
Learning cell identities and (post-)transcriptional
regulation using single-cell data
Michielsen, L.C.M.

Citation
Michielsen, L. C. M. (2024, June 13). Learning cell identities and (post-
)transcriptional regulation using single-cell data. Retrieved from
https://hdl.handle.net/1887/3763527

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3763527

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3763527

Hierarchical progressive learning of cell
identities in single-cell data

chapter 3

Lieke Michielsen, Marcel J.T. Reinders, Ahmed Mahfouz

This chapter is published in: Nature Communications (2021) 12: 2799, doi: 10.1038/s41467-021-
23196-8.
Supplementary material is available online at:
https://www.nature.com/articles/s41467-021-23196-8#Sec27

Thesis_LM_final.indd 67Thesis_LM_final.indd 67 24-04-2024 18:54:1724-04-2024 18:54:17

CHAPTER 3

68

Supervised	methods	are	increasingly	used	to	identify	cell	populations	in	single-cell	data.	Yet,	
current	methods	are	limited	in	their	ability	to	learn	from	multiple	datasets	simultaneously,	
are	hampered	by	the	annotation	of	datasets	at	different	resolutions,	and	do	not	preserve	
annotations	 when	 retrained	 on	 new	 datasets.	 The	 latter	 point	 is	 especially	 important	
as researchers cannot rely on downstream analysis performed using earlier versions of
the	 dataset.	 Here,	 we	 present	 scHPL,	 a	 hierarchical	 progressive	 learning	 method	 which	
allows	 continuous	 learning	 from	 single-cell	 data	by	 leveraging	 the	different	 resolutions	of	
annotations	across	multiple	datasets	to	learn	and	continuously	update	a	classification	tree.	
We	evaluate	the	classification	and	tree	learning	performance	using	simulated	as	well	as	real	
datasets and show	that	scHPL	can	successfully	learn	known	cellular	hierarchies	from	multiple	
datasets	while	preserving	the	original	annotations.	scHPL	is	available	at	https://github.com/
lcmmichielsen/scHPL.

3.1 Introduction
Cell	 identification	 is	 an	 essential	 step	 in	 single-cell	 studies	 with	 profound	 effects	 on	
downstream	 analysis.	 For	 example,	 in	 order	 to	 compare	 cell-population-specific	 eQTL	
findings	across	studies,	cell	identities	should	be	consistent	[1]. Currently, cells in single-cell
RNA-sequencing	 (scRNA-seq)	 datasets	 are	 primarily	 annotated	 using	 clustering	 and	 visual	
exploration	techniques,	i.e.	cells	are	first	clustered	into	populations	which	are	subsequently	
named	based	on	the	expression	of	marker	genes.	This	is	not	only	time-consuming,	but	also	
subjective	[2].	The	number	of	cell	populations	identified	in	a	dataset,	for	example,	is	strongly	
correlated with the number of cells analyzed, which results in inconsistency across datasets
[3–5].

Recently, many supervised methods have been developed to replace unsupervised
techniques. The underlying principles of these methods vary greatly. Some methods, for
instance,	rely	on	prior	knowledge	and	assume	that	for	each	cell	population	marker	genes	can	
be	defined	(e.g.	SCINA	[6]	and	Garnett	[7]),	while	others	search	for	similar	cells	in	a	reference	
database	(e.g.	scmap	[8] and Cell-BLAST [9]),	or	train	a	classifier	using	a	reference	atlas	or	a	
labeled	dataset	(e.g.	scPred	[10]	and	CHETAH	[11]).

Supervised methods rely either on a reference atlas or labeled dataset. Ideally, we would
use	 a	 reference	 atlas	 containing	 all	 possible	 cell	 populations	 to	 train	 a	 classifier.	 Such	 an	
atlas,	however,	does	not	exist	yet	and	might	never	be	fully	complete.	In	particular,	aberrant	
cell	populations	might	be	missing	as	a	huge	number	of	diseases	exist	and	mutations	could	
result	in	new	cell	populations.	To	overcome	these	limitations,	some	methods	(e.g.	OnClass)	
rely	on	the	Cell	Ontology	to	identify	cell	populations	that	are	missing	from	the	training	data	
but	do	exist	 in	the	Cell	Ontology	database	 [12].	These	Cell	Ontologies,	however,	were	not	
developed	 for	scRNA-seq	data	specifically.	As	a	consequence,	many	newly	 identified	(sub)
populations	are	missing	and	relationships	between	cell	populations	might	be	inaccurate.	A	
striking	example	of	this	inadequacy	are	neuronal	cell	populations.	Recent	single-cell	studies	
have	 identified	 hundreds	 of	 populations	 [4,13,14], including seven subtypes and 92 cell
populations	in	one	study	only	[5].	In	contrast,	the	Cell	Ontology	currently	includes	only	one	
glutamatergic	neuronal	cell	population	without	any	subtypes.

Thesis_LM_final.indd 68Thesis_LM_final.indd 68 24-04-2024 18:54:1724-04-2024 18:54:17

single-cell Hierarchical Progressive Learning

69

33

Since	no	complete	reference	atlas	is	available,	a	classifier	should	ideally	be	able	to	combine	
the	information	of	multiple	annotated	datasets	and	continue	learning.	Each	time	a	new	cell	
population	is	found	in	a	dataset,	it	should	be	added	to	the	knowledge	of	the	classifier.	We	
advocate that this can be realized with progressive learning, a learning strategy inspired by
humans.	Human	 learning	 is	 a	 continuous	process	 that	never	ends	 [15]. Using progressive
learning, the task complexity is gradually increased, for instance, by adding more classes, but
it	is	essential	that	the	knowledge	of	the	previous	classes	is	preserved	[16,17]. This strategy
allows	 combining	 information	 of	 multiple	 existing	 datasets	 and	 retaining	 the	 possibility	
to	 add	 more	 datasets	 afterwards.	 However,	 it	 cannot	 be	 simply	 applied	 to	 scRNA-seq	
datasets	as	a	constant	terminology	to	describe	cell	populations	is	missing,	which	eliminates	
straightforward	identification	of	new	cell	populations	based	on	their	names.	For	example,	the	
recently	discovered	neuronal	populations	are	typically	identified	using	clustering	and	named	
based on the expression of marker genes. A standardized nomenclature for these clusters
is missing [18],	so	the	relationship	between	cell	populations	defined	in	different	datasets	is	
often	unknown.	

Moreover,	the	level	of	detail	(resolution)	at	which	datasets	are	annotated	highly	depends	on	
the number of cells analyzed [19].	For	instance,	if	a	dataset	is	annotated	at	a	low	resolution,	
it	might	contain	T-cells,	while	a	dataset	at	a	higher	resolution	can	include	subpopulations	of	
T-cells,	such	as	CD4+	and	CD8+	T-cells.	We	need	to	consider	this	hierarchy	of	cell	populations	
in	our	representation,	which	can	be	done	with	a	hierarchical	classifier.	This	has	the	advantage	
that	cell	population	definitions	of	multiple	datasets	can	be	combined,	ensuring	consistency.	
A	 hierarchical	 classifier	 has	 additional	 advantages	 in	 comparison	 to	 a	 classifier	 that	 does	
not	exploit	 this	hierarchy	between	classes	 (here	denoted	as	 ‘flat	classifier’).	One	of	 these	
advantages	is	that	the	classification	problem	is	divided	into	smaller	sub-problems,	while	a	flat	
classifier	needs	to	distinguish	between	many	classes	simultaneously.	Another	advantage	is	
that	if	we	are	not	sure	about	the	annotation	of	an	unlabeled	cell	at	the	highest	resolution,	we	
can	always	label	it	as	an	intermediate	cell	population	(i.e.	at	a	lower	resolution).	

Currently,	 some	 classifiers,	 such	 as	 Garnett,	 CHETAH,	 and	 Moana,	 already	 exploit	 this	
hierarchy between classes [7,11,20].	Garnett	and	Moana	both	depend	on	prior	knowledge	in	
the	form	of	marker	genes	for	the	different	classes.	Especially	for	deeper	annotated	datasets	it	
can	be	difficult	to	define	marker	genes	for	each	cell	population	that	are	robust	across	scRNA-
seq datasets [21,22]. Moreover, we have previously shown that adding prior knowledge is
not	beneficial	[23].	CHETAH,	on	the	contrary,	constructs	a	classification	tree	based	on	one	
dataset	by	hierarchically	clustering	the	reference	profiles	of	the	cell	populations	and	classifies	
new	cells	based	on	the	similarity	to	the	reference	profile	of	that	cell	population.	However,	
simple	flat	classifiers	outperform	CHETAH	[23],	indicating	that	a	successful	strategy	to	exploit	
this	hierarchy	 is	still	missing.	Furthermore,	 these	hierarchical	classifiers	cannot	exploit	 the	
different	 resolutions	 of	 multiple	 datasets	 as	 this	 requires	 adaptation	 of	 the	 hierarchical	
representation.	

Even	if	multiple	datasets	are	combined	into	a	hierarchy,	there	might	be	unseen	populations	
in	an	unlabeled	dataset.	Identifying	these	cells	as	a	new	population	is	a	challenging	problem.	
Although	some	classifiers	have	implemented	an	option	to	reject	cells,	they	usually	fail	when	
being	tested	in	a	realistic	scenario	[23].	In	most	cases,	the	rejection	option	is	implemented	

Thesis_LM_final.indd 69Thesis_LM_final.indd 69 24-04-2024 18:54:1724-04-2024 18:54:17

CHAPTER 3

70

by	 setting	 a	 threshold	 on	 the	 posterior	 probability	 [7,10,23,24]. If the highest posterior
probability does not exceed a threshold, the cell is rejected. By looking at the posterior, the
actual	similarity	between	a	cell	and	the	cell	population	is	ignored.	

In this work, we propose a hierarchical progressive learning approach to overcome these
challenges.	 To	 summarize	 our	 contributions:	 (i)	 we	 exploit	 the	 hierarchical	 relationships	
between	cell	populations	to	be	able	to	classify	data	sets	at	different	resolutions,	(ii)	we	propose	
a	 progressive	 learning	 approach	 that	 updates	 the	 hierarchical	 relationships	 dynamically	
and	consistently,	and	(iii)	we	adopt	an	advanced	rejection	procedure	 including	a	one-class	
classifier	to	be	able	to	discover	new	cell	(sub)populations.	

3.2 Results

3.2.1 Hierarchical progressive learning of cell identities

We	developed	scHPL,	a	hierarchical	progressive	 learning	approach	to	 learn	a	classification	
tree	using	multiple	labeled	datasets	(Figure	1A)	and	use	this	tree	to	predict	the	labels	of	a	new,	
unlabeled	dataset	(Figure	1B).	The	tree	is	learned	using	multiple	iterations	(Methods).	First,	
we	match	the	labels	of	two	datasets	by	training	a	flat	classifier	for	each	dataset	and	predicting	
the	labels	of	the	other	dataset.	Based	on	these	predictions	we	create	a	matching	matrix	(X)	

Figure 1. Schematic overview of scHPL. A)	Overview	of	the	training	phase.	In	the	first	iteration,	we	start	with	two	
labeled	datasets.	The	colored	areas	represent	the	different	cell	populations.	For	both	datasets	a	flat	classifier	(FC1	
&	FC2)	 is	constructed.	Using	this	 tree	and	the	corresponding	dataset,	a	classifier	 is	 trained	for	each	node	 in	 the	
tree	except	 for	 the	root.	We	use	the	trained	classification	tree	of	one	dataset	 to	predict	 the	 labels	of	 the	other.	
The	decision	boundaries	of	the	classifiers	are	indicated	with	the	contour	lines.	We	compare	the	predicted	labels	to	
the	cluster	labels	to	find	matches	between	the	labels	of	the	two	datasets.	The	tree	belonging	to	the	first	dataset	
is	updated	according	to	these	matches,	which	results	 in	a	hierarchical	classifier	 (HC1).	 In	dataset	2,	 for	example,	
subpopulations	of	population	‘1’	of	dataset	1	are	found.	Therefore,	these	cell	populations,	‘A’	and	‘B’,	are	added	as	
children	to	the	‘1’	population.	In	iteration	2,	a	new	labeled	dataset	is	added.	Again	a	flat	classifier	(FC3)	is	trained	
for	this	dataset	and	HC1	is	trained	on	dataset	1	and	2,	combined.	After	cross-prediction	and	matching	the	labels,	we	
update	the	tree	which	is	then	trained	on	all	datasets	1-3	(HC2).	B)	The	final	classifier	can	be	used	to	annotate	a	new	
unlabeled	dataset.	If	this	dataset	contains	unknown	cell	populations,	these	will	be	rejected.

Thesis_LM_final.indd 70Thesis_LM_final.indd 70 24-04-2024 18:54:1724-04-2024 18:54:17

single-cell Hierarchical Progressive Learning

71

33

and	match	the	cell	populations	of	the	two	datasets.	 In	the	matching	process,	we	separate	
different	biological	scenarios,	such	as	a	perfect	match,	merging	or	splitting	cell	populations,	
as	well	as	creating	a	new	population	(Figure	2,	Table	S1).	In	the	following	iterations,	we	add	
one	labeled	dataset	at	a	time	by	training	a	flat	classifier	on	this	new	dataset	and	training	the	
previously	learned	tree	on	all	pre-existing	datasets.	Similar	to	the	previous	iteration,	the	tree	
is	updated	after	cross-prediction	and	matching	of	the	labels.	It	could	happen	that	datasets	
are	inconsistently	labeled	and	the	labels	cannot	be	matched	(Supplementary	Note	1).	In	this	
case,	one	of	the	populations	might	be	missing	from	the	tree.

Either	 during	 tree	 learning	 or	 prediction,	 there	 can	 be	 unseen	 populations.	 Therefore,	
an	efficient	rejection	option	 is	needed,	which	we	do	 in	 two	steps.	First,	we	reject	cells	by	
thresholding	 the	 reconstruction	 error	 of	 a	 cell	 when	 applying	 a	 PCA-based	 dimension	
reduction:	 a	 new,	unknown,	population	 is	 not	 used	 to	 learn	 the	PCA	 transformation,	 and	
consequently will not be properly represented by the selected PCs, leading to a high
reconstruction	 error	 (Methods).	 Second,	 to	 accommodate	 rejections	 when	 the	 new	
population	is	within	the	selected	PCA	domain,	scHPL	adopts	two	alternatives	to	classify	cells:	
a	 linear	and	a	one-class	support	vector	machine	(SVM).	The	 linear	SVM	has	shown	a	high	
performance	in	a	benchmark	of	scRNA-seq	classifiers	[23],	but	has	a	limited	rejection	option.	
Whereas,	the	one-class	SVM	solves	this	as	only	positive	training	samples	are	used	to	fit	a	tight	
decision boundary around [25].

3.2.2 Linear SVM has a higher classification accuracy than one-
class SVM

We	tested	our	hierarchical	classification	scheme	by	measuring	the	classification	performance	
of	 the	 one-class	 SVM	and	 linear	 SVM	on	 simulated,	 PBMC	 (PBMC-FACS)	 and	 brain	 (Allen	
Mouse	Brain)	 data	using	10-,	 10-,	 and	5-fold	 cross-validation	 respectively	 (Methods).	 The	

Figure 2. Schematic examples of different matching
scenarios. A) Perfect match, B)	splitting,	C) merging,
D)	new	population.	The	first	two	columns	represent	a	
schematic	representation	of	two	datasets.	After	cross-
predictions,	 the	 matching	 matrix	 (X) is constructed
using	the	confusion	matrices	(Methods).	We	update	
the tree based on X.

Thesis_LM_final.indd 71Thesis_LM_final.indd 71 24-04-2024 18:54:1724-04-2024 18:54:17

CHAPTER 3

72

simulated	dataset	was	constructed	using	Splatter	[26]	and	consists	of	8,839	cells,	9,000	genes	
and	6	different	 cell	 populations	 (Figure	 S1).	 PBMC-FACS	 is	 the	downsampled	 FACS-sorted	
PBMC	dataset	from	Zheng	et	al.	[27]	and	consists	of	20,000	cells	and	10	cell	populations.	The	
Allen	Mouse	Brain	(AMB)	dataset	is	challenging	as	it	has	deep	annotation	levels	[5],	containing	
92	different	cell	populations	ranging	in	size	from	11	to	1,348	cells.	In	these	experiments,	the	
classifiers	were	trained	on	predefined	trees	(Figure	S1-3).

On	all	datasets,	the	linear	SVM	performs	better	than	the	one-class	SVM	(Figure	3A-D).	The	
simulated	dataset	 is	relatively	easy	since	the	cell	populations	are	widely	separated	(Figure	
S1C).	The	linear	SVM	shows	an	almost	perfect	performance:	only	0.9%	of	the	cells	are	rejected	
(based	on	the	reconstruction	error	only),	which	is	in	line	with	the	adopted	threshold	resulting	
in	1%	false	negatives.	The	one-class	SVM	labels	92.9%	of	the	cells	correctly,	the	rest	is	labeled	
as	an	internal	node	(2.3%)	or	rejected	(4.8%),	which	results	in	a	median	Hierarchical	F1-score	
(HF1-score)	of	0.973,	where	HF1	is	an	F1-score	that	considers	class	importance	across	the	
hierarchy	(Methods).	

As	expected,	the	performance	of	the	classifiers	on	real	data	drops,	but	the	HF1-scores	remain	
higher	than	0.9.	On	both	the	PBMC-FACS	and	AMB	dataset,	the	performance	of	the	linear	

Figure 3. Classification performance. A-C) Boxplots	showing	the	HF1-score	of	the	one-class	and	linear	SVM	during	
n-fold	cross-validation	on	 the	A) simulated (n	=	10),	B)	PBMC-FACS	 (n	=	10),	and	C)	AMB	(n	=	5)	dataset.	 In	 the	
boxplots,	the	middle	(orange)	line	represents	the	median,	the	lower	and	upper	hinge	represent	the	first	and	third	
quartiles,	and	the	lower	and	upper	whisker	represent	the	values	no	further	than	1.5	inter-quartile	range	away	from	
the	lower	and	upper	hinge	respectively.	D)	Barplot	showing	the	percentage	of	true	positives	(TP),	false	negatives	
(FN),	and	false	positives	(FP)	per	classifier	on	the	AMB	dataset.	For	the	TPs	a	distinction	is	made	between	correctly	
predicted leaf nodes and internal nodes. E)	Heatmap	showing	the	percentage	of	unlabeled	cells	per	classifier	during	
the	different	rejection	experiments.	F)	Heatmap	showing	the	F1-score	per	classifier	per	cell	population	on	the	AMB	
dataset.	Grey	indicates	that	a	classifier	never	predicted	a	cell	to	be	of	that	population.	

Thesis_LM_final.indd 72Thesis_LM_final.indd 72 24-04-2024 18:54:1824-04-2024 18:54:18

single-cell Hierarchical Progressive Learning

73

33

SVM	is	higher	than	the	one-class	SVM	(Figure	3B-D).	For	the	AMB	dataset,	we	used	the	same	
cross-validation	 folds	 as	 in	Abdelaal	 et	 al.	 [23], which enables us to compare our results.
When	 comparing	 to	 CHETAH,	 which	 allows	 hierarchical	 classification,	 we	 notice	 that	 the	
linear	SVM	performs	better	based	on	the	median	F1-score	(0.94	vs	0.83).	The	one-class	SVM	
has	a	slightly	lower	median	F1-score	(0.80	vs	0.83),	but	it	has	more	correctly	predicted	cells	
and	less	wrongly	predicted	cells	(Figure	3D).	

The	linear	(hierarchical)	SVM	also	shows	a	better	performance	compared	to	SVMrejection, which
is	a	flat	linear	SVM	with	rejection	option	based	on	the	posterior	probability	and	was	the	best	
classifier	for	this	data	[23]. SVMrejection,	however,	has	a	slightly	higher	median	F1-score	(0.98	vs	
0.94).	This	is	mainly	because	it	makes	almost	no	mistakes,	only	1.7%	of	the	cells	are	wrongly	
labeled	(Figure	3D).	The	number	of	rejected	cells,	on	the	other	hand,	is	not	considered	when	
calculating	the	median	F1-score.	This	number	 is	 relatively	high	 for	SVMrejection	 (19.8%).	The	
linear	SVM,	on	the	contrary,	has	almost	no	rejected	cells,	which	is	also	reflected	in	a	higher	
HF1-score	(Figure	3C).	Because	of	this	large	amount	of	rejections	of	SVMrejection, the one-class
SVM	also	has	a	higher	HF1-score.

On	the	AMB	dataset,	we	observe	that	the	performance	of	all	classifiers	decreases	when	the	
number	of	cells	per	cell	population	becomes	smaller.	The	performance	of	the	one-class	SVM	
is	affected	more	than	the	others	(Figure	3F).	The	one-class	SVM,	for	instance,	never	predicts	
the	‘Astro	Aqp4’	cells	correctly,	while	this	population	is	relatively	different	from	the	rest	as	it	is	
the	only	non-neuronal	population.	This	cell	population,	however,	only	consists	of	eleven	cells.	

In	the	previous	experiments,	we	used	all	genes	to	train	the	classifiers.	Since	the	selection	of	
highly	variable	genes	(HVGs)	is	common	in	scRNA-seq	analysis	pipelines,	we	tested	the	effect	
of	selecting	HVGs	on	the	classification	performance	of	 the	PBMC-FACS	dataset.	We	noted	
that	using	all	genes	results	in	the	highest	HF1-score	for	both	the	linear	and	one-class	SVM	
(Figure	S4).

3.2.3 One-class SVM detects new cells better than linear SVM

Besides	a	high	accuracy,	the	classifiers	should	be	able	to	reject	unseen	cell	populations.	First,	
we	evaluated	the	rejection	option	on	the	simulated	data.	In	this	dataset,	the	cell	populations	
are	distinct,	so	we	expect	that	this	is	a	relatively	easy	task.	We	removed	one	cell	population,	
‘Group	3’,	 from	the	training	set	and	used	this	population	as	a	test	set.	The	one-class	SVM	
outperforms the linear SVM as it correctly rejects all these cells, while the linear SVM rejects
only 38.9% of them.

Next,	we	 tested	 the	 rejection	option	on	 the	AMB	dataset.	Here,	we	did	 four	experiments	
and	each	time	removed	a	node,	 including	all	 its	subpopulations,	from	the	predefined	tree	
(Figure	S3).	We	removed	the	‘L6	IT’	and	‘Lamp5’	cell	populations	from	the	second	layer	of	
the	tree,	and	the	‘L6	IT	VISp	Penk	Col27a1’	and	‘Lamp5	Lsp1’	from	the	third	layer.	When	a	
node is removed from the second layer of the tree, the linear SVM clearly rejects these cells
better	than	the	one-class	SVM	(Figure	3E).	On	the	contrary,	the	one-class	SVM	rejects	leaf	
node	cells	better.	

Thesis_LM_final.indd 73Thesis_LM_final.indd 73 24-04-2024 18:54:1824-04-2024 18:54:18

CHAPTER 3

74

3.2.4 scHPL accurately learns cellular hierarchies

Next,	we	tested	if	we	could	learn	the	classification	trees	for	the	simulated	and	PBMC-FACS	
data	using	scHPL.	In	both	experiments,	we	performed	a	10-fold	cross-validation	and	splitted	
the	 training	 set	 in	 three	different	batches,	Batch	1,	Batch	2,	and	Batch	3,	 to	 simulate	 the	
idea	of	different	datasets.	 To	obtain	different	annotation	 levels	 in	 these	batches,	multiple	
cell	populations	were	merged	into	one	population	in	some	batches,	or	cell	populations	were	
removed	from	certain	batches	(Tables	S2-3).	Batch	1	contains	the	lowest	resolution	and	Batch	
3	the	highest.	When	learning	the	trees,	we	try	all	(six)	different	orders	of	the	batches	to	see	
whether	this	affects	the	tree	learning.	Combining	this	with	the	10-fold	cross-validation,	60	
trees	were	 learned	 in	 total	by	each	classifier.	To	 summarize	 the	 results,	we	constructed	a	
final	tree	in	which	the	thickness	of	an	edge	indicates	how	often	it	appeared	in	the	60	learned	
trees.

The linear and one-class SVM showed stable results during both experiments; all 60 trees -
except	for	two	trees	learned	by	the	one-class	SVM	on	the	PBMC	data	-	look	identical	(Figure	
4A-D).	The	final	 tree	 for	 the	simulated	data	 looks	as	expected,	but	the	tree	 for	 the	PBMC	
data	 looks	 slightly	 different	 from	 the	 predefined	 hematopoietic	 tree	 (Figure	 S2A).	 In	 the	
learned	trees,	CD4+	memory	T-cells	are	a	subpopulation	of	CD8+	instead	of	CD4+	T-cells.	The	
correlation	between	the	centroids	of	CD4+	memory	T-cell	and	CD8+	T-cells	(r	=	0.985±0.003)	
is	also	slightly	higher	than	the	correlation	to	CD4+	T-cells	(r	=	0.975±0.002)	(Figure	S5).	Using	
the	 learned	 tree	 instead	of	 the	predefined	hematopoietic	 tree	 improves	 the	classification	
performance	of	the	linear	SVM	slightly	(HF1-score	=	0.990	vs	0.985).	Moreover,	when	relying	

Figure 4. Tree learning evaluation. Classification	 trees	
learned when using a A, C, E) linear SVM or B, D, F)
one-class SVM during the A, B) simulated, C, D) PBMC-
FACS, and E, F)	simulated	rejection	experiment.	The	 line	
pattern	 of	 the	 links	 indicates	 how	 often	 that	 link	 was	
learned during the 60 training runs. D)	In	2/60	trees,	the	
link	 between	 the	 CD8+	 T-cells	 and	 the	 CD8+	 naive	 and	
CD4+	memory	T-cells	is	missing.	In	those	trees,	the	CD8+	
T-cells	 and	CD8+	naive	T-cells	have	a	perfect	match	and	
the	CD4+	memory	T-cells	are	missing	from	the	tree.	F) In
20/60	 trees,	 the	 link	 between	 ‘Group456’	 and	 ‘Group5’	
is	 missing.	 In	 those	 trees,	 these	 two	 populations	 are	 a	
perfect match.

Thesis_LM_final.indd 74Thesis_LM_final.indd 74 24-04-2024 18:54:1824-04-2024 18:54:18

single-cell Hierarchical Progressive Learning

75

33

on	the	predefined	hematopoietic	tree,	CD4+	memory	T-cells,	CD8+	T-cells,	and	CD8+	naive	
T-cells	were	 also	 often	 confused,	 further	 highlighting	 the	 difficulty	 in	 distinguishing	 these	
populations	based	on	their	transcriptomic	profiles	alone	(Tables	S4-5).	

Next,	we	tested	the	effect	of	the	matching	threshold	(default	=	0.25)	on	the	tree	construction	
by	varying	this	to	0.1	and	0.5.	For	the	linear	SVM,	changing	the	threshold	had	no	effect.	For	
the	one-class	SVM,	we	noticed	a	small	difference	when	changing	the	threshold	to	0.1.	The	
two	trees	that	were	different	using	the	default	threshold	(Figure	4D),	were	now	constructed	
as	the	other	58	trees.	In	general,	scHPL	is	robust	to	settings	of	the	matching	threshold	due	to	
its	reliance	on	reciprocal	classification.	

3.2.5 Missing populations affect tree construction with linear SVM

We	tested	whether	new	or	missing	cell	populations	in	the	training	set	could	influence	tree	
learning.	We	mimicked	this	scenario	using	the	simulated	dataset	and	the	same	batches	as	in	
the	previous	tree	 learning	experiment.	 In	the	previous	experiment,	 ‘Group5’	and	‘Group6’	
were	merged	into	‘Group56’	in	Batch	2,	but	now	we	removed	‘Group5’	completely	from	this	
batch	(Table	S6).	In	this	setup,	the	linear	SVM	misconstructs	all	trees	(Figure	4E).	If	‘Group5’	is	
present	in	one	batch	and	absent	in	another,	the	‘Group5’	cells	are	not	rejected,	but	labeled	as	
‘Group6’.	Consequently,	‘Group6’	is	added	as	a	parent	node	to	‘Group5’	and	‘Group6’.	On	the	
other	hand,	the	one-class	SVM	suffers	less	than	the	linear	SVM	from	these	missing	populations	
and	correctly	learns	the	expected	tree	in	2/3	of	the	cases	(Figure	4F).	In	the	remaining	third	
(20	trees),	‘Group5’	matched	perfectly	with	‘Group456’	and	was	thus	not	added	to	the	tree.	
This occurs only if we have the following order: Batch 1 - Batch 3 - Batch 2 or Batch 3 - Batch
1	-	Batch	2.	Adding	batches	in	increasing	or	decreasing	resolution	consequently	resulted	in	
the correct tree.

3.2.6 Linear SVM can learn the classification tree during an inter-
dataset experiment

Finally,	we	tested	scHPL	 in	a	realistic	scenario	by	using	three	PBMC	datasets	(PBMC-eQTL,	
PBMC-Bench10Xv2,	and	PBMC-FACS)	to	learn	a	classification	tree	and	using	this	tree	to	predict	
the	labels	of	a	fourth	PBMC	dataset	(PBMC-Bench10Xv3)	(Table	1).	Before	applying	scHPL, we
aligned the datasets using Seurat [28].	We	constructed	an	expected	classification	tree	based	
on	the	names	of	the	cell	populations	in	the	datasets	(Figure	5A).	Note	that	matching	based	
on	names	might	result	in	an	erroneous	tree	since	every	dataset	was	labeled	using	different	
clustering	techniques,	marker	genes,	and	their	own	naming	conventions.

When	 comparing	 the	 tree	 learned	 using	 the	 linear	 SVM	 to	 the	 expected	 tree,	we	 notice	
five	differences	 (Figure	5A-B).	 Some	of	 these	differences	are	minor,	 such	as	 the	matching	
of	 monocytes	 from	 the	 Bench10Xv2	 dataset	 to	 myeloid	 dendritic	 cells	 (mDC),	 CD14+	
monocytes,	 and	 the	CD16+	monocytes.	Monocytes	 can	differentiate	 into	mDC	which	 can	
explain their transcriptomic similarity [29].	 Other	 differences	 between	 the	 reconstructed	
and	 the	 expected	 trees	 are	 likely	 the	 result	 of	 (partly)	mislabeled	 cell	 populations	 in	 the	

Thesis_LM_final.indd 75Thesis_LM_final.indd 75 24-04-2024 18:54:1824-04-2024 18:54:18

CHAPTER 3

76

original	 datasets	 (Figure	 S6-15).	 (i)	 According	 to	 the	 expression	 of	 FCER1A (a	marker	 for	
mDC)	and	FCGR3A (CD16+	monocytes),	 the	 labels	of	 the	mDC	and	 the	CD16+	monocytes	
in	the	eQTL	dataset	are	reversed	(Figure	S6-8).	(ii)	Part	of	the	CD14+	monocytes	in	the	FACS	
dataset express FCER1A,	which	is	a	marker	for	mDC	(Figure	S6,	S8-9).	The	CD14+	monocytes	
in the FACS dataset are thus partly mDCs, which explains the match with the mDC from the
eQTL	dataset.	(iii)	Part	of	the	CD4+	T-cells	from	the	eQTL	and	Bench10Xv2	dataset	should	be	
relabeled	as	CD8+	T-cells	(Figure	S6,	S10-13).	In	these	datasets,	the	cells	labeled	as	the	CD8+	
T-cells	only	contain	cytotoxic	CD8+	T-cells,	while	naive	CD8+	T-cells	are	all	 labeled	as	CD4+	
T-cells.	This	mislabeling	explains	why	the	CD8+	naive	T-cells	are	a	subpopulation	of	the	CD4+	
T-cells.	(iv)	Part	of	the	CD34+	cells	 in	the	FACS	dataset	should	be	relabeled	as	pDC	(Figure	
S6,	S14-15),	which	explains	why	the	pDC	are	a	subpopulation	of	the	CD34+	cells.	In	the	FACS	
dataset,	the	labels	were	obtained	using	sorting,	which	would	indicate	that	these	labels	are	
correct.	 The	purity	of	 the	CD34+	 cells,	 however,	was	 significantly	 low	 (45%)	 compared	 to	
other	cell	populations	(92-100%)	[27].	There	is	only	one	difference	,	however,	that	cannot	be	
explained by mislabeling. The NK cells from the FACS dataset do not only match the NK cells
from	the	eQTL	dataset,	but	also	the	CD8+	T-cells.

Cell population Batch 1
eQTL

Batch 2
Bench 10Xv2

Batch 3
FACS

Test dataset
Bench 10Xv3

CD19+	B 812 676 2,000 346

CD34+ 2,000

Monocytes	(MC) 1,194

					CD14+ 2,081 2,000 354

					CD16+ 274 98

CD4+	T 13,523 1,458 960

 Reg. 2,000

 Naive 2,000

 Memory 2,000

CD8+	T 4,195 2,128 962

 Naive 2,000

Megakaryocyte	(MK) 142 433 270

NK cell 429 2,000 194

					CD56+	bright 355

					CD56+	dim 2,415

Dendritic 35

					Plasmacytoid	(pDC) 101

					Myeloid	(mDC) 455

Table 1.	Number	of	cells	per	cell	population	in	the	different	training	datasets	(batches)	and	test	dataset.	Subpopula-
tions	are	indicated	using	an	indent.

Thesis_LM_final.indd 76Thesis_LM_final.indd 76 24-04-2024 18:54:1824-04-2024 18:54:18

single-cell Hierarchical Progressive Learning

77

33

Most cells of the Bench10Xv3 dataset can be correctly annotated using the learned
classification	 tree	 (Figure	 5E).	 Interestingly,	 we	 notice	 that	 the	 CD16+	 monocytes	 are	
predicted to be mDCs and vice versa, which could be explained by the fact that the labels of
the	mDCs	and	the	CD16+	monocytes	were	flipped	in	the	eQTL	dataset.	Furthermore,	part	of	
the	CD4+	T-cells	are	predicted	to	be	CD8+	naïve	T-cells.	In	the	Bench10Xv3,	we	noticed	the	
same	mislabeling	of	part	of	the	CD4+	T-cells	as	in	the	eQTL	and	Bench10Xv2	datasets,	which	
supports	our	predictions	(Figure	S6,	S10-13).	

The	tree	constructed	using	the	one-class	SVM	differs	slightly	compared	to	 the	 linear	SVM	
(Figure	S16A).	Here,	the	monocytes	from	the	Bench10Xv2	match	the	CD14+	monocytes	and	
mDC	(which	are	actually	CD16+	monocytes)	as	we	would	expect.	Next,	the	CD14+	monocytes	
from	 the	 FACS	 dataset	 merge	 the	 CD16+	 monocytes	 (which	 are	 actually	 mDC)	 and	 the	
monocytes.	Using	 the	one-class	 SVM	 the	CD8+	T-cells	 and	NK	 cells	 from	 the	Bench10Xv2	
dataset	are	missing	since	there	was	a	complex	scenario.	The	NK	cells	are	a	relatively	small	
population	in	this	dataset	which	made	it	difficult	to	train	a	classifier	for	this	population.

In	the	previous	experiments,	we	used	the	default	setting	of	Seurat	to	align	the	datasets	(using	
2000	genes).	We	tested	whether	changing	the	number	of	genes	to	1000	and	5000	affects	
the	performance.	When	using	the	one-class	SVM,	the	number	of	genes	does	not	affect	tree	
construction.	For	the	linear	SVM,	we	notice	one	small	difference	when	using	1000	genes:	the	
CD8+	T-cells	from	the	Bench10Xv2	dataset	are	a	subpopulation	of	the	CD8+	T-cells	from	the	
eQTL dataset instead of a perfect match.

Figure 5. PBMC inter-dataset evaluation. A) Expected and B) learned	classification	tree	when	using	a	linear	SVM	on	
the	PBMC	datasets.	The	color	of	a	node	represents	the	agreement	between	dataset(s)	regarding	that	cell	population.
C) Confusion	matrix	when	using	the	learned	classification	tree	to	predict	the	labels	of	PBMC-Bench10Xv3.	The	dark	
boundaries	indicate	the	hierarchy	of	the	constructed	classification	tree.

Thesis_LM_final.indd 77Thesis_LM_final.indd 77 24-04-2024 18:54:1824-04-2024 18:54:18

CHAPTER 3

78

The	 predicted	 labels	 of	 the	 Bench10Xv3	 dataset	 change	 slightly	 when	 using	 a	 different	
number	of	genes	(Figure	S17).	Whether	more	genes	improves	the	prediction,	differs	per	cell	
population.	The	labels	of	the	megakaryocytes,	for	instance,	are	better	predicted	when	more	
genes	are	used,	but	for	the	dendritic	cells	we	observe	the	reverse	pattern.

3.2.7 Mapping brain cell populations using scHPL

Next,	we	applied	scHPL	to	construct	a	tree	which	maps	the	relationships	between	brain	cell	
populations.	 This	 is	 a	 considerably	more	 challenging	 task	 compared	 to	 PBMCs	 given	 the	
large	number	of	cell	populations	as	well	as	the	fact	that	brain	cell	types	are	not	consistently	
annotated. First, we combined two datasets from the primary visual cortex of the mouse
brain, AMB2016 and AMB2018 [4,5].	AMB2018	contains	more	cells	(12,771	vs.	1,298)	and	is	
clustered	at	a	higher	resolution	(92	cell	populations	vs.	41)	compared	to	AMB2016.	Before	
applying	scHPL, we aligned the datasets using Seurat [28].	Using	scHPL	with	a	 linear	SVM	
results	 in	 an	 almost	 perfect	 tree	 (Figure	 6).	We	 verified	 these	 results	 by	 comparing	 our	
constructed tree to cluster correspondences in Extended Data Fig. 6 from Tasic et al. [5].
Since	AMB2018	is	clustered	at	a	higher	resolution,	most	populations	are	subpopulations	of	
AMB2016,	which	are	all	correctly	identified	by	scHPL.	Conversely,	three	L4	populations	from	
AMB2016	were	merged	into	one	population	(L4	IT	VISp	Rspo1)	from	AMB2018	[5], forming a
continuous	spectrum.	This	relation	was	also	automatically	identified	using	scHPL	(Figure	6).	
Compared to the results from Tasic et al. [5],	one	cell	population	from	AMB2018	is	attached	
to	a	different	parent	node.	 scHPL	assigned	 ‘L6b	VISp	Col8a1	Rprm’	as	a	 subpopulation	of	
‘L6a	Sla’	instead	of	‘L6b	Rgs12’.	This	population,	however,	does	not	express	Rgs12, but does
express Sla (Figure	S18),	supporting	the	matching	identified	by	scHPL.	Three	cell	populations	
could not be added to the tree due to complex scenarios. According to Extended Data Fig. 6
from Tasic et al. [5],	these	AMB2018	populations	are	a	subpopulation	of	multiple	AMB2016	
subpopulations.	

The AMB2016 and AMB2018 datasets were generated and analyzed by the same group and
hence the cluster matching is certainly easier than a real-life scenario. Therefore, we tested
scHPL	also	on	a	complicated	scenario	with	brain	datasets	that	are	sequenced	using	different	
protocols	and	by	different	labs	(Table	S7,	Figure	S19).	We	used	three	datasets	(Zeisel,	Tabula	
Muris,	 and	 Saunders)	 to	 construct	 the	 tree	 (Figure	 7A-D)	 [2,30,31].	 The	 Zeisel	 dataset	 is	
annotated	at	two	resolutions.	Before	applying	scHPL, we aligned the datasets using Seurat
[28].	First,	we	constructed	a	tree	using	a	linear	SVM	based	on	the	low	resolution	of	Zeisel.	We	
started	with	the	Saunders	dataset	and	added	Zeisel	(Figure	7E).	This	is	a	clear	illustration	of	
the	possible	scenarios	scHPL	can	manage.	Some	populations	are	a	perfect	match	between	the	
two	datasets	(e.g.	neurons),	some	populations	from	Saunders	are	splitted	(e.g.	astrocytes),	
some	are	merged	(e.g.	macrophages	and	microglia),	and	some	populations	from	Zeisel	have	
no	match	(e.g.	Ttr).	Next,	we	updated	the	tree	by	adding	the	Tabula	Muris	dataset	(Figure	
7F).	Here,	we	 found	matches	 that	would	not	have	been	possible	 to	 identify	by	 relying	on	
the assigned cell type labels to map cell types. For example, mural cells from Saunders are a
perfect	match	with	the	brain	pericytes	from	the	Tabula	Muris.	The	results	of	scHPL	with	the	
one-class	SVM	were	almost	identical	to	the	linear	SVM	(Figure	S20A).	

Thesis_LM_final.indd 78Thesis_LM_final.indd 78 24-04-2024 18:54:1824-04-2024 18:54:18

single-cell Hierarchical Progressive Learning

79

33

Figure 6. Constructed hierarchy for the
AMB datasets. Learned	classification	tree	
after	applying	scHPL	with	a	linear	SVM	on	
the AMB2016 and AMB2018 datasets. A
green	 node	 indicates	 that	 a	 population	
from the AMB2016 and AMB2018 dataset
had	 a	 perfect	 match.	 Three	 populations	
from the AMB2018 dataset are missing
from the tree: ‘Pvalb Sema3e Kank4’, ‘Sst
Hpse	Sema3c’,	and	‘Sst	Tac1	Tacr3’.	

Thesis_LM_final.indd 79Thesis_LM_final.indd 79 24-04-2024 18:54:1924-04-2024 18:54:19

CHAPTER 3

80

Next,	 we	 used	 the	 resulting	 tree	 to	 predict	 the	 labels	 of	 a	 fourth	 independent	 dataset	
(Rosenberg)	 [32].	 The	predictions	 from	 the	 linear	 and	 the	one-class	 SVM	are	 very	 similar	
(Figure	 7G,	 S20B).	 The	 only	 difference	 is	 that	 the	 linear	 SVM	 correctly	 predicts	 some	
progenitor	or	precursor	neuronal	populations	from	Rosenberg	to	be	‘neurogenesis’	while	the	
one-class	SVM	rejects	these	populations.

To	assess	the	effect	of	the	annotation	resolution,	we	repeated	the	analysis	using	the	higher	
resolution	 annotation	 from	 the	 Zeisel	 dataset	 (Figure	 S21-23).	 Here,	we	 noticed	 that	 the	
‘brain	pericytes	(TM)’	and	‘pericytes	(Zeisel)’	-	two	populations	one	would	easily	match	based	
on	the	names	only	-	are	not	in	the	same	subtree.	‘Brain	pericyte	(TM)’	forms	a	perfect	match	

Figure 7. Brain inter-dataset evaluation. A-D) UMAP	embeddings	of	the	datasets	after	alignment	using	Seurat	v3.	
E) Learned	hierarchy	when	starting	with	the	Saunders	dataset	and	adding	Zeisel	with	linear	SVM. F) Updated tree
when the Tabula Muris dataset is added. G) Confusion	matrix	when	using	the	learned	classification	tree	to	predict	
the	labels	of	Rosenberg.	The	dark	boundaries	indicate	the	hierarchy	of	the	classification	tree.

Thesis_LM_final.indd 80Thesis_LM_final.indd 80 24-04-2024 18:54:1924-04-2024 18:54:19

single-cell Hierarchical Progressive Learning

81

33

with	‘mural	(Saunders)’	and	‘vascular	smooth	muscle	cells	(Zeisel)’,	while	‘pericytes	(Zeisel)’	
is	a	subpopulation	of	‘endothelial	stalk	(Saunders)’	and	‘endothelial	cell	(TM)’	(Figure	S22-23).	
In the UMAP embedding of the integrated datasets, the ‘pericytes’ and ‘brain pericyte’ are
at	a	different	location,	but	they	do	overlap	with	the	cell	populations	they	were	matched	with	
(Figure	S21).	This	highlights	the	power	of	scHPL	matching	rather	than	name-based	matching.

3.3 Discussion
In	 this	 study,	 we	 showed	 that	 scHPL	 can	 learn	 cell	 identities	 progressively	 from	multiple	
reference	datasets.	We	showed	that	using	our	approach	the	labels	of	two	AMB	datasets	can	
successfully	be	matched	to	create	a	hierarchy	containing	mainly	neuronal	cell	populations	and	
that we can combine three other brain datasets to create a hierarchy containing mainly non-
neuronal	cell	populations.	 In	both	experiments,	we	discovered	new	relationships	between	
cell	populations,	such	as	the	mapping	of	‘L6b	VISp	Col8a1	Rprm’	as	a	subpopulation	of	‘L6b	
Sla’	 instead	 of	 ‘L6b	 Rgs12’.	 This	 observation	would	 not	 be	 possible	 to	make	 by	manually	
matching	populations	based	on	the	assigned	labels,	highlighting	the	power	of	automatically	
constructing	 cellular	 hierarchies.	 In	 this	 case,	 the	 Cell	 Ontology	 database	 could	 also	 not	
be	used	 to	 verify	 this	 relationship	 since	many	brain	 cell	 populations	are	missing.	Most	of	
these	populations	have	recently	been	annotated	using	scRNA-seq	and	there	is	a	wide	lack	
of	 consistency	 in	 population	 annotation	 and	 matching	 between	 studies	 [18].	 scHPL	 can	
potentially	be	used	to	map	these	relations,	irrespective	of	the	assigned	labels,	and	improve	
the	Cell	Ontology	database.

When	combining	multiple	datasets	to	construct	a	tree,	we	expect	that	cell	populations	are	
annotated	correctly.	However,	in	the	PBMC	inter-dataset	experiment,	this	was	not	the	case.	
At	first	 sight,	 the	constructed	 tree	 looked	erroneous,	but	 the	expression	of	marker	genes	
revealed	 that	 (parts	of)	 several	 cell	 populations	were	mislabeled.	Here,	we	 could	use	 the	
constructed	tree	as	a	warning	that	there	was	something	wrong	with	the	original	annotations.	

In	general,	scHPL	is	robust	to	sampling	differences	between	datasets	or	varying	parameters	
such as the matching threshold or the number of genes used. The brain datasets used to
construct	the	tree,	for	instance,	varied	greatly	in	population	sizes,	which	did	not	cause	any	
difficulties.	This	is	mainly	because	we	rely	on	reciprocal	classification.	A	match	between	cell	
populations	that	is	missed	when	training	a	classifier	on	one	dataset	to	predict	labels	of	the	
other,	can	still	be	captured	by	the	classifier	trained	on	the	other	dataset.

Since	batch	effects	are	inevitable	when	combining	datasets,	we	require	datasets	to	be	aligned	
before	 running	 scHPL.	 In	all	 inter-dataset	experiments	 in	 this	manuscript,	we	used	Seurat	
V3 [28]	for	the	alignment,	but	we	would	like	to	emphasize	that	scHPL	is	not	dependent	on	
Seurat	and	can	be	combined	with	any	batch	correction	tool,	such	as	more	computationally	
efficient	methods	like	Harmony	[33].	A	current	limitation	of	these	tools	is	that	when	a	new	
dataset	is	added,	the	alignment	-	and	consequently	also	scHPL	-	has	to	be	rerun.	An	interesting	
alternative	would	be	to	project	the	new	dataset	to	a	 latent	space	 learned	using	reference	
dataset(s),	using	scArches	[34]	for	example.	In	that	case,	scHPL	does	not	have	to	be	rerun	but	
can be progressively updated.

Thesis_LM_final.indd 81Thesis_LM_final.indd 81 24-04-2024 18:54:1924-04-2024 18:54:19

CHAPTER 3

82

The	 batch	 effects	 between	 the	 datasets	 make	 it	 more	 difficult	 to	 troubleshoot	 errors.	
Generally,	it	will	be	hard	to	resolve	whether	mistakes	in	the	constructed	tree	are	caused	by	
the	erroneous	alignment	of	datasets	or	by	mismatches	created	by	scHPL.	

We	would	like	to	note	though	that	there	are	inherent	limitations	to	the	assumption	that	cell	
populations	have	hierarchical	relationships.	While	this	assumption	is	widely	adopted	in	single	
cell	studies	as	well	as	the	Cell	Ontology,	there	are	 indeed	situations	 in	which	a	tree	 is	not	
adequate.	For	instance,	situations	in	which	cells	dedifferentiate	into	other	cell	types,	such	as	
beta to alpha cell conversions in type2 diabetes [35,36].

Considering	 the	classification	performance,	we	showed	that	using	a	hierarchical	approach	
outperforms	flat	classification.	On	the	AMB	dataset,	the	linear	SVM	outperformed	SVMrejection,
which	was	the	best	performing	classifier	on	this	dataset	[23]. In contrast to SVMrejection, the
linear	SVM	did	not	reject	any	of	the	cells	but	labeled	them	as	an	intermediate	cell	population.	
During	this	experiment,	there	were	no	cells	of	unknown	populations.	Correct	intermediate	
predictions	instead	of	rejection	are	therefore	beneficial	since	it	provides	the	user	with	at	least	
some	information.	When	comparing	the	linear	SVM	and	one-class	SVM,	we	noticed	that	the	
accuracy of the linear SVM is equal to or higher than the one-class SVM on all datasets. For
both	classifiers,	we	saw	a	decrease	in	performance	on	populations	with	a	small	number	of	
cells,	but	for	the	one-class	SVM	this	effect	was	more	apparent.	

Since	the	one-class	SVM	has	a	low	performance	on	small	cell	populations,	it	also	cannot	be	
used	to	combine	datasets	which	consist	of	small	populations.	If	the	classification	performance	
is	 low,	 it	 will	 also	 not	 be	 possible	 to	 construct	 the	 correct	 tree.	 On	 the	 other	 hand,	 the	
performance	 of	 the	 linear	 SVM	 seems	 to	 be	 robust	 to	 small	 populations	 throughout	 our	
experiments.	This	classifier	can	thus	better	be	used	when	combining	multiple	datasets	with	
small	populations.

When	testing	the	rejection	option,	the	one-class	SVM	clearly	outperforms	the	linear	SVM	by	
showing	a	perfect	performance	on	the	simulated	dataset.	Moreover,	when	cell	populations	
are missing from the simulated data, the linear SVM cannot learn the correct tree anymore,
in contrast to the one-class SVM. This suggests that the one-class SVM is preferred when cell
populations	are	missing,	although	on	the	AMB	dataset,	the	rejection	option	of	both	classifiers	
was not perfect.

In	 summary,	 we	 present	 a	 hierarchical	 progressive	 learning	 approach	 to	 automatically	
identify	cell	identities	based	on	multiple	datasets	with	various	levels	of	subpopulations.	We	
show	 that	we	can	accurately	 learn	cell	 identities	and	 learn	hierarchical	 relations	between	
cell	populations.	Our	results	 indicate	that	choosing	between	a	one-class	and	a	 linear	SVM	
is	 a	 trade-off	 between	 achieving	 a	 higher	 accuracy	 and	 the	 ability	 to	 discover	 new	 cell	
populations.	Our	approach	can	be	beneficial	 in	single-cell	 studies	where	a	comprehensive	
reference atlas is not present, for instance, to annotate datasets consistently during a cohort
study.	The	first	available	annotated	datasets	can	be	used	to	build	the	hierarchical	tree,	which	
could subsequently can be used to annotate cells in the other datasets.

Thesis_LM_final.indd 82Thesis_LM_final.indd 82 24-04-2024 18:54:2024-04-2024 18:54:20

single-cell Hierarchical Progressive Learning

83

33

3.4 Methods

3.4.1 Hierarchical progressive learning

Within	scHPL, we	use	a	hierarchical	classifier	instead	of	a	flat	classifier.	A	flat	classifier	is	a	
classifier	 that	 doesn’t	 consider	 a	 hierarchy	 and	distinguishes	between	 all	 cell	 populations	
simultaneously.	For	the	AMB	dataset,	a	flat	classifier	will	have	to	learn	the	decision	boundaries	
between	all	92	cell	populations	in	one	go.	Alternatively,	a	hierarchical	classifier	divides	the	
problem	into	smaller	subproblems.	First	it	learns	the	difference	between	the	3	broad	classes:	
GABAergic	 neurons,	 glutamatergic	 neurons,	 and	 non-neuronal	 cells.	 Next,	 it	 learns	 the	
decision	boundaries	between	the	six	subtypes	of	GABAergic	neurons	and	the	eight	subtypes	
of glutamatergic neurons, separately. Finally, it will learn the decision boundaries between
the	different	cell	populations	within	each	subtype	separately.	

3.4.2 Training the hierarchical classifier

The	 training	procedure	of	 the	hierarchical	 classifier	 is	 the	same	 for	every	 tree:	we	 train	a	
local	classifier	for	each	node	except	the	root.	This	local	classifier	is	either	a	one-class	SVM	or	
a	linear	SVM.	We	used	the	one-class	SVM	(svm.OneClassSVM(nu = 0.05))	from	the	
scikit-learn library in Python [37].	A	one-class	classifier	only	uses	positive	training	samples.	
Positive	training	samples	include	cells	from	the	node	itself	and	all	 its	child	nodes.	To	avoid	
overfitting,	we	select	the	first	100	principal	components	(PCs)	of	the	training	data.	Next,	we	
select	informative	PCs	for	each	node	separately	using	a	two-sided	two-sample	t-test	between	
the	 positive	 and	 negative	 samples	 of	 a	 node	 (α	 <	 0.05,	 Bonferroni	 corrected).	 Negative	
samples are selected using the siblings policy [38], i.e. sibling nodes include all nodes that
have the same ancestor, excluding the ancestor itself. If a node has no siblings, cells labeled
as	the	parent	node,	but	not	the	node	itself	are	considered	negative	samples.	In	some	rare	
cases,	the	Bonferroni	correction	was	too	strict	and	no	PCs	were	selected.	In	those	cases,	the	
five	PCs	with	the	smallest	p-values	were	selected.	For	the	 linear	SVM,	we	used	the	svm.
LinearSVC()	function	from	the	scikit-learn	library.	This	classifier	is	trained	using	positive	
and	 negative	 samples.	 The	 linear	 SVM	 applies	 L2-regularization	 by	 default,	 so	 no	 extra	
measures to prevent overtraining were necessary.

3.4.3 The reconstruction error

The	 reconstruction	error	 is	 used	 to	 reject	 unknown	 cell	 populations.	We	use	 the	 training	
data to learn a suitable threshold which can be used to reject cells by doing a nested 5 fold
cross-validation.	A	PCA	(ncomponents	=	100)	is	learned	on	the	training	data.	The	test	data	is	then	
reconstructed	by	first	mapping	the	data	to	the	selected	PCA	domain,	and	then	mapping	the	
data	back	to	the	original	space	using	the	inverse	transformation	(hence	the	data	lies	within	
the	plane	spanned	by	the	selected	PCs).	The	reconstruction	error	is	the	difference	between	
the	original	data	and	the	reconstructed	data	(in	other	words,	the	distance	of	the	original	data	
to	the	PC	plane).	The	median	of	the	qth (default	q =	0.99)	percentile	of	the	errors	across	the	

Thesis_LM_final.indd 83Thesis_LM_final.indd 83 24-04-2024 18:54:2024-04-2024 18:54:20

CHAPTER 3

84

test data is used as threshold. By increasing or decreasing this parameter, the number of false
negatives	can	be	controlled.	Finally,	we	apply	a	PCA	(ncomponents	=	100)	to	the	whole	dataset	to	
learn	the	transformation	that	can	be	applied	to	new	unlabeled	data	later.

3.4.4 Predicting the labels

First,	we	look	at	the	reconstruction	error	of	a	new	cell	to	determine	whether	 it	should	be	
rejected.	If	the	reconstruction	error	is	higher	than	the	threshold	determined	on	the	training	
data,	the	cell	 is	rejected.	If	not,	we	continue	with	predicting	its	 label.	We	start	at	the	root	
node,	which	we	denote	as	parent	node	and	use	the	local	classifiers	of	its	children	to	predict	
the label of the cell using the predict()	 function,	and	score	 it	using	the	decision_
function(), both from the scikit-learn package. These scores represent the signed
distance	of	a	cell	to	the	decision	boundary.	When	comparing	the	results	of	the	local	classifiers,	
we	distinguish	three	scenarios:

1. All	child	nodes	label	the	cell	negative.	If	the	parent	node	is	the	root,	the	new	cell	is	
rejected.	Otherwise	we	have	an	internal	node	prediction	and	the	new	cell	is	labeled	
with the name of the parent node.

2. One	child	node	labels	the	cell	positive.	If	this	child	node	is	a	leaf	node,	the	sample	is	
labeled	with	the	name	of	this	node.	Otherwise,	this	node	becomes	the	new	parent	
and	we	continue	with	its	children.	

3. Multiple	child	nodes	label	the	cell	positive.	We	only	consider	the	child	node	with	the	
highest	score	and	continue	as	in	scenario	two.	

3.4.5 Reciprocal matching labels and updating the tree

Starting	with	two	datasets,	D1 and D2,	and	the	two	corresponding	classification	trees	(which	
can	be	either	hierarchical	or	flat),	we	would	like	to	match	the	labels	of	the	datasets	and	merge	
the	classification	trees	accordingly	into	a	new	classification	tree	while	being	consistent	with	
both	input	classification	trees	(Figure	1).	We	do	this	in	two	steps:	first	matching	the	labels	
between	the	two	dataset	and	then	updating	the	tree.

Reciprocal matching labels. We	first	cross-predict	the	labels	of	the	datasets:	we	use	the	classi-
fier	trained	on	D1 to predict the labels of D2	and	vice	versa.	We	construct	confusion	matrices,	
C1 and C2, for D1 and D2,	respectively.	Here,	C1ij	indicates	how	many	cells	of	population	i of
D1 are	predicted	to	be	population	j of D2.	This	prediction	can	be	either	a	leaf	node,	internal	
node	or	a	rejection.	As	the	values	 in	C1 and C2 are highly dependent on the size of a cell
population,	we	normalize	the	rows	such	that	the	sum	of	every	row	is	one,	now	indicating	the	
fraction	of	cells	of	population	i in D1	that	have	been	assigned	to	population	j in D2:

NC
C
Cij
ij

ijj

1
1

1
�

��

Clearly,	a	high	fraction	is	indicative	of	matching	population	 i in D1	with	population	 j in D2.
Due	to	splitting,	merging,	or	new	populations	between	both	datasets,	multiple	relatively	high	

Thesis_LM_final.indd 84Thesis_LM_final.indd 84 24-04-2024 18:54:2024-04-2024 18:54:20

single-cell Hierarchical Progressive Learning

85

33

fractions	can	occur	(e.g.	if	a	population	i	is	split	in	two	populations	j1 and j2 due to D2 being of
a	higher	resolution,	both	fractions	NCij1 and NCij2	will	be	approximately	0.5).	To	accommodate	
for	these	operations,	we	allow	multiple	matches	per	population.	

To	convert	these	fractions	into	matches,	NC1 and NC2 are converted into binary confusion
matrices, BC1 and BC2,	where	 a	 1	 indicates	 a	match	 between	 a	 population	 in	D1 with a
population	in	D2,	and	vice	versa.	To	determine	a	match,	we	take	the	value	of	the	fraction	
as	well	 as	 the	difference	with	 the	other	 fractions	 into	account.	This	 is	done	 for	each	 row	
(population)	of	NC1 and NC2	 separately.	When	considering	 row	 i from NC1, we	first rank
all	 fractions,	 then	 the	highest	 fraction	will	be	set	 to	1	 in	BC1,	 after	which	all	 fractions	 for	
which	the	difference	with	the	preceding	(higher)	fraction	is	less	than	a	predefined	threshold	
(default	=	0.25)	will	also	be	set	to	1	in	BC1.

To arrive at reciprocal matching between D1 and D2, we combine BC1 and BC2 into matching
matrix X	(Figure	2):	

X BC BCT� �1 2

The columns in X	 represent	 the	 cell	 populations	 of	 D1 and the rows represent the cell
populations	of	D2. If Xij = 2,	this	indicates	a	reciprocal	match	between	cell	population	i from
D2	and	cell	populations	j from D1. Xij = 1 indicates a one-sided match, and Xij = 0 represents
no match.

Tree updating. Using the reciprocal matches between D1 and D2 represented in X, we update
the hierarchical tree belonging to D1 to incorporate the labels and tree structure of D2.	We	
do that by handling the correspondences in X elementwise. For a non-zero value in X, we
check whether there are other non-zero values in the corresponding row and column to
identify	which	tree	operation	we	need	to	take	(such	as	split/merge/create).	As	an	example,	if	
we	encounter	a	split	for	population	i in D1 into j1 and j2, we will create new nodes for j1 and
j2 as child nodes of node i in the hierarchical tree of D1. Figure 2 and Table S1 explain the
four	most	common	scenarios:	a	perfect	match,	splitting	nodes,	merging	nodes,	and	a	new	
population.	All	other	scenarios	are	explained	in	Supplementary	Note	1.	After	an	update,	the	
corresponding values in X	are	set	to	zero	and	we	continue	with	the	next	non-zero	element	of	
X. If the matching is impossible, the corresponding values in X are thus not set to zero. If we
have evaluated all elements of X,	and	there	are	still	non-zero	values,	we	will	change	X into a
strict matrix, i.e. we further only consider reciprocal matches, so all ‘1’s are turned into a ‘0’
with	some	exceptions	(Supplementary	Note	2).	We	then	again	evaluate	X element wise once
more.

3.4.6 Evaluation

Hierarchical F1-score. We	 use	 the	 hierarchical	 F1-score	 (HF1-score)	 to	 evaluate	 the	
performance	of	the	classifiers	[39].	We	first	calculate	the	hierarchical	precision	(hP)	and	recall	
(hR):	

hP
P T

P
i ii

ii

� ��
�

 hR
P T

T
i ii

ii

� ��
�

Thesis_LM_final.indd 85Thesis_LM_final.indd 85 24-04-2024 18:54:2124-04-2024 18:54:21

CHAPTER 3

86

Here,	Pi	is	a	set	that	contains	the	predicted	cell	population	for	a	cell	i and all the ancestors of
that node, Ti	contains	the	true	cell	population	and	all	its	ancestors,	and P Ti i∩ is the overlap
between	these	two	sets.	The	HF1-score	is	the	harmonic	mean	of	hP and hR:

HF1 2 2� �
hP hR
hP hR

*

Median F1-score. We	use	 the	median	F1-score	 to	compare	 the	classification	performance	
to	 other	methods.	 The	 F1-score	 is	 calculated	 for	 each	 cell	 population	 in	 the	 dataset	 and	
afterwards	the	median	of	these	scores	is	taken.	Rejected	cells	and	internal	predictions	are	
not	considered	when	calculating	this	score.

3.4.7 Datasets

Simulated data. We	used	the	R-package	Splatter	(V1.6.1)	to	simulate	a	hierarchical	scRNA-
seq dataset that consists of 8,839 cells and 9,000 genes and represents the tree shown in
Figure	S1A	(Supplementary	Note	3)	[26].	We	chose	this	 low	number	of	genes	to	speed	up	
the	computation	time.	In	total	there	are	six	different	cell	populations	of	approximately	1,500	
cells	each.	As	a	preprocessing	step,	we	log-transformed	the	count	matrix	(log ()2 1count +).	A	
UMAP embedding of the simulated dataset shows it indeed represents the desired hierarchy
(Figure	S1C).

Peripheral Blood Mononuclear Cells (PBMC) scRNA-seq datasets. We	 used	 four	 different	
PBMC datasets: PBMC-FACS, PBMC-Bench10Xv2, PBMC-Bench10Xv3, and PBMC-eQTL. The
PBMC-FACS	dataset	is	the	downsampled	FACS-sorted	PBMC	dataset	from	Zheng	et	al.	[27].
Cells	were	first	 FACS-sorted	 into	 ten	different	 cell	 populations	 (CD14+	monocytes,	 CD19+	
B	 cells,	 CD34+	 cells,	 CD4+	 helper	 T-cells,	 CD4+/CD25+	 regulatory	 T-cells,	 CD4+/CD45RA+/
CD25−	 naive	 T-cells,	 CD4+/CD45RO+	 memory	 T-cells,	 CD56+	 natural	 killer	 cells,	 CD8+	
cytotoxic	T-cells,	CD8+/CD45RA+	naive	cytotoxic	T-cells)	and	sequenced	using	10X	Chromium	
[27].	Each	cell	population	consists	of	2,000	cells.	The	total	dataset	consists	of	20,000	cells	
and	 21,952	 genes.	 During	 the	 cross-validation	 on	 the	 PBMC-FACS	 dataset,	we	 tested	 the	
effect	of	selecting	HVG.	We	used	the	‘seurat_v3’	flavor	of	scanpy	to	select	500,	1000,	2000,	
and	5000	HVG	on	the	training	set	[28,40]. The PBMC-Bench10Xv2 and PBMC-Bench10Xv3
datasets are the PbmcBench pbmc1.10Xv2 and pbmc1.10Xv3 datasets from Ding et al.
[41].	These	datasets	consist	of	6,444	and	3,222	cells	 respectively,	22,280	genes,	and	nine	
different	 cell	 populations.	Originally	 the	PBMC-Bench10Xv2	dataset	 contained	CD14+	 and	
CD16+	monocytes.	We	merged	these	into	one	population	called	monocytes	to	introduce	a	
different	 annotation	 level	 compared	 to	 the	other	 PBMC	datasets.The	PBMC-eQTL	dataset	
was sequenced using 10X Chromium and consists of 24,439 cells, 22,229 genes, and eleven
different	cell	populations	[42].

Brain scRNA-seq datasets. We	 used	 two	 datasets	 from	 the	 mouse	 brain,	 AMB2016	 and	
AMB2018,	 to	 look	at	different	 resolutions	of	cell	populations	 in	 the	primary	mouse	visual	
cortex. The AMB2016 dataset was sequenced using SMARTer [4], downloaded from https://
portal.brain-map.org/atlases-and-data/rnaseq/data-files-2018. AMB2016 consists of 1,298
cells and 21,413 genes. The AMB2018 dataset, which was sequenced using SMART-Seq V4
[5], downloaded from https://portal.brain-map.org/atlases-and-data/rnaseq/mouse-v1-

Thesis_LM_final.indd 86Thesis_LM_final.indd 86 24-04-2024 18:54:2324-04-2024 18:54:23

single-cell Hierarchical Progressive Learning

87

33

and-alm-smart-seq,	 consists	 of	 12,771	 cells	 and	 42,625	 genes.	 Additionally,	we	used	 four	
other	brain	datasets:	Zeisel	[2],	Tabula	Muris	[30],	Rosenberg	[32],	and	Saunders	[31].	These	
were	downloaded	from	the	scArches	‘data’	Google	Drive	(‘mouse_brain_regions.h5ad’	from	
https://drive.google.com/drive/folders/1QQXDuUjKG8CTnwWW_u83MDtdrBXr8Kpq)	 [34].
We	 downsampled	 each	 dataset	 such	 that	 at	 the	 highest	 resolution	 each	 cell	 population	
consisted	of	up	to	5,000	cells	to	reduce	the	computational	time	for	the	alignment	(Table	S7).	

Preprocessing scRNA-seq datasets. All datasets were preprocessed as described in Abdelaal
et al. [23].	 Briefly,	we	 removed	 cells	 labeled	 in	 the	original	 studies	 as	doublets,	 debris	or	
unlabeled	cells,	cells	from	cell	populations	with	less	than	10	cells,	and	genes	that	were	not	
expressed. Next, we calculated the median number of detected genes per cell, and from
that,	we	obtained	the	median	absolute	deviation	(MAD)	across	all	cells	in	the	log	scale.	We	
removed cells when the total number of detected genes was below three MAD from the
median number of detected genes per cell. During the intra-dataset experiments, we log-
transformed	the	count	matrices	(log ()2 1count +).

Aligning scRNA-seq datasets. During the inter-dataset experiments, we aligned the datasets
using Seurat V3 [28] based on the joint set of genes expressed in all datasets. In the PBMC,
AMB,	 and	 brain	 inter-dataset	 experiment	 respectively	 17,573,	 19,197,	 and	 14,858	 genes	
remained.	For	 the	PBMC	 inter-dataset	experiment,	we	also	 removed	cell	populations	 that	
consisted	 of	 less	 than	 100	 cells	 from	 the	 datasets	 used	 for	 constructing	 and	 training	 the	
classification	tree	(PBMC-eQTL,	FACS,	Bench10Xv2).	To	test	the	effect	of	the	number	of	genes	
on	scHPL, we	integrated	this	data	using	1000,	2000	(default),	and	5000	HVGs.

3.5 Code and data availability
The	filtered	PBMC-FACS	and	AMB2018	dataset	can	be	downloaded	 from	Zenodo	 (https://
doi.org/10.5281/zenodo.3357167).	 The	 simulated	 dataset	 and	 the	 aligned	 datasets	
used	 during	 the	 inter-dataset	 experiment	 can	 be	 downloaded	 from	 Zenodo	 (http://doi.
org/10.5281/zenodo.3736493).	Accession	numbers	or	 links	 to	 the	raw	data:	AMB2016	 [4]	
(GSE71585,	 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE71585),	 AMB2018	
[5]	 (GSE115746,	https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE115746),	PBMC-
FACS	 [27]	 (SRP073767,	 https://support.10xgenomics.com/single-cell-gene-expression/
datasets),	 PBMC-eQTL	 [42]	 (EGAS00001002560,	 https://ega-archive.org/studies/
EGAS00001002560),	PBMC-Bench10Xv2	and	PBMC-Bench10Xv3	 [41]	 (GSE132044,	https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132044),	 Rosenberg	 [32]	 (GSE110823,	
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE110823),	 Zeisel	 [2]	 (http://
mousebrain.org,	 file	 name	 L5_all.loom,	 downloaded	 on	 9/9/2019),	 Saunders	 [31]	 (http://
dropviz.org,	DGE	by	Region	section,	downloaded	on	30/8/2019),	Tabula	Muris	[30]	(https://
figshare.com/projects/Tabula_Muris_Transcriptomic_characterization_of_20_organs_and_
tissues_from_Mus_musculus_at_single_cell_resolution/27733,	downloaded	on	14/2/2019).
The	source	code	for	scHPL	is	available	as	a	python	package	that	is	installable	through	the	PyPI	
repository	(https://github.com/lcmmichielsen/scHPL)	[43].

Thesis_LM_final.indd 87Thesis_LM_final.indd 87 24-04-2024 18:54:2324-04-2024 18:54:23

CHAPTER 3

88

Bibliography
1.		 van	der	Wijst	MG,	de	Vries	DH,	Groot	HE,	Trynka	G,	Hon	C-C,	Bonder	M-J,	et	al.	The	single-cell	eQTLGen	consortium.	Elife.	

2020;9.	doi:10.7554/eLife.52155

2.		 Zeisel	 A,	Hochgerner	H,	 Lönnerberg	 P,	 Johnsson	A,	Memic	 F,	 van	der	 Zwan	 J,	 et	 al.	Molecular	Architecture	 of	 the	Mouse	
Nervous	System.	Cell.	2018;174:	999–1014.e22.	doi:10.1016/j.cell.2018.06.021

3. Svensson V, da Veiga Beltrame E, Pachter L. A curated database reveals trends in single-cell transcriptomics. Database.
2020;2020.	doi:10.1093/database/baaa073

4.		 Tasic	 B,	Menon	 V,	 Nguyen	 TN,	 Kim	 TK,	 Jarsky	 T,	 Yao	 Z,	 et	 al.	 Adult	 mouse	 cortical	 cell	 taxonomy	 revealed	 by	 single	 cell	
transcriptomics.	Nat	Neurosci.	2016;19:	335–346.	doi:10.1038/nn.4216

5.		 Tasic	B,	Yao	Z,	Graybuck	LT,	Smith	KA,	Nguyen	TN,	Bertagnolli	D,	et	al.	Shared	and	distinct	 transcriptomic	cell	 types	across	
neocortical	areas.	Nature.	2018;563:	72–78.	doi:10.1038/s41586-018-0654-5

6.		 Zhang	Z,	Luo	D,	Zhong	X,	Choi	JH,	Ma	Y,	Wang	S,	et	al.	SCINA:	Semi-Supervised	Analysis	of	Single	Cells	in	Silico.	Genes	.	2019;10:	
531.	doi:10.3390/genes10070531

7.		 Pliner	HA,	Shendure	J,	Trapnell	C.	Supervised	classification	enables	rapid	annotation	of	cell	atlases.	Nat	Methods.	2019;	1–4.	
doi:10.1038/s41592-019-0535-3

8.		 Kiselev	VY,	Yiu	A,	Hemberg	M.	scmap:	projection	of	single-cell	RNA-seq	data	across	data	sets.	Nat	Methods.	2018;15:	359.	
Available:	https://doi.org/10.1038/nmeth.4644

9.		 Cao	Z-J,	Wei	L,	Lu	S,	Yang	D-C,	Gao	G.	Searching	large-scale	scRNA-seq	databases	via	unbiased	cell	embedding	with	Cell	BLAST.	
Nat	Commun.	2020;11:	3458.	doi:10.1038/s41467-020-17281-7

10.		 Alquicira-Hernandez	J,	Sathe	A,	Ji	HP,	Nguyen	Q,	Powell	JE.	ScPred:	Accurate	supervised	method	for	cell-type	classification	from	
single-cell	RNA-seq	data.	Genome	Biol.	2019;20:	264.	doi:10.1186/s13059-019-1862-5

11.		 de	Kanter	JK,	Lijnzaad	P,	Candelli	T,	Margaritis	T,	Holstege	FCP.	CHETAH:	a	selective,	hierarchical	cell	type	identification	method	
for	single-cell	RNA	sequencing.	Nucleic	Acids	Res.	2019;47:	e95–e95.	doi:10.1093/nar/gkz543

12.		 Wang	S,	Pisco	AO,	McGeever	A,	Brbic	M,	Zitnik	M,	Darmanis	S,	et	al.	Unifying	single-cell	annotations	based	on	the	Cell	Ontology.	
bioRxiv.	2019;	810234.	doi:10.1101/810234

13.		 Zeisel	A,	Muñoz-Manchado	AB,	Codeluppi	S,	Lönnerberg	P,	La	Manno	G,	Juréus	A,	et	al.	Brain	structure.	Cell	types	in	the	mouse	
cortex	and	hippocampus	revealed	by	single-cell	RNA-seq.	Science.	2015;347:	1138–1142.	doi:10.1126/science.aaa1934

14.		 Hodge	RD,	Bakken	TE,	Miller	JA,	Smith	KA,	Barkan	ER,	Graybuck	LT,	et	al.	Conserved	cell	types	with	divergent	features	in	human	
versus	mouse	cortex.	Nature.	2019;	1–8.	doi:10.1038/s41586-019-1506-7

15.		 Jarvis	P.	Towards	a	Comprehensive	Theory	of	Human	Learning.	Taylor	&	Francis	Ltd;	2006.

16.		 Yang	BH,	Asada	H.	 Progressive	 learning	 and	 its	 application	 to	 robot	 impedance	 learning.	 IEEE	 Trans	Neural	Netw.	 1996;7:	
941–952.	doi:10.1109/72.508937

17.		 Fayek	HM.	Continual	Deep	Learning	via	Progressive	Learning.	RMIT	University.	2019.

18.		 Yuste	R,	Hawrylycz	M,	Aalling	N,	Aguilar-Valles	A,	Arendt	D,	Arnedillo	RA,	et	al.	A	community-based	transcriptomics	classification	
and	nomenclature	of	neocortical	cell	types.	Nature	Neuroscience.	Nature	Research;	2020.	doi:10.1038/s41593-020-0685-8

19. Svensson V, Beltrame E da V. A curated database reveals trends in single cell transcriptomics. bioRxiv. 2019; 742304.
doi:10.1101/742304

20.		 Wagner	F,	Yanai	I.	Moana:	A	robust	and	scalable	cell	type	classification	framework	for	single-cell	RNA-Seq	data.	bioRxiv.	2018;	
456129.	doi:10.1101/456129

21.		 Bakken	TE,	Hodge	RD,	Miller	JA,	Yao	Z,	Nguyen	TN,	Aevermann	B,	et	al.	Single-nucleus	and	single-cell	transcriptomes	compared	
in	matched	cortical	cell	types.	Soriano	E,	editor.	PLoS	One.	2018;13:	e0209648.	doi:10.1371/journal.pone.0209648

22.		 Aevermann	BD,	Novotny	M,	Bakken	T,	Miller	 JA,	Diehl	AD,	Osumi-Sutherland	D,	 et	 al.	 Cell	 type	discovery	using	 single-cell	
transcriptomics:	implications	for	ontological	representation.	Hum	Mol	Genet.	2018;27:	R40–R47.	doi:10.1093/hmg/ddy100

23.		 Abdelaal	T,	Michielsen	L,	Cats	D,	Hoogduin	D,	Mei	H,	Reinders	MJT,	et	al.	A	comparison	of	automatic	cell	identification	methods	
for	single-cell	RNA	sequencing	data.	Genome	Biol.	2019;20:	194.	doi:10.1186/s13059-019-1795-z

24.		 Boufea	K,	Seth	S,	Batada	NN.	scID	Uses	Discriminant	Analysis	to	Identify	Transcriptionally	Equivalent	Cell	Types	across	Single-
Cell	RNA-Seq	Data	with	Batch	Effect.	iScience.	2020;23:	100914.	doi:10.1016/j.isci.2020.100914

25.		 Tax	D.	One-class	classification	Concept-learning	in	the	absence	of	counter-examples.	TU	Delft.	2001.

26.		 Zappia	 L,	 Phipson	 B,	 Oshlack	 A.	 Splatter:	 simulation	 of	 single-cell	 RNA	 sequencing	 data.	 Genome	 Biol.	 2017;18:	 174.	
doi:10.1186/s13059-017-1305-0

27.		 Zheng	GXY,	Terry	JM,	Belgrader	P,	Ryvkin	P,	Bent	ZW,	Wilson	R,	et	al.	Massively	parallel	digital	transcriptional	profiling	of	single	
cells.	Nat	Commun.	2017;8:	14049.	doi:10.1038/ncomms14049

28.		 Stuart	T,	Butler	A,	Hoffman	P,	Hafemeister	C,	Papalexi	E,	Mauck	WM,	et	al.	Comprehensive	Integration	of	Single-Cell	Data.	Cell.	
2019;177:	1888–1902.e21.	doi:10.1016/j.cell.2019.05.031

Thesis_LM_final.indd 88Thesis_LM_final.indd 88 24-04-2024 18:54:2324-04-2024 18:54:23

single-cell Hierarchical Progressive Learning

89

33

29.		 León	 B,	 López-Bravo	M,	 Ardavín	 C.	 Monocyte-derived	 dendritic	 cells.	 Semin	 Immunol.	 2005;17:	 313–318.	 doi:10.1016/j.
smim.2005.05.013

30.		 Schaum	N,	Karkanias	J,	Neff	NF,	May	AP,	Quake	SR,	Wyss-Coray	T,	et	al.	Single-cell	transcriptomics	of	20	mouse	organs	creates	
a	Tabula	Muris.	Nature.	2018;562:	367–372.	doi:10.1038/s41586-018-0590-4

31.		 Saunders	A,	Macosko	EZ,	Wysoker	A,	Goldman	M,	Krienen	FM,	de	Rivera	H,	et	al.	Molecular	Diversity	and	Specializations	among	
the	Cells	of	the	Adult	Mouse	Brain.	Cell.	2018;174:	1015–1030.e16.	doi:10.1016/j.cell.2018.07.028

32.		 Rosenberg	AB,	Roco	CM,	Muscat	RA,	Kuchina	A,	Sample	P,	Yao	Z,	et	al.	Single-cell	profiling	of	the	developing	mouse	brain	and	
spinal	cord	with	split-pool	barcoding.	Science.	2018;360:	176–182.	doi:10.1126/science.aam8999

33.		 Korsunsky	I,	Millard	N,	Fan	J,	Slowikowski	K,	Zhang	F,	Wei	K,	et	al.	Fast,	sensitive	and	accurate	integration	of	single-cell	data	with	
Harmony.	Nat	Methods.	2019;16:	1289–1296.	doi:10.1038/s41592-019-0619-0

34.		 Lotfollahi	M,	Naghipourfar	M,	Luecken	M,	Khajavi	M,	Büttner	M,	Avsec	Z,	et	al.	Query	to	reference	single-cell	integration	with	
transfer	learning.	bioRxiv.	2020;	2020.07.16.205997.	doi:10.1101/2020.07.16.205997

35.		 Cinti	F,	Bouchi	R,	Kim-Muller	JY,	Ohmura	Y,	Sandoval	PR,	Masini	M,	et	al.	Evidence	of	β-Cell	Dedifferentiation	in	Human	Type	2	
Diabetes.	J	Clin	Endocrinol	Metab.	2016;101:	1044–1054.	doi:10.1210/jc.2015-2860

36.		 Hunter	 CS,	 Stein	 RW.	 Evidence	 for	 Loss	 in	 Identity,	 De-Differentiation,	 and	 Trans-Differentiation	 of	 Islet	 β-Cells	 in	 Type	 2	
Diabetes.	Front	Genet.	2017;8:	35.	doi:10.3389/fgene.2017.00035

37.		 Pedregosa	F,	Varoquaux	G,	Gramfort	A,	Michel	V,	Thirion	B,	Grisel	O,	et	al.	Scikit-learn:	Machine	Learning	in	Python.	2011	pp.	
2825–2830.	Available:	http://scikit-learn.sourceforge.net.

38.		 Fagni	 T,	 Sebastiani	 F.	 On	 the	 Selection	 of	 Negative	 Examples	 for	 Hierarchical	 Text	 Categorization.	 Proceedings	 of	 the	 3rd	
language technology conference. 2007; 24–28.

39.		 Kiritchenko	S,	 Famili	 F.	 Functional	Annotation	of	Genes	Using	Hierarchical	 Text	Categorization.	Proceedings	of	BioLink	SIG,	
ISMB. 2005.

40.		 Wolf	 FA,	 Angerer	 P,	 Theis	 FJ.	 SCANPY:	 Large-scale	 single-cell	 gene	 expression	 data	 analysis.	 Genome	 Biol.	 2018;19:	 15.	
doi:10.1186/s13059-017-1382-0

41.		 Ding	J,	Adiconis	X,	Simmons	SK,	Kowalczyk	MS,	Hession	CC,	Marjanovic	ND,	et	al.	Systematic	comparison	of	single-cell	and	
single-nucleus	RNA-sequencing	methods.	Nat	Biotechnol.	2020;38:	737–746.	doi:10.1038/s41587-020-0465-8

42.		 Van	Der	Wijst	MGP,	Brugge	H,	De	Vries	DH,	Deelen	P,	Swertz	MA,	Franke	L.	Single-cell	RNA	sequencing	 identifies	celltype-
specific	cis-eQTLs	and	co-expression	QTLs.	Nat	Genet.	2018;50:	493–497.	doi:10.1038/s41588-018-0089-9

43.		 L.C.M.	Michielsen,	M.J.T.	Reinders,	A.	Mahfouz.	Hierarchical	progressive	 learning	of	cell	 identities	 in	 single-cell	data.	2021.	
doi:10.5281/zenodo.4644285

Thesis_LM_final.indd 89Thesis_LM_final.indd 89 24-04-2024 18:54:2324-04-2024 18:54:23

CHAPTER 3

90

Supplementary Materials
Supplementary Note 1
When	matching	the	cell	populations	from	two	datasets,	we	distinguish	five	options:	simple,	
multiple	 columns,	multiple	 rows,	 complex,	 and	 impossible.	When	describing	 the	different	
scenarios	within	these	options,	we	sometimes	make	a	distinction	between	leaf	nodes	and	
internal	nodes.	Here,	it	is	important	to	remember	that	only	T1 can have internal nodes since
this is the tree that is updated. T2 is	always	a	flat	classification	tree,	so	only	consists	of	the	
root node and leaf nodes.

Simple. In	this	scenario,	we	find	a	unique	match	between	a	cell	population,	Pi, from dataset
1	and	a	cell	population,	Pj, from dataset 2. As as consequence, Xj,I will be 1 or 2 and the rest
of row j and column i in X	are	zero.	Within	this	scenario,	there	are	three	different	options:

1. Both	cell	populations	are	leaf	or	internal	nodes.	This	indicates	a	perfect	match.	The	tree	
is not updated, but the labels of Pj are renamed to Pi (Figure	S24A).	This	 is	 the	same	
scenario as the ‘perfect match’ scenario described in the main text.

2. Pi is a leaf or internal node, but Pj is the root node of T2. This indicates that Pi is missing
in	dataset	2.	The	node,	however,	is	already	in	the	tree,	so	it	is	not	updated	(Figure	S24B).

3. Pi is the root of T1, but the Pj is a leaf node. This indicates that Pj is missing in dataset 1.
The	cell	population	is	thus	also	not	in	the	tree	yet,	so	we	will	add	it	as	a	child	to	the	root	
(Figure	S24C).	This	is	the	same	scenario	as	the	‘new	population’	scenario	described	in	
the main text.

Multiple rows. In	 this	 scenario,	 a	 cell	 population,	 Pi,	 from	 dataset	 1	 matches	 multiple	
populations	from	dataset	2.	In	X there	will	be	multiple	non-zero	values	in	column	i. Here,	we	
distinguish	two	different	scenarios:

1. Pi	matches	only	cell	populations	from	dataset	2	that	are	leaf	node.	We	consider	the	cell	
populations	from	dataset	2	subpopulations	of	Pi, so we add them as descendants to Pi
(Figure	S25A).	This	is	the	same	scenario	as	the	‘splitting	nodes’	scenario	described	in	the	
main text.

2. The root node of T2	is	also	involved.	We	simple	ignore	this	node	and	for	the	rest	do	the	
same	as	above	(Figure	S25B-C).

Multiple columns. This	scenario	is	quite	similar	to	the	multiple	rows	scenario.	Here,	however,	
multiples	populations	from	dataset	1	match	one	cell	population,	Pj, of dataset 2. In X there
will	 be	multiple	non-zero	 values	 in	 row	 j.	 This	 scenario	 is	 a	 little	more	 complex	 since	 the	
populations	from	dataset	1	does	not	have	to	be	leaf	nodes	or	the	root	node,	but	there	can	
also	be	internal	nodes	in	this	tree.	Here,	we	distinguish	three	different	scenarios:

1. The root node of T1 and T2	are	not	 involved,	so	multiple	cell	populations,	which	can	
be leaf or internal nodes, from dataset 1 match Pj.	We	consider	 the	cell	populations	
from	dataset	1	subpopulations	of	Pj, so we need to add Pj as a parent node to these
cell	populations	(Figure	S26A).	This	 is	same	scenario	as	the	 ‘merging	nodes’	scenario	
described in the main text. It could be, however, that this node already exists in this tree

Thesis_LM_final.indd 90Thesis_LM_final.indd 90 24-04-2024 18:54:2324-04-2024 18:54:23

single-cell Hierarchical Progressive Learning

91

33

(Figure	S26B).	If	this	is	the	case,	we	have	a	perfect	match	between	a	node	from	tree	1	
and tree 2, so we do not have to update the tree, but we only have to update the labels
of Pj.

2. Besides leaf or internal nodes, the root of T1 is involved. This indicates that Pj is ‘bigger’
than	the	cell	populations	from	dataset	1	as	part	of	it	is	unlabeled.	Therefore,	we	add	Pj
as a descendant to the root of T1.	Next,	we	rewire	the	involved	cell	populations	from	
dataset 1 such that they become descendants of Pj	(Figure	S26C).

3. The root node of T2	is	involved.	This	indicates	that	multiple	cell	populations	from	dataset	
1 are missing in dataset 2. These nodes, however, are already in the tree, so the tree can
remain	the	same	(Figure	S26D).

Complex. The	scenarios	described	above	were	all	relatively	easy.	A	cell	population	from	one	
dataset	matches	either	one	or	multiple	cell	populations	from	another.	It	could	also	happen,	
however,	that	multiple	cell	populations	from	dataset	1	match	multiple	cell	populations	from	
dataset	2	(Figure	S27).	As	a	consequence,	there	will	a	certain	place	Xj,I which is either 1 or 2
and there are two or more non-zero values in the corresponding row j and column i. Here,	we	
distinguish	three	different	scenarios:

1. The root node of T1 is	involved.	We	just	assume	that	the	boundary	should	be	adjusted	
and	this	is	automatically	done,	so	we	remove	this	`1’	from	the	table	(Figure	S27A).	If	the	
situation	is	still	complex	after	the	one	is	removed,	we	continue	to	scenario	2	or	3.	If	not,	
we	treat	it	as	a	multiple	rows	problem	as	explained	above.

2. The root node of T2 is involved. Again, we just assume that the boundary should be
adjusted,	 so	we	 remove	 this	 `1’	 from	 the	 table	 (Figure	 S27B).	 If	 the	 situation	 is	 still	
complex	after	the	one	 is	removed,	we	continue	to	scenario	3.	 If	not,	we	treat	 it	as	a	
multiple	columns	problem	as	explained	above.

3. Multiple	leaf/internal	nodes	of	dataset	1	are	involved	and	multiple	leaf	nodes	of	dataset	
2.	We	can	only	solve	this	if	the	‘complex’	cell	population,	Pi, of dataset 1 is not a leaf
node.	Otherwise	we	are	dealing	with	an	impossible	scenario	which	is	described	below.	If	
the	complex	node	is	an	internal	node,	we	attach	the	involved	cell	populations	of	dataset	
2	as	descendants	to	the	complex	node	(splitting	scenario)	and	attach	the	involved	cell	
populations	of	dataset	1,	except	for	Pi, to Pj	(Figure	S27C).

Impossible. Sometimes,	 it	 could	 be	 impossible	 to	 match	 the	 labels	 from	 two	 datasets.	
Something	 could	 have	 gone	wrong	 during	 the	 clustering,	 e.g.	 a	 population	 1	 and	 2	 from	
dataset	1	match	population	A	from	dataset	2,	but	population	2	also	matches	population	C	
from	dataset	2	(Figure	S28A).	Here,	population	A	and	C	should	be	merged	into	population	2,	
but	population	A	should	also	be	split	into	population	1	and	2.	Population	2,	however,	cannot	
be	 added	 to	 the	 tree	 twice.	 It	 could	 also	 be	 that	 dataset	 2	 contains	 labels	 at	 a	 different	
resolution,	e.g.	that	population	B	is	a	subpopulation	of	population	A	(Figure	S28B).	This	is	not	
what we assumed and thus impossible to match. Both scenarios occur when a leaf node from
dataset	1	is	at	a	crossing	of	multiple	rows	and	multiple	columns	(i.e.	a	complex	situation).	An	
extra	difficulty	is	that	there	are	thus	multiple	situations	that	could	explain	this.	All	of	these	
situation	are	not	what	we	desired	and	thus	we	call	it	impossible	and	do	nothing.

Thesis_LM_final.indd 91Thesis_LM_final.indd 91 24-04-2024 18:54:2424-04-2024 18:54:24

CHAPTER 3

92

Supplementary Note 2
If there is a complex scenario that cannot be solved immediately, matrix X will be changed
into a strict matrix. In the strict matrix, only reciprocal matches are considered, so all ‘1’s’ are
turned	into	‘0’.	There	are	some	exceptions	to	this	rule.	

- A	population	can	never	have	a	 reciprocal	match	with	 the	 root,	 so	 these	 ‘1’s’	 are	
never removed.

- If	 a	 population	 from	 a	 dataset	 has	 only	 one	 match,	 it	 is	 also	 never	 removed.	
Consider	the	following	example:	If	population	P1	of	Dataset	1	is	only	predicted	to	be	
Population	Q	of	Dataset	2,	we	know	that	P1	should	be	a	match	with	Q	as	it	cannot	
be	matched	with	any	other	population	or	with	the	root.	It	could	be	that	this	match	
is	not	reciprocal	if	population	Q	has	many	different	subpopulations	(e.g.	P1,	P2,	P3,	
P4).	Imagine	that	population	P2	is	really	big.	Almost	all	cells	of	population	Q	will	be	
predicted	to	be	P2	and	so	the	matches	with	P1	(and	P3	and	P4)	are	missed	because	
of the matching threshold. In case there is a complex scenario caused by any other
population	(maybe	P2	or	P3	or	P4),	we	still	know	that	P1	is	a	subpopulation	of	Q,	
since that was super clear and didn’t cause any complexity.

Supplementary Note 3
Current scRNA-seq data simulators cannot simulate hierarchical data, so we simulated this
dataset	step	by	step	(Figure	S1B).	
First,	we	 simulated	 the	expression	of	3,000	genes	 for	9,000	cells.	 For	 this	 simulation,	 the	
cells were divided into three groups. The 3,000 simulated genes represent genes that are
differentially	expressed	between	the	cell	populations	at	a	low	resolution,	so	for	example	B	
cells vs. T cells. Next, we simulated another 3,000 genes for the same 9,000 cells. Now, the
cells	were	divided	into	five	groups.	Here,	the	differentially	expressed	genes	represent	genes	
that	distinguish	cell	populations	at	a	slightly	higher	resolution,	so	for	example	CD4+	T	cells	
vs.	CD8+	T	cells.	We	repeated	this	step	for	another	set	of	3,000	genes,	but	now	there	were	
six	populations.	The	 third	dataset	 represents	 the	highest	 resolution,	 so	 for	 instance	CD4+	
memory	T	cells	vs.	CD4+	naïve	T	cells.
Together this resulted in a dataset of 9,000 cells and 9,000 genes. The cells were labeled
at	 three	 resolutions.	 There	 was	 some	 inconsistency	 between	 the	 labels	 at	 the	 different	
resolutions	 (e.g.	 some	 cells	 were	 labeled	 as	 ‘Group12’,	 ‘Group3’,	 ‘Group3’).	We	 removed	
these	cells	from	the	dataset,	which	resulted	in	a	final	dataset	of	8,839	cells	and	9,000	genes.

Thesis_LM_final.indd 92Thesis_LM_final.indd 92 24-04-2024 18:54:2424-04-2024 18:54:24

single-cell Hierarchical Progressive Learning

93

33

Thesis_LM_final.indd 93Thesis_LM_final.indd 93 24-04-2024 18:54:2424-04-2024 18:54:24

Thesis_LM_final.indd 94Thesis_LM_final.indd 94 24-04-2024 18:54:2424-04-2024 18:54:24

