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Single-cell genomics is now producing an ever-increasing amount of datasets that, when 
integrated,	 could	 provide	 large-scale	 reference	 atlases	 of	 tissue	 in	 health	 and	 disease.	
Such large-scale atlases increase the scale and generalizability of analyses and enable 
combining	knowledge	generated	by	 individual	studies.	Specifically,	 individual	studies	often	
differ	regarding	cell	annotation	terminology	and	depth,	with	different	groups	specializing	in	
different	cell	type	compartments,	often	using	distinct	terminology.	Understanding	how	these	
distinct	sets	of	annotations	are	related	and	complement	each	other	would	mark	a	major	step	
towards	a	consensus-based	cell-type	annotation	reflecting	the	latest	knowledge	in	the	field.	
Whereas	 recent	 computational	 techniques,	 referred	 to	 as	 “reference	mapping”	methods,	
facilitate	the	usage	and	expansion	of	existing	reference	atlases	by	mapping	new	datasets	(i.e.,	
queries)	onto	an	atlas;	a	systematic	approach	towards	harmonizing	dataset-specific	cell-type	
terminology	and	annotation	depth	is	still	lacking.	Here,	we	present	“treeArches”, a framework 
to	automatically	build	and	extend	reference	atlases	while	enriching	them	with	an	updatable	
hierarchy	 of	 cell-type	 annotations	 across	 different	 datasets.	We	 demonstrate	 various	 use	
cases	 for	 treeArches,	 from	automatically	 resolving	 relations	between	reference	and	query	
cell	types	to	identifying	unseen	cell	types	absent	in	the	reference,	such	as	disease-associated	
cell	states.	We	envision	treeArches enabling	data-driven	construction	of	consensus	atlas-level	
cell-type	hierarchies	and	facilitating	efficient	usage	of	reference	atlases.	

4.1 Introduction 
Single-cell	sequencing	technologies	have	revolutionized	our	understanding	of	human	health.	
Hereto,	 large	 single-cell	 datasets	-	 referred	 to	 as	 “reference	 atlases”	-	 have	 been	 built	 to	
characterize the cellular heterogeneity of whole organs. An example is all the organ- and 
body-scale	cell	atlases	constructed	within	big	consortia	such	as	the	human	cell	atlas	(HCA)	
[1–5].	Users	can	contextualize	 their	datasets	within	 these	references	 to	 identify	novel	cell	
types.	This	enables	 the	discovery	of	disease-affected	cell	 types	 that	 can	be	prioritized	 for	
treatment design [6–8]. 

To	create	a	reference	atlas,	one	would	ideally	leverage	information	from	multiple	scRNA-seq	
datasets	and	harmonize	their	cell	annotations.	This,	however,	is	not	as	easy	as	it	seems	since	
all	datasets	are	annotated	at	a	different	resolution.	Furthermore,	matching	cell	types	based	
on	their	names	is	difficult.	Databases	such	as	‘Cell	Ontology’	try	to	overcome	this	problem,	
but	a	complete	naming	convention	is	still	missing	[9].	When	constructing	the	Human	Lung	Cell	
Atlas	(HLCA),	for	instance,	the	cell	type	labels	of	14	datasets	had	to	be	manually	harmonized,	
which	is	a	time-consuming	process	[2].	To	accelerate	the	construction	of	reference	atlases,	
we	 developed	 scHPL:	 a	 method	 to	 automatically	 match	 the	 cell-type	 labels	 of	 multiple	
datasets and construct a cell-type hierarchy [10]. In follow-up, Novella-Rausell et al. showed 
how	scHPL	simplified	the	process	when	building	a	mouse	kidney	atlas	[11]. 

The concept of a “reference atlas”, however, suggests it should help analyze and interpret new 
datasets	(here	denoted	as	“query”).	This	is,	however,	complicated	by	batch	effects	between	
the	 reference	 and	 query,	 limited	 computational	 resources,	 and	 data	 privacy	 and	 sharing.	
Recently,	we,	along	with	others,	developed	computational	approaches	(known	as	“reference	
mapping”	methods)	to	address	these	challenges	[4,12,13]. Such methods could for instance 
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be used to map a query dataset to the reference and annotate the cells. Currently, there is no 
method available that tackles both challenges simultaneously.

To address these challenges, we present treeArches, a framework that builds upon single-cell 
architectural	surgery	(scArches)	[12]	and	single-cell	Hierarchical	Progressive	Learning	(scHPL)	
[10] to progressively build and update a reference atlas and corresponding hierarchical 
classifier.	 Our	 approach	 allows	 users	 to	 build	 a	 reference	 atlas	 using	 existing	 integration	
methods	 supported	 by	 scArches	 (e.g.,	 scVI,	 scANVI,	 totalVI,	 and	 all	 others	 described	 in	
[14]).	Next,	we	use	scHPL	to	augment	this	reference	atlas	by	learning	the	relations	between	
cell	 types	 to	 construct	 a	 cell-type	 hierarchy.	 Afterward,	 query	 data,	 which	 can	 be	 either	
annotated or unannotated, can be mapped to the reference. If the query is annotated, the 
query	cells	can	expand	the	newly	updated	tree	by	highlighting	potential	novel	cell	types	and	
their	 relationship	with	other	cell	 types	 in	 the	reference.	Otherwise,	 the	created	reference	
can	be	used	 to	annotate	 the	query	cells	and	 identify	new	unseen	cell	 types	 in	 the	query.	
Unlike	existing	methods,	we	show	that	treeArches	can	be	used	to	create	a	reference	atlas	
and	corresponding	cell-type	hierarchy	from	scratch,	update	an	existing	reference	atlas	and	
the	hierarchy	by	finding	novel	relations	between	cell	types,	and	leverage	a	reference	atlas	to	
transfer labels to a new dataset. 

4.2 Methods

4.2.1 Overview

treeArches	consists	of	two	main	steps:	(i)	removing	the	batch	effects	between	datasets	and	(ii)	
matching	the	annotated	cell	types	to	construct	a	cell-type	hierarchy	(Figure	1).	Starting	with	
multiple	labeled	datasets,	hereafter	called	reference	datasets,	we	first	use	neural	network-
based	reference-building	models	(e.g.,	sc(AN)VI	[14]	or	scGen	[15]),	which	are	top	performers	
in	recent	data	benchmarking	efforts	[16]	and	compatible	with	scArches,	to	construct	a	latent	
space.	Next,	we	use	scHPL	to	construct	the	cell-type	hierarchy	(Figure	1A).	For	each	dataset,	
we	 train	 a	 classifier	 in	 the	 learned	 latent	 space	 and	 cross-predict	 the	 labels	 of	 the	 other	
dataset(s).	Using	the	confusion	matrices,	we	automatically	match	the	cell	types	to	create	a	
hierarchy.	This	hierarchy	also	represents	a	hierarchical	classifier	where	every	node	represents	
a	cell	type	in	one	or	more	of	the	datasets.	Afterwards,	we	can	map	new	query	datasets	to	the	
learned latent space using architectural surgery, a transfer learning approach to map query 
datasets	 to	 references,	 implemented	by	scArches	 (Figure	1B).	Architectural	 surgery	brings	
the advantage that the count matrices of the reference datasets are not needed anymore for 
querying the model. Instead, we only use the pre-trained neural network architecture. The 
query datasets can either be labeled or unlabeled. In the case of a labeled dataset, we match 
the cell types from the query to the reference and again update the hierarchy we had learned 
on the reference datasets. In the case of an unlabeled query, we annotate the cells using the 
learned hierarchy. 

When	matching	the	cell	types	or	predicting	labels	of	a	query	dataset,	it	is	important	to	identify	
new cell types that are not present in the reference. This is only possible when biological 
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Figure 1. A schematic version of treeArches and an example using PBMC and bone marrow datasets. A) Pre-
training	of	a	latent	representation	using	labeled	public	reference	datasets.	After	integration,	a	cell-type	hierarchy	is	
created	by	matching	the	cell	types	of	the	different	datasets.	Here,	for	instance,	cell	types	(CT)	1	and	2	from	study	(S)	
2 are subtypes of CT1 from S1. B)	(Un)labeled	query	datasets	can	be	added	to	the	latent	representation	by	applying	
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variation	is	preserved	when	mapping	the	datasets	to	the	latent	space	and	when	the	classifier	
in	scHPL	recognizes	unseen	cells,	i.e.	cells	that	are	not	present	in	the	tree.	Therefore	scHPL	
adopts	a	rejection	strategy,	which	rejects	these	unseen	cells	and	identifies	them	as	a	new	
cell	 type.	Within	scHPL,	a	cell	 is	rejected	 if	 it	meets	one	of	the	following	criteria:	1)	 if	 the	
posterior	probability	of	the	classifier	 is	 lower	than	a	threshold	which	means	the	predicted	
label	is	ambiguous,	2)	if	the	distance	between	a	cell	and	its	closest	neighbors	is	too	big,	and	
3)	if	the	reconstruction	error	(when	mapping	to	a	reduced	PCA	space	and	back)	is	above	a	
threshold,	which	means	the	query	cell	is	too	different	from	the	reference	cell	types.	These	
three	thresholds	are	automatically	set	based	on	the	distribution	of	the	data.

treeArches	 is	 a	 framework	 built	 around	 scArches	 (version	 0.5.3)	 [12]	 and	 scHPL	 (version	
1.0.1)	 [10].	 A	 detailed	 description	 of	 scArches	 and	 scHPL	 can	 be	 found	 in	 their	 original	
papers [10,12].	Here,	we	only	describe	changes	to	the	original	methods	when	combined	in	
the	treeArches	framework.	We	enhanced	the	original	version	of	scHPL	by	adding	the	option	
to use a k-nearest	neighbor	(kNN)	classifier.	The	dimensionality	of	the	latent	space	learned	
by	scArches	is	relatively	low	(varying	between	10	and	30	dimensions).	We	noticed	that	the	
linear SVM originally implemented doesn’t perform well, since the cell types are not linearly 
separable	anymore.	Therefore,	it	is	better	to	use	scHPL	with	the	kNN	classifier	in	this	case.	
In	contrast	to	the	linear	SVM,	we	train	a	multiclass	classifier	for	every	parent	node	instead	
of	a	binary	classifier	for	every	child	node	[10]. During training, we set the default number 
of	neighbors	 to	50.	However,	when	there	are	cell	 types	 in	 the	dataset	 that	consist	of	 less	
than	50	cells,	this	is	not	ideal.	Therefore,	we	added	an	extra	option	(dynamic_neighbors)	to	
automatically	decrease	k to the size of the smallest cell type across the direct child nodes. 
Since	the	tree	consists	of	multiple	classifiers,	it	can	thus	be	that	they	all	use	a	different	number	
of	neighbors	because	of	this	option.	For	the	kNN	classifier	itself,	we	implemented	alternatives	
using either the FAISS library [17] or the scikit-learn library [18].	The	FAISS	implementation	is	
faster than the scikit-learn library but is only available on Linux. 

4.2.2 Detecting new or diseased cell types

We	have	implemented	three	methods	to	detect	new	or	diseased	cell	types:	1)	a	threshold	on	
the	posterior	probability,	2)	a	threshold	on	the	reconstruction	error,	and	3)	a	threshold	on	the	
distance	between	query	and	reference.	The	first	two	options	were	already	implemented	in	
the	previous	version	of	scHPL.	The	default	threshold	for	the	first	option	is	0.5.	The	threshold	
for	the	second	rejection	option	is	determined	using	a	nested	cross-validation	loop.	It	is	the	
median	reconstruction	error	that	gives	a	certain	amount	of	false	negatives	on	the	test	folds	
(default	=	0.5%).	The	third	option	rejects	cells	whose	distance	to	the	predicted	class	is	too	
big.	The	threshold	for	rejection	is	determined	by	calculating	the	neighbors	for	all	cells	in	the	
training	set,	averaging	the	distance	across	the	neighbors,	and	taking	the	99th	percentile.

architectural	surgery.	After	integration,	the	cell-type	hierarchy	is	updated	with	labeled	query	datasets.	Unlabeled	
query datasets can be annotated using the learned hierarchy. C) UMAP embedding showing the integrated latent 
space of the three reference datasets. D) Cell-type hierarchy learned from the three reference datasets. MC derived 
DC:	 monocyte-derived	 dendritic	 cells,	 MC:	 monocytes,	 pDC:	 plasmacytoid	 dendritic	 cells,	 HSPC:	 hematopoietic	
stem and progenitor cell. E)	Updated	hierarchy	after	the	10X	dataset	was	added.	F) UMAP embedding showing the 
integrated latent space of the reference and query datasets.
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4.2.3 Datasets

PBMC datasets. The	dataset	was	obtained	from	the	recent	data	integration	benchmark	[16]. 
The	data	 contains	bone	marrow	 samples	 from	Oetjen	 et	 al.	 [19] and also PBMC samples 
that	were	obtained	from	10x	Genomics	https://support.10xgenomics.com/single-cell-gene-
expression/datasets/3.0.0/pbmc_10k_v3,	Freytag	et	al.	and	Sun	et	al.	 [20,21], the original 
url	and	the	preprocessing	and	annotation	details	can	be	found	in	Luecken	et	al.	[16]. Marker 
genes	specific	to	early	erythrocytes	and	platelets	were	downloaded	from	Azimuth	[4].

Brain datasets. We	used	datasets	from	the	primary	motor	cortex	of	three	species:	human,	
mouse, and marmoset [22].	We	downloaded	the	datasets	from	the	Cytosplore	comparison	
viewer. In these datasets, genes were already matched based on one-to-one homologs. For 
the	analysis,	we	only	kept	these	one-to-one	matches	(15,860	genes	 in	total).	We	selected	
2,000	highly	 variable	 genes	based	on	 the	 reference	datasets	 (mouse	 and	marmoset)	 and	
used	 those	 counts	 as	 input	 for	 treeArches.	 The	datasets	 are	 annotated	 at	 three	different	
resolutions:	Class,	Subclass,	and	RNA_cluster.	The	class	level	contains	three	broad	brain	cell	
types:	GABAergic	neurons,	glutamatergic	neurons,	and	non-neuronal	cells.	At	the	subclass	
level,	 the	cells	are	annotated	at	a	higher	resolution	(5-10	subclasses	per	class).	The	RNA_
cluster	level	contains	the	highest	resolution.	Here,	we	will	use	the	subclass	level	to	match	the	
cell	types.	Marker	genes	used	for	visualization	were	chosen	based	on	Supplementary	Tables	
5 and 6 from the original paper [22].

Human Lung Cell Atlas. The	human	lung	cell	atlas	(HLCA)	is	a	carefully	constructed	reference	
atlas for the human respiratory system [2]. Sikkema et al. aligned 14 datasets, harmonized 
the	annotations,	and	built	a	cell-type	hierarchy	consisting	of	5	 levels.	When	matching	 the	
cell	 types,	we	 used	 the	 latent	 space	 generated	 in	 their	 original	 paper	 (downloaded	 from	
https://zenodo.org/record/6337966#.YqmGIidBx3g).	When	updating	the	hierarchy	with	the	
IPF data, we removed the cell types smaller than 10 cells. Marker genes were downloaded 
from the lung reference v2 from Azimuth [2,4].	Marker	genes	for	the	Meyer	cell	populations	
were	obtained	from	[26].	We	annotated	the	fibrosis-specific	cell	 types	 in	greater	detail	by	
sub	clustering	 the	cell	 types	of	 interest	 (macrophages,	epithelial	 cells,	myofibroblasts	and	
identifying	 the	 subtypes	 by	marker	 gene	 expression.	We	 identified	 transitioning/basaloid	
epithelial	cells	by	KRT5/KRT17	expression,	inflammatory	monocyte-derived	macrophages	by	
SPP1	expression,	and	myofibroblasts	by	the	expression	of	CTHRC1.

The	runtime	and	memory	usage	of	treeArches	on	the	different	datasets	can	be	found	in	Table	
S1.

4.2.4 Comparisons

FR-Match. We	ran	FR-Match	(v2.0.0)	with	default	settings	on	all	pairwise	combinations	of	the	
PBMC reference datasets [23,24]. Before running FR-Match marker genes have to be selected 
for	each	cell	type.	We	do	this	using	the	method	recommended	by	the	authors	of	FR-Match:	
NS-Forest [25].	We	ran	NS-Forest	(v3.0)	on	each	dataset	separately	using	the	default	settings.
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MetaNeighbor. We	 ran	MetaNeighbor	 (v1.13.0)	 using	 the	 default	 settings	 on	 all	 pairwise	
combinations	of	the	PBMC	datasets	[26].	MetaNeighbor	returns	an	AUROC	score	for	all	cell-
type	combinations.	As	 recommended	 in	 the	MetaNeighbor	vignette,	we	consider	 two	cell	
types	a	match	when	the	AUROC	is	higher	than	0.9.

Azimuth. We	 run	 Azimuth	 using	 Seurat	 v4.3.0	 [4] and	 follow	 the	 ‘integration_mapping’	
vignette.

4.3 Results 

4.3.1 treeArches accurately learns PBMC hierarchy

We	showcase	treeArches	with	a	simulation	where	we	build	a	cell-type	hierarchy	using	one	
bone marrow and three PBMC datasets [19–21,27]	(Table	S2).	We	consider	three	datasets	
as	the	reference	(Freytag,	Oetjen,	and	Sun),	and	one	as	the	query	(10X).	The	annotations	of	
these datasets have been manually harmonized by Luecken et al. [16], so we relabel some 
cells	to	enforce	the	datasets	to	be	annotated	at	different	resolutions	(Table	S3,	S4).	 In	the	
Oetjen	dataset,	for	instance,	we	relabel	all	the	CD4+	and	CD8+	T	cells	as	T	cells.	The	challenge	
here	 is	 to	correctly	match	cell	 types	present	 in	multiple	datasets	and	 to	 reconstruct	 their	
hierarchy.	Some	cell	types,	however,	are	dataset-specific	and	these	should	thus	be	added	as	
a	new	node	in	the	tree.	Here,	it	is	important	to	note	that	these	new	cell	types	are	not	forced	
to	be	aligned	with	other	existing	cell	types	during	the	integration	step	and	that	the	classifier	
used	by	scHPL	contains	a	good	rejection	option	during	the	matching	step.	This	harmonizing	
and	afterward	relabeling	of	the	cells	allows	us	to	manually	construct	a	ground	truth	hierarchy	
that	we	can	use	to	evaluate	treeArches	(Figure	S1).	

We	 remove	 the	 batch	 effects	 from	 the	 reference	 datasets	 using	 scVI	 [14] and match the 
cell	types	in	the	learned	latent	space	(see	Methods)	(Figure	1C-D,	S2).	Since	both	scArches	
and	scHPL	are	invariant	to	a	different	order	of	the	datasets,	treeArches	will	also	be	invariant	
[10,12].	For	scHPL,	however,	the	datasets	still	have	to	be	added	progressively,	which	we	will	
do	from	low	to	high	resolution	(Sun	-	Oetjen	-	Freytag).	The	constructed	tree	by	treeArches	
largely	matches	the	ground	truth:	seven	out	of	eight	Oetjen	cell	types	and	all	nine	Freytag	cell	
types	are	correctly	matched	to	the	Sun	cell	types	(e.g.	the	CD4+	T	cells	are	a	subpopulation	
of	the	T	cells	which	are	a	subpopulation	of	the	Group	1	-	Sun	cells).	The	six	cell	types	only	
found	in	one	dataset	are	all	added	as	new	cell	types	to	the	tree	(e.g.	the	CD10+	B	cells	and	
erythrocytes).	

However,	the	megakaryocyte	(MK)	progenitor	cells	from	the	Freytag	and	Sun	dataset	do	not	
match	the	cells	from	Oetjen.	The	Freytag	and	Sun	datasets	are	PBMC	datasets	and	the	Oetjen	
dataset	is	a	bone	marrow	dataset.	Looking	at	the	expression	of	marker	genes	and	the	location	
of the megakaryocyte progenitor cells in the UMAP embedding supports our claim that the 
cell	types	from	Sun	and	Freytag	should	not	match	Oetjen	in	the	hierarchy	(Figure	S3).	Based	
on	marker	gene	expression,	the	MK	progenitor	cells	in	the	Oetjen	dataset	should	be	relabeled	
as early erythrocytes and the MK progenitor cells in the Freytag and Sun dataset as platelets. 
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After	constructing	the	reference	tree	from	the	three	datasets,	we	align	the	query	dataset	to	
the latent space of the reference datasets using scArches and update the learned hierarchy 
with	the	new	cell	 types	 (Figure	1E-F).	For	 this	step,	only	 the	trained	model	and	reference	
latent	space	are	needed.	Again,	almost	all	cell	types	(10	out	of	12)	are	added	to	the	correct	
node in the tree, while the plasma cells and the MK progenitors are added to the tree as new 
cell	types.	These	cell	types	contain	21	and	18	cells,	respectively,	which	makes	them	difficult	
to match compared to the other cell types in the query dataset, which contain more than 
1000 cells on average. 

For some of the cell types, we would expect a perfect match, but the 10X cell type is 
a	 subpopulation	 instead	 (NKT	 cells,	 CD8+	 T	 cells,	MC-derived	DC,	 and	HSPCs).	We	 tested	
whether	 this	 is	 indeed	 a	 subpopulation	 and	 if	 there	 are	 interesting	 biological	 differences	
between	the	groups.	To	do	so,	we	used	the	classifier	trained	on	the	10X	dataset	and	split	the	
cells	 from	these	cell	 types	from	the	reference	 into	two	groups:	1)	correctly	classified,	and	
2)	rejected.	Next,	we	tested	whether	there	are	genes	differentially	expressed	between	the	
two	groups.	Here,	we	did	not	look	at	the	HSPCs,	since	only	6	cells	were	correctly	predicted.	
For	 the	NKT	cells	-Freytag,	NKT	cells	-Oetjen,	and	CD8+	T	cells	-Freytag,	 there	are	 (almost)	
no	genes	differentially	expressed	(adjusted	p-value	<	0.01,	log	foldchange	>	0.5)	(Table	S5).	
However,	in	the	monocyte-derived	dendritic	cells	-Oetjen,	there	are	85	genes	upregulated	in	
the rejected cells. According to Enrichr [28–30] 41 of these genes are related to the Cell Cycle 
R-HSA-1640170	Reactome	pathway	 (adjusted	p-value	=	3e-40)	 [31].	The	rejected	cells	are	
thus	probably	dividing	cells.	These	results	indicate	that	there	could	be	biological	differences	
between the two groups, but that this is not always the case. 

Since	there	are	many	dataset-specific	cell	 types	 in	the	PBMC	datasets,	 it	 is	 important	that	
the	 rejection	 option	works	 correctly	 to	 ensure	 that	 cell	 types	 such	 as	 erythrocytes	 from	
the	Oetjen	dataset	are	added	to	the	root	node.	In	treeArches,	there	are	different	rejection	
options:	1)	the	maximum	distance	to	the	training	data,	2)	the	reconstruction	error,	and	3)	the	
posterior	probability.	If	a	cell	 is	rejected	based	on	the	first	or	second	option,	this	indicates	
that	the	cell	potentially	belongs	to	a	new	cell	type.	In	the	third	case,	this	indicates	that	the	
cell’s gene expression is similar to two or more cell types and that we thus cannot label it 
with	enough	confidence.	Using	the	default	settings	for	these	parameters,	all	dataset-specific	
cell	 types	are	 indeed	correctly	rejected.	We	tested	three	options	 for	all	 thresholds	to	test	
the	effect	related	to	the	different	rejection	options.	This	results	in	minimal	differences	in	the	
constructed	hierarchies	(Figure	S4).	The	hierarchies	mainly	differ	 in	the	number	of	perfect	
matches.	Changing	the	rejection	option	causes	cell	 types	that	were	a	perfect	match	to	be	
subpopulations	 of	 one	 another.	 For	 example,	 when	 using	 the	 default	 settings	 the	 CD4+	
T	 cells	 from	 the	Oetjen	and	Freytag	dataset	 are	 a	perfect	match,	but	when	 changing	 the	
percentage	of	false	negatives	allowed	for	the	reconstruction	error	to	1%,	CD4+	T	cells	-10X	
is	a	 subpopulation	of	 the	CD4+	T	cells	-Freytag.	 In	 two	cases,	however,	 treeArches	cannot	
resolve where the NKT cells from the 10X dataset should be added to the hierarchy and 
this cell type is thus missing. In three cases, the megakaryocyte progenitor cells from the 
Oetjen	dataset	form	a	match	with	the	HSPCs	from	the	10X	dataset.	When	removing	all	three	
rejection	options,	however,	the	tree	looks	completely	different	(Figure	S4).	Cell	types	that	are	
dataset-specific	are	not	added	to	the	root	node	but	match	another	population.	For	instance,	
the	erythrocytes	now	are	a	subpopulation	of	the	Group	1	cells	(a	combination	of	T	cells,	NK	
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cells,	NKT	cells,	and	B	cells)	from	the	Sun	dataset.	This	shows	the	importance	of	the	rejection	
options	within	treeArches.	

Since	there	is	no	method	with	exactly	the	same	functionality	as	treeArches,	we	benchmark	
parts of the algorithm separately. First, we compare our constructed hierarchy for 
the reference data to the output of two cell-type matching algorithms: FR-Match and 
MetaNeighbor [23,24,26]. It is important to note that these methods were developed 
for	 pairwise	 comparisons	 and	 do	 not	 construct	 a	 hierarchy.	We	 ran	 both	methods	 on	 all	
combinations	of	the	reference	datasets	and	visualized	their	matches	in	a	graph	(Figure	S5).	
To allow comparisons, we transform the learned hierarchy by treeArches to a graph by adding 
edges	 between	 a	 parent	 and	 all	 descendants	 (Figure	 S5).	When	 comparing	 the	 resulting	
graphs to the ground-truth graph constructed based on the relabeled cell types, treeArches 
outperforms	FR-Match	and	MetaNeighbor	(Table	S6).	Using	treeArches,	only	two	edges	are	
missing and no wrong edges were introduced while using FR-Match and MetaNeighbor there 
are	respectively	11	and	8	wrong	edges,	and	7	and	11	missing	edges.

Next,	 we	 compare	 the	 cell	 type	 classification	 performance	 of	 treeArches	 to	 Azimuth	 [4].	
Azimuth	 allows	 label	 transfer	 by	 projecting	 a	 query	 dataset	 onto	 a	 reference	 atlas	 but	
assumes that the labels of the reference are already harmonized. Therefore, we compare the 
performance	in	two	ways:	1)	using	the	datasets	annotated	at	a	different	resolution,	and	2)	
using	the	datasets	with	the	manually	harmonized	labels.	We	use	the	Sun,	Oetjen,	and	Freytag	
datasets	as	a	reference	and	the	10X	dataset	as	the	query.	In	the	first	comparison,	treeArches	
outperforms	 Azimuth	 (Figure	 S6),	 but	 during	 the	 second	 comparison,	 Azimuth	 performs	
better	(Figure	S7).	During	the	second	comparison,	treeArches	uses	a	flat	classifier	instead	of	
the	hierarchical	classifier,	which	might	explain	why	treeArches’	performance	decreases.	Both	
Azimuth	and	treeArches	rely	on	a	nearest	neighbor	classifier.	Therefore,	it’s	most	likely	that	
Azimuth	outperforms	treeArches	because	of	better	data	integration.	For	the	data	integration,	
however, Azimuth needs both the reference and query data, while treeArches only uses the 
trained	model	 and	 the	query	data.	Purely	 looking	at	 cell	 type	 classification,	Azimuth	 thus	
outperforms	treeArches	on	this	dataset	but	treeArches	offers	a	broader	functionality.	Here,	
we	also	compare	the	performance	of	treeArches	using	the	kNN	(default)	and	a	linear	SVM	
which	is	the	best-performing	method	according	to	our	classification	benchmark	[32].	Since	
the latent space is not linearly separable anymore, the kNN outperforms the linear SVM 
(Figure	S7).	This	motivates	the	use	of	a	kNN	classifier	within	treeArches.

4.3.2 Increasing the resolution of the human lung cell atlas using 
treeArches

The	human	 lung	cell	atlas	 (HLCA)	 is	a	carefully	constructed	reference	atlas	 for	 the	human	
respiratory system [2]. Sikkema et al. integrated 14 datasets, re-annotated the cells and 
constructed	a	 cell-type	hierarchy	 consisting	of	5	 levels	 (Figure	2A,	 S8).	 Furthermore,	 they	
used	scArches	to	project	multiple	datasets	to	this	reference	atlas.	Since	the	cell-type	hierarchy	
for	 the	 reference	 is	 well-defined,	 we	 can	 omit	 the	 reference-building	 step	 and	 leverage	
treeArches	to	update	the	reference	hierarchy	using	one	of	the	labeled	query	datasets	(Meyer)	
[33].	Using	scHPL,	we	matched	the	cell	types	of	the	Meyer	dataset	to	the	cell	types	from	the	
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Figure 2. Updated hierarchy when adding Meyer to the reference atlas. A) The cell-type hierarchy corresponding 
to	the	reference	atlas	(only	the	first	two	levels	are	shown).	Each	node	represents	a	cell	type	in	the	reference	atlas	
instead of a cell type in a separate dataset of the reference atlas. The UMAP embedding shows the aligned reference 
and	query	dataset.	The	cells	in	the	reference	dataset	are	colored	according	to	their	level	2	annotation.	B, C) Updated 
hierarchy	zoomed	in	on	the	blood	vessels	and	airway	epithelium	secretory	cells	respectively.	The	UMAP	embeddings	
are	 colored	 according	 to	 their	 finest	 resolution. D) Expression of marker genes for club and goblet cells in the 
reference and query cell types. E) Comparison	of	the	predictions	using	the	original	and	updated	reference	on	the	
T-cells of the Tata dataset. F) Expression	of	marker	genes	for	CD8	+	GZMK	+	cells.
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reference	(Figure	S9).	In	the	updated	hierarchy,	many	cell	types	from	the	query	dataset	match	
a cell type from the reference as expected based on the cell-type names. Neuroendocrine-
Meyer, for instance, is a perfect match to the neuroendocrine cells from the reference. Since 
no ground truth cell-type matches between the reference datasets and Meyer is known, we 
cannot	assess	this	quantitatively.	For	some	parts	of	the	hierarchy,	we	can	even	increase	the	
resolution.	If	we	zoom	in	on	the	blood	vessel	branch	in	the	tree,	for	instance,	the	pulmonary	
and systemic endothelial vascular arterial cell types from the query both match endothelial 
cells	arterial	(EC	arterial)	from	the	reference	(Figure	2B).

For some parts of the tree, e.g. the airway epithelium secretory cells, the matches are not 
what	we	would	 expect	 based	 on	 the	 names	 (Figure	 2C).	 The	 secretory	 goblet	 cells	 from	
the query dataset match not only the goblet but also the club cells from the reference and 
the	secretory	club	cells	match	the	transitional	club-alveolar	type	2	(AT2)	cells.	Transitional	
club-AT2 cells were only recently discovered, which could explain why they are missing 
from	the	original	Meyer	annotations	[34–36]. Based on the expression of marker genes, we 
can	conclude	that	the	match	between	the	transitional	club-AT2	and	secretory	club	cells	 is	
a	 correct	match	 (Figure	 2D).	 The	 expression	of	 the	marker	 genes	 in	 the	 other	 cell	 types,	
however, is ambiguous and it is hard to determine what is the correct match. Furthermore, in 
the	HLCA	paper,	label	transfer	for	these	cell	types	from	the	reference	atlas	to	the	Meyer	data	
did not match well with the original labels either [2].

Furthermore, we see sixteen cell types from the query added to the root node of the tree as a 
new	cell	type	(Figure	S9).	Of	these	cell	types,	most	of	them,	e.g.	chondrocytes,	erythrocytes,	
Schwann cells, and B plasmablasts, are indeed not in the reference atlas. For some, such as 
some	macrophage	subtypes	that	are	seen	as	new,	it	is	more	difficult	to	determine	whether	
they are new or whether they should match one of the macrophage subtypes in the tree. 
The	‘Macro	CHIT1’	cells	from	the	Meyer	dataset,	for	instance,	form	a	relatively	big	cell	type	
of	1570	cells	and	are	still	seen	as	new.	We	visualized	the	expression	of	CHIT1, the gene this 
cell	type	was	named	after,	and	the	marker	genes	that	were	used	to	annotate	the	cells	in	the	
reference	data	(Figure	S10).	This	shows	that	the	Macro	CHIT1	cell	type	is	the	only	cell	type	
that expresses CHIT1. Furthermore,	the	marker	gene	profile	of	the	other	cell	types	does	not	
correspond	to	the	profile	of	the	Macro	CHIT1	cells,	which	indicates	that	this	cell	type	was	
indeed rejected correctly.

However,	 twelve	out	of	77	 cell	 types	are	missing	 from	 the	 tree,	which	means	 that	 it	was	
impossible to match these Meyer cell types with a cell type from the reference. Due to many-
to-many	matches	between	the	reference	and	query	cell	types,	it	is	sometimes	unclear	where	
a cell type should be added to the tree. Especially, when the boundary between cell types is 
diffuse,	it	can	be	quite	arbitrary	where	to	put	the	threshold.	If	this	threshold	is	different	in	
each dataset or if cells are wrongly annotated in general, this can cause impossible matching 
scenarios.	Here,	we	notice	that	this	mainly	happens	with	some	immune	and	stromal	subtypes.	
The B cells and plasma cells from the reference and Meyer dataset, for instance, could not 
be	matched	automatically,	which	 is	 caused	by	 the	plasma	cells	 in	 the	Meyer	dataset	 that	
are	partially	misannotated	(Figure	S11).	Cell	types	that	are	missing	from	the	hierarchy	thus	
usually indicate that these cells are wrongly annotated in at least one of the datasets. This 
information	could	thus	still	be	used	to	improve	the	annotations.	Either	by	using	label	transfer	
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for	these	cells	using	trained	hierarchy	or	manually	by	visualizing	specific	marker	genes	in	both	
datasets.

Next,	we	annotate	a	second	healthy	query	dataset	(Tata)	[35] using the original and updated 
reference to show that cells in this new query dataset will indeed be mapped to the new 
Meyer	 cell	 types	 we	 added	 to	 the	 hierarchy.	 The	 majority	 of	 the	 predictions	 remained	
unchanged	(72.1%,	Figure	S12).	When	the	predictions	differ,	cells	are	often	annotated	as	a	
Meyer	cell	type	which	is	a	subpopulation	of	the	original	annotation	(18.4%).	A	clear	example	
is	 the	T	cells:	 cells	previously	annotated	as	CD4+	or	CD8+	T	cells	are	now	annotated	as	a	
subpopulation	(Figure	2E).	These	new	annotations	are	supported	by	the	expression	of	marker	
genes	(Figure	2F,	S13).	

4.3.3 treeArches identifies unseen disease-associated cell types 
in the query data

Next, we show how we can use treeArches to detect previously unseen cell types in idiopathic 
pulmonary	fibrosis	(IPF)	samples	[37].	This	dataset	was	mapped	on	the	HLCA	with	scArches	
(Figure	3A-C).	Ideally,	we	would	use	scHPL	to	update	the	hierarchy	with	the	cell	types	from	
this	query	dataset.	A	downside	of	the	original	annotations,	however,	 is	that	the	resolution	
is very low. Cells are, for instance, only annotated as endothelial cells. Therefore, we used 
scHPL	 to	predict	 the	 labels	of	 the	 IPF	data	and	compare	 those	predictions	 to	 the	original	
annotations	(Figure	3D).	In	the	predictions,	we	see	some	interesting	differences	between	the	
IPF and healthy cells. 

For the IPF cells, many macrophages and epithelial cells are rejected, while almost none 
for	 the	 healthy	 cells.	 Furthermore,	most	 healthy	 Col1+	 cells	 are	 predicted	 to	 be	 alveolar	
fibroblasts,	while	 the	 diseased	Col1+	 are	mainly	 SM-activated	 stress	 response	 cells.	 In	 all	
datasets,	however,	we	notice	confusion	between	 the	B	cells	and	dendritic	cells.	Based	on	
marker	gene	expression,	the	cells	originally	annotated	as	B	cells	and	dendritic	cells	are	more	
likely	to	be	plasma	cells	and	B	cells	respectively	(Figure	S14).	The	cells	originally	annotated	
as	dendritic	cells	also	overlap	in	the	UMAP	with	the	lymphoid	lineage	mainly	instead	of	the	
myeloid	lineage	(Figure	3A-B).	

Next,	we	annotated	the	cells	at	a	higher	resolution	(see	Methods)	and	used	these	annotations	
to	update	the	hierarchy	(Figure	S15).	In	the	updated	hierarchy,	the	healthy	and	IPF	transitioning	
epithelial cells are not present in the reference atlas and are now correctly added as a new 
cell	type.	As	expected,	we	also	see	some	differences	in	how	the	healthy	and	IPF	cell	types	
were	added	to	the	tree.	 IPF	alveolar	macrophage	proliferating	cells,	 for	 instance,	are	seen	
as new, while the healthy cells match with the same cell type in the hierarchy. For other IPF 
macrophage cell types, however, this is not the case even though many cells were rejected 
previously.	Comparing	the	new	annotations	with	the	previously	obtained	predictions	and	the	
matches	in	the	hierarchy,	we	notice	that	there	are	still	many	macrophages	rejected	(Figure	
3E).	 For	most	 IPF	 cell	 types,	 however,	 only	 a	 subset	of	 the	 cells	 is	 rejected.	 For	 instance,	
for	 the	 IPF	 monocyte-derived	 macrophages	 (Md-M),	 486	 cells	 are	 rejected	 and	 750	 are	
predicted	to	be	Md-M.	Therefore,	the	two	cell	types	are	still	matched.	Comparing	the	two	
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Figure 3. Identifying diseased cells in IPF data. A–C) UMAPs	show	the	HLCA	and	IPF	datasets	after	alignment.	The	
cells	are	colored	according	to	their	cell	type	or	condition. D) Heatmap	showing	the	predicted	labels	by	scHPL	and	
original labels. The dark boundaries indicate the hierarchy of the reference tree. E) Sankey diagram showing the new 
annotations	and	predictions	for	the	macrophages	for	the	IPF	condition.	F) Expression of SPP1	in	the	different	cell	
types of the reference and query datasets.
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IPF	 ‘subtypes’	 of	Md-M,	 the	 top	differentially	 expressed	gene	 is	SPP1 (adjusted	p-value	=	
9.9e-20).	Monocytes	and	macrophages	expressing	SPP1 are known to be a hallmark of IPF 
pathogenesis [38,39]. The rejected Md-M cells are the only group of cells expressing SPP1 
(Figure	 3F).	 For	 the	 alveolar	 and	 interstitial	macrophages,	 there	 are	 214/493	 and	19/276	
cells	rejected	respectively.	In	these	rejected	populations,	SPP1 is also upregulated, but only 
in	 the	alveolar	macrophages,	 it	 is	also	differentially	expressed	 (adjusted	p-value	=	0.0011)	
(Figure	S16).	This	could	indicate	that	these	rejected	cells	are	also	a	diseased	subpopulation.	
By combining the confusion matrices with the created hierarchy, these diseased subtypes are 
easily	found,	either	directly	as	the	proliferating	cells,	or	by	looking	at	the	rejected	cells	of	a	
matched cluster.

4.3.4 treeArches can correctly map cell types across species 

Next,	we	show	how	treeArches	can	be	applied	to	map	the	relationship	between	cell	types	of	
different	species.	We	construct	a	cell-type	hierarchy	for	the	motor	cortex	of	the	brain	using	
human,	mouse,	 and	marmoset	data	 (Table	 S7)	 [22].	We	 integrate	 the	 reference	datasets,	
mouse	and	marmoset,	using	scVI	and	construct	the	cell-type	hierarchy	using	scHPL	(Figure	
4A-B,	 S17).	Here,	we	 focus	 on	 the	GABAergic	 neurons	 to	make	 the	 results	 less	 cluttered.	
Almost	all	cell	types	(5	out	of	7)	are	a	perfect	match,	except	for	‘Meis2’	and	‘Sncg’.	 In	the	
latent space, the Meis2 cell types from mouse and marmoset also show no overlap, and both 
cell	types	were	defined	using	different	marker	genes	(Figure	S18A-B).	Furthermore,	Bakken	
et	al.	didn’t	find	a	match	between	these	two	either	[22].	This	could	indicate	that	the	Meis2	
cells	are	 species-specific	and	should	 indeed	not	match	one	another.	 It	 is	unclear	why	 the	
Sncg	cell	types	(559	and	960	cells	in	mouse	and	marmoset	respectively)	do	not	match.	Even	
though the cell types are aligned in the UMAP embedding as expected and the marker genes 
correspond	quite	well,	the	cells	are	rejected	based	on	distance	(Figure	S18C-D).	This	means	
that	the	cells	are	still	too	separated	in	the	latent	space.	Next,	we	align	the	human	dataset	
to the reference using architectural surgery and add the human cell type to the reference 
hierarchy	 (Figure	4B-C).	Here,	 the	 constructed	hierarchy	 looks	 like	what	we	would	expect	
based on the names of the cell types. 

All	previous	results	were	obtained	using	the	default	parameters	(number	of	neighbors	=	50,	
dynamic	number	of	neighbors	=	True,	see	Methods),	which	turned	out	to	be	relatively	robust	
(Figure	S19).	The	main	difference	is	whether	a	match	is	found	between	the	Sncg	cell	types.	
When	increasing	the	number	of	neighbors,	this	match	is	correctly	found.

4.4 Discussion
In this study, we present treeArches, a method to create and extend a reference atlas and 
the corresponding cell type hierarchy. treeArches builds on scArches, which allows users to 
easily map new query datasets to the latent space learned from the reference datasets using 
architectural surgery. Architectural surgery has the advantage that the reference datasets 
are not needed anymore for the mapping and that the latent space corresponding to the 
reference	datasets	does	not	change.	This	last	point	is	especially	important	for	scHPL,	which	
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then	allows	users	 to	match	 the	cell	 types	of	multiple	 labeled	datasets	 to	build	a	cell-type	
hierarchy. If the latent space of all datasets would be altered when a new dataset is added, 
we	would	have	to	restart	the	construction	of	the	tree	completely.	

We	 have	 shown	 three	 different	 situations	 where	 treeArches	 can	 be	 applied:	 building	 a	
reference	atlas	from	scratch,	extending	an	existing	reference	atlas	to	add	new	cell	types	or	
increase	the	resolution,	or	using	an	existing	reference	atlas	to	label	cells	 in	a	new	dataset.	
By	using	the	HLCA	data,	we	show	an	example	of	how	treeArches	can	be	used	to	extend	a	
hierarchy	or	to	label	cells	in	a	new	dataset.	The	HLCA	reference	atlas	consists	of	16	datasets	
with	a	well-defined	cell-type	hierarchy.	We	show	that	treeArches	can	be	used	to	extend	this	
hierarchy.	For	instance,	by	increasing	the	resolution	of	some	branches	of	the	tree,	but	also	by	
adding	new	cell	types.	We	could	also	detect	diseased	cell	types	in	the	IPF	datasets.

Whether	building	or	extending	a	reference	atlas	or	labeling	new	cells,	it	is	essential	that	we	
can	detect	new	cell	types,	such	as	disease-specific	cell	types.	To	do	so,	it	is	important	that	
during	 the	mapping,	 the	cell	 types	are	not	 forced	 to	align;	 the	biological	 variation	should	
be	preserved.	 Furthermore,	 during	 the	 classification,	 there	 should	be	 a	 correctly	working	
rejection	option	(i.e.	cells	are	recognized	to	belong	to	a	new	unseen	class).	Here,	we	showed	
that this indeed works in all tested scenarios. A disadvantage of our current approach is that 
new cell types are usually added to the root node directly instead of to an intermediate node 
in	the	hierarchy.	However,	this	is	still	informative	for	potential	users.	It	indicates	that	a	certain	
cell	type	is	different	from	the	known	cell	types	in	the	tree,	and	by	using	prior	knowledge	or	
visualizing	potential	marker	genes	such	cell	 types	could	manually	be	placed	at	a	different,	
more	specific	place	in	the	hierarchy.

Due	to	the	extended	rejection	options,	however,	it	is	difficult	to	match	small	cell	types	(less	
than	50	cells).	We	modified	the	kNN	classifier	from	scHPL	such	that	the	number	of	neighbors	

Figure 4. Results motor cortex across species. A) UMAP embedding of the integrated reference datasets. B) Learned 
hierarchy	when	combining	mouse	and	marmoset	(step	1)	and	after	adding	human	(step	2).	The	color	of	each	node	
represents	the	dataset(s)	from	which	the	cell	type	originates. C) UMAP	embedding	after	architectural	surgery	with	
the human dataset.
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automatically	decreases	when	there	is	a	small	cell	type	in	the	training	data,	but	apparently,	
this	is	not	sufficient	in	all	cases.	The	number	of	neighbors	is	a	trade-off	between	the	ability	to	
learn	a	representation	for	small	cell	types	and	the	generalizability	of	the	big	cell	types.	

treeArches	relies	on	the	original	annotations	to	extend	the	cell-type	hierarchy.	This	can	be	a	
problem	in	two	different	situations.	If	the	annotations	are	missing	or	at	a	too	low	resolution,	
it	 is	 impossible	to	extend	the	atlas.	This	was	the	case	with	the	original	annotations	of	the	
IPF	dataset.	Alternatively,	annotations	can	have	a	high	resolution,	but	 (partially)	 incorrect.	
Especially when there is no clear boundary between cell types, experts might disagree on 
where	to	put	the	boundary	(the	threshold	for	the	classifier).	Inconsistencies	like	this	might	
result	in	a	hierarchy	that	looks	erroneous	at	first	sight.	In	those	cases,	however,	treeArches	can	
still	be	more	useful	than	expected.	A	cell-type	hierarchy	that	looks	different	than	expected,	
is	usually	a	sign	that	the	original	annotations	are	inconsistent	(e.g.	different	thresholds	are	
used	in	different	datasets).	Certain	parts	of	the	dataset,	e.g.	the	cell	types	that	could	not	be	
added to the tree or caused confusion, can then be reannotated. Furthermore, the tree can 
still	be	adapted	afterwards.	Examples	of	this	are	the	goblet	and	club	cells	in	the	HLCA	and	
the megakaryocyte progenitor cells in the PBMC datasets. The learned hierarchy is a good 
starting	point.	Based	on	marker	gene	expression	or	expert	knowledge,	cell	types	can	also	be	
added	to	the	tree,	removed	from	the	tree,	or	rewired.	After	manually	adapting	the	tree,	the	
classifiers	have	to	be	retrained	though.

Our	 proposed	 method	 builds	 upon	 existing	 data	 integration	 methods.	 Thus,	 it	 naturally	
inherits	both	advantages	and	disadvantages	 linked	to	these	existing	models.	As	previously	
reported [12], the choice of the reference building algorithm and reference atlas itself can 
influence	the	quality	of	reference	mapping.	Therefore,	in	scenarios	where	the	query	dataset	
is	strikingly	different	from	the	reference,	the	integrated	query	will	still	contain	batch	effects	
leading	 to	 inaccurate	 estimation	 of	 hierarchies	 in	 treeArches.	 This	 erroneous	 modeling	
results	in	weak	label	transfer	results	and	thus	identifies	many	overlapping	cell	types	between	
query	and	reference	as	a	new	cell	type	only	present	in	the	query.	We	advise	users	to	choose	
a comprehensive reference atlas and extensively benchmark and screen various data 
integration	methods	for	an	optimal	reference	representation	[16]. 

In	summary,	we	present	treeArches,	a	method	that	can	be	used	to	combine	multiple	labeled	
datasets to create or extend a reference atlas and the corresponding cell-type hierarchy. 
This way we provide users with an easy-to-use pipeline to map new datasets to a current 
reference	atlas,	match	cell	types	across	multiple	labeled	datasets,	and	consistently	label	cells	
in	new	datasets.	With	the	increasing	availability	of	reference	atlases,	we	envision	treeArches	
facilitating	 the	 usage	 of	 reference	 atlases	 allowing	 users	 to	 automatically	 analyze	 their	
datasets	from	label	transfer	to	the	automatic	identification	of	novel	cell	states	in	the	query	
data. In conclusion, treeArches will enable a data-driven path towards consensus-based cell 
type	annotation	of	(human)	tissues	and	will	significantly	speed	up	the	building	and	annotation	
of atlases.
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4.5 Code and data availability
treeArches	is	part	of	the	scArches	repository	(https://github.com/theislab/scarches).	The	code	
for	 scHPL	as	 a	 standalone	package	 can	be	 found	here:	https://github.com/lcmmichielsen/
scHPL.	 All	 code	 to	 reproduce	 the	 results	 and	 figures	 can	 be	 found	 at	 the	 reproducibility	
GitHub:	 https://github.com/lcmmichielsen/treeArches-reproducibility. PBMC count data: 
https://drive.google.com/uc?id=1Vh6RpYkusbGIZQC8GMFe3OKVDk5PWEpC. Brain count 
data: https://doi.org/10.5281/zenodo.6786357.	 PBMC	 +	 brain	 latent	 space:	 https://doi.
org/10.5281/zenodo.6786357.	 HLCA	 latent	 space:	 https://zenodo.org/record/6337966#.
YqmGIidBx3g
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