
Learning cell identities and (post-)transcriptional
regulation using single-cell data
Michielsen, L.C.M.

Citation
Michielsen, L. C. M. (2024, June 13). Learning cell identities and (post-
)transcriptional regulation using single-cell data. Retrieved from
https://hdl.handle.net/1887/3763527
 
Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3763527
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3763527


Hierarchical progressive learning of cell 
identities in single-cell data

chapter 3

Lieke Michielsen, Marcel J.T. Reinders, Ahmed Mahfouz

This chapter is published in: Nature Communications (2021) 12: 2799, doi: 10.1038/s41467-021-
23196-8.
Supplementary material is available online at:
https://www.nature.com/articles/s41467-021-23196-8#Sec27

Thesis_LM_final.indd   67Thesis_LM_final.indd   67 24-04-2024   18:54:1724-04-2024   18:54:17



CHAPTER 3

68

Supervised methods are increasingly used to identify cell populations in single-cell data. Yet, 
current methods are limited in their ability to learn from multiple datasets simultaneously, 
are hampered by the annotation of datasets at different resolutions, and do not preserve 
annotations when retrained on new datasets. The latter point is especially important 
as researchers cannot rely on downstream analysis performed using earlier versions of 
the dataset. Here, we present scHPL, a hierarchical progressive learning method which 
allows continuous learning from single-cell data by leveraging the different resolutions of 
annotations across multiple datasets to learn and continuously update a classification tree. 
We evaluate the classification and tree learning performance using simulated as well as real 
datasets and show that scHPL can successfully learn known cellular hierarchies from multiple 
datasets while preserving the original annotations. scHPL is available at https://github.com/
lcmmichielsen/scHPL. 

3.1 Introduction
Cell identification is an essential step in single-cell studies with profound effects on 
downstream analysis. For example, in order to compare cell-population-specific eQTL 
findings across studies, cell identities should be consistent [1]. Currently, cells in single-cell 
RNA-sequencing (scRNA-seq) datasets are primarily annotated using clustering and visual 
exploration techniques, i.e. cells are first clustered into populations which are subsequently 
named based on the expression of marker genes. This is not only time-consuming, but also 
subjective [2]. The number of cell populations identified in a dataset, for example, is strongly 
correlated with the number of cells analyzed, which results in inconsistency across datasets 
[3–5]. 

Recently, many supervised methods have been developed to replace unsupervised 
techniques. The underlying principles of these methods vary greatly. Some methods, for 
instance, rely on prior knowledge and assume that for each cell population marker genes can 
be defined (e.g. SCINA [6] and Garnett [7]), while others search for similar cells in a reference 
database (e.g. scmap [8] and Cell-BLAST [9]), or train a classifier using a reference atlas or a 
labeled dataset (e.g. scPred [10] and CHETAH [11]).

Supervised methods rely either on a reference atlas or labeled dataset. Ideally, we would 
use a reference atlas containing all possible cell populations to train a classifier. Such an 
atlas, however, does not exist yet and might never be fully complete. In particular, aberrant 
cell populations might be missing as a huge number of diseases exist and mutations could 
result in new cell populations. To overcome these limitations, some methods (e.g. OnClass) 
rely on the Cell Ontology to identify cell populations that are missing from the training data 
but do exist in the Cell Ontology database [12]. These Cell Ontologies, however, were not 
developed for scRNA-seq data specifically. As a consequence, many newly identified (sub)
populations are missing and relationships between cell populations might be inaccurate. A 
striking example of this inadequacy are neuronal cell populations. Recent single-cell studies 
have identified hundreds of populations [4,13,14], including seven subtypes and 92 cell 
populations in one study only [5]. In contrast, the Cell Ontology currently includes only one 
glutamatergic neuronal cell population without any subtypes.
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Since no complete reference atlas is available, a classifier should ideally be able to combine 
the information of multiple annotated datasets and continue learning. Each time a new cell 
population is found in a dataset, it should be added to the knowledge of the classifier. We 
advocate that this can be realized with progressive learning, a learning strategy inspired by 
humans. Human learning is a continuous process that never ends [15]. Using progressive 
learning, the task complexity is gradually increased, for instance, by adding more classes, but 
it is essential that the knowledge of the previous classes is preserved [16,17]. This strategy 
allows combining information of multiple existing datasets and retaining the possibility 
to add more datasets afterwards. However, it cannot be simply applied to scRNA-seq 
datasets as a constant terminology to describe cell populations is missing, which eliminates 
straightforward identification of new cell populations based on their names. For example, the 
recently discovered neuronal populations are typically identified using clustering and named 
based on the expression of marker genes. A standardized nomenclature for these clusters 
is missing [18], so the relationship between cell populations defined in different datasets is 
often unknown. 

Moreover, the level of detail (resolution) at which datasets are annotated highly depends on 
the number of cells analyzed [19]. For instance, if a dataset is annotated at a low resolution, 
it might contain T-cells, while a dataset at a higher resolution can include subpopulations of 
T-cells, such as CD4+ and CD8+ T-cells. We need to consider this hierarchy of cell populations 
in our representation, which can be done with a hierarchical classifier. This has the advantage 
that cell population definitions of multiple datasets can be combined, ensuring consistency. 
A hierarchical classifier has additional advantages in comparison to a classifier that does 
not exploit this hierarchy between classes (here denoted as ‘flat classifier’). One of these 
advantages is that the classification problem is divided into smaller sub-problems, while a flat 
classifier needs to distinguish between many classes simultaneously. Another advantage is 
that if we are not sure about the annotation of an unlabeled cell at the highest resolution, we 
can always label it as an intermediate cell population (i.e. at a lower resolution). 

Currently, some classifiers, such as Garnett, CHETAH, and Moana, already exploit this 
hierarchy between classes [7,11,20]. Garnett and Moana both depend on prior knowledge in 
the form of marker genes for the different classes. Especially for deeper annotated datasets it 
can be difficult to define marker genes for each cell population that are robust across scRNA-
seq datasets [21,22]. Moreover, we have previously shown that adding prior knowledge is 
not beneficial [23]. CHETAH, on the contrary, constructs a classification tree based on one 
dataset by hierarchically clustering the reference profiles of the cell populations and classifies 
new cells based on the similarity to the reference profile of that cell population. However, 
simple flat classifiers outperform CHETAH [23], indicating that a successful strategy to exploit 
this hierarchy is still missing. Furthermore, these hierarchical classifiers cannot exploit the 
different resolutions of multiple datasets as this requires adaptation of the hierarchical 
representation. 

Even if multiple datasets are combined into a hierarchy, there might be unseen populations 
in an unlabeled dataset. Identifying these cells as a new population is a challenging problem. 
Although some classifiers have implemented an option to reject cells, they usually fail when 
being tested in a realistic scenario [23]. In most cases, the rejection option is implemented 
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by setting a threshold on the posterior probability [7,10,23,24]. If the highest posterior 
probability does not exceed a threshold, the cell is rejected. By looking at the posterior, the 
actual similarity between a cell and the cell population is ignored. 

In this work, we propose a hierarchical progressive learning approach to overcome these 
challenges. To summarize our contributions: (i) we exploit the hierarchical relationships 
between cell populations to be able to classify data sets at different resolutions, (ii) we propose 
a progressive learning approach that updates the hierarchical relationships dynamically 
and consistently, and (iii) we adopt an advanced rejection procedure including a one-class 
classifier to be able to discover new cell (sub)populations. 

3.2 Results

3.2.1 Hierarchical progressive learning of cell identities

We developed scHPL, a hierarchical progressive learning approach to learn a classification 
tree using multiple labeled datasets (Figure 1A) and use this tree to predict the labels of a new, 
unlabeled dataset (Figure 1B). The tree is learned using multiple iterations (Methods). First, 
we match the labels of two datasets by training a flat classifier for each dataset and predicting 
the labels of the other dataset. Based on these predictions we create a matching matrix (X) 

Figure 1. Schematic overview of scHPL. A) Overview of the training phase. In the first iteration, we start with two 
labeled datasets. The colored areas represent the different cell populations. For both datasets a flat classifier (FC1 
& FC2) is constructed. Using this tree and the corresponding dataset, a classifier is trained for each node in the 
tree except for the root. We use the trained classification tree of one dataset to predict the labels of the other. 
The decision boundaries of the classifiers are indicated with the contour lines. We compare the predicted labels to 
the cluster labels to find matches between the labels of the two datasets. The tree belonging to the first dataset 
is updated according to these matches, which results in a hierarchical classifier (HC1). In dataset 2, for example, 
subpopulations of population ‘1’ of dataset 1 are found. Therefore, these cell populations, ‘A’ and ‘B’, are added as 
children to the ‘1’ population. In iteration 2, a new labeled dataset is added. Again a flat classifier (FC3) is trained 
for this dataset and HC1 is trained on dataset 1 and 2, combined. After cross-prediction and matching the labels, we 
update the tree which is then trained on all datasets 1-3 (HC2). B) The final classifier can be used to annotate a new 
unlabeled dataset. If this dataset contains unknown cell populations, these will be rejected.
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and match the cell populations of the two datasets. In the matching process, we separate 
different biological scenarios, such as a perfect match, merging or splitting cell populations, 
as well as creating a new population (Figure 2, Table S1). In the following iterations, we add 
one labeled dataset at a time by training a flat classifier on this new dataset and training the 
previously learned tree on all pre-existing datasets. Similar to the previous iteration, the tree 
is updated after cross-prediction and matching of the labels. It could happen that datasets 
are inconsistently labeled and the labels cannot be matched (Supplementary Note 1). In this 
case, one of the populations might be missing from the tree.

Either during tree learning or prediction, there can be unseen populations. Therefore, 
an efficient rejection option is needed, which we do in two steps. First, we reject cells by 
thresholding the reconstruction error of a cell when applying a PCA-based dimension 
reduction: a new, unknown, population is not used to learn the PCA transformation, and 
consequently will not be properly represented by the selected PCs, leading to a high 
reconstruction error (Methods). Second, to accommodate rejections when the new 
population is within the selected PCA domain, scHPL adopts two alternatives to classify cells: 
a linear and a one-class support vector machine (SVM). The linear SVM has shown a high 
performance in a benchmark of scRNA-seq classifiers [23], but has a limited rejection option. 
Whereas, the one-class SVM solves this as only positive training samples are used to fit a tight 
decision boundary around [25]. 

3.2.2 Linear SVM has a higher classification accuracy than one-
class SVM

We tested our hierarchical classification scheme by measuring the classification performance 
of the one-class SVM and linear SVM on simulated, PBMC (PBMC-FACS) and brain (Allen 
Mouse Brain) data using 10-, 10-, and 5-fold cross-validation respectively (Methods). The 

Figure 2. Schematic examples of different matching 
scenarios. A) Perfect match, B) splitting, C) merging, 
D) new population. The first two columns represent a 
schematic representation of two datasets. After cross-
predictions, the matching matrix (X) is constructed 
using the confusion matrices (Methods). We update 
the tree based on X. 
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simulated dataset was constructed using Splatter [26] and consists of 8,839 cells, 9,000 genes 
and 6 different cell populations (Figure S1). PBMC-FACS is the downsampled FACS-sorted 
PBMC dataset from Zheng et al. [27] and consists of 20,000 cells and 10 cell populations. The 
Allen Mouse Brain (AMB) dataset is challenging as it has deep annotation levels [5], containing 
92 different cell populations ranging in size from 11 to 1,348 cells. In these experiments, the 
classifiers were trained on predefined trees (Figure S1-3).

On all datasets, the linear SVM performs better than the one-class SVM (Figure 3A-D). The 
simulated dataset is relatively easy since the cell populations are widely separated (Figure 
S1C). The linear SVM shows an almost perfect performance: only 0.9% of the cells are rejected 
(based on the reconstruction error only), which is in line with the adopted threshold resulting 
in 1% false negatives. The one-class SVM labels 92.9% of the cells correctly, the rest is labeled 
as an internal node (2.3%) or rejected (4.8%), which results in a median Hierarchical F1-score 
(HF1-score) of 0.973, where HF1 is an F1-score that considers class importance across the 
hierarchy (Methods). 

As expected, the performance of the classifiers on real data drops, but the HF1-scores remain 
higher than 0.9. On both the PBMC-FACS and AMB dataset, the performance of the linear 

Figure 3. Classification performance. A-C) Boxplots showing the HF1-score of the one-class and linear SVM during 
n-fold cross-validation on the A) simulated (n = 10), B) PBMC-FACS (n = 10), and C) AMB (n = 5) dataset. In the 
boxplots, the middle (orange) line represents the median, the lower and upper hinge represent the first and third 
quartiles, and the lower and upper whisker represent the values no further than 1.5 inter-quartile range away from 
the lower and upper hinge respectively. D) Barplot showing the percentage of true positives (TP), false negatives 
(FN), and false positives (FP) per classifier on the AMB dataset. For the TPs a distinction is made between correctly 
predicted leaf nodes and internal nodes. E) Heatmap showing the percentage of unlabeled cells per classifier during 
the different rejection experiments. F) Heatmap showing the F1-score per classifier per cell population on the AMB 
dataset. Grey indicates that a classifier never predicted a cell to be of that population. 
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SVM is higher than the one-class SVM (Figure 3B-D). For the AMB dataset, we used the same 
cross-validation folds as in Abdelaal et al. [23], which enables us to compare our results. 
When comparing to CHETAH, which allows hierarchical classification, we notice that the 
linear SVM performs better based on the median F1-score (0.94 vs 0.83). The one-class SVM 
has a slightly lower median F1-score (0.80 vs 0.83), but it has more correctly predicted cells 
and less wrongly predicted cells (Figure 3D). 

The linear (hierarchical) SVM also shows a better performance compared to SVMrejection, which 
is a flat linear SVM with rejection option based on the posterior probability and was the best 
classifier for this data [23]. SVMrejection, however, has a slightly higher median F1-score (0.98 vs 
0.94). This is mainly because it makes almost no mistakes, only 1.7% of the cells are wrongly 
labeled (Figure 3D). The number of rejected cells, on the other hand, is not considered when 
calculating the median F1-score. This number is relatively high for SVMrejection (19.8%). The 
linear SVM, on the contrary, has almost no rejected cells, which is also reflected in a higher 
HF1-score (Figure 3C). Because of this large amount of rejections of SVMrejection, the one-class 
SVM also has a higher HF1-score.

On the AMB dataset, we observe that the performance of all classifiers decreases when the 
number of cells per cell population becomes smaller. The performance of the one-class SVM 
is affected more than the others (Figure 3F). The one-class SVM, for instance, never predicts 
the ‘Astro Aqp4’ cells correctly, while this population is relatively different from the rest as it is 
the only non-neuronal population. This cell population, however, only consists of eleven cells. 

In the previous experiments, we used all genes to train the classifiers. Since the selection of 
highly variable genes (HVGs) is common in scRNA-seq analysis pipelines, we tested the effect 
of selecting HVGs on the classification performance of the PBMC-FACS dataset. We noted 
that using all genes results in the highest HF1-score for both the linear and one-class SVM 
(Figure S4).

3.2.3 One-class SVM detects new cells better than linear SVM

Besides a high accuracy, the classifiers should be able to reject unseen cell populations. First, 
we evaluated the rejection option on the simulated data. In this dataset, the cell populations 
are distinct, so we expect that this is a relatively easy task. We removed one cell population, 
‘Group 3’, from the training set and used this population as a test set. The one-class SVM 
outperforms the linear SVM as it correctly rejects all these cells, while the linear SVM rejects 
only 38.9% of them. 

Next, we tested the rejection option on the AMB dataset. Here, we did four experiments 
and each time removed a node, including all its subpopulations, from the predefined tree 
(Figure S3). We removed the ‘L6 IT’ and ‘Lamp5’ cell populations from the second layer of 
the tree, and the ‘L6 IT VISp Penk Col27a1’ and ‘Lamp5 Lsp1’ from the third layer. When a 
node is removed from the second layer of the tree, the linear SVM clearly rejects these cells 
better than the one-class SVM (Figure 3E). On the contrary, the one-class SVM rejects leaf 
node cells better. 
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3.2.4 scHPL accurately learns cellular hierarchies

Next, we tested if we could learn the classification trees for the simulated and PBMC-FACS 
data using scHPL. In both experiments, we performed a 10-fold cross-validation and splitted 
the training set in three different batches, Batch 1, Batch 2, and Batch 3, to simulate the 
idea of different datasets. To obtain different annotation levels in these batches, multiple 
cell populations were merged into one population in some batches, or cell populations were 
removed from certain batches (Tables S2-3). Batch 1 contains the lowest resolution and Batch 
3 the highest. When learning the trees, we try all (six) different orders of the batches to see 
whether this affects the tree learning. Combining this with the 10-fold cross-validation, 60 
trees were learned in total by each classifier. To summarize the results, we constructed a 
final tree in which the thickness of an edge indicates how often it appeared in the 60 learned 
trees.

The linear and one-class SVM showed stable results during both experiments; all 60 trees - 
except for two trees learned by the one-class SVM on the PBMC data - look identical (Figure 
4A-D). The final tree for the simulated data looks as expected, but the tree for the PBMC 
data looks slightly different from the predefined hematopoietic tree (Figure S2A). In the 
learned trees, CD4+ memory T-cells are a subpopulation of CD8+ instead of CD4+ T-cells. The 
correlation between the centroids of CD4+ memory T-cell and CD8+ T-cells (r = 0.985±0.003) 
is also slightly higher than the correlation to CD4+ T-cells (r = 0.975±0.002) (Figure S5). Using 
the learned tree instead of the predefined hematopoietic tree improves the classification 
performance of the linear SVM slightly (HF1-score = 0.990 vs 0.985). Moreover, when relying 

Figure 4. Tree learning evaluation. Classification trees 
learned when using a A, C, E) linear SVM or B, D, F) 
one-class SVM during the A, B) simulated, C, D) PBMC-
FACS, and E, F) simulated rejection experiment. The line 
pattern of the links indicates how often that link was 
learned during the 60 training runs. D) In 2/60 trees, the 
link between the CD8+ T-cells and the CD8+ naive and 
CD4+ memory T-cells is missing. In those trees, the CD8+ 
T-cells and CD8+ naive T-cells have a perfect match and 
the CD4+ memory T-cells are missing from the tree. F) In 
20/60 trees, the link between ‘Group456’ and ‘Group5’ 
is missing. In those trees, these two populations are a 
perfect match. 
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on the predefined hematopoietic tree, CD4+ memory T-cells, CD8+ T-cells, and CD8+ naive 
T-cells were also often confused, further highlighting the difficulty in distinguishing these 
populations based on their transcriptomic profiles alone (Tables S4-5). 

Next, we tested the effect of the matching threshold (default = 0.25) on the tree construction 
by varying this to 0.1 and 0.5. For the linear SVM, changing the threshold had no effect. For 
the one-class SVM, we noticed a small difference when changing the threshold to 0.1. The 
two trees that were different using the default threshold (Figure 4D), were now constructed 
as the other 58 trees. In general, scHPL is robust to settings of the matching threshold due to 
its reliance on reciprocal classification. 

3.2.5 Missing populations affect tree construction with linear SVM

We tested whether new or missing cell populations in the training set could influence tree 
learning. We mimicked this scenario using the simulated dataset and the same batches as in 
the previous tree learning experiment. In the previous experiment, ‘Group5’ and ‘Group6’ 
were merged into ‘Group56’ in Batch 2, but now we removed ‘Group5’ completely from this 
batch (Table S6). In this setup, the linear SVM misconstructs all trees (Figure 4E). If ‘Group5’ is 
present in one batch and absent in another, the ‘Group5’ cells are not rejected, but labeled as 
‘Group6’. Consequently, ‘Group6’ is added as a parent node to ‘Group5’ and ‘Group6’. On the 
other hand, the one-class SVM suffers less than the linear SVM from these missing populations 
and correctly learns the expected tree in 2/3 of the cases (Figure 4F). In the remaining third 
(20 trees), ‘Group5’ matched perfectly with ‘Group456’ and was thus not added to the tree. 
This occurs only if we have the following order: Batch 1 - Batch 3 - Batch 2 or Batch 3 - Batch 
1 - Batch 2. Adding batches in increasing or decreasing resolution consequently resulted in 
the correct tree.

3.2.6 Linear SVM can learn the classification tree during an inter-
dataset experiment

Finally, we tested scHPL in a realistic scenario by using three PBMC datasets (PBMC-eQTL, 
PBMC-Bench10Xv2, and PBMC-FACS) to learn a classification tree and using this tree to predict 
the labels of a fourth PBMC dataset (PBMC-Bench10Xv3) (Table 1). Before applying scHPL, we 
aligned the datasets using Seurat [28]. We constructed an expected classification tree based 
on the names of the cell populations in the datasets (Figure 5A). Note that matching based 
on names might result in an erroneous tree since every dataset was labeled using different 
clustering techniques, marker genes, and their own naming conventions.

When comparing the tree learned using the linear SVM to the expected tree, we notice 
five differences (Figure 5A-B). Some of these differences are minor, such as the matching 
of monocytes from the Bench10Xv2 dataset to myeloid dendritic cells (mDC), CD14+ 
monocytes, and the CD16+ monocytes. Monocytes can differentiate into mDC which can 
explain their transcriptomic similarity [29]. Other differences between the reconstructed 
and the expected trees are likely the result of (partly) mislabeled cell populations in the 
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original datasets (Figure S6-15). (i) According to the expression of FCER1A (a marker for 
mDC) and FCGR3A (CD16+ monocytes), the labels of the mDC and the CD16+ monocytes 
in the eQTL dataset are reversed (Figure S6-8). (ii) Part of the CD14+ monocytes in the FACS 
dataset express FCER1A, which is a marker for mDC (Figure S6, S8-9). The CD14+ monocytes 
in the FACS dataset are thus partly mDCs, which explains the match with the mDC from the 
eQTL dataset. (iii) Part of the CD4+ T-cells from the eQTL and Bench10Xv2 dataset should be 
relabeled as CD8+ T-cells (Figure S6, S10-13). In these datasets, the cells labeled as the CD8+ 
T-cells only contain cytotoxic CD8+ T-cells, while naive CD8+ T-cells are all labeled as CD4+ 
T-cells. This mislabeling explains why the CD8+ naive T-cells are a subpopulation of the CD4+ 
T-cells. (iv) Part of the CD34+ cells in the FACS dataset should be relabeled as pDC (Figure 
S6, S14-15), which explains why the pDC are a subpopulation of the CD34+ cells. In the FACS 
dataset, the labels were obtained using sorting, which would indicate that these labels are 
correct. The purity of the CD34+ cells, however, was significantly low (45%) compared to 
other cell populations (92-100%) [27]. There is only one difference , however, that cannot be 
explained by mislabeling. The NK cells from the FACS dataset do not only match the NK cells 
from the eQTL dataset, but also the CD8+ T-cells.

Cell population Batch 1 
eQTL

Batch 2 
Bench 10Xv2

Batch 3 
FACS

Test dataset 
Bench 10Xv3

CD19+ B 812 676 2,000 346

CD34+ 2,000

Monocytes (MC) 1,194

     CD14+ 2,081 2,000 354

     CD16+ 274 98

CD4+ T 13,523 1,458 960

     Reg. 2,000

     Naive 2,000

     Memory 2,000

CD8+ T 4,195 2,128 962

     Naive 2,000

Megakaryocyte (MK) 142 433 270

NK cell 429 2,000 194

     CD56+ bright 355

     CD56+ dim 2,415

Dendritic 35

     Plasmacytoid (pDC) 101

     Myeloid (mDC) 455

Table 1. Number of cells per cell population in the different training datasets (batches) and test dataset. Subpopula-
tions are indicated using an indent.
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Most cells of the Bench10Xv3 dataset can be correctly annotated using the learned 
classification tree (Figure 5E). Interestingly, we notice that the CD16+ monocytes are 
predicted to be mDCs and vice versa, which could be explained by the fact that the labels of 
the mDCs and the CD16+ monocytes were flipped in the eQTL dataset. Furthermore, part of 
the CD4+ T-cells are predicted to be CD8+ naïve T-cells. In the Bench10Xv3, we noticed the 
same mislabeling of part of the CD4+ T-cells as in the eQTL and Bench10Xv2 datasets, which 
supports our predictions (Figure S6, S10-13). 

The tree constructed using the one-class SVM differs slightly compared to the linear SVM 
(Figure S16A). Here, the monocytes from the Bench10Xv2 match the CD14+ monocytes and 
mDC (which are actually CD16+ monocytes) as we would expect. Next, the CD14+ monocytes 
from the FACS dataset merge the CD16+ monocytes (which are actually mDC) and the 
monocytes. Using the one-class SVM the CD8+ T-cells and NK cells from the Bench10Xv2 
dataset are missing since there was a complex scenario. The NK cells are a relatively small 
population in this dataset which made it difficult to train a classifier for this population.

In the previous experiments, we used the default setting of Seurat to align the datasets (using 
2000 genes). We tested whether changing the number of genes to 1000 and 5000 affects 
the performance. When using the one-class SVM, the number of genes does not affect tree 
construction. For the linear SVM, we notice one small difference when using 1000 genes: the 
CD8+ T-cells from the Bench10Xv2 dataset are a subpopulation of the CD8+ T-cells from the 
eQTL dataset instead of a perfect match. 

Figure 5. PBMC inter-dataset evaluation. A) Expected and B) learned classification tree when using a linear SVM on 
the PBMC datasets. The color of a node represents the agreement between dataset(s) regarding that cell population. 
C) Confusion matrix when using the learned classification tree to predict the labels of PBMC-Bench10Xv3. The dark 
boundaries indicate the hierarchy of the constructed classification tree.
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The predicted labels of the Bench10Xv3 dataset change slightly when using a different 
number of genes (Figure S17). Whether more genes improves the prediction, differs per cell 
population. The labels of the megakaryocytes, for instance, are better predicted when more 
genes are used, but for the dendritic cells we observe the reverse pattern.

3.2.7 Mapping brain cell populations using scHPL

Next, we applied scHPL to construct a tree which maps the relationships between brain cell 
populations. This is a considerably more challenging task compared to PBMCs given the 
large number of cell populations as well as the fact that brain cell types are not consistently 
annotated. First, we combined two datasets from the primary visual cortex of the mouse 
brain, AMB2016 and AMB2018 [4,5]. AMB2018 contains more cells (12,771 vs. 1,298) and is 
clustered at a higher resolution (92 cell populations vs. 41) compared to AMB2016. Before 
applying scHPL, we aligned the datasets using Seurat [28]. Using scHPL with a linear SVM 
results in an almost perfect tree (Figure 6). We verified these results by comparing our 
constructed tree to cluster correspondences in Extended Data Fig. 6 from Tasic et al. [5]. 
Since AMB2018 is clustered at a higher resolution, most populations are subpopulations of 
AMB2016, which are all correctly identified by scHPL. Conversely, three L4 populations from 
AMB2016 were merged into one population (L4 IT VISp Rspo1) from AMB2018 [5], forming a 
continuous spectrum. This relation was also automatically identified using scHPL (Figure 6). 
Compared to the results from Tasic et al. [5], one cell population from AMB2018 is attached 
to a different parent node. scHPL assigned ‘L6b VISp Col8a1 Rprm’ as a subpopulation of 
‘L6a Sla’ instead of ‘L6b Rgs12’. This population, however, does not express Rgs12, but does 
express Sla (Figure S18), supporting the matching identified by scHPL. Three cell populations 
could not be added to the tree due to complex scenarios. According to Extended Data Fig. 6 
from Tasic et al. [5], these AMB2018 populations are a subpopulation of multiple AMB2016 
subpopulations. 

The AMB2016 and AMB2018 datasets were generated and analyzed by the same group and 
hence the cluster matching is certainly easier than a real-life scenario. Therefore, we tested 
scHPL also on a complicated scenario with brain datasets that are sequenced using different 
protocols and by different labs (Table S7, Figure S19). We used three datasets (Zeisel, Tabula 
Muris, and Saunders) to construct the tree (Figure 7A-D) [2,30,31]. The Zeisel dataset is 
annotated at two resolutions. Before applying scHPL, we aligned the datasets using Seurat 
[28]. First, we constructed a tree using a linear SVM based on the low resolution of Zeisel. We 
started with the Saunders dataset and added Zeisel (Figure 7E). This is a clear illustration of 
the possible scenarios scHPL can manage. Some populations are a perfect match between the 
two datasets (e.g. neurons), some populations from Saunders are splitted (e.g. astrocytes), 
some are merged (e.g. macrophages and microglia), and some populations from Zeisel have 
no match (e.g. Ttr). Next, we updated the tree by adding the Tabula Muris dataset (Figure 
7F). Here, we found matches that would not have been possible to identify by relying on 
the assigned cell type labels to map cell types. For example, mural cells from Saunders are a 
perfect match with the brain pericytes from the Tabula Muris. The results of scHPL with the 
one-class SVM were almost identical to the linear SVM (Figure S20A). 
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Figure 6. Constructed hierarchy for the 
AMB datasets. Learned classification tree 
after applying scHPL with a linear SVM on 
the AMB2016 and AMB2018 datasets. A 
green node indicates that a population 
from the AMB2016 and AMB2018 dataset 
had a perfect match. Three populations 
from the AMB2018 dataset are missing 
from the tree: ‘Pvalb Sema3e Kank4’, ‘Sst 
Hpse Sema3c’, and ‘Sst Tac1 Tacr3’. 
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Next, we used the resulting tree to predict the labels of a fourth independent dataset 
(Rosenberg) [32]. The predictions from the linear and the one-class SVM are very similar 
(Figure 7G, S20B). The only difference is that the linear SVM correctly predicts some 
progenitor or precursor neuronal populations from Rosenberg to be ‘neurogenesis’ while the 
one-class SVM rejects these populations.

To assess the effect of the annotation resolution, we repeated the analysis using the higher 
resolution annotation from the Zeisel dataset (Figure S21-23). Here, we noticed that the 
‘brain pericytes (TM)’ and ‘pericytes (Zeisel)’ - two populations one would easily match based 
on the names only - are not in the same subtree. ‘Brain pericyte (TM)’ forms a perfect match 

Figure 7. Brain inter-dataset evaluation. A-D) UMAP embeddings of the datasets after alignment using Seurat v3. 
E) Learned hierarchy when starting with the Saunders dataset and adding Zeisel with linear SVM. F) Updated tree 
when the Tabula Muris dataset is added. G) Confusion matrix when using the learned classification tree to predict 
the labels of Rosenberg. The dark boundaries indicate the hierarchy of the classification tree.
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with ‘mural (Saunders)’ and ‘vascular smooth muscle cells (Zeisel)’, while ‘pericytes (Zeisel)’ 
is a subpopulation of ‘endothelial stalk (Saunders)’ and ‘endothelial cell (TM)’ (Figure S22-23). 
In the UMAP embedding of the integrated datasets, the ‘pericytes’ and ‘brain pericyte’ are 
at a different location, but they do overlap with the cell populations they were matched with 
(Figure S21). This highlights the power of scHPL matching rather than name-based matching.

3.3 Discussion
In this study, we showed that scHPL can learn cell identities progressively from multiple 
reference datasets. We showed that using our approach the labels of two AMB datasets can 
successfully be matched to create a hierarchy containing mainly neuronal cell populations and 
that we can combine three other brain datasets to create a hierarchy containing mainly non-
neuronal cell populations. In both experiments, we discovered new relationships between 
cell populations, such as the mapping of ‘L6b VISp Col8a1 Rprm’ as a subpopulation of ‘L6b 
Sla’ instead of ‘L6b Rgs12’. This observation would not be possible to make by manually 
matching populations based on the assigned labels, highlighting the power of automatically 
constructing cellular hierarchies. In this case, the Cell Ontology database could also not 
be used to verify this relationship since many brain cell populations are missing. Most of 
these populations have recently been annotated using scRNA-seq and there is a wide lack 
of consistency in population annotation and matching between studies [18]. scHPL can 
potentially be used to map these relations, irrespective of the assigned labels, and improve 
the Cell Ontology database.

When combining multiple datasets to construct a tree, we expect that cell populations are 
annotated correctly. However, in the PBMC inter-dataset experiment, this was not the case. 
At first sight, the constructed tree looked erroneous, but the expression of marker genes 
revealed that (parts of) several cell populations were mislabeled. Here, we could use the 
constructed tree as a warning that there was something wrong with the original annotations. 

In general, scHPL is robust to sampling differences between datasets or varying parameters 
such as the matching threshold or the number of genes used. The brain datasets used to 
construct the tree, for instance, varied greatly in population sizes, which did not cause any 
difficulties. This is mainly because we rely on reciprocal classification. A match between cell 
populations that is missed when training a classifier on one dataset to predict labels of the 
other, can still be captured by the classifier trained on the other dataset.

Since batch effects are inevitable when combining datasets, we require datasets to be aligned 
before running scHPL. In all inter-dataset experiments in this manuscript, we used Seurat 
V3 [28] for the alignment, but we would like to emphasize that scHPL is not dependent on 
Seurat and can be combined with any batch correction tool, such as more computationally 
efficient methods like Harmony [33]. A current limitation of these tools is that when a new 
dataset is added, the alignment - and consequently also scHPL - has to be rerun. An interesting 
alternative would be to project the new dataset to a latent space learned using reference 
dataset(s), using scArches [34] for example. In that case, scHPL does not have to be rerun but 
can be progressively updated. 
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The batch effects between the datasets make it more difficult to troubleshoot errors. 
Generally, it will be hard to resolve whether mistakes in the constructed tree are caused by 
the erroneous alignment of datasets or by mismatches created by scHPL. 

We would like to note though that there are inherent limitations to the assumption that cell 
populations have hierarchical relationships. While this assumption is widely adopted in single 
cell studies as well as the Cell Ontology, there are indeed situations in which a tree is not 
adequate. For instance, situations in which cells dedifferentiate into other cell types, such as 
beta to alpha cell conversions in type2 diabetes [35,36].

Considering the classification performance, we showed that using a hierarchical approach 
outperforms flat classification. On the AMB dataset, the linear SVM outperformed SVMrejection, 
which was the best performing classifier on this dataset [23]. In contrast to SVMrejection, the 
linear SVM did not reject any of the cells but labeled them as an intermediate cell population. 
During this experiment, there were no cells of unknown populations. Correct intermediate 
predictions instead of rejection are therefore beneficial since it provides the user with at least 
some information. When comparing the linear SVM and one-class SVM, we noticed that the 
accuracy of the linear SVM is equal to or higher than the one-class SVM on all datasets. For 
both classifiers, we saw a decrease in performance on populations with a small number of 
cells, but for the one-class SVM this effect was more apparent. 

Since the one-class SVM has a low performance on small cell populations, it also cannot be 
used to combine datasets which consist of small populations. If the classification performance 
is low, it will also not be possible to construct the correct tree. On the other hand, the 
performance of the linear SVM seems to be robust to small populations throughout our 
experiments. This classifier can thus better be used when combining multiple datasets with 
small populations.

When testing the rejection option, the one-class SVM clearly outperforms the linear SVM by 
showing a perfect performance on the simulated dataset. Moreover, when cell populations 
are missing from the simulated data, the linear SVM cannot learn the correct tree anymore, 
in contrast to the one-class SVM. This suggests that the one-class SVM is preferred when cell 
populations are missing, although on the AMB dataset, the rejection option of both classifiers 
was not perfect.

In summary, we present a hierarchical progressive learning approach to automatically 
identify cell identities based on multiple datasets with various levels of subpopulations. We 
show that we can accurately learn cell identities and learn hierarchical relations between 
cell populations. Our results indicate that choosing between a one-class and a linear SVM 
is a trade-off between achieving a higher accuracy and the ability to discover new cell 
populations. Our approach can be beneficial in single-cell studies where a comprehensive 
reference atlas is not present, for instance, to annotate datasets consistently during a cohort 
study. The first available annotated datasets can be used to build the hierarchical tree, which 
could subsequently can be used to annotate cells in the other datasets.
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3.4 Methods

3.4.1 Hierarchical progressive learning

Within scHPL, we use a hierarchical classifier instead of a flat classifier. A flat classifier is a 
classifier that doesn’t consider a hierarchy and distinguishes between all cell populations 
simultaneously. For the AMB dataset, a flat classifier will have to learn the decision boundaries 
between all 92 cell populations in one go. Alternatively, a hierarchical classifier divides the 
problem into smaller subproblems. First it learns the difference between the 3 broad classes: 
GABAergic neurons, glutamatergic neurons, and non-neuronal cells. Next, it learns the 
decision boundaries between the six subtypes of GABAergic neurons and the eight subtypes 
of glutamatergic neurons, separately. Finally, it will learn the decision boundaries between 
the different cell populations within each subtype separately. 

3.4.2 Training the hierarchical classifier

The training procedure of the hierarchical classifier is the same for every tree: we train a 
local classifier for each node except the root. This local classifier is either a one-class SVM or 
a linear SVM. We used the one-class SVM (svm.OneClassSVM(nu = 0.05)) from the 
scikit-learn library in Python [37]. A one-class classifier only uses positive training samples. 
Positive training samples include cells from the node itself and all its child nodes. To avoid 
overfitting, we select the first 100 principal components (PCs) of the training data. Next, we 
select informative PCs for each node separately using a two-sided two-sample t-test between 
the positive and negative samples of a node (α < 0.05, Bonferroni corrected). Negative 
samples are selected using the siblings policy [38], i.e. sibling nodes include all nodes that 
have the same ancestor, excluding the ancestor itself. If a node has no siblings, cells labeled 
as the parent node, but not the node itself are considered negative samples. In some rare 
cases, the Bonferroni correction was too strict and no PCs were selected. In those cases, the 
five PCs with the smallest p-values were selected. For the linear SVM, we used the svm.
LinearSVC() function from the scikit-learn library. This classifier is trained using positive 
and negative samples. The linear SVM applies L2-regularization by default, so no extra 
measures to prevent overtraining were necessary. 

3.4.3 The reconstruction error

The reconstruction error is used to reject unknown cell populations. We use the training 
data to learn a suitable threshold which can be used to reject cells by doing a nested 5 fold 
cross-validation. A PCA (ncomponents = 100) is learned on the training data. The test data is then 
reconstructed by first mapping the data to the selected PCA domain, and then mapping the 
data back to the original space using the inverse transformation (hence the data lies within 
the plane spanned by the selected PCs). The reconstruction error is the difference between 
the original data and the reconstructed data (in other words, the distance of the original data 
to the PC plane). The median of the qth (default q = 0.99) percentile of the errors across the 
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test data is used as threshold. By increasing or decreasing this parameter, the number of false 
negatives can be controlled. Finally, we apply a PCA (ncomponents = 100) to the whole dataset to 
learn the transformation that can be applied to new unlabeled data later.

3.4.4 Predicting the labels

First, we look at the reconstruction error of a new cell to determine whether it should be 
rejected. If the reconstruction error is higher than the threshold determined on the training 
data, the cell is rejected. If not, we continue with predicting its label. We start at the root 
node, which we denote as parent node and use the local classifiers of its children to predict 
the label of the cell using the predict() function, and score it using the decision_
function(), both from the scikit-learn package. These scores represent the signed 
distance of a cell to the decision boundary. When comparing the results of the local classifiers, 
we distinguish three scenarios:

1.	 All child nodes label the cell negative. If the parent node is the root, the new cell is 
rejected. Otherwise we have an internal node prediction and the new cell is labeled 
with the name of the parent node.

2.	 One child node labels the cell positive. If this child node is a leaf node, the sample is 
labeled with the name of this node. Otherwise, this node becomes the new parent 
and we continue with its children. 

3.	 Multiple child nodes label the cell positive. We only consider the child node with the 
highest score and continue as in scenario two. 

3.4.5 Reciprocal matching labels and updating the tree

Starting with two datasets, D1 and D2, and the two corresponding classification trees (which 
can be either hierarchical or flat), we would like to match the labels of the datasets and merge 
the classification trees accordingly into a new classification tree while being consistent with 
both input classification trees (Figure 1). We do this in two steps: first matching the labels 
between the two dataset and then updating the tree.

Reciprocal matching labels. We first cross-predict the labels of the datasets: we use the classi-
fier trained on D1 to predict the labels of D2 and vice versa. We construct confusion matrices, 
C1 and C2, for D1 and D2, respectively. Here, C1ij indicates how many cells of population i of 
D1 are predicted to be population j of D2. This prediction can be either a leaf node, internal 
node or a rejection. As the values in C1 and C2 are highly dependent on the size of a cell 
population, we normalize the rows such that the sum of every row is one, now indicating the 
fraction of cells of population i in D1 that have been assigned to population j in D2: 

NC
C
Cij
ij

ijj

1
1

1
�

��
 

Clearly, a high fraction is indicative of matching population i in D1 with population j in D2. 
Due to splitting, merging, or new populations between both datasets, multiple relatively high 
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fractions can occur (e.g. if a population i is split in two populations j1 and j2 due to D2 being of 
a higher resolution, both fractions NCij1 and NCij2 will be approximately 0.5). To accommodate 
for these operations, we allow multiple matches per population. 

To convert these fractions into matches, NC1 and NC2 are converted into binary confusion 
matrices, BC1 and BC2, where a 1 indicates a match between a population in D1 with a 
population in D2, and vice versa. To determine a match, we take the value of the fraction 
as well as the difference with the other fractions into account. This is done for each row 
(population) of NC1 and NC2 separately. When considering row i from NC1, we first rank 
all fractions, then the highest fraction will be set to 1 in BC1, after which all fractions for 
which the difference with the preceding (higher) fraction is less than a predefined threshold 
(default = 0.25) will also be set to 1 in BC1. 

To arrive at reciprocal matching between D1 and D2, we combine BC1 and BC2 into matching 
matrix X (Figure 2): 

X BC BCT� �1 2

The columns in X represent the cell populations of D1 and the rows represent the cell 
populations of D2. If Xij = 2, this indicates a reciprocal match between cell population i from 
D2 and cell populations j from D1. Xij = 1 indicates a one-sided match, and Xij = 0 represents 
no match. 

Tree updating. Using the reciprocal matches between D1 and D2 represented in X, we update 
the hierarchical tree belonging to D1 to incorporate the labels and tree structure of D2. We 
do that by handling the correspondences in X elementwise. For a non-zero value in X, we 
check whether there are other non-zero values in the corresponding row and column to 
identify which tree operation we need to take (such as split/merge/create). As an example, if 
we encounter a split for population i in D1 into j1 and j2, we will create new nodes for j1 and 
j2 as child nodes of node i in the hierarchical tree of D1. Figure 2 and Table S1 explain the 
four most common scenarios: a perfect match, splitting nodes, merging nodes, and a new 
population. All other scenarios are explained in Supplementary Note 1. After an update, the 
corresponding values in X are set to zero and we continue with the next non-zero element of 
X. If the matching is impossible, the corresponding values in X are thus not set to zero. If we 
have evaluated all elements of X, and there are still non-zero values, we will change X into a 
strict matrix, i.e. we further only consider reciprocal matches, so all ‘1’s are turned into a ‘0’ 
with some exceptions (Supplementary Note 2). We then again evaluate X element wise once 
more. 

3.4.6 Evaluation

Hierarchical F1-score. We use the hierarchical F1-score (HF1-score) to evaluate the 
performance of the classifiers [39]. We first calculate the hierarchical precision (hP) and recall 
(hR): 
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Here, Pi is a set that contains the predicted cell population for a cell i and all the ancestors of 
that node, Ti contains the true cell population and all its ancestors, and P Ti i∩ is the overlap 
between these two sets. The HF1-score is the harmonic mean of hP and hR: 

HF1 2 2� �
hP hR
hP hR

*

Median F1-score. We use the median F1-score to compare the classification performance 
to other methods. The F1-score is calculated for each cell population in the dataset and 
afterwards the median of these scores is taken. Rejected cells and internal predictions are 
not considered when calculating this score.

3.4.7 Datasets

Simulated data. We used the R-package Splatter (V1.6.1) to simulate a hierarchical scRNA-
seq dataset that consists of 8,839 cells and 9,000 genes and represents the tree shown in 
Figure S1A (Supplementary Note 3) [26]. We chose this low number of genes to speed up 
the computation time. In total there are six different cell populations of approximately 1,500 
cells each. As a preprocessing step, we log-transformed the count matrix (log ( )2 1count + ). A 
UMAP embedding of the simulated dataset shows it indeed represents the desired hierarchy 
(Figure S1C).

Peripheral Blood Mononuclear Cells (PBMC) scRNA-seq datasets. We used four different 
PBMC datasets: PBMC-FACS, PBMC-Bench10Xv2, PBMC-Bench10Xv3, and PBMC-eQTL. The 
PBMC-FACS dataset is the downsampled FACS-sorted PBMC dataset from Zheng et al. [27]. 
Cells were first FACS-sorted into ten different cell populations (CD14+ monocytes, CD19+ 
B cells, CD34+ cells, CD4+ helper T-cells, CD4+/CD25+ regulatory T-cells, CD4+/CD45RA+/
CD25− naive T-cells, CD4+/CD45RO+ memory T-cells, CD56+ natural killer cells, CD8+ 
cytotoxic T-cells, CD8+/CD45RA+ naive cytotoxic T-cells) and sequenced using 10X Chromium 
[27]. Each cell population consists of 2,000 cells. The total dataset consists of 20,000 cells 
and 21,952 genes. During the cross-validation on the PBMC-FACS dataset, we tested the 
effect of selecting HVG. We used the ‘seurat_v3’ flavor of scanpy to select 500, 1000, 2000, 
and 5000 HVG on the training set [28,40]. The PBMC-Bench10Xv2 and PBMC-Bench10Xv3 
datasets are the PbmcBench pbmc1.10Xv2 and pbmc1.10Xv3 datasets from Ding et al. 
[41]. These datasets consist of 6,444 and 3,222 cells respectively, 22,280 genes, and nine 
different cell populations. Originally the PBMC-Bench10Xv2 dataset contained CD14+ and 
CD16+ monocytes. We merged these into one population called monocytes to introduce a 
different annotation level compared to the other PBMC datasets.The PBMC-eQTL dataset 
was sequenced using 10X Chromium and consists of 24,439 cells, 22,229 genes, and eleven 
different cell populations [42].

Brain scRNA-seq datasets. We used two datasets from the mouse brain, AMB2016 and 
AMB2018, to look at different resolutions of cell populations in the primary mouse visual 
cortex. The AMB2016 dataset was sequenced using SMARTer [4], downloaded from https://
portal.brain-map.org/atlases-and-data/rnaseq/data-files-2018. AMB2016 consists of 1,298 
cells and 21,413 genes. The AMB2018 dataset, which was sequenced using SMART-Seq V4 
[5], downloaded from https://portal.brain-map.org/atlases-and-data/rnaseq/mouse-v1-
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and-alm-smart-seq, consists of 12,771 cells and 42,625 genes. Additionally, we used four 
other brain datasets: Zeisel [2], Tabula Muris [30], Rosenberg [32], and Saunders [31]. These 
were downloaded from the scArches ‘data’ Google Drive (‘mouse_brain_regions.h5ad’ from 
https://drive.google.com/drive/folders/1QQXDuUjKG8CTnwWW_u83MDtdrBXr8Kpq) [34]. 
We downsampled each dataset such that at the highest resolution each cell population 
consisted of up to 5,000 cells to reduce the computational time for the alignment (Table S7). 

Preprocessing scRNA-seq datasets. All datasets were preprocessed as described in Abdelaal 
et al. [23]. Briefly, we removed cells labeled in the original studies as doublets, debris or 
unlabeled cells, cells from cell populations with less than 10 cells, and genes that were not 
expressed. Next, we calculated the median number of detected genes per cell, and from 
that, we obtained the median absolute deviation (MAD) across all cells in the log scale. We 
removed cells when the total number of detected genes was below three MAD from the 
median number of detected genes per cell. During the intra-dataset experiments, we log-
transformed the count matrices ( log ( )2 1count + ).

Aligning scRNA-seq datasets. During the inter-dataset experiments, we aligned the datasets 
using Seurat V3 [28] based on the joint set of genes expressed in all datasets. In the PBMC, 
AMB, and brain inter-dataset experiment respectively 17,573, 19,197, and 14,858 genes 
remained. For the PBMC inter-dataset experiment, we also removed cell populations that 
consisted of less than 100 cells from the datasets used for constructing and training the 
classification tree (PBMC-eQTL, FACS, Bench10Xv2). To test the effect of the number of genes 
on scHPL, we integrated this data using 1000, 2000 (default), and 5000 HVGs.

3.5 Code and data availability
The filtered PBMC-FACS and AMB2018 dataset can be downloaded from Zenodo (https://
doi.org/10.5281/zenodo.3357167). The simulated dataset and the aligned datasets 
used during the inter-dataset experiment can be downloaded from Zenodo (http://doi.
org/10.5281/zenodo.3736493). Accession numbers or links to the raw data: AMB2016 [4] 
(GSE71585, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE71585), AMB2018 
[5] (GSE115746, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE115746), PBMC-
FACS [27] (SRP073767, https://support.10xgenomics.com/single-cell-gene-expression/
datasets), PBMC-eQTL [42] (EGAS00001002560, https://ega-archive.org/studies/
EGAS00001002560), PBMC-Bench10Xv2 and PBMC-Bench10Xv3 [41] (GSE132044, https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132044), Rosenberg [32] (GSE110823, 
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE110823), Zeisel [2] (http://
mousebrain.org, file name L5_all.loom, downloaded on 9/9/2019), Saunders [31] (http://
dropviz.org, DGE by Region section, downloaded on 30/8/2019), Tabula Muris [30] (https://
figshare.com/projects/Tabula_Muris_Transcriptomic_characterization_of_20_organs_and_
tissues_from_Mus_musculus_at_single_cell_resolution/27733, downloaded on 14/2/2019). 
The source code for scHPL is available as a python package that is installable through the PyPI 
repository (https://github.com/lcmmichielsen/scHPL) [43]. 
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Supplementary Materials
Supplementary Note 1
When matching the cell populations from two datasets, we distinguish five options: simple, 
multiple columns, multiple rows, complex, and impossible. When describing the different 
scenarios within these options, we sometimes make a distinction between leaf nodes and 
internal nodes. Here, it is important to remember that only T1 can have internal nodes since 
this is the tree that is updated. T2 is always a flat classification tree, so only consists of the 
root node and leaf nodes.

Simple. In this scenario, we find a unique match between a cell population, Pi, from dataset 
1 and a cell population, Pj, from dataset 2. As as consequence, Xj,I will be 1 or 2 and the rest 
of row j and column i in X are zero. Within this scenario, there are three different options:

1.	 Both cell populations are leaf or internal nodes. This indicates a perfect match. The tree 
is not updated, but the labels of Pj are renamed to Pi (Figure S24A). This is the same 
scenario as the ‘perfect match’ scenario described in the main text.

2.	 Pi is a leaf or internal node, but Pj is the root node of T2. This indicates that Pi is missing 
in dataset 2. The node, however, is already in the tree, so it is not updated (Figure S24B).

3.	 Pi is the root of T1, but the Pj is a leaf node. This indicates that Pj is missing in dataset 1. 
The cell population is thus also not in the tree yet, so we will add it as a child to the root 
(Figure S24C). This is the same scenario as the ‘new population’ scenario described in 
the main text.

Multiple rows. In this scenario, a cell population, Pi, from dataset 1 matches multiple 
populations from dataset 2. In X there will be multiple non-zero values in column i. Here, we 
distinguish two different scenarios:

1.	 Pi matches only cell populations from dataset 2 that are leaf node. We consider the cell 
populations from dataset 2 subpopulations of Pi, so we add them as descendants to Pi 
(Figure S25A). This is the same scenario as the ‘splitting nodes’ scenario described in the 
main text.

2.	 The root node of T2 is also involved. We simple ignore this node and for the rest do the 
same as above (Figure S25B-C).

Multiple columns. This scenario is quite similar to the multiple rows scenario. Here, however, 
multiples populations from dataset 1 match one cell population, Pj, of dataset 2. In X there 
will be multiple non-zero values in row j. This scenario is a little more complex since the 
populations from dataset 1 does not have to be leaf nodes or the root node, but there can 
also be internal nodes in this tree. Here, we distinguish three different scenarios:

1.	 The root node of T1 and T2 are not involved, so multiple cell populations, which can 
be leaf or internal nodes, from dataset 1 match Pj. We consider the cell populations 
from dataset 1 subpopulations of Pj, so we need to add Pj as a parent node to these 
cell populations (Figure S26A). This is same scenario as the ‘merging nodes’ scenario 
described in the main text. It could be, however, that this node already exists in this tree 
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(Figure S26B). If this is the case, we have a perfect match between a node from tree 1 
and tree 2, so we do not have to update the tree, but we only have to update the labels 
of Pj.

2.	 Besides leaf or internal nodes, the root of T1 is involved. This indicates that Pj is ‘bigger’ 
than the cell populations from dataset 1 as part of it is unlabeled. Therefore, we add Pj 
as a descendant to the root of T1. Next, we rewire the involved cell populations from 
dataset 1 such that they become descendants of Pj (Figure S26C).

3.	 The root node of T2 is involved. This indicates that multiple cell populations from dataset 
1 are missing in dataset 2. These nodes, however, are already in the tree, so the tree can 
remain the same (Figure S26D).

Complex. The scenarios described above were all relatively easy. A cell population from one 
dataset matches either one or multiple cell populations from another. It could also happen, 
however, that multiple cell populations from dataset 1 match multiple cell populations from 
dataset 2 (Figure S27). As a consequence, there will a certain place Xj,I which is either 1 or 2 
and there are two or more non-zero values in the corresponding row j and column i. Here, we 
distinguish three different scenarios:

1.	 The root node of T1 is involved. We just assume that the boundary should be adjusted 
and this is automatically done, so we remove this `1’ from the table (Figure S27A). If the 
situation is still complex after the one is removed, we continue to scenario 2 or 3. If not, 
we treat it as a multiple rows problem as explained above.

2.	 The root node of T2 is involved. Again, we just assume that the boundary should be 
adjusted, so we remove this `1’ from the table (Figure S27B). If the situation is still 
complex after the one is removed, we continue to scenario 3. If not, we treat it as a 
multiple columns problem as explained above.

3.	 Multiple leaf/internal nodes of dataset 1 are involved and multiple leaf nodes of dataset 
2. We can only solve this if the ‘complex’ cell population, Pi, of dataset 1 is not a leaf 
node. Otherwise we are dealing with an impossible scenario which is described below. If 
the complex node is an internal node, we attach the involved cell populations of dataset 
2 as descendants to the complex node (splitting scenario) and attach the involved cell 
populations of dataset 1, except for Pi, to Pj (Figure S27C).

Impossible. Sometimes, it could be impossible to match the labels from two datasets. 
Something could have gone wrong during the clustering, e.g. a population 1 and 2 from 
dataset 1 match population A from dataset 2, but population 2 also matches population C 
from dataset 2 (Figure S28A). Here, population A and C should be merged into population 2, 
but population A should also be split into population 1 and 2. Population 2, however, cannot 
be added to the tree twice. It could also be that dataset 2 contains labels at a different 
resolution, e.g. that population B is a subpopulation of population A (Figure S28B). This is not 
what we assumed and thus impossible to match. Both scenarios occur when a leaf node from 
dataset 1 is at a crossing of multiple rows and multiple columns (i.e. a complex situation). An 
extra difficulty is that there are thus multiple situations that could explain this. All of these 
situation are not what we desired and thus we call it impossible and do nothing.
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Supplementary Note 2
If there is a complex scenario that cannot be solved immediately, matrix X will be changed 
into a strict matrix. In the strict matrix, only reciprocal matches are considered, so all ‘1’s’ are 
turned into ‘0’. There are some exceptions to this rule. 

-	 A population can never have a reciprocal match with the root, so these ‘1’s’ are 
never removed.

-	 If a population from a dataset has only one match, it is also never removed. 
Consider the following example: If population P1 of Dataset 1 is only predicted to be 
Population Q of Dataset 2, we know that P1 should be a match with Q as it cannot 
be matched with any other population or with the root. It could be that this match 
is not reciprocal if population Q has many different subpopulations (e.g. P1, P2, P3, 
P4). Imagine that population P2 is really big. Almost all cells of population Q will be 
predicted to be P2 and so the matches with P1 (and P3 and P4) are missed because 
of the matching threshold. In case there is a complex scenario caused by any other 
population (maybe P2 or P3 or P4), we still know that P1 is a subpopulation of Q, 
since that was super clear and didn’t cause any complexity.  

Supplementary Note 3
Current scRNA-seq data simulators cannot simulate hierarchical data, so we simulated this 
dataset step by step (Figure S1B). 
First, we simulated the expression of 3,000 genes for 9,000 cells. For this simulation, the 
cells were divided into three groups. The 3,000 simulated genes represent genes that are 
differentially expressed between the cell populations at a low resolution, so for example B 
cells vs. T cells. Next, we simulated another 3,000 genes for the same 9,000 cells. Now, the 
cells were divided into five groups. Here, the differentially expressed genes represent genes 
that distinguish cell populations at a slightly higher resolution, so for example CD4+ T cells 
vs. CD8+ T cells. We repeated this step for another set of 3,000 genes, but now there were 
six populations. The third dataset represents the highest resolution, so for instance CD4+ 
memory T cells vs. CD4+ naïve T cells.
Together this resulted in a dataset of 9,000 cells and 9,000 genes. The cells were labeled 
at three resolutions. There was some inconsistency between the labels at the different 
resolutions (e.g. some cells were labeled as ‘Group12’, ‘Group3’, ‘Group3’). We removed 
these cells from the dataset, which resulted in a final dataset of 8,839 cells and 9,000 genes.
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