly	(thus	in	coordination [21,23,55,56])	or	randomly.	
Exon 24 in XRN2	 appeared	 twice	 in	 the	 top	10	 list	with	 two	neighboring	exons	 (exons	21	
and	22)	strongly	 influencing	its	Ψ	value	(Table	S4).	All	three	exons	(21,	22,	and	24)	have	a	
Ψ value of around 0.8 and the exons are either all included or all excluded in the single-
cell	long-read	data,	suggesting	these	exons	are	mutually	associated	(Figure	4BC).	Mutations	
affecting	the	inclusion	of	one	of	these	exons	will	most	likely	affect	the	other	exons	as	well.	In	
the	top	10	scores,	four	other	cases	could	pinpoint	exon	coordination	events	(Figure	S16-19).	
In the remaining four cases, the exons pair randomly, so there is no evidence of exon-exon 
coordination	(Figure	S20-23).	

To further interpret sequences with a high ISM score, we used TF-MoDISco [57]	to	identify	
motifs	in	sequences	with	large	effects	on	exon	inclusion.	Since	the	region	around	the	splice	
site	had	the	highest	ISM	scores,	many	of	the	top	motifs	identified	by	TF-MoDISco	correspond	
to	the	consensus	splice	sites	and	associated	motifs,	 including	the	well-known	AG	acceptor	
dinucleotide,	the	poly-pyrimidine	tract	(PPT)	upstream	of	the	exon,	and	the	extended	splice	
donor	motif	with	 the	GU	dinucleotide	 (Supplementary	 File	 1,	 Figure	 S24).	We	also	 found	
motifs	that	match	known	RBP	binding	motifs,	which	were	not	 in	our	 input	data	for	the	LR	
model,	and	hence	could	not	be	tested	for	cell-type-specific	effects.	For	example,	we	found	
a	motif	corresponding	to	RBM45	 in	exon	12	of	TPCN1 (Figure	4D,	Table	S4),	which	seems	
to	promote	exon	inclusion.	RBM45	regulates	constitutive	splicing	and	can	probably	activate	
or repress the inclusion of an exon, but the exact mechanisms are currently unknown [58]. 
Taken	 together,	 characterizing	 important	 sequence	 features	 from	 DL	models	 can	 identify	
splicing	regulators	beyond	those	we	can	identify	based	on	available	RBP	measurements.	

7.2.7 Prioritizing the effect of splice QTLs using the DL models

So	far,	we	showed	how	LR	and	DL	model	interpretations	can	be	used	to	reveal	the	regulatory	
mechanisms	of	RBPs	governing	cell-type-specific	exon	 inclusion.	Besides	 this	 fundamental	
knowledge,	we	can	use	our	DL	models	to	predict	the	effects	of	genetic	variants	on	splicing.	
Accurately	predicting	these	effects	can	help	prioritize	variants	of	 interest.	To	test	the	rele-
vance	of	our	model	predictions	for	genetic	variants,	we	used	splicing	quantitative	trait	loci	
(sQTLs)	from	the	hippocampus	data	from	GTEx	v8 [59]. Variants in this dataset are linked to 
intron-excision	ratios	instead	of	exon	inclusion.	We	extracted	introns	and	their	corresponding	
variant(s)	that	span	an	exon	in	our	data	and	predicted	the	effect	of	the	variant(s)	on	that	exon	
(Figure	4E).	 In	 total,	326	variants	are	within	 the	 input	 range	of	our	model.	These	variants	
correspond	to	122	introns	and	158	exons.	Some	introns	thus	span	multiple	exons	and	most	
introns	have	multiple	variants	linked.	For	every	variant,	a	slope	indicates	whether	the	corre-
sponding	intron	is	excised	more	or	less	compared	to	the	reference	allele.	We	expect	negative	
slopes to correspond to an increased Ψ value of the exon of interest which would result in 
�ISMalt ref� � 0.	Conversely	a	positive	slope	would	result	in�ISMalt ref� � 0 (Figure	4E).	How-
ever,	more	complex	scenarios,	such	as	a	variant	affecting	adjacent	exons,	may	arise	as	well.	
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Using	our	model,	we	predicted	an	effect	(| | .�ISMalt ref� � 0 005)	for	71	out	of	326	variants	
which	corresponds	to	61	of	the	122	introns.	For	83%	(59	out	of	71)	of	these	variants,	our	
model	predicts	the	expected	effect	correctly	(Figure	4F,	S25).	Most	of	the	variants	with	an	
effect	are	very	close	to	the	splice	sites:	74.6%	are	within	the	exon	or	a	distance	of	15bp	to	
either	the	3’	or	5’	splice	site.	These	cases	most	likely	affect	exonic	splicing	enhancers	or	the	
binding	of	U1	and	U2	snRNA.	For	14	of	61	introns	where	our	model	did	not	predict	an	effect,	
all	corresponding	variants	are	outside	of	the	intron	itself.	Here,	the	splicing	of	adjacent	exons	
is most likely altered instead of our exon of interest. For 2 of these 14 exons, all variants are 
even outside of the gene itself.

Three	exons	have	multiple	 corresponding	 variants	with	a	predicted	effect.	 For	 exon	15	 in	
ZNF880 (Table	S4),	 three	variants	have	a	predicted	expected	effect.	The	other	 two	exons,	
however,	have	two	variants	with	a	contradicting	predicted	effect.	In	both	cases,	the	variant	
with	the	biggest	predicted	effect	is	in	line	with	the	slope	of	the	sQTL	of	the	intron.	For	exon	
25 in RARS1 (Table	S4),	for	 instance,	variant	one	is	 located	in	the	exon	(168,498,025;	G	→	
T)	 and	variant	 two	 is	 located	before	 the	exon	 (168,497,923;	C	→	T).	 For	 variant	one,	our	
model	predicted	the	expected	effect,	while	our	model	predicted	the	opposite	for	variant	two	
(Figure	4G).	Variant	one,	the	variant	with	the	biggest	and	correctly	predicted	effect,	is	located	
in a binding site for SRSF1 according to eCLIP data [8].	RNA	recognition	motif	2	(RRM2)	of	
SRSF1	interacts	with	the	GGA	motif.	A	G	→	T	mutation	in	the	first	nucleotide	will	thus	hinder	
the binding of SRSF1 [60].	Variant	two	is	located	in	a	stretch	of	G’s.	At	this	location,	there’s	
a	binding	site	 for	ELAVL1,	a	protein	 regulating	mRNA	stability,	and	hnRNP	 family	member	
HNRNPK,	which	 tends	 to	 repress	 splicing [8]. Using the DL models, we can thus correctly 
predict	the	effect	for	most	sQTLs	and	prioritize	their	effects.	

7.3 Discussion
We	trained	 logistic	 regression	and	deep	 learning	models	 to	predict	cell-type-specific	exon	
inclusion	in	human	brain	samples.	Since	this	is	the	first	attempt	to	leverage	long-read	single-
cell sequencing data for this task, we can use our models to decipher the grammar underlying 
cell-type	specificity	of	splicing.	Using	model	interpretation,	we	pinpointed	interesting	RBPs,	
such	as	QKI,	that	could	drive	differential	splicing	between	neurons	and	glia.	Furthermore,	we	
show	that	the	location	of	RBP	binding	sites	differs	more	between	variable	and	non-variable	
exons in neurons compared to glia. This indicates that the splicing mechanisms controlling 
exon	inclusion	in	neurons	are	more	different	compared	to	the	general	mechanism.	

For	 most	 RBPs,	 RBP	 binding	 profiles	 of	 non-variable	 exons	 with	 high	 and	 low	 Ψ values 
showed	distinct	 patterns.	 Considering	U2AF1	 for	 example,	 exons	with	 a	 high	Ψ value are 
more likely to have a binding site close to the 3’ splice site compared to exons with a low 
Ψ	value.	These	RBPs	behave	differently	in	variable	exons	in	neurons,	and	for	most	RBPs	the	
difference	between	exons	with	a	 low	and	high	Ψ value is missing. These features are thus 
not	informative	for	neurons,	which	explains	the	low	performance	of	the	logistic	regression	
models on neurons. The U2AF heterodimer, composed of U2AF1 and U2AF2, is believed to 
bind	every	polypyrimidine	tract	and	AG	dinucleotide	in	3’	splice	site	regions [61–63]. Binding 
may	not	happen	on	specific	sites	repressed	by	other	factors.	The	potential	binding	sites	are	
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still	there,	but	they	might	be	used	by	a	competing	RBP	in	neurons.	Interestingly,	most	RBPs	are	
not	differentially	expressed	or	differentially	spliced	between	neurons	and	glia.	For	these	RBPs,	
post-translational	modifications,	such	as	phosphorylation,	might	differ	between	neurons	and	
glia	and	could	change	 their	 function [64,65]. Furthermore, RBP binding sites measured in 
non-brain	cell	lines	might	not	always	be	representative	of	splicing	in	the	hippocampus	and	
frontal	 cortex.	 The	expression	of	RBPs	 can	differ	dramatically	 between	 the	non-brain	 and	
brain	tissues	as	was	seen	for	PTBP1.

The deep learning models, however, also perform poorly on the variable exons in neurons. 
The model trained on all exons focuses only on learning the general splicing mechanisms, 
and the model trained on the variable exons might not have enough training data. In glia, 
the	model	trained	on	all	exons	performs	well	on	the	variable	exons.	Again	indicating	that	the	
variable exons in glia follow the rules of the general splicing mechanisms more. The worse 
performance of the DLall-seq models	on	neurons,	in	combination	with	the	distinct	RBP	binding	
profiles,	supports	our	conclusion	that	the	splicing	mechanisms	in	variable	exons	in	neurons	
diverged from the mechanisms in non-variable exons. 

A	potential	explanation,	in	line	with	the	diverged	RBP	binding	sites,	is	that	splicing	in	neurons	
is	less	sequence-dependent.	Other	factors,	such	as	chromatin	features	and	polymerase	speed 
[66–79],	RNA	methylation [80–82]	as	well	as	other	modifications,	and	transcription	 factor	
binding sites [83],	 influence	 splicing	 as	 well.	 These	 features	might	 explain	 the	 difference	
between	neurons	 and	glia.	Altered	 chromatin	accessibility	or	RNA	methylation,	 could,	 for	
instance, explain why certain RBP binding sites are not used in neurons anymore. Furthermore, 
neuronal	genes	-	by	definition	more	expressed	in	neurons	-	are	more	susceptible	to	missplicing 
[84].	While	we	did	not	focus	on	missplicing,	this	indicates	that	splicing	mechanisms	might	be	
different	in	neurons.	Also,	the	gene	expression	of	human	neurons	diverged	faster	from	other	
primates compared to glia [85]. A similar divergence could have occurred with the splicing 
mechanisms.

For	the	deep	learning	model,	we	tested	the	effect	of	different	lengths	for	the	input	sequence.	
Even	though	all	lengths	showed	a	very	similar	performance,	we	used	a	relatively	long	input	
sequence	 (6,144	 bp)	which	 had	 the	 advantage	 that	we	 could	 predict	 the	 effect	 of	more	
mutations.	When	predicting	the	effect	of	sQTLs,	however,	we	predict	a	strong	effect	mainly	
for	variants	close	to	the	exon	of	interest.	The	region	close	to	the	splice	sites,	however,	still	
contributes	 the	most	 to	 the	predictions.	 This	 is	 in	 contrast	 to	 splice	 site	predictions	 from	
SpliceAI,	for	which	an	input	sequence	of	10kb	significantly	outperforms	400	bp [29]. SPLAM, 
however, outperforms SpliceAI while only using 400 bp [53].	Of	note,	this	does	not	preclude	
the	mechanistic	influence	on	splicing	decisions	by	motifs	further	upstream.	Rather,	these	data	
suggest	that	such	distant	RNA	binding	sites	are	highly	variable	regarding	their	position	to	the	
exon.	This	variability	in	position	could	prevent	the	model	from	detecting	such	motifs.	Similar	
observations	have	been	made	for	models	that	predict	gene	expression.	Even	though	the	best-
performing	model	uses	a	long	input	sequence	(196kb),	only	one-third	of	the	receptive	field	is	
used	during	predictions	and	distal	enhancers	are	not	captured	by	the	model [51,86].

Another possible advantage of a longer input sequence is that it would be possible to look 
at	coordinated	events.	Exons	in	the	human	brain	are	often	mutually	associated	or	mutually	
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exclusive [23,55,87–89].	 Such	 events	 can	 even	 be	 cell-type-specific.	 For	 instance,	 two	
neighboring exons in WDR49 are perfectly coordinated in astrocytes only [23]. Using our 
model, the ISM scores within neighboring exons are higher than the ISM scores of the rest of 
the sequence. For some exons, these higher scores indeed indicate that there is exon-exon 
coordination.	Since	exon-exon	coordination	is	so	common,	predicting	such	events	might	be	
more	beneficial	than	focusing	on	individual	exons.	

Furthermore,	 the	 longer	 input	 sequence	 enables	 predicting	 the	 effect	 of	 more	 sQTLs.	
However,	most	variants	the	model	predicted	an	effect	for	are	near	the	splice	sites.	For	these	
variants,	the	model	obtained	a	high	accuracy	(83%)	and	could	be	used	to	prioritize	the	effect	
of	sQTLs	as	well.	Nonetheless,	a	limitation	of	the	current	DL	models	is	that	they	lack	cell-type	
specificity.	 The	DL	models	 need	 substantial	 training	 data,	 so	 training	 on	 all	 exons	 yielded	
the highest performance. As a consequence, these models focused on the general splicing 
mechanisms	and	yielded	better	performance	on	variable	exons	in	glia	than	neurons.

In	conclusion,	to	increase	our	understanding	of	(alternative)	splicing	in	the	brain,	we	trained	
two types of models to predict exon inclusion in neurons and glia of the hippocampus and 
frontal	 cortex.	 Ideally,	 these	models	make	perfect	predictions	 such	 that	 they	can	be	used	
in	 the	 clinic	 for	 predicting	 the	effects	of	 variants	or	 for	 personal	 splicing	predictions.	 The	
performance	of	our	models,	however,	is	not	optimal	yet.	Nevertheless,	we	show	how	model	
interpretation	yields	important	biological	discoveries	including	the	different	mechanisms	in	
neurons	and	glia.	This	demonstrates	the	potential	of	using	long-read	single-cell	data	for	this	
task. 

7.4 Methods

7.4.1 Calculating cell-type-specific Ψ values

For	the	human	data,	we	combined	SnISOr-Seq	data	from	6	individuals	for	the	hippocampus	
and	2	individuals	for	the	frontal	cortex	(Table	1).	For	the	mouse	data,	we	combined	ScISOr-
Seq2	data	from	two	mice	for	the	hippocampus	and	two	mice	for	the	visual	cortex	(Table	S2).	
Scisorseqr	was	used	to	map	and	align	reads	to	GRCh38	for	human	and	mm10	for	mouse	to	
identify	splice	sites	for	each	dataset	separately [24].	We	used	IsoQuant	to	correct	the	splice	
sites [90]. Using all exons appearing as an internal exon in a read, we calculated:

●	 The	number	of	long-read	molecules	containing	this	exon	(both	splice	sites	included):	
Xin 

●	 The number of long-read molecules assigned to the same gene as the exon, which 
skipped the exon but includes 50 bases on both sides: Xout 

●	 The	number	of	long-read	molecules	supporting	the	acceptor	of	the	exon	and	ending	
on the exon: Xacc In

●	 The	number	of	long-read	molecules	supporting	the	donor	of	the	exon	and	ending	
on the exon: Xdon In

●	 The number of long-read molecules overlapping the exon: Xtot
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Non-annotated	exons	with	one	or	two	annotated	splice	sites,	≥70	bases	of	non-exonic	(in	the	
annotation)	bases,	were	excluded	as	intron-retention	events	or	alternative	acceptors/donors	
We	then	calculated:	

●	 �overall
X X X

X X X X
in accIn donIn

in accIn donIn out
� � �

� � �

●	 �acceptor
X X

X X X
in accIn

in accIn out
� �

� �

●	 �donor
X X

X X X
in donIn

in donIn out
� �

� �
 

If	0.02	≤	Ψi	≤	0.98	where	i ∈ {overall,acceptor,donor} in the pseudo-bulk data, the exon was 
kept.	Next,	we	filtered	exons	based	on	 the	number	of	 reads.	We	only	calculate	Ψoverall for 
a cell type in a certain brain region if at least 10 long-read UMIs are sequenced across the 
different	individuals	(Xtot ≥ 10).	Since	individuals	of	different	datasets	were	sequenced	using	
a	different	read	depth,	we	normalized	the	read	counts	by	dividing	it	by	the	total	number	of	
reads	for	an	individual	before	calculating	Ψoverall.	We	then	calculated	Ψoverall for each cell type 
(Ψneur and Ψglia)	for	the	hippocampus	and	frontal	cortex.	If	there	were	not	enough	reads,	for	
that exon and cell type Ψoverall	was	set	to	“NA”.	We	used	the	cell-type	labels	defined	in	the	
original datasets. For neurons, we grouped the inhibitory and excitatory neurons. For glia, we 
grouped the oligodendrocytes, astrocytes, and oligodendrocyte precursor cells. 

7.4.2 Downsampling cell-type-specific Ψ values

In	 the	 human	 data,	many	 exons	 (30,273	 out	 of	 68,215	 for	 the	 hippocampus	 and	 45,680	
out	of	56,427	 for	 the	 frontal	 cortex)	have	Ψneur > 0.9, Ψglia > 0.9, and | | .�� glia neur� � 0 03. 
We	downsampled	these	to	5,000	to	make	the	distribution	less	skewed	towards	one.	In	the	
mouse hippocampus data, 18,351 out of 23,857 exons have Ψ = 1 in neurons and glia, so we 
downsampled these to 5,000 as well. For the visual cortex, 27,073 out of 48,515 exons have 
Ψneur > 0.9, Ψglia > 0.9, and | | .�� glia neur� � 0 03.	We	downsampled	these	to	5,000.

7.4.3 RBP-binding-site data

We	 downloaded	 the	 eCLIP	 data	 for	 122	 RBPs	 from	 the	 ENCODE	 portal	 (https://www.
encodeproject.org/metadata/?status=released&internal_tags=ENCORE&assay_title=e-
CLIP&biosample_ontology.term_name=K562&target.investigated_as=RNA+binding+pro-
tein&biosample_ontology.term_name=HepG2&assembly=GRCh38&type=Experiment&files.
processed=true).	From	this	file	list,	we	used	the	BED	files	that	store	the	peaks	per	replicate.	
We	merged	peaks	from	different	replicates	or	cell	lines	to	ensure	one	BED	file	per	RBP.	

7.4.4 Logistic regression models

The	logistic	regression	model	is	implemented	as	one	fully	connected	layer	between	the	input	
features	(the	RBP	binding	sites)	and	the	output	(the	Ψ	value)	with	a	sigmoid	activation	function	
to scale the output between 0 and 1. The models are single-task models which means that 
a	separate	model	was	trained	for	each	cell	type.	When	training	the	model,	we	use	a	binary	
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cross	entropy	loss	with	L1	and	L2	regularization	(alpha	=	0.001,	and	L1-ratio	=	0.7),	a	learning	
rate	of	0.005,	and	a	batch	size	of	256.	As	input	for	the	logistic	regression	models,	we	counted	
the	number	of	peaks	in	the	BED	files	for	every	RBP	and	exon	at	six	locations:	1)	upstream	of	
the	exon	(maximum	400	bp	away	from	the	splice	site),	2)	overlapping	the	3’	splice	site,	3)	
within	the	exon,	4)	spanning	the	exon,	5)	overlapping	the	5	splice	site,	and	6)	downstream	of	
the	exon	(maximum	400	bp	away	from	the	splice	site).	Since	we	used	the	eCLIP	data	of	122	
RBPs	and	there	are	6	possible	 locations,	this	resulted	 in	732	input	features	for	every	exon	
(Figure	1A).	If	peaks	of	different	replicates	were	overlapping,	we	counted	those	peaks	only	
once.	The	logistic	regression	model	is	implemented	in	PyTorch	Lightning [91,92]. 

7.4.5 Deep learning models

We	adapted	the	architecture	of	the	Saluki	model [37]	by	removing	one	convolutional	layer,	
shortening	the	maximum	sequence	from	12,288	to	6,144	bp,	and	changing	the	final	activation	
function	to	a	sigmoid	activation	function	(Figure	S5).	The	exon	of	 interest	was	centered	in	
the middle of the input sequence. The input channels of the model depend on the input 
features	used	(sequence,	splice	sites,	and/or	RBP	binding	sites).	For	the	sequence,	we	one-
hot encoded the sequence which results in four channels. If the splice sites were used as 
input, this added an extra channel that indicates the start and end of the exon of interest. 
When	adding	the	RBP	binding	sites,	we	add	a	channel	for	every	RBP	which	one-hot	encodes	
whether there is a binding site in any of the replicates of the eCLIP data for that RBP based on 
the	BED	files.	Similar	to	the	logistic	regression	models,	we	trained	a	model	for	every	cell	type	
separately. Even though we adapted the Saluki model, we retrained all the weights in the 
model.	When	adding	the	mouse	data,	we	adapted	the	same	approach	as	Saluki	and	made	the	
model	a	multi-head	model	where	the	weights	of	the	convolutional	and	recurrent	neuronal	
network	layers	are	shared	and	the	weights	of	the	fully	connected	layer	are	species-specific	
(Figure	 S5).When	 training	 the	model,	 we	 used	 the	 same	 hyperparameters,	 including	 the	
learning	rate,	batch	size,	etc.,	as	the	original	Saluki	model	(Figure	S5).	For	the	hippocampus,	
we	 tested	 how	 input-sequence	 length	 and	 the	 number	 of	 convolutional	 layers	 affect	 the	
performance.	The	benefit	of	a	longer	input	sequence	is	that	the	model	can	learn	how	long-
distance	interactions	of	regulatory	elements	affect	splicing,	but	these	models	contain	more	
parameters	and	are	more	difficult	to	train.	The	different	models	performed	similarly	which	
indicates	that	the	most	important	information	is	close	to	the	splice	sites	of	the	exon	(Figure	
S26).	The	model	using	6,144	bp	and	five	channels	performed	slightly	better	for	both	neurons	
and glia and therefore we used it during all the experiments. 

7.4.6 Evaluation

We	evaluated	the	performance	of	the	models	using	a	10-fold	cross-validation.	We	ensured	
that the same set of exons was always in the same test fold such that we could compare 
the performance of the models. Exons from the same gene were always in the same test 
fold.	When	training	the	deep	learning	models	on	human	and	mouse	data	simultaneously,	we	
ensured	that	human-mouse	homologs	were	in	the	same	test	fold.	We	used	biomart	to	obtain	
the human-mouse homologs. Some exons do not have any binding sites measured for any 
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of	the	RBPs	(5,560	exons	in	the	hippocampus	and	3,462	in	the	frontal	cortex).	This	could	for	
instance happen if certain genes were not expressed in the cell lines when the RBP binding 
sites	were	measured.	Since	the	logistic	regression	model	could	not	predict	a	Ψ value for these 
exons,	we	filtered	these	from	the	training	set	used	for	the	logistic	regression	model	and	from	
all	test	sets	(to	enable	a	fair	comparison	between	the	logistic	regression	and	deep	learning	
models).	The	deep	learning	models	are	thus	trained	on	more	exons	(Table	S1).	In	the	test	set,	
there	are	1,827	and	1,072	variable	exons	for	the	hippocampus	and	frontal	cortex	respectively.
We	trained	all	models	five	times	for	every	fold	and	averaged	the	predictions	across	these	five	
runs.	We	evaluated	the	performance	by	calculating	the	Spearman	correlation	between	the	
true and predicted Ψ values. 

7.4.7 RBP binding profiles

We	generated	RBP	binding	profiles	by	calculating	the	fraction	of	exons	with	an	RBP	binding	
site	at	every	location	(400	bp	upstream	of	the	exon	-	400	bp	downstream	of	the	exon).	Since	
exons have variable lengths, we bin the exons in 50 bins and only include exons that are 
at	 least	50	bp	 long	 in	the	analysis.	We	also	filter	out	exons	without	RBP	binding	sites.	We	
calculate	these	profiles	for	four	different	groups	of	exons:	1)	non-variable	exons	with	Ψ ≥ 0.5, 
2)	non-variable	exons	with	Ψ < 0.5,	3)	variable	exons	with	Ψ ≥ 0.5,	and	4)	variable	exons	
with Ψ < 0.5.	To	define	how	much	the	mechanisms	in	the	variable	exons	diverged	from	non-
variable	exons,	we	calculate	the	mean-squared	error	between	the	RBP	binding	profiles	of	the	
non-variable	and	variable	exons.	We	do	this	for	the	exons	with	a	high	and	low	Ψ separately.

7.4.8 RBP expression data

We	used	 the	10X	 scRNA-seq	data	 from	 the	 same	samples	 to	 look	at	 the	gene	expression	
of	the	RBPs	that	were	measured	using	the	eCLIP	data.	We	used	Seurat	v4	for	the	analysis 
[93]. To create the heatmap in Figure S13, we normalized the data per dataset using log 
normalization	and	a	scale	factor	of	1e6.	Next,	we	averaged	the	expression	over	all	the	cells.	
We	plotted	 the	 log(x + 1)	 values.	We	used	 the	FindConservedMarkers()	 function	
using	the	default	parameters	(including	Bonferroni	multiple	testing	correction)	from	Seurat	
to	find	differentially	expressed	RBPs	between	neurons	and	glia.	This	 tests	 for	differentially	
expressed genes per individual and merges the results.

7.4.9 Interpretation of logistic regression model

For	the	interpretation	of	the	logistic	regression	models,	we	looked	at	the	coefficients	of	the	
input	features.	To	obtain	one	value	per	input	feature,	we	average	the	coefficients	of	the	10	
folds	and	5	runs	per	fold	(so	the	average	across	50	models	in	total).	We	only	compared	the	
coefficients	across	models,	if	there	were	at	least	50	exons	with	a	binding	site	for	that	input	
feature. 
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7.4.10 In-silico saturation mutagenesis

We	used	in-silico saturation	mutagenesis	(ISM)	to	interpret	how	nucleotide	substitutions	in	
the	 input	 sequence	affect	 the	predictions.	We	did	 this	 for	9,929	exons	using	 the	DLall-seq-m 
model trained on glia in the hippocampus. For every exon, we used the fold for which that 
exon	was	 in	the	test	set.	We	averaged	the	predictions	across	the	5	runs.	The	 ISM	score	 is	
defined	as	follows:

 ISMe p n pred e p n pred e p ii A C G T, , , , , , , ,, , ,
� �

��� �1

4
 

where e is the exon we predict the Ψ value for, and p and n	are	the	position	and	nucleotide	
used at that	position	respectively.	To	visualize	the	ISM	scores	across	the	input	sequence,	we	
binned the upstream region, exon, and downstream region since they all had varying lengths.

7.4.11 Analysis of neighboring exons

We	compared	the	ISM	scores	at	the	exon	of	interest,	the	neighboring	exons,	and	the	remaining	
sequence.	We	extracted	the	locations	of	annotated	exons	from	GENCODE	v35 [94]. The ISM 
scores	for	the	exon	of	interest	and	the	neighboring	exons	include	the	flanking	sequence	of	
150	bp	upstream	and	downstream	of	the	exon.	Next,	we	selected	ten	exons	on	the	positive	
strand	with	the	highest	absolute	ISM	scores	in	a	neighboring	exon.	We	visualized	the	long-
reads	spanning	both	exons	using	ScisorWiz [95]

7.4.12 Motif discovery

We	used	TF-MoDISco-lite	(v2.2.0) [57]	to	discover	motifs	using	the	ISM	scores	as	input.	When	
creating	 the	 report,	 we	 compare	 the	 found	motifs	 to	 the	 position	weight	matrices	 from	
oRNAment	which	includes	motifs	found	using	RNAcompete	and	RNA-bind-n-seq	experiments 
[8,96,97]. TF-MoDISco-lite is designed for DNA instead of RNA and tries both the forward 
strand	and	 its	reverse	complement	when	finding	seqlets	 (parts	of	 the	sequence	with	high	
ISM	scores).	We	used	the	results	file,	to	check	whether	the	forward	or	reverse	complement	
was	 used	 to	 generate	 a	 motif.	 We	 kept	 forward	 motifs	 if	 at	 least	 for	 25	 sequences	 the	
forward	strand	was	used.	We	kept	the	reverse	motif	if	at	least	for	25	sequences	the	reverse	
complement was used. 

7.4.13 sQTL analysis

We	used	 the	sQTLs	defined	 for	 the	hippocampus	 in	GTEx	v8.	These	variants	are	 linked	 to	
introns	instead	of	exons.	We	predicted	the	effect	for	variants	that	are	linked	to	an	intron	that	
spans	an	exon	in	our	dataset	(Figure	4E).	For	most	introns,	there	are	multiple	variants	linked	
to	 them.	We	only	predicted	 the	effect	 for	 the	best	 variants	 (the	 variants	with	 the	 lowest	
p-value	for	an	intron).	For	most	introns,	there	were	still	more	than	two	after	this	filter.	
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7.4.14 Exon naming

We	named	exons	after	their	position	in	the	transcript	by	counting	their	position	in	the	GTF	
file.	A	conversion	from	exon	names	to	genomic	coordinates	can	be	found	in	Table	S4.

7.5 Code and data availability
The Ψ	values,	predictions,	and	RBP	binding	profiles	are	available	on	Zenodo:	https://zenodo.
org/doi/10.5281/zenodo.10669666.	 The	 code	 to	 reproduce	 the	 figures,	 and	 train	 your	
logistic	 regression	 or	 deep	 learning	models	 can	 be	 found	 on	GitHub:	 https://github.com/
lcmmichielsen/PSI_pred.
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