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Single-cell genomics is now producing an ever-increasing amount of datasets that, when 
integrated, could provide large-scale reference atlases of tissue in health and disease. 
Such large-scale atlases increase the scale and generalizability of analyses and enable 
combining knowledge generated by individual studies. Specifically, individual studies often 
differ regarding cell annotation terminology and depth, with different groups specializing in 
different cell type compartments, often using distinct terminology. Understanding how these 
distinct sets of annotations are related and complement each other would mark a major step 
towards a consensus-based cell-type annotation reflecting the latest knowledge in the field. 
Whereas recent computational techniques, referred to as “reference mapping” methods, 
facilitate the usage and expansion of existing reference atlases by mapping new datasets (i.e., 
queries) onto an atlas; a systematic approach towards harmonizing dataset-specific cell-type 
terminology and annotation depth is still lacking. Here, we present “treeArches”, a framework 
to automatically build and extend reference atlases while enriching them with an updatable 
hierarchy of cell-type annotations across different datasets. We demonstrate various use 
cases for treeArches, from automatically resolving relations between reference and query 
cell types to identifying unseen cell types absent in the reference, such as disease-associated 
cell states. We envision treeArches enabling data-driven construction of consensus atlas-level 
cell-type hierarchies and facilitating efficient usage of reference atlases. 

4.1 Introduction 
Single-cell sequencing technologies have revolutionized our understanding of human health. 
Hereto, large single-cell datasets - referred to as “reference atlases” - have been built to 
characterize the cellular heterogeneity of whole organs. An example is all the organ- and 
body-scale cell atlases constructed within big consortia such as the human cell atlas (HCA) 
[1–5]. Users can contextualize their datasets within these references to identify novel cell 
types. This enables the discovery of disease-affected cell types that can be prioritized for 
treatment design [6–8]. 

To create a reference atlas, one would ideally leverage information from multiple scRNA-seq 
datasets and harmonize their cell annotations. This, however, is not as easy as it seems since 
all datasets are annotated at a different resolution. Furthermore, matching cell types based 
on their names is difficult. Databases such as ‘Cell Ontology’ try to overcome this problem, 
but a complete naming convention is still missing [9]. When constructing the Human Lung Cell 
Atlas (HLCA), for instance, the cell type labels of 14 datasets had to be manually harmonized, 
which is a time-consuming process [2]. To accelerate the construction of reference atlases, 
we developed scHPL: a method to automatically match the cell-type labels of multiple 
datasets and construct a cell-type hierarchy [10]. In follow-up, Novella-Rausell et al. showed 
how scHPL simplified the process when building a mouse kidney atlas [11]. 

The concept of a “reference atlas”, however, suggests it should help analyze and interpret new 
datasets (here denoted as “query”). This is, however, complicated by batch effects between 
the reference and query, limited computational resources, and data privacy and sharing. 
Recently, we, along with others, developed computational approaches (known as “reference 
mapping” methods) to address these challenges [4,12,13]. Such methods could for instance 
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be used to map a query dataset to the reference and annotate the cells. Currently, there is no 
method available that tackles both challenges simultaneously.

To address these challenges, we present treeArches, a framework that builds upon single-cell 
architectural surgery (scArches) [12] and single-cell Hierarchical Progressive Learning (scHPL) 
[10] to progressively build and update a reference atlas and corresponding hierarchical 
classifier. Our approach allows users to build a reference atlas using existing integration 
methods supported by scArches (e.g., scVI, scANVI, totalVI, and all others described in 
[14]). Next, we use scHPL to augment this reference atlas by learning the relations between 
cell types to construct a cell-type hierarchy. Afterward, query data, which can be either 
annotated or unannotated, can be mapped to the reference. If the query is annotated, the 
query cells can expand the newly updated tree by highlighting potential novel cell types and 
their relationship with other cell types in the reference. Otherwise, the created reference 
can be used to annotate the query cells and identify new unseen cell types in the query. 
Unlike existing methods, we show that treeArches can be used to create a reference atlas 
and corresponding cell-type hierarchy from scratch, update an existing reference atlas and 
the hierarchy by finding novel relations between cell types, and leverage a reference atlas to 
transfer labels to a new dataset. 

4.2 Methods

4.2.1 Overview

treeArches consists of two main steps: (i) removing the batch effects between datasets and (ii) 
matching the annotated cell types to construct a cell-type hierarchy (Figure 1). Starting with 
multiple labeled datasets, hereafter called reference datasets, we first use neural network-
based reference-building models (e.g., sc(AN)VI [14] or scGen [15]), which are top performers 
in recent data benchmarking efforts [16] and compatible with scArches, to construct a latent 
space. Next, we use scHPL to construct the cell-type hierarchy (Figure 1A). For each dataset, 
we train a classifier in the learned latent space and cross-predict the labels of the other 
dataset(s). Using the confusion matrices, we automatically match the cell types to create a 
hierarchy. This hierarchy also represents a hierarchical classifier where every node represents 
a cell type in one or more of the datasets. Afterwards, we can map new query datasets to the 
learned latent space using architectural surgery, a transfer learning approach to map query 
datasets to references, implemented by scArches (Figure 1B). Architectural surgery brings 
the advantage that the count matrices of the reference datasets are not needed anymore for 
querying the model. Instead, we only use the pre-trained neural network architecture. The 
query datasets can either be labeled or unlabeled. In the case of a labeled dataset, we match 
the cell types from the query to the reference and again update the hierarchy we had learned 
on the reference datasets. In the case of an unlabeled query, we annotate the cells using the 
learned hierarchy. 

When matching the cell types or predicting labels of a query dataset, it is important to identify 
new cell types that are not present in the reference. This is only possible when biological 
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Figure 1. A schematic version of treeArches and an example using PBMC and bone marrow datasets. A) Pre-
training of a latent representation using labeled public reference datasets. After integration, a cell-type hierarchy is 
created by matching the cell types of the different datasets. Here, for instance, cell types (CT) 1 and 2 from study (S) 
2 are subtypes of CT1 from S1. B) (Un)labeled query datasets can be added to the latent representation by applying 
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variation is preserved when mapping the datasets to the latent space and when the classifier 
in scHPL recognizes unseen cells, i.e. cells that are not present in the tree. Therefore scHPL 
adopts a rejection strategy, which rejects these unseen cells and identifies them as a new 
cell type. Within scHPL, a cell is rejected if it meets one of the following criteria: 1) if the 
posterior probability of the classifier is lower than a threshold which means the predicted 
label is ambiguous, 2) if the distance between a cell and its closest neighbors is too big, and 
3) if the reconstruction error (when mapping to a reduced PCA space and back) is above a 
threshold, which means the query cell is too different from the reference cell types. These 
three thresholds are automatically set based on the distribution of the data.

treeArches is a framework built around scArches (version 0.5.3) [12] and scHPL (version 
1.0.1) [10]. A detailed description of scArches and scHPL can be found in their original 
papers [10,12]. Here, we only describe changes to the original methods when combined in 
the treeArches framework. We enhanced the original version of scHPL by adding the option 
to use a k-nearest neighbor (kNN) classifier. The dimensionality of the latent space learned 
by scArches is relatively low (varying between 10 and 30 dimensions). We noticed that the 
linear SVM originally implemented doesn’t perform well, since the cell types are not linearly 
separable anymore. Therefore, it is better to use scHPL with the kNN classifier in this case. 
In contrast to the linear SVM, we train a multiclass classifier for every parent node instead 
of a binary classifier for every child node [10]. During training, we set the default number 
of neighbors to 50. However, when there are cell types in the dataset that consist of less 
than 50 cells, this is not ideal. Therefore, we added an extra option (dynamic_neighbors) to 
automatically decrease k to the size of the smallest cell type across the direct child nodes. 
Since the tree consists of multiple classifiers, it can thus be that they all use a different number 
of neighbors because of this option. For the kNN classifier itself, we implemented alternatives 
using either the FAISS library [17] or the scikit-learn library [18]. The FAISS implementation is 
faster than the scikit-learn library but is only available on Linux. 

4.2.2 Detecting new or diseased cell types

We have implemented three methods to detect new or diseased cell types: 1) a threshold on 
the posterior probability, 2) a threshold on the reconstruction error, and 3) a threshold on the 
distance between query and reference. The first two options were already implemented in 
the previous version of scHPL. The default threshold for the first option is 0.5. The threshold 
for the second rejection option is determined using a nested cross-validation loop. It is the 
median reconstruction error that gives a certain amount of false negatives on the test folds 
(default = 0.5%). The third option rejects cells whose distance to the predicted class is too 
big. The threshold for rejection is determined by calculating the neighbors for all cells in the 
training set, averaging the distance across the neighbors, and taking the 99th percentile.

architectural surgery. After integration, the cell-type hierarchy is updated with labeled query datasets. Unlabeled 
query datasets can be annotated using the learned hierarchy. C) UMAP embedding showing the integrated latent 
space of the three reference datasets. D) Cell-type hierarchy learned from the three reference datasets. MC derived 
DC: monocyte-derived dendritic cells, MC: monocytes, pDC: plasmacytoid dendritic cells, HSPC: hematopoietic 
stem and progenitor cell. E) Updated hierarchy after the 10X dataset was added. F) UMAP embedding showing the 
integrated latent space of the reference and query datasets.
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4.2.3 Datasets

PBMC datasets. The dataset was obtained from the recent data integration benchmark [16]. 
The data contains bone marrow samples from Oetjen et al. [19] and also PBMC samples 
that were obtained from 10x Genomics https://support.10xgenomics.com/single-cell-gene-
expression/datasets/3.0.0/pbmc_10k_v3, Freytag et al. and Sun et al. [20,21], the original 
url and the preprocessing and annotation details can be found in Luecken et al. [16]. Marker 
genes specific to early erythrocytes and platelets were downloaded from Azimuth [4].

Brain datasets. We used datasets from the primary motor cortex of three species: human, 
mouse, and marmoset [22]. We downloaded the datasets from the Cytosplore comparison 
viewer. In these datasets, genes were already matched based on one-to-one homologs. For 
the analysis, we only kept these one-to-one matches (15,860 genes in total). We selected 
2,000 highly variable genes based on the reference datasets (mouse and marmoset) and 
used those counts as input for treeArches. The datasets are annotated at three different 
resolutions: Class, Subclass, and RNA_cluster. The class level contains three broad brain cell 
types: GABAergic neurons, glutamatergic neurons, and non-neuronal cells. At the subclass 
level, the cells are annotated at a higher resolution (5-10 subclasses per class). The RNA_
cluster level contains the highest resolution. Here, we will use the subclass level to match the 
cell types. Marker genes used for visualization were chosen based on Supplementary Tables 
5 and 6 from the original paper [22].

Human Lung Cell Atlas. The human lung cell atlas (HLCA) is a carefully constructed reference 
atlas for the human respiratory system [2]. Sikkema et al. aligned 14 datasets, harmonized 
the annotations, and built a cell-type hierarchy consisting of 5 levels. When matching the 
cell types, we used the latent space generated in their original paper (downloaded from 
https://zenodo.org/record/6337966#.YqmGIidBx3g). When updating the hierarchy with the 
IPF data, we removed the cell types smaller than 10 cells. Marker genes were downloaded 
from the lung reference v2 from Azimuth [2,4]. Marker genes for the Meyer cell populations 
were obtained from [26]. We annotated the fibrosis-specific cell types in greater detail by 
sub clustering the cell types of interest (macrophages, epithelial cells, myofibroblasts and 
identifying the subtypes by marker gene expression. We identified transitioning/basaloid 
epithelial cells by KRT5/KRT17 expression, inflammatory monocyte-derived macrophages by 
SPP1 expression, and myofibroblasts by the expression of CTHRC1.

The runtime and memory usage of treeArches on the different datasets can be found in Table 
S1.

4.2.4 Comparisons

FR-Match. We ran FR-Match (v2.0.0) with default settings on all pairwise combinations of the 
PBMC reference datasets [23,24]. Before running FR-Match marker genes have to be selected 
for each cell type. We do this using the method recommended by the authors of FR-Match: 
NS-Forest [25]. We ran NS-Forest (v3.0) on each dataset separately using the default settings.
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MetaNeighbor. We ran MetaNeighbor (v1.13.0) using the default settings on all pairwise 
combinations of the PBMC datasets [26]. MetaNeighbor returns an AUROC score for all cell-
type combinations. As recommended in the MetaNeighbor vignette, we consider two cell 
types a match when the AUROC is higher than 0.9.

Azimuth. We run Azimuth using Seurat v4.3.0 [4] and follow the ‘integration_mapping’ 
vignette.

4.3 Results 

4.3.1 treeArches accurately learns PBMC hierarchy

We showcase treeArches with a simulation where we build a cell-type hierarchy using one 
bone marrow and three PBMC datasets [19–21,27] (Table S2). We consider three datasets 
as the reference (Freytag, Oetjen, and Sun), and one as the query (10X). The annotations of 
these datasets have been manually harmonized by Luecken et al. [16], so we relabel some 
cells to enforce the datasets to be annotated at different resolutions (Table S3, S4). In the 
Oetjen dataset, for instance, we relabel all the CD4+ and CD8+ T cells as T cells. The challenge 
here is to correctly match cell types present in multiple datasets and to reconstruct their 
hierarchy. Some cell types, however, are dataset-specific and these should thus be added as 
a new node in the tree. Here, it is important to note that these new cell types are not forced 
to be aligned with other existing cell types during the integration step and that the classifier 
used by scHPL contains a good rejection option during the matching step. This harmonizing 
and afterward relabeling of the cells allows us to manually construct a ground truth hierarchy 
that we can use to evaluate treeArches (Figure S1). 

We remove the batch effects from the reference datasets using scVI [14] and match the 
cell types in the learned latent space (see Methods) (Figure 1C-D, S2). Since both scArches 
and scHPL are invariant to a different order of the datasets, treeArches will also be invariant 
[10,12]. For scHPL, however, the datasets still have to be added progressively, which we will 
do from low to high resolution (Sun - Oetjen - Freytag). The constructed tree by treeArches 
largely matches the ground truth: seven out of eight Oetjen cell types and all nine Freytag cell 
types are correctly matched to the Sun cell types (e.g. the CD4+ T cells are a subpopulation 
of the T cells which are a subpopulation of the Group 1 - Sun cells). The six cell types only 
found in one dataset are all added as new cell types to the tree (e.g. the CD10+ B cells and 
erythrocytes). 

However, the megakaryocyte (MK) progenitor cells from the Freytag and Sun dataset do not 
match the cells from Oetjen. The Freytag and Sun datasets are PBMC datasets and the Oetjen 
dataset is a bone marrow dataset. Looking at the expression of marker genes and the location 
of the megakaryocyte progenitor cells in the UMAP embedding supports our claim that the 
cell types from Sun and Freytag should not match Oetjen in the hierarchy (Figure S3). Based 
on marker gene expression, the MK progenitor cells in the Oetjen dataset should be relabeled 
as early erythrocytes and the MK progenitor cells in the Freytag and Sun dataset as platelets. 
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After constructing the reference tree from the three datasets, we align the query dataset to 
the latent space of the reference datasets using scArches and update the learned hierarchy 
with the new cell types (Figure 1E-F). For this step, only the trained model and reference 
latent space are needed. Again, almost all cell types (10 out of 12) are added to the correct 
node in the tree, while the plasma cells and the MK progenitors are added to the tree as new 
cell types. These cell types contain 21 and 18 cells, respectively, which makes them difficult 
to match compared to the other cell types in the query dataset, which contain more than 
1000 cells on average. 

For some of the cell types, we would expect a perfect match, but the 10X cell type is 
a subpopulation instead (NKT cells, CD8+ T cells, MC-derived DC, and HSPCs). We tested 
whether this is indeed a subpopulation and if there are interesting biological differences 
between the groups. To do so, we used the classifier trained on the 10X dataset and split the 
cells from these cell types from the reference into two groups: 1) correctly classified, and 
2) rejected. Next, we tested whether there are genes differentially expressed between the 
two groups. Here, we did not look at the HSPCs, since only 6 cells were correctly predicted. 
For the NKT cells -Freytag, NKT cells -Oetjen, and CD8+ T cells -Freytag, there are (almost) 
no genes differentially expressed (adjusted p-value < 0.01, log foldchange > 0.5) (Table S5). 
However, in the monocyte-derived dendritic cells -Oetjen, there are 85 genes upregulated in 
the rejected cells. According to Enrichr [28–30] 41 of these genes are related to the Cell Cycle 
R-HSA-1640170 Reactome pathway (adjusted p-value = 3e-40) [31]. The rejected cells are 
thus probably dividing cells. These results indicate that there could be biological differences 
between the two groups, but that this is not always the case. 

Since there are many dataset-specific cell types in the PBMC datasets, it is important that 
the rejection option works correctly to ensure that cell types such as erythrocytes from 
the Oetjen dataset are added to the root node. In treeArches, there are different rejection 
options: 1) the maximum distance to the training data, 2) the reconstruction error, and 3) the 
posterior probability. If a cell is rejected based on the first or second option, this indicates 
that the cell potentially belongs to a new cell type. In the third case, this indicates that the 
cell’s gene expression is similar to two or more cell types and that we thus cannot label it 
with enough confidence. Using the default settings for these parameters, all dataset-specific 
cell types are indeed correctly rejected. We tested three options for all thresholds to test 
the effect related to the different rejection options. This results in minimal differences in the 
constructed hierarchies (Figure S4). The hierarchies mainly differ in the number of perfect 
matches. Changing the rejection option causes cell types that were a perfect match to be 
subpopulations of one another. For example, when using the default settings the CD4+ 
T cells from the Oetjen and Freytag dataset are a perfect match, but when changing the 
percentage of false negatives allowed for the reconstruction error to 1%, CD4+ T cells -10X 
is a subpopulation of the CD4+ T cells -Freytag. In two cases, however, treeArches cannot 
resolve where the NKT cells from the 10X dataset should be added to the hierarchy and 
this cell type is thus missing. In three cases, the megakaryocyte progenitor cells from the 
Oetjen dataset form a match with the HSPCs from the 10X dataset. When removing all three 
rejection options, however, the tree looks completely different (Figure S4). Cell types that are 
dataset-specific are not added to the root node but match another population. For instance, 
the erythrocytes now are a subpopulation of the Group 1 cells (a combination of T cells, NK 
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cells, NKT cells, and B cells) from the Sun dataset. This shows the importance of the rejection 
options within treeArches. 

Since there is no method with exactly the same functionality as treeArches, we benchmark 
parts of the algorithm separately. First, we compare our constructed hierarchy for 
the reference data to the output of two cell-type matching algorithms: FR-Match and 
MetaNeighbor [23,24,26]. It is important to note that these methods were developed 
for pairwise comparisons and do not construct a hierarchy. We ran both methods on all 
combinations of the reference datasets and visualized their matches in a graph (Figure S5). 
To allow comparisons, we transform the learned hierarchy by treeArches to a graph by adding 
edges between a parent and all descendants (Figure S5). When comparing the resulting 
graphs to the ground-truth graph constructed based on the relabeled cell types, treeArches 
outperforms FR-Match and MetaNeighbor (Table S6). Using treeArches, only two edges are 
missing and no wrong edges were introduced while using FR-Match and MetaNeighbor there 
are respectively 11 and 8 wrong edges, and 7 and 11 missing edges.

Next, we compare the cell type classification performance of treeArches to Azimuth [4]. 
Azimuth allows label transfer by projecting a query dataset onto a reference atlas but 
assumes that the labels of the reference are already harmonized. Therefore, we compare the 
performance in two ways: 1) using the datasets annotated at a different resolution, and 2) 
using the datasets with the manually harmonized labels. We use the Sun, Oetjen, and Freytag 
datasets as a reference and the 10X dataset as the query. In the first comparison, treeArches 
outperforms Azimuth (Figure S6), but during the second comparison, Azimuth performs 
better (Figure S7). During the second comparison, treeArches uses a flat classifier instead of 
the hierarchical classifier, which might explain why treeArches’ performance decreases. Both 
Azimuth and treeArches rely on a nearest neighbor classifier. Therefore, it’s most likely that 
Azimuth outperforms treeArches because of better data integration. For the data integration, 
however, Azimuth needs both the reference and query data, while treeArches only uses the 
trained model and the query data. Purely looking at cell type classification, Azimuth thus 
outperforms treeArches on this dataset but treeArches offers a broader functionality. Here, 
we also compare the performance of treeArches using the kNN (default) and a linear SVM 
which is the best-performing method according to our classification benchmark [32]. Since 
the latent space is not linearly separable anymore, the kNN outperforms the linear SVM 
(Figure S7). This motivates the use of a kNN classifier within treeArches.

4.3.2 Increasing the resolution of the human lung cell atlas using 
treeArches

The human lung cell atlas (HLCA) is a carefully constructed reference atlas for the human 
respiratory system [2]. Sikkema et al. integrated 14 datasets, re-annotated the cells and 
constructed a cell-type hierarchy consisting of 5 levels (Figure 2A, S8). Furthermore, they 
used scArches to project multiple datasets to this reference atlas. Since the cell-type hierarchy 
for the reference is well-defined, we can omit the reference-building step and leverage 
treeArches to update the reference hierarchy using one of the labeled query datasets (Meyer) 
[33]. Using scHPL, we matched the cell types of the Meyer dataset to the cell types from the 
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Figure 2. Updated hierarchy when adding Meyer to the reference atlas. A) The cell-type hierarchy corresponding 
to the reference atlas (only the first two levels are shown). Each node represents a cell type in the reference atlas 
instead of a cell type in a separate dataset of the reference atlas. The UMAP embedding shows the aligned reference 
and query dataset. The cells in the reference dataset are colored according to their level 2 annotation. B, C) Updated 
hierarchy zoomed in on the blood vessels and airway epithelium secretory cells respectively. The UMAP embeddings 
are colored according to their finest resolution. D) Expression of marker genes for club and goblet cells in the 
reference and query cell types. E) Comparison of the predictions using the original and updated reference on the 
T-cells of the Tata dataset. F) Expression of marker genes for CD8 + GZMK + cells.
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reference (Figure S9). In the updated hierarchy, many cell types from the query dataset match 
a cell type from the reference as expected based on the cell-type names. Neuroendocrine-
Meyer, for instance, is a perfect match to the neuroendocrine cells from the reference. Since 
no ground truth cell-type matches between the reference datasets and Meyer is known, we 
cannot assess this quantitatively. For some parts of the hierarchy, we can even increase the 
resolution. If we zoom in on the blood vessel branch in the tree, for instance, the pulmonary 
and systemic endothelial vascular arterial cell types from the query both match endothelial 
cells arterial (EC arterial) from the reference (Figure 2B).

For some parts of the tree, e.g. the airway epithelium secretory cells, the matches are not 
what we would expect based on the names (Figure 2C). The secretory goblet cells from 
the query dataset match not only the goblet but also the club cells from the reference and 
the secretory club cells match the transitional club-alveolar type 2 (AT2) cells. Transitional 
club-AT2 cells were only recently discovered, which could explain why they are missing 
from the original Meyer annotations [34–36]. Based on the expression of marker genes, we 
can conclude that the match between the transitional club-AT2 and secretory club cells is 
a correct match (Figure 2D). The expression of the marker genes in the other cell types, 
however, is ambiguous and it is hard to determine what is the correct match. Furthermore, in 
the HLCA paper, label transfer for these cell types from the reference atlas to the Meyer data 
did not match well with the original labels either [2].

Furthermore, we see sixteen cell types from the query added to the root node of the tree as a 
new cell type (Figure S9). Of these cell types, most of them, e.g. chondrocytes, erythrocytes, 
Schwann cells, and B plasmablasts, are indeed not in the reference atlas. For some, such as 
some macrophage subtypes that are seen as new, it is more difficult to determine whether 
they are new or whether they should match one of the macrophage subtypes in the tree. 
The ‘Macro CHIT1’ cells from the Meyer dataset, for instance, form a relatively big cell type 
of 1570 cells and are still seen as new. We visualized the expression of CHIT1, the gene this 
cell type was named after, and the marker genes that were used to annotate the cells in the 
reference data (Figure S10). This shows that the Macro CHIT1 cell type is the only cell type 
that expresses CHIT1. Furthermore, the marker gene profile of the other cell types does not 
correspond to the profile of the Macro CHIT1 cells, which indicates that this cell type was 
indeed rejected correctly.

However, twelve out of 77 cell types are missing from the tree, which means that it was 
impossible to match these Meyer cell types with a cell type from the reference. Due to many-
to-many matches between the reference and query cell types, it is sometimes unclear where 
a cell type should be added to the tree. Especially, when the boundary between cell types is 
diffuse, it can be quite arbitrary where to put the threshold. If this threshold is different in 
each dataset or if cells are wrongly annotated in general, this can cause impossible matching 
scenarios. Here, we notice that this mainly happens with some immune and stromal subtypes. 
The B cells and plasma cells from the reference and Meyer dataset, for instance, could not 
be matched automatically, which is caused by the plasma cells in the Meyer dataset that 
are partially misannotated (Figure S11). Cell types that are missing from the hierarchy thus 
usually indicate that these cells are wrongly annotated in at least one of the datasets. This 
information could thus still be used to improve the annotations. Either by using label transfer 
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for these cells using trained hierarchy or manually by visualizing specific marker genes in both 
datasets.

Next, we annotate a second healthy query dataset (Tata) [35] using the original and updated 
reference to show that cells in this new query dataset will indeed be mapped to the new 
Meyer cell types we added to the hierarchy. The majority of the predictions remained 
unchanged (72.1%, Figure S12). When the predictions differ, cells are often annotated as a 
Meyer cell type which is a subpopulation of the original annotation (18.4%). A clear example 
is the T cells: cells previously annotated as CD4+ or CD8+ T cells are now annotated as a 
subpopulation (Figure 2E). These new annotations are supported by the expression of marker 
genes (Figure 2F, S13). 

4.3.3 treeArches identifies unseen disease-associated cell types 
in the query data

Next, we show how we can use treeArches to detect previously unseen cell types in idiopathic 
pulmonary fibrosis (IPF) samples [37]. This dataset was mapped on the HLCA with scArches 
(Figure 3A-C). Ideally, we would use scHPL to update the hierarchy with the cell types from 
this query dataset. A downside of the original annotations, however, is that the resolution 
is very low. Cells are, for instance, only annotated as endothelial cells. Therefore, we used 
scHPL to predict the labels of the IPF data and compare those predictions to the original 
annotations (Figure 3D). In the predictions, we see some interesting differences between the 
IPF and healthy cells. 

For the IPF cells, many macrophages and epithelial cells are rejected, while almost none 
for the healthy cells. Furthermore, most healthy Col1+ cells are predicted to be alveolar 
fibroblasts, while the diseased Col1+ are mainly SM-activated stress response cells. In all 
datasets, however, we notice confusion between the B cells and dendritic cells. Based on 
marker gene expression, the cells originally annotated as B cells and dendritic cells are more 
likely to be plasma cells and B cells respectively (Figure S14). The cells originally annotated 
as dendritic cells also overlap in the UMAP with the lymphoid lineage mainly instead of the 
myeloid lineage (Figure 3A-B). 

Next, we annotated the cells at a higher resolution (see Methods) and used these annotations 
to update the hierarchy (Figure S15). In the updated hierarchy, the healthy and IPF transitioning 
epithelial cells are not present in the reference atlas and are now correctly added as a new 
cell type. As expected, we also see some differences in how the healthy and IPF cell types 
were added to the tree. IPF alveolar macrophage proliferating cells, for instance, are seen 
as new, while the healthy cells match with the same cell type in the hierarchy. For other IPF 
macrophage cell types, however, this is not the case even though many cells were rejected 
previously. Comparing the new annotations with the previously obtained predictions and the 
matches in the hierarchy, we notice that there are still many macrophages rejected (Figure 
3E). For most IPF cell types, however, only a subset of the cells is rejected. For instance, 
for the IPF monocyte-derived macrophages (Md-M), 486 cells are rejected and 750 are 
predicted to be Md-M. Therefore, the two cell types are still matched. Comparing the two 
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Figure 3. Identifying diseased cells in IPF data. A–C) UMAPs show the HLCA and IPF datasets after alignment. The 
cells are colored according to their cell type or condition. D) Heatmap showing the predicted labels by scHPL and 
original labels. The dark boundaries indicate the hierarchy of the reference tree. E) Sankey diagram showing the new 
annotations and predictions for the macrophages for the IPF condition. F) Expression of SPP1 in the different cell 
types of the reference and query datasets.
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IPF ‘subtypes’ of Md-M, the top differentially expressed gene is SPP1 (adjusted p-value = 
9.9e-20). Monocytes and macrophages expressing SPP1 are known to be a hallmark of IPF 
pathogenesis [38,39]. The rejected Md-M cells are the only group of cells expressing SPP1 
(Figure 3F). For the alveolar and interstitial macrophages, there are 214/493 and 19/276 
cells rejected respectively. In these rejected populations, SPP1 is also upregulated, but only 
in the alveolar macrophages, it is also differentially expressed (adjusted p-value = 0.0011) 
(Figure S16). This could indicate that these rejected cells are also a diseased subpopulation. 
By combining the confusion matrices with the created hierarchy, these diseased subtypes are 
easily found, either directly as the proliferating cells, or by looking at the rejected cells of a 
matched cluster.

4.3.4 treeArches can correctly map cell types across species 

Next, we show how treeArches can be applied to map the relationship between cell types of 
different species. We construct a cell-type hierarchy for the motor cortex of the brain using 
human, mouse, and marmoset data (Table S7) [22]. We integrate the reference datasets, 
mouse and marmoset, using scVI and construct the cell-type hierarchy using scHPL (Figure 
4A-B, S17). Here, we focus on the GABAergic neurons to make the results less cluttered. 
Almost all cell types (5 out of 7) are a perfect match, except for ‘Meis2’ and ‘Sncg’. In the 
latent space, the Meis2 cell types from mouse and marmoset also show no overlap, and both 
cell types were defined using different marker genes (Figure S18A-B). Furthermore, Bakken 
et al. didn’t find a match between these two either [22]. This could indicate that the Meis2 
cells are species-specific and should indeed not match one another. It is unclear why the 
Sncg cell types (559 and 960 cells in mouse and marmoset respectively) do not match. Even 
though the cell types are aligned in the UMAP embedding as expected and the marker genes 
correspond quite well, the cells are rejected based on distance (Figure S18C-D). This means 
that the cells are still too separated in the latent space. Next, we align the human dataset 
to the reference using architectural surgery and add the human cell type to the reference 
hierarchy (Figure 4B-C). Here, the constructed hierarchy looks like what we would expect 
based on the names of the cell types. 

All previous results were obtained using the default parameters (number of neighbors = 50, 
dynamic number of neighbors = True, see Methods), which turned out to be relatively robust 
(Figure S19). The main difference is whether a match is found between the Sncg cell types. 
When increasing the number of neighbors, this match is correctly found.

4.4 Discussion
In this study, we present treeArches, a method to create and extend a reference atlas and 
the corresponding cell type hierarchy. treeArches builds on scArches, which allows users to 
easily map new query datasets to the latent space learned from the reference datasets using 
architectural surgery. Architectural surgery has the advantage that the reference datasets 
are not needed anymore for the mapping and that the latent space corresponding to the 
reference datasets does not change. This last point is especially important for scHPL, which 
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then allows users to match the cell types of multiple labeled datasets to build a cell-type 
hierarchy. If the latent space of all datasets would be altered when a new dataset is added, 
we would have to restart the construction of the tree completely. 

We have shown three different situations where treeArches can be applied: building a 
reference atlas from scratch, extending an existing reference atlas to add new cell types or 
increase the resolution, or using an existing reference atlas to label cells in a new dataset. 
By using the HLCA data, we show an example of how treeArches can be used to extend a 
hierarchy or to label cells in a new dataset. The HLCA reference atlas consists of 16 datasets 
with a well-defined cell-type hierarchy. We show that treeArches can be used to extend this 
hierarchy. For instance, by increasing the resolution of some branches of the tree, but also by 
adding new cell types. We could also detect diseased cell types in the IPF datasets.

Whether building or extending a reference atlas or labeling new cells, it is essential that we 
can detect new cell types, such as disease-specific cell types. To do so, it is important that 
during the mapping, the cell types are not forced to align; the biological variation should 
be preserved. Furthermore, during the classification, there should be a correctly working 
rejection option (i.e. cells are recognized to belong to a new unseen class). Here, we showed 
that this indeed works in all tested scenarios. A disadvantage of our current approach is that 
new cell types are usually added to the root node directly instead of to an intermediate node 
in the hierarchy. However, this is still informative for potential users. It indicates that a certain 
cell type is different from the known cell types in the tree, and by using prior knowledge or 
visualizing potential marker genes such cell types could manually be placed at a different, 
more specific place in the hierarchy.

Due to the extended rejection options, however, it is difficult to match small cell types (less 
than 50 cells). We modified the kNN classifier from scHPL such that the number of neighbors 

Figure 4. Results motor cortex across species. A) UMAP embedding of the integrated reference datasets. B) Learned 
hierarchy when combining mouse and marmoset (step 1) and after adding human (step 2). The color of each node 
represents the dataset(s) from which the cell type originates. C) UMAP embedding after architectural surgery with 
the human dataset.
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automatically decreases when there is a small cell type in the training data, but apparently, 
this is not sufficient in all cases. The number of neighbors is a trade-off between the ability to 
learn a representation for small cell types and the generalizability of the big cell types. 

treeArches relies on the original annotations to extend the cell-type hierarchy. This can be a 
problem in two different situations. If the annotations are missing or at a too low resolution, 
it is impossible to extend the atlas. This was the case with the original annotations of the 
IPF dataset. Alternatively, annotations can have a high resolution, but (partially) incorrect. 
Especially when there is no clear boundary between cell types, experts might disagree on 
where to put the boundary (the threshold for the classifier). Inconsistencies like this might 
result in a hierarchy that looks erroneous at first sight. In those cases, however, treeArches can 
still be more useful than expected. A cell-type hierarchy that looks different than expected, 
is usually a sign that the original annotations are inconsistent (e.g. different thresholds are 
used in different datasets). Certain parts of the dataset, e.g. the cell types that could not be 
added to the tree or caused confusion, can then be reannotated. Furthermore, the tree can 
still be adapted afterwards. Examples of this are the goblet and club cells in the HLCA and 
the megakaryocyte progenitor cells in the PBMC datasets. The learned hierarchy is a good 
starting point. Based on marker gene expression or expert knowledge, cell types can also be 
added to the tree, removed from the tree, or rewired. After manually adapting the tree, the 
classifiers have to be retrained though.

Our proposed method builds upon existing data integration methods. Thus, it naturally 
inherits both advantages and disadvantages linked to these existing models. As previously 
reported [12], the choice of the reference building algorithm and reference atlas itself can 
influence the quality of reference mapping. Therefore, in scenarios where the query dataset 
is strikingly different from the reference, the integrated query will still contain batch effects 
leading to inaccurate estimation of hierarchies in treeArches. This erroneous modeling 
results in weak label transfer results and thus identifies many overlapping cell types between 
query and reference as a new cell type only present in the query. We advise users to choose 
a comprehensive reference atlas and extensively benchmark and screen various data 
integration methods for an optimal reference representation [16]. 

In summary, we present treeArches, a method that can be used to combine multiple labeled 
datasets to create or extend a reference atlas and the corresponding cell-type hierarchy. 
This way we provide users with an easy-to-use pipeline to map new datasets to a current 
reference atlas, match cell types across multiple labeled datasets, and consistently label cells 
in new datasets. With the increasing availability of reference atlases, we envision treeArches 
facilitating the usage of reference atlases allowing users to automatically analyze their 
datasets from label transfer to the automatic identification of novel cell states in the query 
data. In conclusion, treeArches will enable a data-driven path towards consensus-based cell 
type annotation of (human) tissues and will significantly speed up the building and annotation 
of atlases.
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4.5 Code and data availability
treeArches is part of the scArches repository (https://github.com/theislab/scarches). The code 
for scHPL as a standalone package can be found here: https://github.com/lcmmichielsen/
scHPL. All code to reproduce the results and figures can be found at the reproducibility 
GitHub: https://github.com/lcmmichielsen/treeArches-reproducibility. PBMC count data: 
https://drive.google.com/uc?id=1Vh6RpYkusbGIZQC8GMFe3OKVDk5PWEpC. Brain count 
data: https://doi.org/10.5281/zenodo.6786357. PBMC + brain latent space: https://doi.
org/10.5281/zenodo.6786357. HLCA latent space: https://zenodo.org/record/6337966#.
YqmGIidBx3g
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