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Knowing	the	relation	between	cell	types	is	crucial	for	translating	experimental	results	from	
mice to humans. Establishing cell type matches, however, is hindered by the biological 
differences	 between	 the	 species.	 A	 substantial	 amount	 of	 evolutionary	 information	
between genes that could be used to align the species is discarded by most of the current 
methods since they only use one-to-one orthologous genes. Some methods try to retain the 
information	by	explicitly	including	the	relation	between	genes,	however,	not	without	caveats. 
In this work, we present a model to Transfer and Align Cell Types in Cross-Species analysis 
(TACTiCS).	 First,	 TACTiCS	 uses	 a	 natural	 language	 processing	model	 to	match	 genes	 using	
their protein sequences. Next, TACTiCS employs a neural network to classify cell types 
within	 a	 species.	 Afterwards,	 TACTiCS	 uses	 transfer	 learning	 to	 propagate	 cell	 type	 labels	
between	 species.	We	applied	TACTiCS	on	 scRNA-seq	data	of	 the	primary	motor	 cortex	of	
human,	mouse	and	marmoset.	Our	model	can	accurately	match	and	align	cell	types	on	these	
datasets. Moreover, our model outperforms Seurat and the state-of-the-art method SAMap. 
Finally,	we	show	that	our	gene	matching	method	 results	 in	better	cell	 type	matches	 than	
BLAST in our model. TACTiCS is available at https://github.com/kbiharie/TACTiCS.

5.1 Introduction
Model	 organisms,	 such	 as	 mouse	 and	 marmoset,	 are	 often	 used	 in	 brain	 research	 as	 a	
substitute	 for	 humans.	 However,	 because	 of	 differences	 between	 species,	 experiments	
performed on model organisms do not directly translate to humans. For example, widely-
used	 antidepressants	 that	 target	 serotonin	 receptors	 are	 often	 tested	on	mice,	while	 the	
expression	pattern	of	serotonin	receptors	 is	highly	divergent	between	human	and	mouse,	
likely	leading	to	differences	in	cell	function	between	species	[1]. Consequently, to facilitate 
translational	 research,	 it	 is	 important	 to	 better	 characterize	 cell	 type	 matches	 between	
species.	This	facilitates	studying	how	drugs	then	alter	biological	processes	within	specific	cell	
types between these species.

Traditionally,	cell	types	were	characterized	solely	based	on	morphology,	but	using	single-cell	
RNA	sequencing	(scRNA-seq),	the	expression	pattern	across	thousands	of	genes	can	now	be	
used	to	describe	a	cell	type.	This	has	resulted	in	the	identification	of	an	increasing	number	
of	cell	 types	within	specific	brain	 regions	 [2,3]. Although this improves our understanding 
of biological processes in the brain, when comparing species, it introduces the need for a 
method that can match these new cell types accurately between species.

Unfortunately,	 this	 is	 not	 a	 trivial	 task	 as	 genes	 are	 modified,	 duplicated	 and	 deleted	
throughout	 evolution,	 resulting	 in	 complicated	 many-to-many	 gene-gene	 relationships	
between	 species.	 These	 relationships	 become	even	more	 complicated	when	evolutionary	
distances increase.

Current methods that match cell types across species based on scRNA-seq data can be divided 
into	two	groups,	mainly	based	on	how	they	solve	the	gene-matching	problem.	The	first	group	
only uses the one-to-one orthologous genes, which are genes with exactly one match in the 
other	species	based	on	sequence	similarity	(e.g.	using	BLAST	[4]).	Methods	such	as	scANVI	
[5], MetaNeighbour [6], and LAMbDA [7]	belong	to	this	group.	While	this	is	a	straightforward	
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approach,	 it	 ignores	 genes	 with	 a	 more	 complex	 evolutionary	 history	 which	 might	 have	
caused	divergent	functional	specification	of	cell	types	between	species.	The	second	group	
of methods, including SAMap [8], CAME [9], Kmermaid [10], and C3 [11], overcomes this 
limitation	by	considering	many-to-many	relationships	between	the	genes	based	on	sequence	
similarity.	All	 these	methods	 rely	on	 the	classical	assumption	that	sequence	similarity	 is	a	
good	measure	of	how	genes	functionally	relate	to	each	other.	However,	sequence	similarity	
often	considers	one	nucleotide/amino	acid	at	a	time,	which	to	a	large	extent	ignores	sequence	
contexts	important	for	functional	characterization	(e.g.	secondary	structures	and	sequence	
motifs).	A	growing	body	of	evidence	suggests	that	language	models	are	a	powerful	approach	
to	capture	functional	similarities	between	genes	[12–15]. Similarly, we hypothesize that using 
language	models	to	match	genes	between	species	can	be	beneficial	for	cell	type	matching.

Once	we	identified	matching	relationships	between	genes	across	species,	the	next	step	is	to	
characterize	cell	type	matches.	We	and	others	have	posed	cell	type	matching	as	a	classification	
task	where	the	agreement	of	predictions	from	two	classifiers,	trained	on	two	labeled	scRNA-
seq datasets, is used to match cell types between the datasets [7,16,17].	Biological	differences	
between	species,	however,	hinder	applying	such	a	method	directly.	A	solution	could	be	to	
learn	a	common	embedding	space	for	the	cells	before	training	the	classifiers.

Here	 we	 introduce	 a	 method	 to	 Transfer	 and	 Align	 Cell	 Types	 in	 Cross-Species	 analysis	
(TACTiCS)	that	incorporates	the	two	claims	that	we	make:	1)	using	language	models	to	match	
genes	functionally	between	species,	and	2)	training	classifiers	in	a	shared	embedding	space	
to	transfer	cell	types	from	one	species	to	the	other.	We	show	that	TACTiCS	correctly	matches	
human,	mouse	and	marmoset	brain	cell	populations	from	the	primary	motor	(M1)	cortex	at	a	
detailed	cell	type	level,	and	does	so	better	than	SAMap,	the	current	state-of-the-art	method.

5.2 Methods
TACTiCS	 takes	 as	 input	 two	 single-cell	 (sc)	 or	 single-nucleus	 (sn)	 RNA-seq	 datasets,	 with	
raw	expression	counts,	from	two	species	A	and	B.	TACTiCS	consists	of	four	steps	(Figure	1):	
1)	matching	genes	based	on	the	protein	sequences,	2)	creating	a	shared	feature	space	by	
mapping	 expression	 values	with	 the	 gene	matches	obtained	 in	 step	1,	 3)	 training	within-
species	cell	type	classifiers,	and	4)	matching	cell	types	by	swapping	the	classifiers.

5.2.1 Matching genes

First, we created an embedding for every gene using ProtBERT, a transformer-based language 
model [15]. The protein sequences were retrieved from UniProt [18]. For human and mouse, 
we selected only the Swiss-prot sequences, but for marmoset we selected all protein 
sequences.	We	input	the	protein	sequences	to	ProtBERT	to	create	an	embedding	for	each	
protein	(Figure	1A).	ProtBERT	generates	a	1024-dimensional	embedding	for	every	amino	acid	
in the protein sequence. To allow TACTiCS to work with variable-length proteins, we followed 
common	practice	 [14]	 and	 took	 the	mean	embedding	over	 all	 positions	 to	 represent	 the	
whole	protein	sequence	(as	well	as	the	corresponding	gene).	Protein	sequences	longer	than	
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2500	 amino-acids	 (<2%	of	 all	 sequences)	were	 truncated	 to	 the	 first	 2500	 to	 fit	 into	 the	
memory	of	the	GPU.

Next, for every pair of genes from species A and species B, we calculated the cosine distance 
between	the	ProtBERT	embeddings.	The	initial	set	of	gene	matches	were	pairs	with	a	cosine	
distance	≤	0.005.	To	ensure	that	a	gene	is	not	connected	to	too	many	genes,	we	kept	only	the	
five	closest	genes,	that	met	the	distance	threshold,	for	every	gene.

Finally,	we	filtered	the	informative	gene	matches.	Hereto,	we	calculated	the	top	2000	highly	
variable genes per species using Scanpy highly_variable_genes, and kept only those 
gene matches where at least one of the two genes is within the set of highly variable genes 
in	their	respective	species	[19]. From these matches, we constructed two sets of genes GA 
and GB, corresponding to species A and B	respectively,	consisting	of	genes	with	a	match	in	
the other species.

Figure 1. Schematic overview of TACTiCS. We	use	human	and	mouse	as	example,	but	 cell	 types	 from	any	 two	
species can be matched. A) Matching genes on protein sequences using ProtBERT. B) Bipartite	 graph	 of	 gene	
matches.	Gene	expression	is	imputed	by	taking	the	weighted	average	from	connected	genes	in	the	bipartite	graph. 
C) Creating	cell	embeddings	using	 linear	 layers	on	the	shared	feature	space.	The	weights	of	the	 linear	 layers	are	
shared. D) Classifying	within-species	cells	during	training.	The	classifier	consists	of	a	linear	layer	outputting	the	cell	
type	probabilities	followed	by	a	softmax. E) Classifying	cross-species	cells	using	transfer	learning.	The	predictions	are	
used to match cell types.
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To obtain sequence similarity-based gene matches, we used BLAST instead of ProtBERT. To 
obtain the many-to-many BLAST matches we selected matches with an E-value < 1e-6 as 
the	initial	set	of	matches.	We	used	the	bitscore	as	the	distance	metric.	Since	BLAST	is	not	
symmetrical,	one	gene	match	is	assigned	a	separate	E-value	and	bitscore	for	each	direction.	
If	only	one	direction	meets	the	E-value	threshold,	we	use	the	corresponding	bitscore	as	the	
gene	distance.	If	both	directions	meet	the	threshold,	we	use	the	average	of	the	two	bitscores.	
The	list	of	matches	is	then	filtered	similarly	as	before	with	the	closest-five	and	highly	varying	
gene	filtering.	Additionally,	we	obtained	one-to-one	BLAST	matches	by	starting	with	the	same	
set of matches using the E-value threshold. For every gene we kept only the best match, i.e. 
the	gene	with	the	highest	bitscore.	We	discarded	gene	matches	that	were	not	reciprocal	and	
finally	also	applied	the	highly	varying	gene	filtering	to	obtain	the	one-to-one	matches.

5.2.2 Creating a shared feature space by mapping expression 
values with the gene matches

We	normalized	the	expression	levels	of	genes	as	follows:	1)	the	raw	expression	counts	of	each	
dataset are normalized by the number of reads per cell such that the total number of counts 
in	every	cell	is	10,000,	and	2)	the	natural	logarithm	of	the	normalized	counts	are	taken:
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where xij is the expression of gene j in cell i. Finally,	a	Z-score	per	gene	is	calculated	to	form	
the normalized expression matrices XA and XB for genes GA and GB,	respectively.	We	created	
a shared feature space for the two datasets spanningG GA B∪ (Figure	1B).	The	shared	feature	
space is partly equal to the expression matrices XA and XB and partly imputed:
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where Xiu
A is the normalized expression of cell i from species A for gene u in the shared 

feature space. The expression of within species genes does not change. For a cross-species 
gene, we imputed the expression by taking the weighted average of the expression of the 
within-species genes it is matched to. The weight between gene u and gene v is calculated as:

euv
h hu v� �1

0 005

similarity ProtBERT ProtBERT( , )

.

where similarity calculates the cosine distance between the ProtBERT embeddings. The 
weights	are	scaled	to	the	interval	[0,	1]	by	dividing	with	the	distance	threshold.	When	BLAST	
is	used	 instead,	we	used	the	(average)	bitscore	between	the	two	genes	directly,	since	the	
bitscore does not have to be inversed. The edge weight is set to 0 for gene pairs that do not 
match	according	to	the	threshold	and	filtering	criteria.	The	resulting	matrices X A and X B

both span the same set of genes, and can thus be compared directly.
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5.2.3 Cell embeddings

The shared feature space is put through two linear layers to create the cell embeddings 
(Figure	1C).	Each	linear	layer	is	followed	by	a	Rectified	Linear	Unit	(ReLU)	activation	function.	
The	first	 layer	 creates	embeddings	of	 length	64.	The	 second	 layer	 creates	embeddings	of	
length 32. These embeddings are used to visualize the embedding space with a UMAP. The 
weights to embed the cells are shared across the species.

5.2.4 Training species-specific cell type classifier

We	 used	 these	 embeddings	 to	 train	 a	 separate	 classifier	 per	 species.	We	 used	 a	 neural	
network	consisting	of	one	linear	layer	followed	by	a	softmax	activation	function	(Figure	1D).	
Both	classifiers	take	the	cell	embedding	as	input	and	output	cell	type	probabilities,	hA,out or 
hB,out,	only	for	cell	types	belonging	to	its	respective	species.	During	training,	cells	are	 input	
only	to	the	classifier	of	its	corresponding	species.

The	 loss	 to	update	 the	embedding	and	classification	weights	consists	of	 two	parts:	1)	 the	
classification	loss,	and	2)	the	alignment	loss.	Both	losses	are	calculated	separately	per	species.	
For	the	classification	loss,	we	used	the	weighted	cross-entropy	loss	between	the	predictions	
and targets:

L wY h
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where L
Acls is	the	classification	loss	for	species	A.	NA and TA are the number of cells and cell 

types in species A	respectively.	wt is the weight for cell type t, explained further below. hit
A,out is 

the	output	of	classifier	A,	specifically	the	probability	that	cell	i belongs to cell type t. The one-
hot encoded targets Y	are	modified	with	label	smoothing	to	prevent	overfitting	and	improve	
stability:
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where ε (=0.1)	controls	the	smoothness.	The	weight	of	each	cell	type	is	updated	every	epoch	
based on the accuracy of that cell type:

wt t� � �( )*1 1acc �

where acct is the accuracy of class t in the current epoch.α is a hyperparameter that controls 
the	influence	of	the	accuracy	on	the	weight.	We	use� � 9 such that the weights are in the 
interval	[1,10]	which	restricts	the	relative	difference	in	weight	between	cell	types.	By	updating	
the weights, a cell type with a lower accuracy in the current epoch will have a higher weight 
in	the	next	epoch	and	thus	the	predictions	will	shift	to	that	cell	type.

The alignment loss aims to integrate the embedding space across the species, such that 
cross-species cells with a similar gene expression are close in the embedding space:
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where NA is the number of cells of species A and Ni
cross are the 20 nearest cross-species neigh-

bours for cell i.	MSE	calculates	the	mean	squared	error	between	the	prediction	of	the	shared	
features of neighbours j and the actual shared features for cell i. If the alignment loss is min-
imized, neighbours in the embedding space can be used to predict the gene expression. The 
final	loss	is	a	combination	of	the	classifier	loss,	the	alignment	loss	and	a	regularization	loss:

L L L L L
A B A B

� � � � �cls cls align align � �|| ||2
2

whereθ consists	 of	 all	 parameters	 in	 the	model,	 and	 is	 used	 for	 the	 L2	 regularization	 to	
prevent	overfitting. γ is the weight of the L2 norm, which is set to 0.01. The model is trained 
for	200	epochs.	We	used	the	Adam	optimizer	with	a	learning	rate	of	0.001.	The	full	training	
process takes around 30 minutes.

To	efficiently	use	large	scRNA-seq	datasets,	the	neural	network	is	trained	in	batches.	A	batch	
size	of	5000	cells	per	species	is	used	to	speed	up	the	training	while	still	having	enough	cells	per	
cell	type.	Instead	of	sequentially	iterating	over	the	dataset,	each	batch	is	randomly	sampled	
from	 the	 full	 dataset,	 while	 accounting	 for	 the	 size	 of	 each	 cell	 type.	 More	 specifically,	
every cell is assigned a probability N NA

t
A/ or N NB

t
B/ , where NA is the total number of 

cells of species A and Nt
A is the number of cells of species A belonging to cell type t. These 

probabilities	are	then	used	to	sample	a	batch	of	cells	per	species	with	a	similar	number	of	
cells for each cell type.

5.2.5 Transferring cell type predictions across species

After	the	neural	network	is	trained,	the	cell	types	are	transferred	by	using	the	classifiers	on	
the	species	they	were	not	trained	on	(Figure	1E).	That	is,	we	calculate	hB,out for cells of species 
A, and hA,out for cells of species B. The transferred cell type for a single cell is the cell type 
with	the	highest	probability.	To	aggregate	the	information	of	the	single	cells	to	the	cell	type,	
we	calculate	the	fraction	of	cells	that	are	predicted	to	match	cell	types	across	species,	which	
forms	a	normalized	confusion	matrix	 for	both	transferring	directions.	We	average	the	two	
matrices to create a combined matrix, where high values indicate reciprocal matches. The 
values in the combined matrix can be used to score a match.

5.2.6 Dataset

We	evaluated	TACTiCS	on	snRNA-seq	data	taken	from	the	primary	motor	cortex	of	human,	
mouse and marmoset [20]. These datasets consist of 76k human cells, 159k mouse cells and 
69k	marmoset	cells,	respectively.	The	cell	type	distribution	varies	considerably	across	species.	
For instance, non-neuronal cells make up around a third of both mouse and marmoset cells, 
while	only	5%	of	the	human	cells	are	non-neuronal.	We	use	two	resolutions	of	the	cell	labels	
assigned	by	the	original	authors:	1)	a	higher	resolution,	consisting	of	45	cell	types	present	in	
all	species;	and	2)	a	lower	resolution,	consisting	of	20	human,	23	mouse	and	22	marmoset	
subclass	cell	types.	At	the	lower	resolution	not	all	cell	types	occur	in	all	species.	SMC	is	only	
present in mouse, while Meis2 and Peri are only present in mouse and marmoset. Species-
specific	cells	are	labeled	with	“NA”	at	the	higher	resolution.
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5.2.7 Evaluation

The combined matrix cannot be evaluated using standard metrics for confusion matrices, 
such	as	precision	or	F1	score,	since	we	cannot	distinguish	between	false	positives	and	false	
negatives.	 Instead,	we	 focus	on	 the	matching	scores	 from	corresponding	cell	 types	 in	 the	
combined	matrix,	which	ideally	should	be	1.	We	define	the	Average	Diagonal	Score	(ADS)	as	
the	average	score	of	the	diagonal	entries,	after	excluding	species-specific	cell	types.	A	high	
ADS	indicates	that	many	cell	types	are	correctly	and	reciprocally	matched.	However,	the	ADS	
does	not	indicate	how	many	cell	types	are	correctly	matched.	To	this	end,	we	define	the	recall	
as	the	fraction	of	diagonal	entries	where	the	score	is	highest	for	both	that	row	and	column.

We	compared	TACTiCS	to	SAMap	[8]	and	Seurat	(version	4)	[21]. SAMap is a cell type matching 
method	that	iterates	between	two	steps.	The	first	step	matches	the	genes,	which	is	initially	
done with BLAST on the DNA or protein sequences. Instead of taking the top-1 match, SAMap 
uses the BLAST bitscore directly in their model which allows for many-to-many matches. The 
second	step	uses	 the	gene	matches	to	first	 impute	genes	across	species	and	then	embed	
the	cells	by	concatenating	the	principal	components	of	the	original	expression	and	imputed	
expression.	Then,	the	correlation	between	genes	in	the	embedding	space	is	used	to	update	
the	gene	matches.	The	two	steps	are	repeated	until	the	process	converges.

Seurat can be used to transfer cell type labels from a reference to a query dataset. Since 
Seurat cannot use many-to-many matches, we use BLAST one-to-one matches for the data 
integration	and	label	transfer.	Since	labels	can	only	be	transferred	from	the	reference	to	the	
query dataset, we had to integrate the data twice for each pairwise comparison: once using 
one species as the reference and once using the other species as the reference.

5.2.8 Implementation

TACTiCS is implemented in Python 3.9. Pytorch [22] was used for the model architecture. The 
scRNA-seq data is stored as Anndata [23] objects, containing both the gene expression and 
the	cell	type	annotations.	The	implementation	of	TACTiCS	is	available	at	https://github.com/
kbiharie/TACTiCS.

As	 Tarashanky	 et	 al.	 have	 noted,	 the	 runtime	 of	 SAMap	 increases	 significantly	 for	 larger	
datasets, and we were unable to run SAMap for the full datasets [8]. Instead, we used SAMap 
on	subsets	of	50k	cells	per	species.	We	subsampled	the	data	to	keep	the	cell	type	proportions	
similar while making sure that all cell types are included. During sampling we ensured that 
at least 50 cells were present in the subset. If a cell type contained less than 50 cells, all cells 
were included in the subset.
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5.3 Results
5.3.1 Matching genes using sequence embeddings is comparable 
to sequence alignment with notable differences

First,	we	investigate	how	similar	the	gene	matches	returned	by	ProtBERT	and	BLAST	are.	We	
retrieved 17,435 human and 14,033 mouse protein sequences, discarding 47% of the human 
genes	and	49%	of	the	mouse	genes	for	which	we	do	not	have	the	protein	sequence.	We	used	
both ProtBERT and BLAST to generate gene matches.

For 13,935 human genes, we found a one-to-one mouse match using BLAST. For these human 
genes,	we	defined	the	ProtBERT	match	as	the	mouse	gene	with	the	most	similar	ProtBERT	
embedding.	For	13,050	out	of	13,935	human	genes	(94%),	the	BLAST	match	is	identical	to	the	
ProtBERT	match.	Thus,	the	top-1	match	is	identical	for	the	vast	majority	of	genes.	We	ranked	
the	BLAST	matches	according	to	the	ProtBERT	embedding	distance	to	all	mouse	genes	(Figure	
2A).	Most	of	the	BLAST	matches	have	a	rank	close	to	1	and	over	98%	of	the	BLAST	matches	
have	a	rank	below	100.	Additionally,	48%	of	the	BLAST	matches	that	differ	from	the	ProtBERT	
match are in the top-5 and thus considered in the many-to-many matches. Thus, if the BLAST 
match	is	not	considered	to	be	the	best	match	by	ProtBERT,	it	is	still	relatively	similar	based	on	
the embedding distance.

Next,	we	focus	on	the	human	genes	for	which	the	ProtBERT	and	BLAST	match	differ	to	inves-
tigate	which	method	returns	the	most	functionally	similar	match.	We	restrict	the	comparison	
to the 818 human genes where the human gene, the BLAST match and the ProtBERT match 
are	expressed	in	at	least	one	cell.	We	assess	functional	similarity	here	in	terms	of	gene	ex-
pression	similarity	across	cell	types.	Therefore,	we	calculated	the	Pearson	correlation	coeffi-
cient	across	cell	types	in	humans	and	mouse.	We	considered	the	harmonized	cell	types	as	de-
fined	in	[20]	(Figure	2B).	For	568	out	of	818	(69%)	genes,	the	BLAST	match	has	a	higher	gene	

Figure 2. Comparison of ProtBERT and BLAST matches. A) Rank of BLAST match according to ProtBERT embedding 
distances. Rank 1 indicates that the best ProtBERT match and the best BLAST match are the same. Rank NaN indicates 
a human gene with a ProtBERT match but no BLAST one-to-one match. B) Scatterplot	of	 the	 correlation	of	 the	
expression	of	human	and	mouse	genes	when	considering	the	best	BLAST	match	(x-axis)	and	the	best	ProtBERT	match	
(y-axis).	The	expression	correlation	is	calculated	as	the	Pearson	correlation	across	the	average	expression	profiles	
of	the	cross-species	harmonized	cell	types.	We	omitted	human	genes	where	the	BLAST	match	and	ProtBERT	match	
are	the	same.	Gene	matches	where	either	the	human	gene,	ProtBERT	match	or	BLAST	match	is	highly	variable,	are	
colored orange.
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correlation	than	the	ProtBERT	match.	This	is	to	be	expected	since	the	harmonized	cell	types	
were	defined	using	the	BLAST	matches.	However,	for	some	genes,	the	ProtBERT	match	has	a	
higher	correlation	than	the	BLAST	match.	For	example,	human	IL18R1 is matched to mouse 
Il1r1	according	to	ProtBERT	with	a	correlation	coefficient	of	0.945,	while	BLAST	matches	the	
gene to mouse Il18r1	with	a	correlation	coefficient	of	0.103	(Figure	3).	Human	IL18R1 and 
mouse Il1r1 both show an increased expression for the endothelial and VLMC cells, while 
mouse Il18r1	does	not	show	this	pattern,	and	is	lowly	expressed	in	all	cell	types.

5.3.2 TACTiCS accurately matches cortical cell types across mouse 
and human

Now that we have seen that ProtBERT matches can be a powerful way to capture gene 
relationships,	we	use	them	in	TACTiCS	to	match	cell	types	in	mouse	and	human	cortex	data.	
We	use	the	Allen	Brain	Data,	since	the	cell	types	have	been	carefully	matched	and	harmonized	
by	curators.	We	train	TACTiCS	for	the	human-mouse	comparison	for	both	the	subclass	and	
cross-species	resolution.	At	the	subclass	resolution,	TACTiCS	returns	the	correct	cell	type	for	
all	23	cell	types	that	are	present	in	both	human	and	mouse	(Figure	4A).	The	species-specific	
cell types, mouse Meis2, Peri and SMC, do not have a one-to-one match with a human cell 
type. Mouse Peri only matches human VLMC with a score of 0.5, but human VLMC matches 
mouse VLMC with a higher score of 1.0. Cell types present in both species have matching 
scores	of	≥	0.9	while	wrong	matches	all	have	matching	scores	≤	0.5.

Figure 3. Average expression of human IL18R1 and mouse matches across harmonized cell types. The mouse 
matches are ordered according to the ProtBERT embedding distances. BLAST matches human IL18R1 to mouse 
Il18r1.

Figure 4. TACTiCS’ performance when matching human and mouse cell types at the subclass resolution. A) Av-
erage confusion matrix of transferred cell types. B) UMAP of cell embeddings, colored by species. C) UMAP of cell 
embeddings, colored by cell type.

Thesis_LM_final.indd   124Thesis_LM_final.indd   124 24-04-2024   18:54:5824-04-2024   18:54:58



125

TACTiCS

55

To	 get	 better	 insight	 into	 TACTiCS	 performance,	 we	 visualized	 the	 32-dimensional	 cell	
embeddings	using	UMAP	 (Figure	 4BC,	 S3).	 Individual	 human	and	mouse	 cells	 do	not	mix	
well in the embedding space, but the UMAP does seem to align at the cell type level, i.e. 
corresponding	cell	 types	either	overlap	partially	 in	 the	embedding	space,	or	are	 relatively	
close. For example, Vip cells form a large cluster with partly human and mouse cells separated, 
and cells of mixed origin in the middle. The Sncg cells also form a larger cluster, but the 
separation	between	the	human	and	mouse	cells	is	more	visible.	The	Oligodendrocytes	form	
two separate clusters, but they are closer to each other than to other cell types. The cell type 
proportions	do	seem	to	have	an	effect	on	the	alignment	in	the	embedding	space.	Cell	types	
with	a	similar	number	of	cells	 in	human	and	mouse,	such	as	Vip	(6%	in	human	and	2%	in	
mouse),	are	clustered	more	coherently.	Cell	types	with	a	large	difference	of	occurrence	within	
human	and	mouse,	such	as	Astro	(1%	in	human	and	11%	in	mouse),	form	one	small	distinct	
cluster	that	is	close	to	the	larger	cluster.	The	mouse-specific	cell	types	Meis2,	Peri,	and	SMC	
are	(correctly)	clustered	separately	from	the	human	cells.	Thus,	the	embedding	space	can	
align the cell types across the species, but not the individual cells. Note that this can be due 
to	unresolved	batch	effects	or	actual	biological	differences	between	the	two	species.

At	 the	 cross-species	 resolution,	 TACTiCS	 returns	 correct	 matches	 for	 the	majority	 of	 cell	
types,	with	a	recall	of	0.96	(Figure	5A,	S1).	The	two	cell	types	that	are	not	properly	matched,	
namely	a	L5-IT	subtype	and	a	Sncg	subtype,	are	still	matched	with	closely	related	cell	types.	
The L5-IT subtype is matched with another L5-IT subtype and the Sncg subtype is matched to 
a subtype from the similar Lamp5 subclass.

To	evaluate	the	performance	of	TACTiCS	across	species	with	variable	evolutionary	distance,	
we	tested	TACTiCS	on	cortical	cell	types	between	human-marmoset	and	mouse-marmoset	
(Table	1).	At	the	subclass	resolution,	TACTiCS	performs	similar	on	all	three	comparisons	with	a	
recall	of	1.0.	At	the	cross-species	resolution,	TACTiCS	performs	best	for	the	human-marmoset	

Figure 5. Performance of A) TACTiCS and B) SAMap when matching human and mouse cell types at cross-species 
resolution. Cross-species	cell	types	are	grouped	per	subclass	(indicated	with	the	light-gray	lines)	and	class	(indicated	
with	dark-gray	lines).
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comparison and worst for the mouse-marmoset comparison. These results indicate that the 
performance	of	 TACTiCS	 is	 dependent	on	 the	evolutionary	distance	between	 the	 species,	
since	the	evolutionary	distance	to	the	closest	common	ancestors	from	human	and	marmoset	
(~40mya)	is	a	lot	less	than	human	and	mouse	(~70mya).

5.3.3 TACTiCS outperforms SAMap and Seurat in matching cortical 
cell types across mouse, human, and marmoset

To benchmark TACTiCS, we compare its performance to SAMap and Seurat using three pair-
wise	 comparisons	 (human-mouse,	 human-marmoset,	 and	 mouse-marmoset).	 Across	 all	
comparisons, TACTiCS has a higher ADS and recall than SAMap and Seurat at the subclass 
resolution	(Table	1).	TACTiCS	and	SAMap	perform	well	for	all	comparisons	with	a	recall	≥0.95.	
Seurat performs well for the human-marmoset comparison, but the performance drops for 
the other two comparisons with a recall of 0.85 and 0.86 for the human-mouse and mouse-
marmoset	comparisons	respectively.	Although	the	resulting	matches	of	TACTiCS	and	SAMap	
are similar, the scores assigned by TACTiCS to those correct matches is higher than SAMap. For 

Comparison Method Matching Subclass Cross-species

ADS Recall ADS Recall

Hu-mo TACTiCS P	(m:m) 0.991 1.000 0.856 0.956

Hu-mo TACTiCS B	(m:m) 0.915 0.900 0.509 0.489

Hu-mo TACTiCS B	(1:1) 0.992 1.000 0.724 0.778

Hu-mo Seurat B	(1:1) 0.821 0.850 0.435 0.400

Hu-mo	(50k) TACTiCS P	(m:m) 0.894 0.900 0.780 0.822

Hu-mo	(50k) SAMap P	(m:m) 0.814 1.000 0.635 0.733

Hu-mo	(50k) SAMap B	(m:m) 0.827 1.000 0.630 0.800

Hu-ma TACTiCS P	(m:m) 0.981 1.000 0.920 0.956

Hu-ma TACTiCS B	(m:m) 0.891 0.900 0.848 0.889

Hu-ma TACTiCS B	(1:1) 0.983 1.000 0.919 0.956

Hu-ma Seurat B	(1:1) 0.906 1.000 0.697 0.822

Hu-ma	(50k) TACTiCS P	(m:m) 0.982 1.000 0.949 1.000

Hu-ma	(50k) SAMap P	(m:m) 0.892 1.000 0.816 0.978

Hu-ma	(50k) SAMap B	(m:m) 0.899 1.000 0.816 0.978

Mo-ma TACTiCS P	(m:m) 0.990 1.000 0.735 0.733

Mo-ma TACTiCS B	(m:m) 0.844 0.864 0.483 0.467

Mo-ma TACTiCS B	(1:1) 0.991 1.000 0.770 0.778

Mo-ma Seurat B	(1:1) 0.819 0.864 0.488 0.489

Mo-ma	(50k) TACTiCS P	(m:m) 0.928 0.909 0.730 0.733

Mo-ma	(50k) SAMap P	(m:m) 0.798 0.955 0.608 0.689

Mo-ma	(50k) SAMap B	(m:m) 0.823 0.955 0.637 0.689

Table 1. ADS and recall for TACTiCS, Seurat, and SAMap on human, mouse, and marmoset.
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instance, SAMap correctly matches human L6b to mouse L6b, but with a very low matching 
score equal to 0.47, while TACTiCS matches the same cell types with a matching score of 
1.0.	 Interestingly,	for	the	species-specific	cell	types,	TACTiCS	suggests	matches	that	have	a	
low	score	(0.04-0.5),	allowing	to	detect	the	species-specific	cell	types.	The	performance	of	
SAMap	and	Seurat	for	the	species-specific	cell	types	is	not	consistent	across	all	cell	types	and	
comparisons. For example, SAMap correctly assigns zero scores to mouse Meis2, Peri and 
SMC in the human-mouse comparison, but incorrectly matches mouse SMC to marmoset 
Peri with a high matching score. Likewise, Seurat correctly assigns low scores to mouse Meis2 
across all three comparisons, but incorrectly assigns higher scores to mouse Peri and SMC.

At	the	cross-species	resolution	the	performance	of	all	methods	drops	compared	to	the	subclass	
level	as	expected,	but	the	difference	between	the	three	methods	becomes	more	apparent	
(Figure	5,	S2).	TACTiCS	achieved	the	highest	ADS	and	recall	for	the	human-mouse	and	mouse-
marmoset comparisons. SAMap has a higher recall than TACTiCS for the human-marmoset 
comparison,	but	not	a	better	ADS.	Seurat	performs	the	worst	across	all	three	comparisons	
and achieves a recall of only 0.4 for the human-mouse comparison. For mismatches between 
subtypes, TACTiCS usually matches to subtypes within the same subclass, while SAMap 
regularly	maps	to	cell	types	from	another	subclass.	While	both	TACTiCS	and	SAMap	partly	
match	human	Sncg	to	mouse	Lamp5,	SAMap	additionally	shows	similarity	between	human	
Sncg and mouse Vip.

While	 the	human	and	mouse	cells	did	not	overlap	much	 in	 the	UMAP	of	TACTiCS,	Seurat	
consistently	maps	the	query	dataset	onto	the	reference	dataset	(Figure	S3,	S4).	However,	the	
query dataset is not mapped equally onto the reference dataset, which leaves large regions 
of	the	clusters	consisting	of	only	one	species.	For	both	methods	the	mixing	of	species	is	the	
highest for the human-marmoset comparison and lowest for the human-mouse comparison.

To	account	for	the	differences	in	dataset	size,	we	compare	TACTiCS	and	SAMap	on	the	same	
50k subset. The performance of TACTiCS drops on the subset compared to the full dataset and 
does	not	match	all	common	cell	types	correctly	anymore	at	the	subclass	resolution.	However,	
TACTiCS	still	outperforms	SAMap	at	the	higher	resolution	across	all	three	comparisons.

5.3.4 Using ProtBERT matches improves the cell type matching for 
TACTiCS

Finally, we assessed the importance of using the ProtBERT embeddings to match genes 
compared	 to	using	BLAST	on	 the	final	 cell	 type	matches.	To	 this	end,	we	 trained	TACTiCS	
based on the BLAST many-to-many matches and SAMap using the ProtBERT matches on 
the human-mouse data. For a fair comparison of ProtBERT to BLAST in SAMap, we only 
apply	the	embedding	distance	threshold	to	the	ProtBERT	matches,	rather	than	filtering	the	
gene	matches	thoroughly.	Training	TACTiCS	at	the	cross-species	resolution	using	the	BLAST	
matches	decreased	the	ADS	and	recall	by	a	lot	across	all	comparisons	(Table	1).	For	SAMap,	
the performance remained similar, except for the human-mouse comparison where the 
recall decreased from 0.8 to 0.73 when ProtBERT matches were used instead of the BLAST 
matches.
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Additionally,	 we	 trained	 TACTiCS	 on	 the	 BLAST	 one-to-one	 matches.	 At	 the	 subclass	
resolution,	the	ADS	and	recall	remain	similar	if	BLAST	one-to-one	is	used	instead	of	ProtBERT	
many-to-many.	This	is	not	the	case	for	all	comparisons	at	the	cross-species	resolution.	The	
performance decreases for human-mouse, remains similar for human-marmoset and is 
increased for mouse-marmoset when BLAST one-to-one is used.

5.4 Discussion
Here,	we	present	TACTiCS,	a	method	 to	accurately	match	cell	 types	 from	scRNA-seq	data	
across	species.	We	applied	TACTiCS	to	match	cell	types	across	human,	marmoset,	and	mouse	
motor	 cortex,	 species	 with	 different	 evolutionary	 distances	 to	 each	 other.	 Even	 though	
TACTiCS	matches	 cell	 types	 from	 all	 three	 species	with	 high	 confidence,	we	 showed	 that	
human and marmoset cell types are considerably easier to match which correlates with 
their	closer	evolutionary	distance.	Furthermore,	we	showed	that	TACTiCS	outperforms	the	
state-of-the-art	method	SAMap	on	all	comparisons	with	the	biggest	difference	at	a	higher	
resolution	in	favor	of	TACTiCS.	We	should	note	that	our	evaluation	is	 limited	to	using	only	
three	datasets	from	one	tissue	with	a	relatively	small	evolutionary	distance,	while	SAMap	was	
originally	developed	to	match	cell	types	across	larger	evolutionary	distances	[8].

Even	 though	 TACTiCS	 outperforms	 SAMap	 on	 the	 (finer)	 cross-species	 resolution,	 its	
performance	drops	as	well.	We	would	like	to	note	that	the	cell	types	at	this	resolution	were	
established	by	Bakken	et	al.	by	integrating	datasets	from	the	different	species	and	clustering	
them in an embedding space [20]. This resulted in ambiguous clusters which were resolved 
manually by the authors to determine which cell types would be in one cross-species group. 
Since these matches are not perfect, it makes sense that we cannot achieve a perfect 
performance either.

Furthermore,	the	ground-truth	matches	used	for	evaluation	are	based	on	analyses	performed	
using	BLAST	one-to-one	matches,	also	causing	unwanted	differences	when	comparing	results.	
This might explain why the performance of TACTiCS using BLAST one-to-one is comparable to 
using	ProtBERT	many-to-many	matches.	Here,	we	only	see	an	improvement	for	species	with	
larger	evolutionary	distances	(i.e.	human-mouse	comparison).

All the results obtained by TACTiCS were obtained using the same hyperparameters, which 
have	 not	 been	 tuned.	 Although,	 tuning	 the	 hyperparameters	 could	 potentially	 improve	
matches between species, the advantage of the current set of hyperparameters is that 
they show robust performance across all pairwise-comparisons regardless of species and 
resolution	(i.e.	subclass	or	cross-species).

Gene	matching	is	one	of	the	main	components	of	TACTiCS.	We	match	genes	based	on	the	
distance between their corresponding protein embeddings, which are generated using 
ProtBERT instead of the commonly used sequence similarity based on BLAST. Even though the 
top-1 matches of ProtBERT and BLAST are largely similar, we have shown that using ProtBERT 
instead	of	BLAST	distances	improves	the	performance	of	TACTiCS.	When	aligning	sequences	
using BLAST, every amino acid is considered to be equally important, while we speculate 
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that	 ProtBERT	 focuses	more	 on	 functional	 domains.	 During	 further	 research,	 it	would	 be	
interesting	to	dive	deeper	 into	the	ProtBERT	embedding	space	and	see	how	this	could	be	
used	 to	 learn	more	about	 the	 relationships	between	cell	 types	and	 the	genes	 involved.	A	
downside, however, of using ProtBERT distances is that the protein sequence is needed and as 
a consequence, we can only use coding genes. Using DNA sequence embedding models, e.g. 
DNABert [24],	for	non-coding	genes,	could	in	the	future	be	used	to	overcome	this	limitation.

Some	 cell	 types,	 such	 as	Meis2	 and	Peri	 in	mice,	 are	 species-specific.	 A	 limitation	of	 our	
current	approach	is	that	the	classifiers	we	built	in	TACTiCS	are	missing	a	rejection	option	and	
therefore	we	cannot	identify	these	species-specific	cells	automatically.	Although	we	observed	
that	TACTiCS	usually	assigns	a	low	matching	score	to	these	species-specific	cell	types,	it	is,	
however, important to realize that the matching score represents the average accuracy of 
the	two	classifiers	and	does	not	represent	an	absolute	measure	of	cell	 type	similarity.	For	
instance,	if	two	human	cell	types	are	very	similar,	predictions	for	a	mouse	cell	type	may	be	
split	over	these	two	human	cell	types	(e.g.	both	get	a	score	of	0.5).	This	is,	for	instance,	the	
case with the Vip cross-species clusters in Figure 5A. This lower score indicates that there 
are similar human cell types in the data that both look like this mouse cell type. A high score, 
however, does not guarantee that the two cell types are very similar. It only indicates that 
these	two	cell	types	are	most	similar	to	each	other	and	that	they	are	transcriptionally	very	
distinct	from	the	other	cell	types	in	the	dataset.	In	other	words,	the	scores	are	summaries	
of	 the	classification	results,	and	as	such,	 they	are	very	much	dependent	on	the	cell	 types	
present	in	both	datasets	(i.e.	the	scores	will	change	if	one	cell	type	is	missing	from	one	of	the	
2	species).

When	inspecting	the	cell	embeddings	in	the	low	dimensional	space,	we	notice	that	the	cells	
from	difference	species	are	not	well	mixed.	Matching	cell	types,	however,	are	closest	to	each	
other	and	species-specific	cell	types	are	more	separated	from	all	other	cells.	There	are	many	
data	integration	methods	developed	for	single-cell	data,	such	as	scVI	[25], that would achieve 
a	significantly	better	integration.	Since	data	integration	is	not	the	main	goal	of	TACTiCS,	we	
did	 not	 add	 an	 explicit	mixing	 component	 to	 the	 loss	 function.	 The	 current	 loss	 function	
enforces that neighboring cells from the other species can predict the other cell’s gene 
expression	profile.	This	enforces	cells	of	the	same	cell	type	to	be	the	closest,	but	not	to	fully	
overlap.	Adding	a	component	to	the	loss	that	forces	cells	to	be	mixed	(e.g.	to	have	neighbors	
of	both	species)	could	greatly	improve	the	integration.	Alternatively,	if	good	integration	is	a	
user’s	desire,	an	option	would	be	to	replace	the	component	of	TACTiCS	that	generates	the	
cell	embeddings	with	another	data	integration	method	such	as	scVI.	The	flexible	architecture	
of	 TACTiCS	 allows	 the	 individual	 components	 (gene	 matching,	 cell	 embedding,	 and	 cell	
classification)	to	be	easily	replaced,	extended,	or	integrated	with	different	methods.

With	 TACTiCS	 we	 showed	 that	 using	 protein	 embeddings	 to	 match	 genes	 is	 a	 viable	
alternative	to	BLAST	when	matching	cell	types	based	on	their	scRNA	expression	levels	across	
species.	TACTiCS	can	accurately	match	cell	types	at	different	resolutions	for	large	datasets,	
outperforming	Seurat	and	SAMap.	We	envision	that	this	fast	and	accurate	cell	type	matching	
method,	will	make	comparative	analyses	across	species	considerably	easier,	contributing	to,	
e.g.	to	the	study	of	cell	type	evolution	or	translational	research.
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