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Most regulatory elements, especially enhancer sequences, are cell population-specific. One 
could even argue that a distinct set of regulatory elements is what defines a cell population. 
However, discovering which non-coding regions of the DNA are essential in which context, 
and as a result, which genes are expressed, is a difficult task. Some computational models 
tackle this problem by predicting gene expression directly from the genomic sequence. 
These models are currently limited to predicting bulk measurements and mainly make tissue-
specific predictions. Here, we present a model that leverages single-cell RNA-sequencing 
data to predict gene expression. We show that cell population-specific models outperform 
tissue-specific models, especially when the expression profile of a cell population and the 
corresponding tissue are dissimilar. Further, we show that our model can prioritize GWAS 
variants and learn motifs of transcription factor binding sites. We envision that our model can 
be useful for delineating cell population-specific regulatory elements.

6.1 Introduction
In multicellular organisms, every cell has the same DNA apart from somatic mutations. Yet its 
function and the related proteins and genes expressed vary enormously. This is among others 
caused by transcriptional and epigenetic regulation. Proteins that bind the DNA sequence 
around the transcription start site (TSS) control whether a gene is transcribed in a cell [1,2]. 
Which transcription factors, and thus which DNA binding motifs, are essential differ per cell 
population [1–4]. As such, mutations in regulatory regions might affect specific tissues or cell 
populations differently. Improving our understanding of these regulatory mechanisms will 
help us relate genomic functions to a phenotype. 

For example, while promoter sequences are identical across the four major human brain 
cell populations (neurons, oligodendrocytes, astrocytes, and microglia), almost all enhancer 
sequences, the regions in the DNA where a transcription factor binds, are cell population-
specific [3]. These population-specific regulatory elements are discovered by combining 
single-cell measurements of different data types, including chromatin accessibility, ChIP-
seq, and DNA methylation. Bakken et al., for instance, identified differentially methylated 
and differentially accessible regions across neuronal cell populations in the human brain, 
albeit with little overlap [5]. This emphasizes the complexity of transcriptional regulation and 
the need for more measurements to fully resolve these mechanisms at the cell population-
specific level.

An alternative approach would be to train a computational model that directly predicts 
gene expression from the genomic sequence around the TSS. This way, we can learn which 
regulatory elements are important for transcriptional regulation in different contexts. Several 
computational methods have been developed for this task [6–12]. These methods have in 
common that they one-hot encode the DNA sequence and input this to either a convolutional 
neural network (CNN) or transformer. ExPecto, Xpresso, and ExpResNet predict expression 
measurements from bulk RNA-sequencing, while Basset, Basenji, BPNet, and the Enformer 
model predict regulatory signals, such as cap analysis gene expression (CAGE) reads or TF 
binding from CHIP-nexus. 
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A promising application of these models is to prioritize variants that have been identified 
using genome-wide association studies (GWAS) [6,13]. Using GWAS many potential disease-
associating variants have been identified [14–16]. Within each locus, however, it is often 
challenging to pinpoint which variant is causal and which gene is affected by the variant. 

These current computational gene prediction models, however, are designed for predicting 
bulk gene expression data. This means that they are either tissue-specific or could be applied 
to FACS-sorted cells [13]. Since transcriptional regulation is even more context-specific, the 
resolution of current methods is not sufficient for heterogeneous tissues where single-cell 
RNA-sequencing (scRNA-seq) has revealed hundreds of cell populations [5,17,18]. To increase 
the resolution, the models would ideally be trained on scRNA-seq data.

Here, we present scXpresso, a deep learning model that uses a CNN to learn cell population-
specific expression in scRNA-seq data from genomic sequences. Since single-cell and bulk 
data have different characteristics and distributions, we explored whether this type of model 
is suitable for single-cell data. We show that (i) cell population-specific models outperform 
tissue-specific models on several tissues from the Tabula Muris, (ii) increasing the resolution 
improves the predictions for human brain cell populations, and (iii) in-silico saturation 
mutagenesis of the input sequence can be used to prioritize GWAS variants.

6.2 Materials and methods

6.2.1 Architecture of scXpresso

scXpresso is a one-dimensional convolutional neural network (CNN) adapted from the (bulk 
gene expression-based) Xpresso model [9] (Figure 1A, S1). The input to the CNN is four 
channels with the one-hot encoded sequence around the transcription start site (TSS) (7kb 
upstream and 3.5kb downstream). Every channel represents one of the four nucleotides (A, 
C, T, G). For some positions, the exact nucleotide is not known (e.g. any nucleic acid (N) or a 
purine nucleotide (R)). The exact coding scheme for such positions is shown in Table S1. The 
CNN consists of two convolutional layers. The output of the convolutional layers is flattened 
and concatenated with the half-life time features. Together, this is subsequently fed into a 
fully connected (FC) layer(s). The output of the FC layers is the aggregated expression per 
tissue or for each cell population.

Comparing scXpresso to Xpresso, there are three main differences: 1) we designed 
scXpresso as a multitask model so that it predicts the expression of multiple cell populations 
simultaneously. 2) We decreased the number of half-life time features from eight to five; 
the three features we removed (5’ UTR, ORF, and 3’ UTR GC content) correlated less with 
half-life time, so we removed them to make the model less complex [9,19,20]. Furthermore, 
removing these three half-life time features from the original Xpresso model did not lower its 
performance (Table S2). 3) For the multitask model, there is only one FC layer. For the other 
models, which we use to make tissue-specific predictions as a comparison, we used two FC 
layers. 
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Figure 1. Schematic overview of scXpresso and performance on Tabula Muris datasets. A) We one-hot encode 
the DNA sequence around the transcription start site (TSS) and input this to a one-dimensional convolutional neural 
network (CNN). The output of the CNN is flattened and concatenated with the five half-life time features. The fully 
connected layers output the cell population's specific gene expression levels simultaneously (Figure S1, see Methods). 
B) Schematic overview of the experiment. C-D) Performance of scXpressot,b (tissue-specific (t) model on bulk (b) 
data) and scXpressot,pb (tissue-specific model on pseudo-bulk (pb) data), respectively. Every dot is the performance 
(Pearson correlation) across one fold of the 20-fold CV. E) Performance of scXpressocp,pb (cell population-specific 
(cp) model on pseudo-bulk data) summarized per tissue. Every dot represents the model’s performance on a cell 
population in that tissue (median Pearson correlation across the 20 folds). F) Performance of scXpressocp,pb on the 
different lung cell populations. The grey line indicates the median performance across all cell populations. Every dot 
is the performance across one fold of the 20-fold CV.
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6.2.2 Training scXpresso

We split the genes into a train, validation, and test dataset and evaluated using 20-fold cross-
validation. These sets are the same across all experiments (i.e. one train, validation, and test 
set for mouse genes and one for human genes) such that the results of different models 
can be compared. We update the weights of scXpresso using the Adam optimizer based on 
the mean square error loss on the training set. The initial learning rate is set to 0.0005 and 
if the loss on the validation set is not improved from 5 epochs, the learning rate is reduced 
by a factor of 10. We train the model for 40 epochs and the model with the lowest loss 
on the validation set is used for evaluation on the test dataset. Since there is always some 
stochasticity when training a CNN, we always train 5 models and average the predictions. We 
used the following software packages for training the model: Pytorch (version 1.9.0) [21], 
CUDA (version 11.1), cuDNN (version 8.0.5.39), and Python (version 3.6.8). 

6.2.3 Datasets

Tabula Muris. The single-cell Tabula Muris data [22] for the five different tissues (gland, 
spleen, lung, limb muscle, and bone marrow) and two different protocols (10X and FACS-
based Smart-seq2) were downloaded from: https://figshare.com/projects/Tabula_Muris_
Transcriptomic_characterization_of_20_organs_and_tissues_from_Mus_musculus_at_
single_cell_resolution/27733. To extract input features, we downloaded the reference 
genome (MM10-PLUS) that was used during the alignment from: https://s3.console.
aws.amazon.com/s3/object/czb-tabula-muris-senis?region=us-west-2&prefix=reference-
genome/MM10-PLUS.tgz.

The four bulk datasets (spleen, lung, limb muscle, and bone marrow) from the Tabula Muris 
were downloaded from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132040 
[23]. For the bulk data, we used the same reference genome as for the single-cell data.

Human motor cortex data. The human motor cortex data from the Allen Institute [5] 
was downloaded from the Cytosplore Comparison Viewer. We downloaded the reference 
genome (version GRCh38.p2) and corresponding GTF file with information about the location 
of transcription start sites of the genes here: (https://www.gencodegenes.org/human/
release_22.html)

6.2.4 Aggregated expression values

First, we normalized the count matrices. For the single-cell datasets, we performed library size 
normalization in the same way as The Tabula Muris Consortium: i.e. counts per million for the 
smart-seq2 data and counts per ten thousand for the 10X data [22]. For the bulk Tabula Muris 
data, we performed TPM normalization. For the single-cell datasets, we used the annotations 
defined by the authors to aggregate the expression values per tissue or per cell population 
using log10(mean(x)) (without pseudocount) into pseudobulk values. The advantage of not 
adding a pseudocount is that the distribution looks more like a normal distribution, which 
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makes it easier to train the models (Figure S2). A limitation, however, is that we could not 
calculate the exact value for genes that were not expressed in any of the cells. For these 
genes, we replaced the pseudobulk values with -4 in the Tabula Muris and -5 in the motor 
cortex dataset, since this extrapolated well (Figure S2). For the bulk data, we aggregated 
over the samples instead of the cells. Here, we set the genes that are not expressed in any 
of the samples to -4. We standardized the expression values before running the model such 
that the average expression of all genes in each cell population or tissue is zero and the 
standard deviation is one. Before analyzing the results and comparing the predictions across 
cell populations, we undid the z-score normalization but kept the log normalization.

6.2.5 Input features

Sequence around the transcription start site. Before extracting the sequences around 
the transcription start site, we removed genes that are transgenes, ERCC spike-ins, genes 
without a coding region, and genes on the Y chromosome. This resulted in 20,467 mouse 
genes and 18,138 human genes. Some genes had multiple transcripts. We downloaded a 
list with canonical transcripts for each gene from biomart and we used the transcript and 
transcription start site belonging to the canonical transcript. If the canonical transcript was 
not defined, we used the transcript that had the longest coding region. After having defined 
the transcription start site for each gene, we used seqkit [24] to extract sequences from the 
FASTA file containing the reference genome. 

Half-life time features. For every gene, we extracted five half-life time features: 5’ UTR 
length, 3’ UTR length, ORF length, intron length, and exon junction density ( #

( )
*exons

ORFlength
1000). 

We obtained these features by first filtering the GTF files for the canonical or longest transcript. 
The 5’ UTR length is the length of the sequence from the start of the first exon to the start 
codon. The 3’ UTR length is the length of the sequence from the last coding sequence to the 
end of the last exon. The ORF length is the sum of the length of the coding sequences. The 
intron length is the length of the transcript minus the length of the ORF, 5’ UTR, and 3’ UTR. 
All features are log-normalized using log10(x + 0.1) and afterwards z-scaled.

6.2.6 Evaluating the predictions

For every gene in the test dataset, we averaged the predictions of the five models we 
trained. We evaluated the performance for every cell population by calculating the Pearson 
correlation between the true and predicted expression of the genes in the test set. To 
evaluate the increase in performance between the tissue-specific (t) pseudobulk (pb) and cell 
population-specific (cp) pseudobulk (pb) model on the Tabula Muris datasets, we calculate: 
�cp t cp pbscEP, ,( )� �median Pearsoncorrelation median Pearsoncoorrelation( ),scEPt pb . On the 
motor cortex dataset, we also evaluated the performance of each gene by calculating the 
Pearson correlation between the true and predicted expression per cell population.
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6.2.7 In-silico saturation mutagenesis

For CACNA1I, we mutated all positions in-silico, which means we tested all possible 
substitutions at every position. We undid the z-score normalization and calculated the 
difference between the original (wild-type) prediction and the mutated prediction. The 
prediction models used during these experiments were the models where CACNA1I itself 
was originally in the test set. For every position, we only plotted one predicted difference 
in expression in Figure 4E. This is the substitution that was predicted to have the largest 
absolute effect. We downloaded the locations of the candidate cis-regulatory elements that 
fall within the input region for CACNA1I from screen registry v3 (release date 2021) [25]. 
When plotting the difference between two cell populations, we ignored the positions where 
one is positive and the other predicts a negative effect. This rarely happened and if it was the 
case, the predicted effect was very small.

For the 2000 highly variable genes, selected using scanpy [26], we applied ISM similar as 
described for CACNA1I. For every position we then calculated the average maximum absolute 
predicted effect:

y i y i y
alt A C G T alt ref pred g ref predmax

{ , , , },
, ,( ) max | ( )� �

� �

1

2000 ,, , ( ) |g altg HVG
i

��
where i indicates the genomic position, HVG is the list of highly variable genes, ref indicates 
the reference allele, and alt indicates the alternative allele.

6.2.8 Comparison to other models

Enformer. Enformer uses the DNA sequence to predict reads for 5,313 human tracks which 
include CAGE, DNAse, CHIP, and ATAC-seq [11]. Here, we only looked at the effect of a variant 
on the CAGE tracks that are related to the brain (77 tracks in total, see Table S3). Enformer 
predicts the effect of variants on 128bp bins. When predicting the effect of a variant on the 
CAGE reads, we looked at the effect on the bin containing the TSS.

ExPecto. ExPecto predicts gene expression for 218 tissues and cell lines [8]. Here, we only 
focused on 27 outputs that are related to the brain (Table S4). We used the ExPecto web 
server to predict the effect of the variants (https://hb.flatironinstitute.org/expecto/?tabId=3). 
ExPecto is trained using Hg19 instead of Hg39. We used the R-package SNPlocs.Hsapiens.
dbSNP155.GRCh37 (v 0.99.23) to lift-over the variants. Using ExPecto we could not predict the 
effect of all variants, since for some variants there was no location in Hg19 found, some were 
too far away from a TSS, and some were linked to a different gene than we were interested in 
(see Table S5 for an explanation per variant).

Xpresso. We trained the Xpresso model on bulk RNA-seq data from the precentral gyrus [9]. 
The data from two individuals were downloaded from the Allen Human Brain Atlas: https://
human.brain-map.org/static/download (H0351.2001, H0351.2002). We used the normalized 
matrices. Labels were created as described in the Xpresso paper: we took the median 
expression across the 6 precentral gyrus samples, log-normalized the output using log10(x + 
0.1), and z-score normalized the expression. Similar to scXpresso, we trained the model using 
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20-fold cross-validation. Per fold, we trained 10 runs and used the model with the lowest 
MSE on the validation data (as described in [9]). Afterwards, we predicted the effect of the 
variants. We could not predict the effect of all variants, since some genes were not measured 
in the bulk RNA-seq data and for some genes, there were no Xpresso input features defined 
(see Table S5 for an explanation per variant). 

6.3 Results

6.3.1 Predicting cell population-specific gene expression using 
scXpresso

Here, we present scXpresso, a multitask convolutional neural network (CNN) to predict 
cell population-specific gene expression using genomic sequences only (Figure 1A, S1). We 
developed scXpresso by adapting the Xpresso model [9], which was originally designed for 
bulk data, to single-cell data. Similar to Xpresso, we use two types of input to the model: (1) 
the DNA sequence around the transcription start site (TSS) (7kb upstream - 3.5kb downstream) 
to model transcription, and (2) five half-life time features (5’ UTR length, 3’ UTR length, ORF 
length, intron length, and exon junction density) to model mRNA degradation. We input the 
one-hot encoded DNA sequence into a CNN. The output of the CNN is concatenated with the 
half-life time features and fed to a fully connected network (see Methods). Since our model is 
a multitask CNN, the desired output of the fully connected network is the gene expression for 
every cell population. We predict expression per cell population instead of per cell to achieve 
more stable predictions with less noise as single-cell data is known to be quite sparse. To 
obtain one expression value per cell population, we aggregate the single-cell expression into 
pseudobulk measurements (see Methods). 

Since single-cell and bulk data have different characteristics, we tested whether scXpresso 
performs equally well on single-cell and bulk data. We used scRNA-seq data from five different 
tissues (limb muscle, spleen, gland, marrow, and lung) from the Tabula Muris [22] (Table S6). 
Here, we used cells isolated via FACS that were sequenced using the Smart-seq2 protocol. 
Using the annotations defined by the authors, we aggregate the values per cell population 
and per tissue into pseudobulk values. For four tissues (limb muscle, spleen, marrow, and 
lung), there are also bulk RNA-sequencing datasets available (Table S7). We compared the 
pseudobulk to the bulk expression per tissue and noticed that these are indeed correlated 
(rmuscle = 0.69, rspleen = 0.71, rmarrow = 0.50, rlung = 0.67) (Figure S3).

Next, we trained three different models: 1) a tissue-specific (t) model on the bulk (b) values 
(scXpressot,b), 2) a tissue-specific model on the pseudobulk (pb) values (scXpressot,pb), 3) a 
cell population-specific (cp) model on the pseudobulk values (scXpressocp,pb) (Figure 1B). 
The cell population-specific model is, in contrast to the tissue-specific models, a multitask 
model that predicts the expression of all cell populations in a tissue simultaneously. We 
evaluated the performance of the models by calculating the Pearson correlation between 
the true and predicted expression values. In general, the tissue-specific models trained 
on pseudobulk reach higher performance than the models trained on bulk (Figure 1C-D). 
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Even though the bulk and pseudobulk values are correlated, the pseudobulk distributions 
are bimodal compared to the normally distributed bulk data (Figure S3-4). This turns the 
problem more into a classification problem (is a gene low or high expressed), which might 
be easier to learn. On average, predicting cell population-specific expression is more difficult 
than predicting tissue-specific expression (Figure 1D-E): scXpressocp,pb performs slightly worse 
than scXpressot,pb (median correlation of 0.71 vs 0.75), but still better than scXpressot,b (0.58). 

One of the adaptations to Xpresso is that scXpressocp,pb is a multitask model. This slightly 
increases the performance compared to a single-task model (Figure S5) but mainly makes 
the model computationally more efficient. The marrow-FACS dataset, for instance, contains 
22 cell populations. Since the single-task and multitask models need the same training time 
(approximately 30-60 minutes), this gives a 22x speed up. 

The Tabula Muris scRNA-seq datasets were generated using two different protocols: 10X 
Genomics, a droplet-based method, and FACS-based Smart-seq2, a plate-based method. 
When comparing scXpressot,pb and scXpressocp,pb trained on the two different protocols, e.g. 
lung-droplet vs. lung-FACS, we conclude that they perform equally well (Figure 1DE, S6-7). 
Depending on the tissue and cell population, one performs slightly higher than the other, but 
there are no significant differences. This is as expected since the pseudobulk values of both 
protocols are highly correlated (Pearson correlation > 0.85) (Figure S8). Hence, the protocol 
used to create the single-cell dataset does not influence the results. 

For scXpressocp,pb, we tested how the two types of input features, DNA sequence and half-
life time, influence the performance. We tested different lengths of the input sequence and 
whether one of the two features was enough to predict expression (Figure S9). A range of 
different sequence lengths results in the same performance (3.5-3.5, 7-3.5, and 10-5kb 
upstream-downstream). A longer sequence gives more information but also adds more 
noise. Since the model also becomes more complex, more parameters have to be learned 
and it takes more time and memory to train the model. Therefore, we decided to use 7kb 
upstream and 3.5kb downstream for further experiments. We also observed that adding the 
half-life time features results in higher performance, suggesting that these features are not 
easily captured from DNA sequences alone. 

For the cell population-specific models, the performance varies considerably across different 
populations (Figure 1E). Comparing the populations in the lung dataset, for instance, the 
performance of the endothelial cells is very high compared to leukocytes (Figure 1F, S10). In 
general, the performance of scXpresso increases when more genes and cells are measured 
in a population (Figure 1F, S11). The leukocyte population is small (35 cells) and fewer genes 
are non-zero compared to other cell populations in the lung (8,678 out of 20,467 vs. 12,715 
on average). The ciliated cell population, on the other hand, is also small (25 cells), but this 
model reaches a higher performance. In this cell population, however, more genes were non-
zero (11,717) compared to the leukocyte population. Hence, to train the model, we need a 
good representation of the cell population that includes enough expressed genes. 

In all previous experiments, we evaluated scXpresso using 20-fold cross-validation with the 
genes randomly divided over the folds. The results could be positively biased if genes from 
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the same chromosome are in different folds. Therefore, we also evaluated the models using 
cross-chromosomal cross-validation. This slightly reduces the models’ performance, but the 
difference is not significant (lowest p-value = 0.11 for myeloid cells, two-sample Wilcoxon 
rank sum test) (Figure S12).

6.3.2 Cell population-specific models outperform tissue-specific 
models

Now that we know that all models are well-trained, we predicted cell population-specific 
expression using the three different models to see whether increasing the resolution of 
the models increases the performance (Figure 2A). Since scXpressot,b and scXpressot,pb were 
trained using tissue-specific expression values, these models predict the same value for every 
cell population. On all datasets, scXpressocp,pb outperforms the tissue-specific models, which 
shows the benefit of training the models on a higher resolution (Figure 2B, S13A). Especially 
in more heterogeneous tissues, where the gene expression of cell populations is weakly 
correlated to the corresponding tissue, we see a large improvement (Figure 2C, S13B). For 
the lung-FACS dataset, for instance, the performance increases the most for immune cell 
populations (∆cp t, for B cells: 0.11, NK cells: 0.11, T cells: 0.09; see Methods) and the least 
for lung-specific populations (∆cp t, for stromal cells: 0.01, endothelial cells: 0.03, epithelial 
cells: 0.05). In the B cells in the lung, 4,081 genes are not expressed in any of the cells and 
thus have a log-normalized expression of -4, but for which the tissue-specific model predicts a 
positive log-normalized expression value (Figure 2D). In contrast, the model trained on B cells 
predicts a lower expression for these genes (Figure 2E). Almost all these genes, however, are 
expressed in the lung (in the non-B cells), the lung-model learned this correctly too (Figure 
2F).

Some of the Tabula Muris datasets contain similar cell populations. For instance, B cells, 
macrophages, and T cells are measured in four, three, and three tissues, respectively. We 
hypothesized that if our models are cell population-specific, they should accurately predict the 
expression of a cell population in one tissue with a model trained on the same cell population 
but from another tissue (even though a cell’s tissue will slightly change the expression for 
(some) genes). To test this, we predicted the expression for common cell populations using 
three different types of models: 1) scXpressocp,pb trained on the same cell population, but 
from a different tissue, 2) scXpressocp,pb trained on a different cell population, but from the 
same tissue, 3) scXpressot,pb trained on the same tissue (Figure 3A). For example, we predict 
the expression of B-cells in the limb muscle, using 1) a model trained on B-cells in the lung, 2) 
a model trained on endothelial cells in the limb muscle, and 3) a model trained on the limb 
muscle. Again, the cell population-specific models outperform the tissue-specific models, 
even though they predict either a different dataset or a different cell population than they 
were trained on (Figure 3B, S14-15). This indicates that if you want to train a model for a 
cell population from a specific tissue where no single-cell data is available, you are better 
off using a model trained on a similar cell population from a different tissue than relying 
on a tissue-specific model. Whether a model trained on a different cell population and the 
same tissue performs better than a model trained on the same cell population but a different 
tissue, differs per tissue and cell population. For example, when predicting the expression 
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of B cells in the limb muscle, the models trained on B cells in the marrow and lung even 
outperform the model trained on B cells in the limb muscle itself (Figure 3C). But, the models 
trained on different cell populations within the limb muscle perform variably when predicting 
B cells (Figure 3D). The models trained on immune populations, e.g. T cells or macrophages, 
perform similarly, but the muscle-specific populations perform worse. This difference 

Figure 2. Comparison of the three scXpresso models for making cell population-specific predictions. A) Schematic 
overview of the experiment. B) Boxplot showing the performances of scXpressot,b (tissue-specific (t) model on bulk 
(b) data), scXpressot,pb (tissue-specific model on pseudo-bulk (pb) data), and scXpressocp,pb (cell population-specific 
(cp) on pseudobulk (pb) data) on the cell population-specific task. Every point in the boxplot is the performance of a 
model on one cell population in that tissue (median Pearson correlation across the 20 folds). C) Similarity between 
a cell population and corresponding tissue (Pearson correlation between the true pseudobulk expression values) 
vs. the increase in performance (∆

cp t,
, median Pearson correlation of scXpressocp,pb - scXpressot,pb). Every dot is a 

different cell population and the colors represent the different tissues. D-F) Comparing the predictions made by 
the lung tissue model (lung-model) and the B cell population model (B cell-model). Genes where the lung-model 
predicts a too-high value are plotted in orange. D-E) True expression of the B cells vs. predicted expression by the 
D) lung-model and E) B cell-model. F) True expression of the lung cells vs. predicted expression of the lung model. 
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between the B cell and the endothelial, mesenchymal stem cell, and skeletal muscle satellite 
cell models might seem small but is significant across the 20 folds (p-value = 9.5e-07 for all 
three populations, one-sided Wilcoxon rank sum test [27,28]). Even though the differences 
are small, this indicates that our models indeed learn cell population-specific features.

6.3.3 scXpresso learns expression patterns across human brain 
cell populations

Next, we applied scXpresso to a human brain dataset of the motor cortex [5]. This dataset 
is annotated at different resolutions including a class (GABAergic, glutamatergic, and 
non-neuronal) and subclass (20 subclasses) level. Again, we trained models of different 
resolutions: a tissue- (t), class- (c), and subclass-specific (sc) model (scXpressot, scXpressoc, 
and scXpressosc respectively). We used the trained models to predict the subclass-specific 
expression values (Figure 4A). Since scXpressot was trained on the tissue-specific pseudobulk 
expression, it predicts the same expression for all subclasses. The class-specific model, on the 
contrary, is a multitask model. Here, we use the predictions of the parent class to predict the 
expression of each subclass (i.e. subclasses belonging to the same parent class are predicted 
to have the same expression) (Figure S16). Similar to the Tabula Muris, we observed that 
increasing the resolution increases the performance: scXpressosc outperforms scXpressoc 
which outperforms scXpressot, (Figure 4B). For some subclasses, e.g. L2/3 IT, the performance 
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Figure 3. Comparing the predictions of scXpresso across cell populations and tissues. A) Schematic overview of 
the experiment. B) Performance (Pearson correlation) of three different types of models on different cell populations 
(rows) in different tissues (columns). Every dot is the median correlation of one model across the 20 folds. Since 
there are no T cells and macrophages defined in the Marrow and Lung dataset, these boxes are missing. C) Pearson 
correlation of different models when predicting the expression of B cells in different tissues. The rows indicate 
on which tissue scXpressocp,pb is trained, and the columns indicate for which tissue the expression of the B cells is 
predicted. D) Pearson correlation of different scXpressocp,pb when predicting the expression of B cells in the limb 
muscle. Again the rows indicate which model is used.
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barely improves when comparing scXpressosc with scXpressoc, which happens when the true 
expression values of the subclass and corresponding class are strongly correlated, similar as 
for the Tabula Muris case (Figure S17). 

Since genes with variable expression across subclasses are often interesting to study, we 
tested whether scXpressosc can learn the correct pattern for a gene across the subclasses. For 
every gene, we calculate the Pearson correlation between the true and predicted expression 
across the subclasses. If the expression of a gene shows some variance across the subclasses, 
scXpressosc predicts the pattern correctly (Figure 4C). An example is CACNA1I, a gene coding 
for a subtype of voltage-gated calcium channel that has been associated with schizophrenia 
[15,29–32]. Here scXpressosc correctly learns that the expression in neuronal populations is 
higher than in non-neuronal (r = 0.90) (Figure 4D). 

6.3.4 In-silico saturation mutagenesis reveals the most interesting 
GWAS variants

Since scXpresso can predict expression from the DNA sequence, we expect that it can also 
predict how the expression changes when the sequence is mutated. Therefore, we applied 
in-silico mutagenesis (ISM) to the sequence of CACNA1I and evaluated the predicted change 
in gene expression [6,7,11,33]. When comparing scXpressosc predictions for the Sst Chodl 
subclass across all possible mutations, we find mutations in the region around the TSS to 
affect the expression of the CACNA1l gene the most (Figure 4E). When applying ISM to the 
2000 highly variable genes in the data, the maximum absolute predicted effect is highest 
around the TSS as well (Figure S18). Note, that we did not use the TSS location as input to the 
model, consequently, the model correctly identified that this is the most important region for 
transcriptional regulation. No other regions within our input window were found that affect 
the expression that strongly.

Besides visualizing the mutation pattern for one subclass, we can also visualize how ISM 
affects two subclasses differently. As an example, we compared the scXpressosc predictions 
for the Sst Chodl subclass and the L2/3 IT subclass (Figure S19). These predictions show that 
the Sst Chodl subclass is more sensitive to mutations than the L2/3 IT class for CACNA1I, 
which might be explained by the fact that CACNA1I is also higher expressed in Sst Chodl cells.

In addition, ISM can be used to prioritize variants of interest for diseases. CACNA1I is linked to 
18 Schizophrenia-associated variants according to the NHGRI-EBI Catalog [34]. Two of these 
variants, rs7288455 and rs5757730, fall within our input region (7kb upstream and 3.5kb 
downstream of the CACNA1l TSS). Mutating the reference A allele with the C or G variant at 
the position of rs7288455 increases the predicted expression for all cell populations (Figure 
4F). The disease-associated variant, the A allele, is expected to decrease the expression 
[15,34], which is in line with our predictions, although it is not known whether this is 
subclass-related. Our model suggests that the expression of CACNA1I increases the most in 
the Sst Chodl subclass. Interestingly, for the Sst Chodl subclass, this mutation results in one 
of the largest differences in CACNA1l expression amongst all other induced mutations (top 
1% mutations with the strongest effect) (Figure S20). For the other variant, rs5757730, which 
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Figure 4. Performance of scXpresso on the human motor cortex. A) Schematic overview of the experiment. We train 
a tissue- (t), class- (c), and subclass-specific (sc) model (scXpressot, scXpressoc, scXpressosc respectively) to predict 
the subclass-specific expression levels. B) Boxplots showing the Pearson correlation between the true and predicted 
values. Every point in the boxplot is the performance on a fold (n=20). C) Scatterplot showing the relation between 
the variance of a gene across the pseudobulk values of the subclasses and the Pearson correlation between the true 
and predicted values across the subclasses. Every dot is a gene. D) True and predicted expression for CACNA1I. Every 
dot is the expression in a subclass. Dots are colored according to their class. E) Mutation profile for CACNA1I for the 
Sst Chodl subclass. For every position, we calculated the difference in expression for all three possible substitutions 
and visualized the substitution with the highest absolute predicted effect. Mutations that are predicted to increase 
or decrease the expression are plotted in blue and orange, respectively. The grey rectangle highlights the region 
around the TSS. The grey boxes indicate the positions of candidate cis-Regulatory Elements (cCREs) derived from 
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lies in an intronic region, we see no difference in expression (Figure S21). Further supporting 
our predictions, rs7288455, but not rs5757730, overlaps with an ENCODE candidate cis-
regulatory element. These results show that scXpresso can be used to prioritize GWAS hits.

In total, there are 3,971 GWAS variants associated with Schizophrenia in the NHGRI-EBI 
Catalog [34]. We focused on those genes that have two or more variants in the input region 
(20 genes, 49 variants) (Table S5). For these variants, we predicted the effect of all possible 
substitutions to prioritize the likely causal variants (Figure S22). For most genes, scXpresso 
predicts a profound effect for only one of the variants. For instance, when substituting ‘A’ with 
‘C’ for the HLA-B variant rs2507989, the predicted expression of HLA-B decreases, while none 
of the mutations at the other variant positions of HLA-B, i.e. rs139099016 and rs1131275, are 
predicted to affect the expression. Noteworthy, rs1131275 is classified as a missense variant 
and thus not expected to alter transcription [34]. For some genes, however, all variants seem 
to barely affect the expression. 

Next, we checked if we could interpret the model predictions by characterizing the genomic 
sequences identified by scXpresso to have a strong effect on gene expression. For the MROH-6 
variant rs10866912, two substitutions are predicted to create an opposite effect. Substituting 
the reference ‘T’ with a ‘C’ is predicted to decrease the expression while mutating with a ‘G’ 
is predicted to increase the expression (Figure 4G). This variant is part of a binding site for the 
transcription factor INSM1, a transcriptional repressor [35] (Figure 4H). When substituting the 
‘T’ with a ‘C’, the sequence of the reference genome becomes more similar to the consensus 
motif, while substituting with a ‘G’ makes the two sequences more dissimilar. This supports 
the predictions from scXpresso.

We compare our scXpresso predictions for these Schizophrenia variants to the predictions 
of Enformer, ExPecto, and Xpresso. For Enformer and ExPecto we used their pre-trained 
models which predict the expression for 5,313 and 218 tissues/cell lines, respectively. Here, 
we only focused on the predictions related to the healthy brain (77 tracks for Enformer, 27 for 
ExPecto). For Xpresso, there were no pre-trained models for the brain available, so we trained 
the Xpresso model ourselves using bulk RNA-seq samples from the precentral gyrus, which is 
the region containing the motor cortex (see Methods). The expression values of the precentral 
gyrus are correlated to the pseudobulk expression values of the motor cortex (Figure S23A, 
r = 0.68). Similar to scXpresso, we used a 20-fold cross-validation to train the Xpresso model. 
The model is well-trained and reached a similar median correlation on the precentral gyrus as 
the scXpresso models on the motor cortex subclasses (Figure 4B, S23B-C, r = 0.69). Figure S24 
shows the predictions for all models for the variants related to Schizophrenia. Using Xpresso 
and ExPecto we could not predict the effect of all variants, since some genes were missing 
from the data and some variants were lost during conversion from Hg38 to Hg19 (Table S5) 
(see Methods). It’s challenging to compare the predictions of the different methods since all 
models are trained on different brain regions or cell lines. Enformer usually predicts the same 

ENCODE data [25]. F-G) Predicted effect, the predicted difference between the reference and alternative allele, of 
the three substitutions for F) rs7288455 on CACNA1I expression, and G) rs10866912 on MROH6 expression. Every 
dot is one subclass and the dots are colored according to the class. H) Sequence logo and the consensus sequence 
for the INSM1 transcription factor motif together with the sequence of the reference genome (bottom line).
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effect for the three different possible nucleotide mutations, e.g. for rs1131275 it predicts 
that all three substitutions decrease the expression. This variant, however, is classified as a 
missense variant, so we don’t expect it to alter transcription [34]. For rs7288455, the variant 
close to CACNA1I, both scXpresso and Xpresso predict a similar effect, while Enformer and 
ExPecto predict only a very minimal effect. For rs10866912, the variant close to MROH-6, we 
showed that scXpresso could learn the TF binding site of INSM1 while all the other models 
miss this pattern. These results overall illustrate the benefit of training prediction models on 
single-cell data.

6.4 Discussion
We presented scXpresso, a model to predict cell population-specific gene expression using 
the genomic sequence. We showed that scXpresso outperforms tissue-specific bulk and 
pseudobulk models especially when the expression profile of a cell population is dissimilar 
to that of the corresponding tissue. All scXpresso models reach a Pearson correlation of 
approximately 0.7 regardless of the cell population or tissue trained on. Additionally, the 
model learned the importance of the region around the TSS, transcription factor binding 
motifs (such as for INSM1), and the expression pattern of genes across different cell 
populations. Together, our findings show the potential of using single-cell data for predicting 
gene expression from sequence information in complex heterogeneous tissues. 

We showed that it is possible to prioritize GWAS variants using scXpresso. Considering the 
expression of CACNA1I, we noticed that one variant, which overlaps with an ENCODE cis-
regulatory element, is predicted to have a large effect, while another variant was predicted 
to have a negligible effect. The latter could be because the variant might affect splicing (which 
our model does not differentiate), the variant could be in a linkage disequilibrium block with 
other (associating) variants, or the variant could affect a more distant gene. 

Comparing the predicted effects for mutations by scXpresso to other sequence-to-expression 
prediction models quantitatively is difficult as the true effect of these variants on specific 
brain regions and/or cell populations is unknown. We have shown that for a previously 
identified variant close to CACNA1I gene, both Xpresso and scXpresso predict an increase 
in expression, while ExPecto and Enformer predict a marginal effect. Note that, ExPecto 
and Enformer are not trained on specific brain regions, or cell population-specific data, but 
contain bigger structures such as the frontal cortex or frontal lobe. Hence, these models miss 
the cell population-specific effect of this variant. Training these models on cell population-
specific scRNA data could be an interesting next step.

Using our model, it is not possible to test trans-effects of variants as our model uses a limited 
genomic sequence region as input. Consequently, we could only test two variants related to 
Schizophrenia for CACNA1I, out of the 18 variants associated with CACNA1I [34]. Ideally, we 
would increase the length of the input sequence, however, it is not easy to learn long-range 
interactions using CNNs. The Enformer model, which uses a 200kb sequence as input, tackles 
this problem by combining transformers and CNNs [11]. Unfortunately, the Enformer model 
predicts CAGE reads instead of expression values, so we cannot trivially extend it or use it 
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for single-cell data. An alternative approach might be to use their well-trained model to get 
an embedding for every input sequence and use this embedding to predict cell population-
specific expressions.

We input the DNA sequence and five half-life time features to scXpresso. However, certain 
transcript features, which are related to the half-life time features, can predict zeros in the 
scRNA-seq data [36]. Whether the observed zeros in scRNA-seq data are technical artifacts 
or biologically informative is an ongoing debate. We believe that the zeros are biologically 
informative since binarized data can be used for downstream analysis, resulting in comparable 
results to those obtained using scRNA-seq counts [37]. Furthermore, we would like to highlight 
that the performance of the cell population-specific pseudobulk models when trained on 
sequence-only information is also not much lower as compared to both sequence and half-
life time features (Figure S9). This observation supports our conclusion that the half-life time 
features are not biasing the models towards scRNA-seq artifacts.

Two future enhancements that we envision that could improve the performance of our model 
are related to the half-life time features and the output of the model. Currently, we extract five 
features from the mRNA sequence to approximate the half-life time. Recently, a new model, 
Saluki, was developed that could predict mRNA degradation rates directly from the sequence 
of the gene [38]. Replacing the currently used features with those predicted by the Saluki 
model, or combining these features, might improve the cell population-specific predictions. 
A second potential improvement relates to the current output of scXpresso, which is the 
pseudobulk expression for every cell population, i.e. the average gene expression across all 
cells from that population. However, this ignores the variance within the population. It might 
be more beneficial to predict the distribution of gene expression across each population, 
instead of just one aggregated value. 

In summary, we have shown the potential of predicting cell population-specific gene 
expression from genomic sequences by leveraging the resolution of single-cell data, opening 
the way for many new developments in this area. 

6.5 Code and data availability
The pseudobulk expression values, trained models, and predictions are available on Zenodo: 
https://doi.org/10.5281/zenodo.7044908. 

The code to reproduce the figures, train your own models, show the effect of variants, and do 
in-silico saturation mutagenesis can be found on GitHub: https://github.com/lcmmichielsen/
scXpresso. 

Thesis_LM_final.indd   149Thesis_LM_final.indd   149 24-04-2024   18:55:1324-04-2024   18:55:13



CHAPTER 6

150

Bibliography
1. 	 Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, et al. The Human Transcription Factors. Cell. 2018;172: 650–665. 

doi:10.1016/j.cell.2018.01.029

2. 	 Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM. A census of human transcription factors: function, expression 
and evolution. Nat Rev Genet. 2009;10: 252–263. doi:10.1038/nrg2538

3. 	 Nott A, Holtman IR, Coufal NG, Schlachetzki JCM, Yu M, Hu R, et al. Brain cell type-specific enhancer-promoter interactome 
maps and disease-risk association. Science. 2019;366: 1134–1139. doi:10.1126/science.aay0793

4. 	 Janssens J, Aibar S, Taskiran II, Ismail JN, Gomez AE, Aughey G, et al. Decoding gene regulation in the fly brain. Nature. 
2022;601: 630–636. doi:10.1038/s41586-021-04262-z

5. 	 Bakken TE, Jorstad NL, Hu Q, Lake BB, Tian W, Kalmbach BE, et al. Comparative cellular analysis of motor cortex in human, 
marmoset and mouse. Nature. 2021;598: 111–119. doi:10.1038/s41586-021-03465-8

6. 	 Kelley DR, Snoek J, Rinn JL. Basset: learning the regulatory code of the accessible genome with deep convolutional neural 
networks. Genome Res. 2016;26: 990–999. doi:10.1101/gr.200535.115

7. 	 Kelley DR, Reshef YA, Bileschi M, Belanger D, McLean CY, Snoek J. Sequential regulatory activity prediction across chromosomes 
with convolutional neural networks. Genome Res. 2018;28: 739–750. doi:10.1101/gr.227819.117

8. 	 Zhou J, Theesfeld CL, Yao K, Chen KM, Wong AK, Troyanskaya OG. Deep learning sequence-based ab initio prediction of variant 
effects on expression and disease risk. Nat Genet. 2018;50: 1171–1179. doi:10.1038/s41588-018-0160-6

9. 	 Agarwal V, Shendure J. Predicting mRNA Abundance Directly from Genomic Sequence Using Deep Convolutional Neural 
Networks. Cell Rep. 2020;31: 107663. doi:10.1016/j.celrep.2020.107663

10. 	 Zhang Y, Zhou X, Cai X. Predicting Gene Expression from DNA Sequence using Residual Neural Network. bioRxiv. 2020; 
2020.06.21.163956. doi:10.1101/2020.06.21.163956

11. 	 Avsec Ž, Agarwal V, Visentin D, Ledsam JR, Grabska-Barwinska A, Taylor KR, et al. Effective gene expression prediction from 
sequence by integrating long-range interactions. Nat Methods. 2021;18: 1196–1203. doi:10.1038/s41592-021-01252-x

12. 	 Avsec Ž, Weilert M, Shrikumar A, Krueger S, Alexandari A, Dalal K, et al. Base-resolution models of transcription-factor binding 
reveal soft motif syntax. Nat Genet. 2021;53: 354–366. doi:10.1038/s41588-021-00782-6

13. 	 Wesolowska-Andersen A, Zhuo Yu G, Nylander V, Abaitua F, Thurner M, Torres JM, et al. Deep learning models predict 
regulatory variants in pancreatic islets and refine type 2 diabetes association signals. Elife. 2020;9. doi:10.7554/eLife.51503

14. 	 Wightman DP, Jansen IE, Savage JE, Shadrin AA, Bahrami S, Holland D, et al. A genome-wide association study with 1,126,563 
individuals identifies new risk loci for Alzheimer’s disease. Nat Genet. 2021;53: 1276–1282. doi:10.1038/s41588-021-00921-z

15. 	 Yao X, Glessner JT, Li J, Qi X, Hou X, Zhu C, et al. Integrative analysis of genome-wide association studies identifies novel loci 
associated with neuropsychiatric disorders. Transl Psychiatry. 2021;11: 69. doi:10.1038/s41398-020-01195-5

16. 	 Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated 
genetic loci. Nature. 2014;511: 421–427. doi:10.1038/nature13595

17. 	 Tasic B, Menon V, Nguyen TN, Kim TK, Jarsky T, Yao Z, et al. Adult mouse cortical cell taxonomy revealed by single cell 
transcriptomics. Nat Neurosci. 2016;19: 335–346. doi:10.1038/nn.4216

18. 	 Tasic B, Yao Z, Graybuck LT, Smith KA, Nguyen TN, Bertagnolli D, et al. Shared and distinct transcriptomic cell types across 
neocortical areas. Nature. 2018;563: 72–78. doi:10.1038/s41586-018-0654-5

19. 	 Sharova LV, Sharov AA, Nedorezov T, Piao Y, Shaik N, Ko MSH. Database for mRNA Half-Life of 19 977 Genes Obtained by DNA 
Microarray Analysis of Pluripotent and Differentiating Mouse Embryonic Stem Cells. DNA Res. 2009;16: 45–58. doi:10.1093/
DNARES/DSN030

20. 	 Spies N, Burge CB, Bartel DP. 3′ UTR-isoform choice has limited influence on the stability and translational efficiency of most 
mRNAs in mouse fibroblasts. Genome Res. 2013;23: 2078–2090. doi:10.1101/GR.156919.113

21. 	 Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. PyTorch: An Imperative Style, High-Performance Deep Learning 
Library. In: Wallach H, Larochelle H, Beygelzimer A, d\textquotesingle Alché-Buc F, Fox E, Garnett R, editors. Advances in 
Neural Information Processing Systems 32. Curran Associates, Inc.; 2019. pp. 8024–8035. Available: http://papers.neurips.cc/
paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

22. 	 Schaum N, Karkanias J, Neff NF, May AP, Quake SR, Wyss-Coray T, et al. Single-cell transcriptomics of 20 mouse organs creates 
a Tabula Muris. Nature. 2018;562: 367–372. doi:10.1038/s41586-018-0590-4

23. 	 Schaum N, Lehallier B, Hahn O, Hosseinzadeh S, Lee SE, Sit R, et al. The murine transcriptome reveals global aging nodes with 
organ-specific phase and amplitude. bioRxiv. 2019. p. 662254. doi:10.1101/662254

24. 	 Shen W, Le S, Li Y, Hu F. SeqKit: A Cross-Platform and Ultrafast Toolkit for FASTA/Q File Manipulation. PLoS One. 2016;11: 
e0163962. doi:10.1371/journal.pone.0163962

25. 	 ENCODE Project Consortium, Moore JE, Purcaro MJ, Pratt HE, Epstein CB, Shoresh N, et al. Expanded encyclopaedias of DNA 
elements in the human and mouse genomes. Nature. 2020;583: 699–710. doi:10.1038/s41586-020-2493-4

26. 	 Wolf FA, Angerer P, Theis FJ. SCANPY: Large-scale single-cell gene expression data analysis. Genome Biol. 2018;19: 15. 
doi:10.1186/s13059-017-1382-0

Thesis_LM_final.indd   150Thesis_LM_final.indd   150 24-04-2024   18:55:1424-04-2024   18:55:14



151

Predicting cell population-specific gene expression

66

27. 	 Mann HB, Whitney DR. On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other. aoms. 
1947;18: 50–60. doi:10.1214/aoms/1177730491

28. 	 Demšar J. Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res. 2006;7: 1–30. Available: https://
psycnet.apa.org/fulltext/2007-03550-001.pdf

29. 	 Ikeda M, Takahashi A, Kamatani Y, Momozawa Y, Saito T, Kondo K, et al. Genome-Wide Association Study Detected Novel 
Susceptibility Genes for Schizophrenia and Shared Trans-Populations/Diseases Genetic Effect. Schizophr Bull. 2019;45: 824–
834. doi:10.1093/schbul/sby140

30. 	 Li Z, Chen J, Yu H, He L, Xu Y, Zhang D, et al. Genome-wide association analysis identifies 30 new susceptibility loci for 
schizophrenia. Nat Genet. 2017;49: 1576–1583. doi:10.1038/ng.3973

31. 	 Lam M, Chen C-Y, Li Z, Martin AR, Bryois J, Ma X, et al. Comparative genetic architectures of schizophrenia in East Asian and 
European populations. Nat Genet. 2019;51: 1670–1678. doi:10.1038/s41588-019-0512-x

32. 	 Pardiñas AF, Holmans P, Pocklington AJ, Escott-Price V, Ripke S, Carrera N, et al. Common schizophrenia alleles are enriched 
in mutation-intolerant genes and in regions under strong background selection. Nat Genet. 2018;50: 381–389. doi:10.1038/
s41588-018-0059-2

33. 	 Zhou J, Troyanskaya OG. Predicting effects of noncoding variants with deep learning-based sequence model. Nat Methods. 
2015;12: 931–934. doi:10.1038/nmeth.3547

34. 	 Buniello A, MacArthur JAL, Cerezo M, Harris LW, Hayhurst J, Malangone C, et al. The NHGRI-EBI GWAS Catalog of published 
genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 2019;47: D1005–D1012. 
doi:10.1093/nar/gky1120

35. 	 Castro-Mondragon JA, Riudavets-Puig R, Rauluseviciute I, Lemma RB, Turchi L, Blanc-Mathieu R, et al. JASPAR 2022: the 
9th release of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2022;50: D165–D173. 
doi:10.1093/nar/gkab1113

36. 	 Lipnitskaya S, Shen Y, Legewie S, Klein H, Becker K. Machine learning-assisted identification of factors contributing 
to the technical variability between bulk and single-cell RNA-seq experiments. bioRxiv. 2022. p. 2022.01.06.474932. 
doi:10.1101/2022.01.06.474932

37. 	 Bouland GA, Mahfouz A, Reinders MJT. Consequences and opportunities arising due to sparser single-cell RNA-seq datasets. 
Genome Biol. 2023;24: 86. doi:10.1186/s13059-023-02933-w

38. 	 Agarwal V, Kelley DR. The genetic and biochemical determinants of mRNA degradation rates in mammals. Genome Biol. 
2022;23: 245. doi:10.1186/s13059-022-02811-x

Thesis_LM_final.indd   151Thesis_LM_final.indd   151 24-04-2024   18:55:1424-04-2024   18:55:14



Thesis_LM_final.indd   152Thesis_LM_final.indd   152 24-04-2024   18:55:1424-04-2024   18:55:14




