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Knowing the relation between cell types is crucial for translating experimental results from 
mice to humans. Establishing cell type matches, however, is hindered by the biological 
differences between the species. A substantial amount of evolutionary information 
between genes that could be used to align the species is discarded by most of the current 
methods since they only use one-to-one orthologous genes. Some methods try to retain the 
information by explicitly including the relation between genes, however, not without caveats. 
In this work, we present a model to Transfer and Align Cell Types in Cross-Species analysis 
(TACTiCS). First, TACTiCS uses a natural language processing model to match genes using 
their protein sequences. Next, TACTiCS employs a neural network to classify cell types 
within a species. Afterwards, TACTiCS uses transfer learning to propagate cell type labels 
between species. We applied TACTiCS on scRNA-seq data of the primary motor cortex of 
human, mouse and marmoset. Our model can accurately match and align cell types on these 
datasets. Moreover, our model outperforms Seurat and the state-of-the-art method SAMap. 
Finally, we show that our gene matching method results in better cell type matches than 
BLAST in our model. TACTiCS is available at https://github.com/kbiharie/TACTiCS.

5.1 Introduction
Model organisms, such as mouse and marmoset, are often used in brain research as a 
substitute for humans. However, because of differences between species, experiments 
performed on model organisms do not directly translate to humans. For example, widely-
used antidepressants that target serotonin receptors are often tested on mice, while the 
expression pattern of serotonin receptors is highly divergent between human and mouse, 
likely leading to differences in cell function between species [1]. Consequently, to facilitate 
translational research, it is important to better characterize cell type matches between 
species. This facilitates studying how drugs then alter biological processes within specific cell 
types between these species.

Traditionally, cell types were characterized solely based on morphology, but using single-cell 
RNA sequencing (scRNA-seq), the expression pattern across thousands of genes can now be 
used to describe a cell type. This has resulted in the identification of an increasing number 
of cell types within specific brain regions [2,3]. Although this improves our understanding 
of biological processes in the brain, when comparing species, it introduces the need for a 
method that can match these new cell types accurately between species.

Unfortunately, this is not a trivial task as genes are modified, duplicated and deleted 
throughout evolution, resulting in complicated many-to-many gene-gene relationships 
between species. These relationships become even more complicated when evolutionary 
distances increase.

Current methods that match cell types across species based on scRNA-seq data can be divided 
into two groups, mainly based on how they solve the gene-matching problem. The first group 
only uses the one-to-one orthologous genes, which are genes with exactly one match in the 
other species based on sequence similarity (e.g. using BLAST [4]). Methods such as scANVI 
[5], MetaNeighbour [6], and LAMbDA [7] belong to this group. While this is a straightforward 
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approach, it ignores genes with a more complex evolutionary history which might have 
caused divergent functional specification of cell types between species. The second group 
of methods, including SAMap [8], CAME [9], Kmermaid [10], and C3 [11], overcomes this 
limitation by considering many-to-many relationships between the genes based on sequence 
similarity. All these methods rely on the classical assumption that sequence similarity is a 
good measure of how genes functionally relate to each other. However, sequence similarity 
often considers one nucleotide/amino acid at a time, which to a large extent ignores sequence 
contexts important for functional characterization (e.g. secondary structures and sequence 
motifs). A growing body of evidence suggests that language models are a powerful approach 
to capture functional similarities between genes [12–15]. Similarly, we hypothesize that using 
language models to match genes between species can be beneficial for cell type matching.

Once we identified matching relationships between genes across species, the next step is to 
characterize cell type matches. We and others have posed cell type matching as a classification 
task where the agreement of predictions from two classifiers, trained on two labeled scRNA-
seq datasets, is used to match cell types between the datasets [7,16,17]. Biological differences 
between species, however, hinder applying such a method directly. A solution could be to 
learn a common embedding space for the cells before training the classifiers.

Here we introduce a method to Transfer and Align Cell Types in Cross-Species analysis 
(TACTiCS) that incorporates the two claims that we make: 1) using language models to match 
genes functionally between species, and 2) training classifiers in a shared embedding space 
to transfer cell types from one species to the other. We show that TACTiCS correctly matches 
human, mouse and marmoset brain cell populations from the primary motor (M1) cortex at a 
detailed cell type level, and does so better than SAMap, the current state-of-the-art method.

5.2 Methods
TACTiCS takes as input two single-cell (sc) or single-nucleus (sn) RNA-seq datasets, with 
raw expression counts, from two species A and B. TACTiCS consists of four steps (Figure 1): 
1) matching genes based on the protein sequences, 2) creating a shared feature space by 
mapping expression values with the gene matches obtained in step 1, 3) training within-
species cell type classifiers, and 4) matching cell types by swapping the classifiers.

5.2.1 Matching genes

First, we created an embedding for every gene using ProtBERT, a transformer-based language 
model [15]. The protein sequences were retrieved from UniProt [18]. For human and mouse, 
we selected only the Swiss-prot sequences, but for marmoset we selected all protein 
sequences. We input the protein sequences to ProtBERT to create an embedding for each 
protein (Figure 1A). ProtBERT generates a 1024-dimensional embedding for every amino acid 
in the protein sequence. To allow TACTiCS to work with variable-length proteins, we followed 
common practice [14] and took the mean embedding over all positions to represent the 
whole protein sequence (as well as the corresponding gene). Protein sequences longer than 
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2500 amino-acids (<2% of all sequences) were truncated to the first 2500 to fit into the 
memory of the GPU.

Next, for every pair of genes from species A and species B, we calculated the cosine distance 
between the ProtBERT embeddings. The initial set of gene matches were pairs with a cosine 
distance ≤ 0.005. To ensure that a gene is not connected to too many genes, we kept only the 
five closest genes, that met the distance threshold, for every gene.

Finally, we filtered the informative gene matches. Hereto, we calculated the top 2000 highly 
variable genes per species using Scanpy highly_variable_genes, and kept only those 
gene matches where at least one of the two genes is within the set of highly variable genes 
in their respective species [19]. From these matches, we constructed two sets of genes GA 
and GB, corresponding to species A and B respectively, consisting of genes with a match in 
the other species.

Figure 1. Schematic overview of TACTiCS. We use human and mouse as example, but cell types from any two 
species can be matched. A) Matching genes on protein sequences using ProtBERT. B) Bipartite graph of gene 
matches. Gene expression is imputed by taking the weighted average from connected genes in the bipartite graph. 
C) Creating cell embeddings using linear layers on the shared feature space. The weights of the linear layers are 
shared. D) Classifying within-species cells during training. The classifier consists of a linear layer outputting the cell 
type probabilities followed by a softmax. E) Classifying cross-species cells using transfer learning. The predictions are 
used to match cell types.
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To obtain sequence similarity-based gene matches, we used BLAST instead of ProtBERT. To 
obtain the many-to-many BLAST matches we selected matches with an E-value < 1e-6 as 
the initial set of matches. We used the bitscore as the distance metric. Since BLAST is not 
symmetrical, one gene match is assigned a separate E-value and bitscore for each direction. 
If only one direction meets the E-value threshold, we use the corresponding bitscore as the 
gene distance. If both directions meet the threshold, we use the average of the two bitscores. 
The list of matches is then filtered similarly as before with the closest-five and highly varying 
gene filtering. Additionally, we obtained one-to-one BLAST matches by starting with the same 
set of matches using the E-value threshold. For every gene we kept only the best match, i.e. 
the gene with the highest bitscore. We discarded gene matches that were not reciprocal and 
finally also applied the highly varying gene filtering to obtain the one-to-one matches.

5.2.2 Creating a shared feature space by mapping expression 
values with the gene matches

We normalized the expression levels of genes as follows: 1) the raw expression counts of each 
dataset are normalized by the number of reads per cell such that the total number of counts 
in every cell is 10,000, and 2) the natural logarithm of the normalized counts are taken:
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where xij is the expression of gene j in cell i. Finally, a Z-score per gene is calculated to form 
the normalized expression matrices XA and XB for genes GA and GB, respectively. We created 
a shared feature space for the two datasets spanningG GA B∪ (Figure 1B). The shared feature 
space is partly equal to the expression matrices XA and XB and partly imputed:
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where Xiu
A is the normalized expression of cell i from species A for gene u in the shared 

feature space. The expression of within species genes does not change. For a cross-species 
gene, we imputed the expression by taking the weighted average of the expression of the 
within-species genes it is matched to. The weight between gene u and gene v is calculated as:

euv
h hu v� �1

0 005

similarity ProtBERT ProtBERT( , )

.

where similarity calculates the cosine distance between the ProtBERT embeddings. The 
weights are scaled to the interval [0, 1] by dividing with the distance threshold. When BLAST 
is used instead, we used the (average) bitscore between the two genes directly, since the 
bitscore does not have to be inversed. The edge weight is set to 0 for gene pairs that do not 
match according to the threshold and filtering criteria. The resulting matrices X A and X B

both span the same set of genes, and can thus be compared directly.
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5.2.3 Cell embeddings

The shared feature space is put through two linear layers to create the cell embeddings 
(Figure 1C). Each linear layer is followed by a Rectified Linear Unit (ReLU) activation function. 
The first layer creates embeddings of length 64. The second layer creates embeddings of 
length 32. These embeddings are used to visualize the embedding space with a UMAP. The 
weights to embed the cells are shared across the species.

5.2.4 Training species-specific cell type classifier

We used these embeddings to train a separate classifier per species. We used a neural 
network consisting of one linear layer followed by a softmax activation function (Figure 1D). 
Both classifiers take the cell embedding as input and output cell type probabilities, hA,out or 
hB,out, only for cell types belonging to its respective species. During training, cells are input 
only to the classifier of its corresponding species.

The loss to update the embedding and classification weights consists of two parts: 1) the 
classification loss, and 2) the alignment loss. Both losses are calculated separately per species. 
For the classification loss, we used the weighted cross-entropy loss between the predictions 
and targets:
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where L
Acls is the classification loss for species A. NA and TA are the number of cells and cell 

types in species A respectively. wt is the weight for cell type t, explained further below. hit
A,out is 

the output of classifier A, specifically the probability that cell i belongs to cell type t. The one-
hot encoded targets Y are modified with label smoothing to prevent overfitting and improve 
stability:
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where ε (=0.1) controls the smoothness. The weight of each cell type is updated every epoch 
based on the accuracy of that cell type:
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where acct is the accuracy of class t in the current epoch.α is a hyperparameter that controls 
the influence of the accuracy on the weight. We use� � 9 such that the weights are in the 
interval [1,10] which restricts the relative difference in weight between cell types. By updating 
the weights, a cell type with a lower accuracy in the current epoch will have a higher weight 
in the next epoch and thus the predictions will shift to that cell type.

The alignment loss aims to integrate the embedding space across the species, such that 
cross-species cells with a similar gene expression are close in the embedding space:
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where NA is the number of cells of species A and Ni
cross are the 20 nearest cross-species neigh-

bours for cell i. MSE calculates the mean squared error between the prediction of the shared 
features of neighbours j and the actual shared features for cell i. If the alignment loss is min-
imized, neighbours in the embedding space can be used to predict the gene expression. The 
final loss is a combination of the classifier loss, the alignment loss and a regularization loss:

L L L L L
A B A B

� � � � �cls cls align align � �|| ||2
2

whereθ consists of all parameters in the model, and is used for the L2 regularization to 
prevent overfitting. γ is the weight of the L2 norm, which is set to 0.01. The model is trained 
for 200 epochs. We used the Adam optimizer with a learning rate of 0.001. The full training 
process takes around 30 minutes.

To efficiently use large scRNA-seq datasets, the neural network is trained in batches. A batch 
size of 5000 cells per species is used to speed up the training while still having enough cells per 
cell type. Instead of sequentially iterating over the dataset, each batch is randomly sampled 
from the full dataset, while accounting for the size of each cell type. More specifically, 
every cell is assigned a probability N NA

t
A/ or N NB

t
B/ , where NA is the total number of 

cells of species A and Nt
A is the number of cells of species A belonging to cell type t. These 

probabilities are then used to sample a batch of cells per species with a similar number of 
cells for each cell type.

5.2.5 Transferring cell type predictions across species

After the neural network is trained, the cell types are transferred by using the classifiers on 
the species they were not trained on (Figure 1E). That is, we calculate hB,out for cells of species 
A, and hA,out for cells of species B. The transferred cell type for a single cell is the cell type 
with the highest probability. To aggregate the information of the single cells to the cell type, 
we calculate the fraction of cells that are predicted to match cell types across species, which 
forms a normalized confusion matrix for both transferring directions. We average the two 
matrices to create a combined matrix, where high values indicate reciprocal matches. The 
values in the combined matrix can be used to score a match.

5.2.6 Dataset

We evaluated TACTiCS on snRNA-seq data taken from the primary motor cortex of human, 
mouse and marmoset [20]. These datasets consist of 76k human cells, 159k mouse cells and 
69k marmoset cells, respectively. The cell type distribution varies considerably across species. 
For instance, non-neuronal cells make up around a third of both mouse and marmoset cells, 
while only 5% of the human cells are non-neuronal. We use two resolutions of the cell labels 
assigned by the original authors: 1) a higher resolution, consisting of 45 cell types present in 
all species; and 2) a lower resolution, consisting of 20 human, 23 mouse and 22 marmoset 
subclass cell types. At the lower resolution not all cell types occur in all species. SMC is only 
present in mouse, while Meis2 and Peri are only present in mouse and marmoset. Species-
specific cells are labeled with “NA” at the higher resolution.
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5.2.7 Evaluation

The combined matrix cannot be evaluated using standard metrics for confusion matrices, 
such as precision or F1 score, since we cannot distinguish between false positives and false 
negatives. Instead, we focus on the matching scores from corresponding cell types in the 
combined matrix, which ideally should be 1. We define the Average Diagonal Score (ADS) as 
the average score of the diagonal entries, after excluding species-specific cell types. A high 
ADS indicates that many cell types are correctly and reciprocally matched. However, the ADS 
does not indicate how many cell types are correctly matched. To this end, we define the recall 
as the fraction of diagonal entries where the score is highest for both that row and column.

We compared TACTiCS to SAMap [8] and Seurat (version 4) [21]. SAMap is a cell type matching 
method that iterates between two steps. The first step matches the genes, which is initially 
done with BLAST on the DNA or protein sequences. Instead of taking the top-1 match, SAMap 
uses the BLAST bitscore directly in their model which allows for many-to-many matches. The 
second step uses the gene matches to first impute genes across species and then embed 
the cells by concatenating the principal components of the original expression and imputed 
expression. Then, the correlation between genes in the embedding space is used to update 
the gene matches. The two steps are repeated until the process converges.

Seurat can be used to transfer cell type labels from a reference to a query dataset. Since 
Seurat cannot use many-to-many matches, we use BLAST one-to-one matches for the data 
integration and label transfer. Since labels can only be transferred from the reference to the 
query dataset, we had to integrate the data twice for each pairwise comparison: once using 
one species as the reference and once using the other species as the reference.

5.2.8 Implementation

TACTiCS is implemented in Python 3.9. Pytorch [22] was used for the model architecture. The 
scRNA-seq data is stored as Anndata [23] objects, containing both the gene expression and 
the cell type annotations. The implementation of TACTiCS is available at https://github.com/
kbiharie/TACTiCS.

As Tarashanky et al. have noted, the runtime of SAMap increases significantly for larger 
datasets, and we were unable to run SAMap for the full datasets [8]. Instead, we used SAMap 
on subsets of 50k cells per species. We subsampled the data to keep the cell type proportions 
similar while making sure that all cell types are included. During sampling we ensured that 
at least 50 cells were present in the subset. If a cell type contained less than 50 cells, all cells 
were included in the subset.
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5.3 Results
5.3.1 Matching genes using sequence embeddings is comparable 
to sequence alignment with notable differences

First, we investigate how similar the gene matches returned by ProtBERT and BLAST are. We 
retrieved 17,435 human and 14,033 mouse protein sequences, discarding 47% of the human 
genes and 49% of the mouse genes for which we do not have the protein sequence. We used 
both ProtBERT and BLAST to generate gene matches.

For 13,935 human genes, we found a one-to-one mouse match using BLAST. For these human 
genes, we defined the ProtBERT match as the mouse gene with the most similar ProtBERT 
embedding. For 13,050 out of 13,935 human genes (94%), the BLAST match is identical to the 
ProtBERT match. Thus, the top-1 match is identical for the vast majority of genes. We ranked 
the BLAST matches according to the ProtBERT embedding distance to all mouse genes (Figure 
2A). Most of the BLAST matches have a rank close to 1 and over 98% of the BLAST matches 
have a rank below 100. Additionally, 48% of the BLAST matches that differ from the ProtBERT 
match are in the top-5 and thus considered in the many-to-many matches. Thus, if the BLAST 
match is not considered to be the best match by ProtBERT, it is still relatively similar based on 
the embedding distance.

Next, we focus on the human genes for which the ProtBERT and BLAST match differ to inves-
tigate which method returns the most functionally similar match. We restrict the comparison 
to the 818 human genes where the human gene, the BLAST match and the ProtBERT match 
are expressed in at least one cell. We assess functional similarity here in terms of gene ex-
pression similarity across cell types. Therefore, we calculated the Pearson correlation coeffi-
cient across cell types in humans and mouse. We considered the harmonized cell types as de-
fined in [20] (Figure 2B). For 568 out of 818 (69%) genes, the BLAST match has a higher gene 

Figure 2. Comparison of ProtBERT and BLAST matches. A) Rank of BLAST match according to ProtBERT embedding 
distances. Rank 1 indicates that the best ProtBERT match and the best BLAST match are the same. Rank NaN indicates 
a human gene with a ProtBERT match but no BLAST one-to-one match. B) Scatterplot of the correlation of the 
expression of human and mouse genes when considering the best BLAST match (x-axis) and the best ProtBERT match 
(y-axis). The expression correlation is calculated as the Pearson correlation across the average expression profiles 
of the cross-species harmonized cell types. We omitted human genes where the BLAST match and ProtBERT match 
are the same. Gene matches where either the human gene, ProtBERT match or BLAST match is highly variable, are 
colored orange.
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correlation than the ProtBERT match. This is to be expected since the harmonized cell types 
were defined using the BLAST matches. However, for some genes, the ProtBERT match has a 
higher correlation than the BLAST match. For example, human IL18R1 is matched to mouse 
Il1r1 according to ProtBERT with a correlation coefficient of 0.945, while BLAST matches the 
gene to mouse Il18r1 with a correlation coefficient of 0.103 (Figure 3). Human IL18R1 and 
mouse Il1r1 both show an increased expression for the endothelial and VLMC cells, while 
mouse Il18r1 does not show this pattern, and is lowly expressed in all cell types.

5.3.2 TACTiCS accurately matches cortical cell types across mouse 
and human

Now that we have seen that ProtBERT matches can be a powerful way to capture gene 
relationships, we use them in TACTiCS to match cell types in mouse and human cortex data. 
We use the Allen Brain Data, since the cell types have been carefully matched and harmonized 
by curators. We train TACTiCS for the human-mouse comparison for both the subclass and 
cross-species resolution. At the subclass resolution, TACTiCS returns the correct cell type for 
all 23 cell types that are present in both human and mouse (Figure 4A). The species-specific 
cell types, mouse Meis2, Peri and SMC, do not have a one-to-one match with a human cell 
type. Mouse Peri only matches human VLMC with a score of 0.5, but human VLMC matches 
mouse VLMC with a higher score of 1.0. Cell types present in both species have matching 
scores of ≥ 0.9 while wrong matches all have matching scores ≤ 0.5.

Figure 3. Average expression of human IL18R1 and mouse matches across harmonized cell types. The mouse 
matches are ordered according to the ProtBERT embedding distances. BLAST matches human IL18R1 to mouse 
Il18r1.

Figure 4. TACTiCS’ performance when matching human and mouse cell types at the subclass resolution. A) Av-
erage confusion matrix of transferred cell types. B) UMAP of cell embeddings, colored by species. C) UMAP of cell 
embeddings, colored by cell type.
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To get better insight into TACTiCS performance, we visualized the 32-dimensional cell 
embeddings using UMAP (Figure 4BC, S3). Individual human and mouse cells do not mix 
well in the embedding space, but the UMAP does seem to align at the cell type level, i.e. 
corresponding cell types either overlap partially in the embedding space, or are relatively 
close. For example, Vip cells form a large cluster with partly human and mouse cells separated, 
and cells of mixed origin in the middle. The Sncg cells also form a larger cluster, but the 
separation between the human and mouse cells is more visible. The Oligodendrocytes form 
two separate clusters, but they are closer to each other than to other cell types. The cell type 
proportions do seem to have an effect on the alignment in the embedding space. Cell types 
with a similar number of cells in human and mouse, such as Vip (6% in human and 2% in 
mouse), are clustered more coherently. Cell types with a large difference of occurrence within 
human and mouse, such as Astro (1% in human and 11% in mouse), form one small distinct 
cluster that is close to the larger cluster. The mouse-specific cell types Meis2, Peri, and SMC 
are (correctly) clustered separately from the human cells. Thus, the embedding space can 
align the cell types across the species, but not the individual cells. Note that this can be due 
to unresolved batch effects or actual biological differences between the two species.

At the cross-species resolution, TACTiCS returns correct matches for the majority of cell 
types, with a recall of 0.96 (Figure 5A, S1). The two cell types that are not properly matched, 
namely a L5-IT subtype and a Sncg subtype, are still matched with closely related cell types. 
The L5-IT subtype is matched with another L5-IT subtype and the Sncg subtype is matched to 
a subtype from the similar Lamp5 subclass.

To evaluate the performance of TACTiCS across species with variable evolutionary distance, 
we tested TACTiCS on cortical cell types between human-marmoset and mouse-marmoset 
(Table 1). At the subclass resolution, TACTiCS performs similar on all three comparisons with a 
recall of 1.0. At the cross-species resolution, TACTiCS performs best for the human-marmoset 

Figure 5. Performance of A) TACTiCS and B) SAMap when matching human and mouse cell types at cross-species 
resolution. Cross-species cell types are grouped per subclass (indicated with the light-gray lines) and class (indicated 
with dark-gray lines).
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comparison and worst for the mouse-marmoset comparison. These results indicate that the 
performance of TACTiCS is dependent on the evolutionary distance between the species, 
since the evolutionary distance to the closest common ancestors from human and marmoset 
(~40mya) is a lot less than human and mouse (~70mya).

5.3.3 TACTiCS outperforms SAMap and Seurat in matching cortical 
cell types across mouse, human, and marmoset

To benchmark TACTiCS, we compare its performance to SAMap and Seurat using three pair-
wise comparisons (human-mouse, human-marmoset, and mouse-marmoset). Across all 
comparisons, TACTiCS has a higher ADS and recall than SAMap and Seurat at the subclass 
resolution (Table 1). TACTiCS and SAMap perform well for all comparisons with a recall ≥0.95. 
Seurat performs well for the human-marmoset comparison, but the performance drops for 
the other two comparisons with a recall of 0.85 and 0.86 for the human-mouse and mouse-
marmoset comparisons respectively. Although the resulting matches of TACTiCS and SAMap 
are similar, the scores assigned by TACTiCS to those correct matches is higher than SAMap. For 

Comparison Method Matching Subclass Cross-species

ADS Recall ADS Recall

Hu-mo TACTiCS P (m:m) 0.991 1.000 0.856 0.956

Hu-mo TACTiCS B (m:m) 0.915 0.900 0.509 0.489

Hu-mo TACTiCS B (1:1) 0.992 1.000 0.724 0.778

Hu-mo Seurat B (1:1) 0.821 0.850 0.435 0.400

Hu-mo (50k) TACTiCS P (m:m) 0.894 0.900 0.780 0.822

Hu-mo (50k) SAMap P (m:m) 0.814 1.000 0.635 0.733

Hu-mo (50k) SAMap B (m:m) 0.827 1.000 0.630 0.800

Hu-ma TACTiCS P (m:m) 0.981 1.000 0.920 0.956

Hu-ma TACTiCS B (m:m) 0.891 0.900 0.848 0.889

Hu-ma TACTiCS B (1:1) 0.983 1.000 0.919 0.956

Hu-ma Seurat B (1:1) 0.906 1.000 0.697 0.822

Hu-ma (50k) TACTiCS P (m:m) 0.982 1.000 0.949 1.000

Hu-ma (50k) SAMap P (m:m) 0.892 1.000 0.816 0.978

Hu-ma (50k) SAMap B (m:m) 0.899 1.000 0.816 0.978

Mo-ma TACTiCS P (m:m) 0.990 1.000 0.735 0.733

Mo-ma TACTiCS B (m:m) 0.844 0.864 0.483 0.467

Mo-ma TACTiCS B (1:1) 0.991 1.000 0.770 0.778

Mo-ma Seurat B (1:1) 0.819 0.864 0.488 0.489

Mo-ma (50k) TACTiCS P (m:m) 0.928 0.909 0.730 0.733

Mo-ma (50k) SAMap P (m:m) 0.798 0.955 0.608 0.689

Mo-ma (50k) SAMap B (m:m) 0.823 0.955 0.637 0.689

Table 1. ADS and recall for TACTiCS, Seurat, and SAMap on human, mouse, and marmoset.

Thesis_LM_final.indd   126Thesis_LM_final.indd   126 24-04-2024   18:54:5824-04-2024   18:54:58



127

TACTiCS

55

instance, SAMap correctly matches human L6b to mouse L6b, but with a very low matching 
score equal to 0.47, while TACTiCS matches the same cell types with a matching score of 
1.0. Interestingly, for the species-specific cell types, TACTiCS suggests matches that have a 
low score (0.04-0.5), allowing to detect the species-specific cell types. The performance of 
SAMap and Seurat for the species-specific cell types is not consistent across all cell types and 
comparisons. For example, SAMap correctly assigns zero scores to mouse Meis2, Peri and 
SMC in the human-mouse comparison, but incorrectly matches mouse SMC to marmoset 
Peri with a high matching score. Likewise, Seurat correctly assigns low scores to mouse Meis2 
across all three comparisons, but incorrectly assigns higher scores to mouse Peri and SMC.

At the cross-species resolution the performance of all methods drops compared to the subclass 
level as expected, but the difference between the three methods becomes more apparent 
(Figure 5, S2). TACTiCS achieved the highest ADS and recall for the human-mouse and mouse-
marmoset comparisons. SAMap has a higher recall than TACTiCS for the human-marmoset 
comparison, but not a better ADS. Seurat performs the worst across all three comparisons 
and achieves a recall of only 0.4 for the human-mouse comparison. For mismatches between 
subtypes, TACTiCS usually matches to subtypes within the same subclass, while SAMap 
regularly maps to cell types from another subclass. While both TACTiCS and SAMap partly 
match human Sncg to mouse Lamp5, SAMap additionally shows similarity between human 
Sncg and mouse Vip.

While the human and mouse cells did not overlap much in the UMAP of TACTiCS, Seurat 
consistently maps the query dataset onto the reference dataset (Figure S3, S4). However, the 
query dataset is not mapped equally onto the reference dataset, which leaves large regions 
of the clusters consisting of only one species. For both methods the mixing of species is the 
highest for the human-marmoset comparison and lowest for the human-mouse comparison.

To account for the differences in dataset size, we compare TACTiCS and SAMap on the same 
50k subset. The performance of TACTiCS drops on the subset compared to the full dataset and 
does not match all common cell types correctly anymore at the subclass resolution. However, 
TACTiCS still outperforms SAMap at the higher resolution across all three comparisons.

5.3.4 Using ProtBERT matches improves the cell type matching for 
TACTiCS

Finally, we assessed the importance of using the ProtBERT embeddings to match genes 
compared to using BLAST on the final cell type matches. To this end, we trained TACTiCS 
based on the BLAST many-to-many matches and SAMap using the ProtBERT matches on 
the human-mouse data. For a fair comparison of ProtBERT to BLAST in SAMap, we only 
apply the embedding distance threshold to the ProtBERT matches, rather than filtering the 
gene matches thoroughly. Training TACTiCS at the cross-species resolution using the BLAST 
matches decreased the ADS and recall by a lot across all comparisons (Table 1). For SAMap, 
the performance remained similar, except for the human-mouse comparison where the 
recall decreased from 0.8 to 0.73 when ProtBERT matches were used instead of the BLAST 
matches.
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Additionally, we trained TACTiCS on the BLAST one-to-one matches. At the subclass 
resolution, the ADS and recall remain similar if BLAST one-to-one is used instead of ProtBERT 
many-to-many. This is not the case for all comparisons at the cross-species resolution. The 
performance decreases for human-mouse, remains similar for human-marmoset and is 
increased for mouse-marmoset when BLAST one-to-one is used.

5.4 Discussion
Here, we present TACTiCS, a method to accurately match cell types from scRNA-seq data 
across species. We applied TACTiCS to match cell types across human, marmoset, and mouse 
motor cortex, species with different evolutionary distances to each other. Even though 
TACTiCS matches cell types from all three species with high confidence, we showed that 
human and marmoset cell types are considerably easier to match which correlates with 
their closer evolutionary distance. Furthermore, we showed that TACTiCS outperforms the 
state-of-the-art method SAMap on all comparisons with the biggest difference at a higher 
resolution in favor of TACTiCS. We should note that our evaluation is limited to using only 
three datasets from one tissue with a relatively small evolutionary distance, while SAMap was 
originally developed to match cell types across larger evolutionary distances [8].

Even though TACTiCS outperforms SAMap on the (finer) cross-species resolution, its 
performance drops as well. We would like to note that the cell types at this resolution were 
established by Bakken et al. by integrating datasets from the different species and clustering 
them in an embedding space [20]. This resulted in ambiguous clusters which were resolved 
manually by the authors to determine which cell types would be in one cross-species group. 
Since these matches are not perfect, it makes sense that we cannot achieve a perfect 
performance either.

Furthermore, the ground-truth matches used for evaluation are based on analyses performed 
using BLAST one-to-one matches, also causing unwanted differences when comparing results. 
This might explain why the performance of TACTiCS using BLAST one-to-one is comparable to 
using ProtBERT many-to-many matches. Here, we only see an improvement for species with 
larger evolutionary distances (i.e. human-mouse comparison).

All the results obtained by TACTiCS were obtained using the same hyperparameters, which 
have not been tuned. Although, tuning the hyperparameters could potentially improve 
matches between species, the advantage of the current set of hyperparameters is that 
they show robust performance across all pairwise-comparisons regardless of species and 
resolution (i.e. subclass or cross-species).

Gene matching is one of the main components of TACTiCS. We match genes based on the 
distance between their corresponding protein embeddings, which are generated using 
ProtBERT instead of the commonly used sequence similarity based on BLAST. Even though the 
top-1 matches of ProtBERT and BLAST are largely similar, we have shown that using ProtBERT 
instead of BLAST distances improves the performance of TACTiCS. When aligning sequences 
using BLAST, every amino acid is considered to be equally important, while we speculate 
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that ProtBERT focuses more on functional domains. During further research, it would be 
interesting to dive deeper into the ProtBERT embedding space and see how this could be 
used to learn more about the relationships between cell types and the genes involved. A 
downside, however, of using ProtBERT distances is that the protein sequence is needed and as 
a consequence, we can only use coding genes. Using DNA sequence embedding models, e.g. 
DNABert [24], for non-coding genes, could in the future be used to overcome this limitation.

Some cell types, such as Meis2 and Peri in mice, are species-specific. A limitation of our 
current approach is that the classifiers we built in TACTiCS are missing a rejection option and 
therefore we cannot identify these species-specific cells automatically. Although we observed 
that TACTiCS usually assigns a low matching score to these species-specific cell types, it is, 
however, important to realize that the matching score represents the average accuracy of 
the two classifiers and does not represent an absolute measure of cell type similarity. For 
instance, if two human cell types are very similar, predictions for a mouse cell type may be 
split over these two human cell types (e.g. both get a score of 0.5). This is, for instance, the 
case with the Vip cross-species clusters in Figure 5A. This lower score indicates that there 
are similar human cell types in the data that both look like this mouse cell type. A high score, 
however, does not guarantee that the two cell types are very similar. It only indicates that 
these two cell types are most similar to each other and that they are transcriptionally very 
distinct from the other cell types in the dataset. In other words, the scores are summaries 
of the classification results, and as such, they are very much dependent on the cell types 
present in both datasets (i.e. the scores will change if one cell type is missing from one of the 
2 species).

When inspecting the cell embeddings in the low dimensional space, we notice that the cells 
from difference species are not well mixed. Matching cell types, however, are closest to each 
other and species-specific cell types are more separated from all other cells. There are many 
data integration methods developed for single-cell data, such as scVI [25], that would achieve 
a significantly better integration. Since data integration is not the main goal of TACTiCS, we 
did not add an explicit mixing component to the loss function. The current loss function 
enforces that neighboring cells from the other species can predict the other cell’s gene 
expression profile. This enforces cells of the same cell type to be the closest, but not to fully 
overlap. Adding a component to the loss that forces cells to be mixed (e.g. to have neighbors 
of both species) could greatly improve the integration. Alternatively, if good integration is a 
user’s desire, an option would be to replace the component of TACTiCS that generates the 
cell embeddings with another data integration method such as scVI. The flexible architecture 
of TACTiCS allows the individual components (gene matching, cell embedding, and cell 
classification) to be easily replaced, extended, or integrated with different methods.

With TACTiCS we showed that using protein embeddings to match genes is a viable 
alternative to BLAST when matching cell types based on their scRNA expression levels across 
species. TACTiCS can accurately match cell types at different resolutions for large datasets, 
outperforming Seurat and SAMap. We envision that this fast and accurate cell type matching 
method, will make comparative analyses across species considerably easier, contributing to, 
e.g. to the study of cell type evolution or translational research.
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