
Learning cell identities and (post-)transcriptional
regulation using single-cell data
Michielsen, L.C.M.

Citation
Michielsen, L. C. M. (2024, June 13). Learning cell identities and (post-
)transcriptional regulation using single-cell data. Retrieved from
https://hdl.handle.net/1887/3763527

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3763527

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3763527

Hierarchical progressive learning of cell
identities in single-cell data

chapter 3

Lieke Michielsen, Marcel J.T. Reinders, Ahmed Mahfouz

This chapter is published in: Nature Communications (2021) 12: 2799, doi: 10.1038/s41467-021-
23196-8.
Supplementary material is available online at:
https://www.nature.com/articles/s41467-021-23196-8#Sec27

Thesis_LM_final.indd 67Thesis_LM_final.indd 67 24-04-2024 18:54:1724-04-2024 18:54:17

CHAPTER 3

68

Supervised methods are increasingly used to identify cell populations in single-cell data. Yet,
current methods are limited in their ability to learn from multiple datasets simultaneously,
are hampered by the annotation of datasets at different resolutions, and do not preserve
annotations when retrained on new datasets. The latter point is especially important
as researchers cannot rely on downstream analysis performed using earlier versions of
the dataset. Here, we present scHPL, a hierarchical progressive learning method which
allows continuous learning from single-cell data by leveraging the different resolutions of
annotations across multiple datasets to learn and continuously update a classification tree.
We evaluate the classification and tree learning performance using simulated as well as real
datasets and show that scHPL can successfully learn known cellular hierarchies from multiple
datasets while preserving the original annotations. scHPL is available at https://github.com/
lcmmichielsen/scHPL.

3.1 Introduction
Cell identification is an essential step in single-cell studies with profound effects on
downstream analysis. For example, in order to compare cell-population-specific eQTL
findings across studies, cell identities should be consistent [1]. Currently, cells in single-cell
RNA-sequencing (scRNA-seq) datasets are primarily annotated using clustering and visual
exploration techniques, i.e. cells are first clustered into populations which are subsequently
named based on the expression of marker genes. This is not only time-consuming, but also
subjective [2]. The number of cell populations identified in a dataset, for example, is strongly
correlated with the number of cells analyzed, which results in inconsistency across datasets
[3–5].

Recently, many supervised methods have been developed to replace unsupervised
techniques. The underlying principles of these methods vary greatly. Some methods, for
instance, rely on prior knowledge and assume that for each cell population marker genes can
be defined (e.g. SCINA [6] and Garnett [7]), while others search for similar cells in a reference
database (e.g. scmap [8] and Cell-BLAST [9]), or train a classifier using a reference atlas or a
labeled dataset (e.g. scPred [10] and CHETAH [11]).

Supervised methods rely either on a reference atlas or labeled dataset. Ideally, we would
use a reference atlas containing all possible cell populations to train a classifier. Such an
atlas, however, does not exist yet and might never be fully complete. In particular, aberrant
cell populations might be missing as a huge number of diseases exist and mutations could
result in new cell populations. To overcome these limitations, some methods (e.g. OnClass)
rely on the Cell Ontology to identify cell populations that are missing from the training data
but do exist in the Cell Ontology database [12]. These Cell Ontologies, however, were not
developed for scRNA-seq data specifically. As a consequence, many newly identified (sub)
populations are missing and relationships between cell populations might be inaccurate. A
striking example of this inadequacy are neuronal cell populations. Recent single-cell studies
have identified hundreds of populations [4,13,14], including seven subtypes and 92 cell
populations in one study only [5]. In contrast, the Cell Ontology currently includes only one
glutamatergic neuronal cell population without any subtypes.

Thesis_LM_final.indd 68Thesis_LM_final.indd 68 24-04-2024 18:54:1724-04-2024 18:54:17

single-cell Hierarchical Progressive Learning

69

33

Since no complete reference atlas is available, a classifier should ideally be able to combine
the information of multiple annotated datasets and continue learning. Each time a new cell
population is found in a dataset, it should be added to the knowledge of the classifier. We
advocate that this can be realized with progressive learning, a learning strategy inspired by
humans. Human learning is a continuous process that never ends [15]. Using progressive
learning, the task complexity is gradually increased, for instance, by adding more classes, but
it is essential that the knowledge of the previous classes is preserved [16,17]. This strategy
allows combining information of multiple existing datasets and retaining the possibility
to add more datasets afterwards. However, it cannot be simply applied to scRNA-seq
datasets as a constant terminology to describe cell populations is missing, which eliminates
straightforward identification of new cell populations based on their names. For example, the
recently discovered neuronal populations are typically identified using clustering and named
based on the expression of marker genes. A standardized nomenclature for these clusters
is missing [18], so the relationship between cell populations defined in different datasets is
often unknown.

Moreover, the level of detail (resolution) at which datasets are annotated highly depends on
the number of cells analyzed [19]. For instance, if a dataset is annotated at a low resolution,
it might contain T-cells, while a dataset at a higher resolution can include subpopulations of
T-cells, such as CD4+ and CD8+ T-cells. We need to consider this hierarchy of cell populations
in our representation, which can be done with a hierarchical classifier. This has the advantage
that cell population definitions of multiple datasets can be combined, ensuring consistency.
A hierarchical classifier has additional advantages in comparison to a classifier that does
not exploit this hierarchy between classes (here denoted as ‘flat classifier’). One of these
advantages is that the classification problem is divided into smaller sub-problems, while a flat
classifier needs to distinguish between many classes simultaneously. Another advantage is
that if we are not sure about the annotation of an unlabeled cell at the highest resolution, we
can always label it as an intermediate cell population (i.e. at a lower resolution).

Currently, some classifiers, such as Garnett, CHETAH, and Moana, already exploit this
hierarchy between classes [7,11,20]. Garnett and Moana both depend on prior knowledge in
the form of marker genes for the different classes. Especially for deeper annotated datasets it
can be difficult to define marker genes for each cell population that are robust across scRNA-
seq datasets [21,22]. Moreover, we have previously shown that adding prior knowledge is
not beneficial [23]. CHETAH, on the contrary, constructs a classification tree based on one
dataset by hierarchically clustering the reference profiles of the cell populations and classifies
new cells based on the similarity to the reference profile of that cell population. However,
simple flat classifiers outperform CHETAH [23], indicating that a successful strategy to exploit
this hierarchy is still missing. Furthermore, these hierarchical classifiers cannot exploit the
different resolutions of multiple datasets as this requires adaptation of the hierarchical
representation.

Even if multiple datasets are combined into a hierarchy, there might be unseen populations
in an unlabeled dataset. Identifying these cells as a new population is a challenging problem.
Although some classifiers have implemented an option to reject cells, they usually fail when
being tested in a realistic scenario [23]. In most cases, the rejection option is implemented

Thesis_LM_final.indd 69Thesis_LM_final.indd 69 24-04-2024 18:54:1724-04-2024 18:54:17

CHAPTER 3

70

by setting a threshold on the posterior probability [7,10,23,24]. If the highest posterior
probability does not exceed a threshold, the cell is rejected. By looking at the posterior, the
actual similarity between a cell and the cell population is ignored.

In this work, we propose a hierarchical progressive learning approach to overcome these
challenges. To summarize our contributions: (i) we exploit the hierarchical relationships
between cell populations to be able to classify data sets at different resolutions, (ii) we propose
a progressive learning approach that updates the hierarchical relationships dynamically
and consistently, and (iii) we adopt an advanced rejection procedure including a one-class
classifier to be able to discover new cell (sub)populations.

3.2 Results

3.2.1 Hierarchical progressive learning of cell identities

We developed scHPL, a hierarchical progressive learning approach to learn a classification
tree using multiple labeled datasets (Figure 1A) and use this tree to predict the labels of a new,
unlabeled dataset (Figure 1B). The tree is learned using multiple iterations (Methods). First,
we match the labels of two datasets by training a flat classifier for each dataset and predicting
the labels of the other dataset. Based on these predictions we create a matching matrix (X)

Figure 1. Schematic overview of scHPL. A) Overview of the training phase. In the first iteration, we start with two
labeled datasets. The colored areas represent the different cell populations. For both datasets a flat classifier (FC1
& FC2) is constructed. Using this tree and the corresponding dataset, a classifier is trained for each node in the
tree except for the root. We use the trained classification tree of one dataset to predict the labels of the other.
The decision boundaries of the classifiers are indicated with the contour lines. We compare the predicted labels to
the cluster labels to find matches between the labels of the two datasets. The tree belonging to the first dataset
is updated according to these matches, which results in a hierarchical classifier (HC1). In dataset 2, for example,
subpopulations of population ‘1’ of dataset 1 are found. Therefore, these cell populations, ‘A’ and ‘B’, are added as
children to the ‘1’ population. In iteration 2, a new labeled dataset is added. Again a flat classifier (FC3) is trained
for this dataset and HC1 is trained on dataset 1 and 2, combined. After cross-prediction and matching the labels, we
update the tree which is then trained on all datasets 1-3 (HC2). B) The final classifier can be used to annotate a new
unlabeled dataset. If this dataset contains unknown cell populations, these will be rejected.

Thesis_LM_final.indd 70Thesis_LM_final.indd 70 24-04-2024 18:54:1724-04-2024 18:54:17

single-cell Hierarchical Progressive Learning

71

33

and match the cell populations of the two datasets. In the matching process, we separate
different biological scenarios, such as a perfect match, merging or splitting cell populations,
as well as creating a new population (Figure 2, Table S1). In the following iterations, we add
one labeled dataset at a time by training a flat classifier on this new dataset and training the
previously learned tree on all pre-existing datasets. Similar to the previous iteration, the tree
is updated after cross-prediction and matching of the labels. It could happen that datasets
are inconsistently labeled and the labels cannot be matched (Supplementary Note 1). In this
case, one of the populations might be missing from the tree.

Either during tree learning or prediction, there can be unseen populations. Therefore,
an efficient rejection option is needed, which we do in two steps. First, we reject cells by
thresholding the reconstruction error of a cell when applying a PCA-based dimension
reduction: a new, unknown, population is not used to learn the PCA transformation, and
consequently will not be properly represented by the selected PCs, leading to a high
reconstruction error (Methods). Second, to accommodate rejections when the new
population is within the selected PCA domain, scHPL adopts two alternatives to classify cells:
a linear and a one-class support vector machine (SVM). The linear SVM has shown a high
performance in a benchmark of scRNA-seq classifiers [23], but has a limited rejection option.
Whereas, the one-class SVM solves this as only positive training samples are used to fit a tight
decision boundary around [25].

3.2.2 Linear SVM has a higher classification accuracy than one-
class SVM

We tested our hierarchical classification scheme by measuring the classification performance
of the one-class SVM and linear SVM on simulated, PBMC (PBMC-FACS) and brain (Allen
Mouse Brain) data using 10-, 10-, and 5-fold cross-validation respectively (Methods). The

Figure 2. Schematic examples of different matching
scenarios. A) Perfect match, B) splitting, C) merging,
D) new population. The first two columns represent a
schematic representation of two datasets. After cross-
predictions, the matching matrix (X) is constructed
using the confusion matrices (Methods). We update
the tree based on X.

Thesis_LM_final.indd 71Thesis_LM_final.indd 71 24-04-2024 18:54:1724-04-2024 18:54:17

CHAPTER 3

72

simulated dataset was constructed using Splatter [26] and consists of 8,839 cells, 9,000 genes
and 6 different cell populations (Figure S1). PBMC-FACS is the downsampled FACS-sorted
PBMC dataset from Zheng et al. [27] and consists of 20,000 cells and 10 cell populations. The
Allen Mouse Brain (AMB) dataset is challenging as it has deep annotation levels [5], containing
92 different cell populations ranging in size from 11 to 1,348 cells. In these experiments, the
classifiers were trained on predefined trees (Figure S1-3).

On all datasets, the linear SVM performs better than the one-class SVM (Figure 3A-D). The
simulated dataset is relatively easy since the cell populations are widely separated (Figure
S1C). The linear SVM shows an almost perfect performance: only 0.9% of the cells are rejected
(based on the reconstruction error only), which is in line with the adopted threshold resulting
in 1% false negatives. The one-class SVM labels 92.9% of the cells correctly, the rest is labeled
as an internal node (2.3%) or rejected (4.8%), which results in a median Hierarchical F1-score
(HF1-score) of 0.973, where HF1 is an F1-score that considers class importance across the
hierarchy (Methods).

As expected, the performance of the classifiers on real data drops, but the HF1-scores remain
higher than 0.9. On both the PBMC-FACS and AMB dataset, the performance of the linear

Figure 3. Classification performance. A-C) Boxplots showing the HF1-score of the one-class and linear SVM during
n-fold cross-validation on the A) simulated (n = 10), B) PBMC-FACS (n = 10), and C) AMB (n = 5) dataset. In the
boxplots, the middle (orange) line represents the median, the lower and upper hinge represent the first and third
quartiles, and the lower and upper whisker represent the values no further than 1.5 inter-quartile range away from
the lower and upper hinge respectively. D) Barplot showing the percentage of true positives (TP), false negatives
(FN), and false positives (FP) per classifier on the AMB dataset. For the TPs a distinction is made between correctly
predicted leaf nodes and internal nodes. E) Heatmap showing the percentage of unlabeled cells per classifier during
the different rejection experiments. F) Heatmap showing the F1-score per classifier per cell population on the AMB
dataset. Grey indicates that a classifier never predicted a cell to be of that population.

Thesis_LM_final.indd 72Thesis_LM_final.indd 72 24-04-2024 18:54:1824-04-2024 18:54:18

single-cell Hierarchical Progressive Learning

73

33

SVM is higher than the one-class SVM (Figure 3B-D). For the AMB dataset, we used the same
cross-validation folds as in Abdelaal et al. [23], which enables us to compare our results.
When comparing to CHETAH, which allows hierarchical classification, we notice that the
linear SVM performs better based on the median F1-score (0.94 vs 0.83). The one-class SVM
has a slightly lower median F1-score (0.80 vs 0.83), but it has more correctly predicted cells
and less wrongly predicted cells (Figure 3D).

The linear (hierarchical) SVM also shows a better performance compared to SVMrejection, which
is a flat linear SVM with rejection option based on the posterior probability and was the best
classifier for this data [23]. SVMrejection, however, has a slightly higher median F1-score (0.98 vs
0.94). This is mainly because it makes almost no mistakes, only 1.7% of the cells are wrongly
labeled (Figure 3D). The number of rejected cells, on the other hand, is not considered when
calculating the median F1-score. This number is relatively high for SVMrejection (19.8%). The
linear SVM, on the contrary, has almost no rejected cells, which is also reflected in a higher
HF1-score (Figure 3C). Because of this large amount of rejections of SVMrejection, the one-class
SVM also has a higher HF1-score.

On the AMB dataset, we observe that the performance of all classifiers decreases when the
number of cells per cell population becomes smaller. The performance of the one-class SVM
is affected more than the others (Figure 3F). The one-class SVM, for instance, never predicts
the ‘Astro Aqp4’ cells correctly, while this population is relatively different from the rest as it is
the only non-neuronal population. This cell population, however, only consists of eleven cells.

In the previous experiments, we used all genes to train the classifiers. Since the selection of
highly variable genes (HVGs) is common in scRNA-seq analysis pipelines, we tested the effect
of selecting HVGs on the classification performance of the PBMC-FACS dataset. We noted
that using all genes results in the highest HF1-score for both the linear and one-class SVM
(Figure S4).

3.2.3 One-class SVM detects new cells better than linear SVM

Besides a high accuracy, the classifiers should be able to reject unseen cell populations. First,
we evaluated the rejection option on the simulated data. In this dataset, the cell populations
are distinct, so we expect that this is a relatively easy task. We removed one cell population,
‘Group 3’, from the training set and used this population as a test set. The one-class SVM
outperforms the linear SVM as it correctly rejects all these cells, while the linear SVM rejects
only 38.9% of them.

Next, we tested the rejection option on the AMB dataset. Here, we did four experiments
and each time removed a node, including all its subpopulations, from the predefined tree
(Figure S3). We removed the ‘L6 IT’ and ‘Lamp5’ cell populations from the second layer of
the tree, and the ‘L6 IT VISp Penk Col27a1’ and ‘Lamp5 Lsp1’ from the third layer. When a
node is removed from the second layer of the tree, the linear SVM clearly rejects these cells
better than the one-class SVM (Figure 3E). On the contrary, the one-class SVM rejects leaf
node cells better.

Thesis_LM_final.indd 73Thesis_LM_final.indd 73 24-04-2024 18:54:1824-04-2024 18:54:18

CHAPTER 3

74

3.2.4 scHPL accurately learns cellular hierarchies

Next, we tested if we could learn the classification trees for the simulated and PBMC-FACS
data using scHPL. In both experiments, we performed a 10-fold cross-validation and splitted
the training set in three different batches, Batch 1, Batch 2, and Batch 3, to simulate the
idea of different datasets. To obtain different annotation levels in these batches, multiple
cell populations were merged into one population in some batches, or cell populations were
removed from certain batches (Tables S2-3). Batch 1 contains the lowest resolution and Batch
3 the highest. When learning the trees, we try all (six) different orders of the batches to see
whether this affects the tree learning. Combining this with the 10-fold cross-validation, 60
trees were learned in total by each classifier. To summarize the results, we constructed a
final tree in which the thickness of an edge indicates how often it appeared in the 60 learned
trees.

The linear and one-class SVM showed stable results during both experiments; all 60 trees -
except for two trees learned by the one-class SVM on the PBMC data - look identical (Figure
4A-D). The final tree for the simulated data looks as expected, but the tree for the PBMC
data looks slightly different from the predefined hematopoietic tree (Figure S2A). In the
learned trees, CD4+ memory T-cells are a subpopulation of CD8+ instead of CD4+ T-cells. The
correlation between the centroids of CD4+ memory T-cell and CD8+ T-cells (r = 0.985±0.003)
is also slightly higher than the correlation to CD4+ T-cells (r = 0.975±0.002) (Figure S5). Using
the learned tree instead of the predefined hematopoietic tree improves the classification
performance of the linear SVM slightly (HF1-score = 0.990 vs 0.985). Moreover, when relying

Figure 4. Tree learning evaluation. Classification trees
learned when using a A, C, E) linear SVM or B, D, F)
one-class SVM during the A, B) simulated, C, D) PBMC-
FACS, and E, F) simulated rejection experiment. The line
pattern of the links indicates how often that link was
learned during the 60 training runs. D) In 2/60 trees, the
link between the CD8+ T-cells and the CD8+ naive and
CD4+ memory T-cells is missing. In those trees, the CD8+
T-cells and CD8+ naive T-cells have a perfect match and
the CD4+ memory T-cells are missing from the tree. F) In
20/60 trees, the link between ‘Group456’ and ‘Group5’
is missing. In those trees, these two populations are a
perfect match.

Thesis_LM_final.indd 74Thesis_LM_final.indd 74 24-04-2024 18:54:1824-04-2024 18:54:18

single-cell Hierarchical Progressive Learning

75

33

on the predefined hematopoietic tree, CD4+ memory T-cells, CD8+ T-cells, and CD8+ naive
T-cells were also often confused, further highlighting the difficulty in distinguishing these
populations based on their transcriptomic profiles alone (Tables S4-5).

Next, we tested the effect of the matching threshold (default = 0.25) on the tree construction
by varying this to 0.1 and 0.5. For the linear SVM, changing the threshold had no effect. For
the one-class SVM, we noticed a small difference when changing the threshold to 0.1. The
two trees that were different using the default threshold (Figure 4D), were now constructed
as the other 58 trees. In general, scHPL is robust to settings of the matching threshold due to
its reliance on reciprocal classification.

3.2.5 Missing populations affect tree construction with linear SVM

We tested whether new or missing cell populations in the training set could influence tree
learning. We mimicked this scenario using the simulated dataset and the same batches as in
the previous tree learning experiment. In the previous experiment, ‘Group5’ and ‘Group6’
were merged into ‘Group56’ in Batch 2, but now we removed ‘Group5’ completely from this
batch (Table S6). In this setup, the linear SVM misconstructs all trees (Figure 4E). If ‘Group5’ is
present in one batch and absent in another, the ‘Group5’ cells are not rejected, but labeled as
‘Group6’. Consequently, ‘Group6’ is added as a parent node to ‘Group5’ and ‘Group6’. On the
other hand, the one-class SVM suffers less than the linear SVM from these missing populations
and correctly learns the expected tree in 2/3 of the cases (Figure 4F). In the remaining third
(20 trees), ‘Group5’ matched perfectly with ‘Group456’ and was thus not added to the tree.
This occurs only if we have the following order: Batch 1 - Batch 3 - Batch 2 or Batch 3 - Batch
1 - Batch 2. Adding batches in increasing or decreasing resolution consequently resulted in
the correct tree.

3.2.6 Linear SVM can learn the classification tree during an inter-
dataset experiment

Finally, we tested scHPL in a realistic scenario by using three PBMC datasets (PBMC-eQTL,
PBMC-Bench10Xv2, and PBMC-FACS) to learn a classification tree and using this tree to predict
the labels of a fourth PBMC dataset (PBMC-Bench10Xv3) (Table 1). Before applying scHPL, we
aligned the datasets using Seurat [28]. We constructed an expected classification tree based
on the names of the cell populations in the datasets (Figure 5A). Note that matching based
on names might result in an erroneous tree since every dataset was labeled using different
clustering techniques, marker genes, and their own naming conventions.

When comparing the tree learned using the linear SVM to the expected tree, we notice
five differences (Figure 5A-B). Some of these differences are minor, such as the matching
of monocytes from the Bench10Xv2 dataset to myeloid dendritic cells (mDC), CD14+
monocytes, and the CD16+ monocytes. Monocytes can differentiate into mDC which can
explain their transcriptomic similarity [29]. Other differences between the reconstructed
and the expected trees are likely the result of (partly) mislabeled cell populations in the

Thesis_LM_final.indd 75Thesis_LM_final.indd 75 24-04-2024 18:54:1824-04-2024 18:54:18

CHAPTER 3

76

original datasets (Figure S6-15). (i) According to the expression of FCER1A (a marker for
mDC) and FCGR3A (CD16+ monocytes), the labels of the mDC and the CD16+ monocytes
in the eQTL dataset are reversed (Figure S6-8). (ii) Part of the CD14+ monocytes in the FACS
dataset express FCER1A, which is a marker for mDC (Figure S6, S8-9). The CD14+ monocytes
in the FACS dataset are thus partly mDCs, which explains the match with the mDC from the
eQTL dataset. (iii) Part of the CD4+ T-cells from the eQTL and Bench10Xv2 dataset should be
relabeled as CD8+ T-cells (Figure S6, S10-13). In these datasets, the cells labeled as the CD8+
T-cells only contain cytotoxic CD8+ T-cells, while naive CD8+ T-cells are all labeled as CD4+
T-cells. This mislabeling explains why the CD8+ naive T-cells are a subpopulation of the CD4+
T-cells. (iv) Part of the CD34+ cells in the FACS dataset should be relabeled as pDC (Figure
S6, S14-15), which explains why the pDC are a subpopulation of the CD34+ cells. In the FACS
dataset, the labels were obtained using sorting, which would indicate that these labels are
correct. The purity of the CD34+ cells, however, was significantly low (45%) compared to
other cell populations (92-100%) [27]. There is only one difference , however, that cannot be
explained by mislabeling. The NK cells from the FACS dataset do not only match the NK cells
from the eQTL dataset, but also the CD8+ T-cells.

Cell population Batch 1
eQTL

Batch 2
Bench 10Xv2

Batch 3
FACS

Test dataset
Bench 10Xv3

CD19+ B 812 676 2,000 346

CD34+ 2,000

Monocytes (MC) 1,194

 CD14+ 2,081 2,000 354

 CD16+ 274 98

CD4+ T 13,523 1,458 960

 Reg. 2,000

 Naive 2,000

 Memory 2,000

CD8+ T 4,195 2,128 962

 Naive 2,000

Megakaryocyte (MK) 142 433 270

NK cell 429 2,000 194

 CD56+ bright 355

 CD56+ dim 2,415

Dendritic 35

 Plasmacytoid (pDC) 101

 Myeloid (mDC) 455

Table 1. Number of cells per cell population in the different training datasets (batches) and test dataset. Subpopula-
tions are indicated using an indent.

Thesis_LM_final.indd 76Thesis_LM_final.indd 76 24-04-2024 18:54:1824-04-2024 18:54:18

single-cell Hierarchical Progressive Learning

77

33

Most cells of the Bench10Xv3 dataset can be correctly annotated using the learned
classification tree (Figure 5E). Interestingly, we notice that the CD16+ monocytes are
predicted to be mDCs and vice versa, which could be explained by the fact that the labels of
the mDCs and the CD16+ monocytes were flipped in the eQTL dataset. Furthermore, part of
the CD4+ T-cells are predicted to be CD8+ naïve T-cells. In the Bench10Xv3, we noticed the
same mislabeling of part of the CD4+ T-cells as in the eQTL and Bench10Xv2 datasets, which
supports our predictions (Figure S6, S10-13).

The tree constructed using the one-class SVM differs slightly compared to the linear SVM
(Figure S16A). Here, the monocytes from the Bench10Xv2 match the CD14+ monocytes and
mDC (which are actually CD16+ monocytes) as we would expect. Next, the CD14+ monocytes
from the FACS dataset merge the CD16+ monocytes (which are actually mDC) and the
monocytes. Using the one-class SVM the CD8+ T-cells and NK cells from the Bench10Xv2
dataset are missing since there was a complex scenario. The NK cells are a relatively small
population in this dataset which made it difficult to train a classifier for this population.

In the previous experiments, we used the default setting of Seurat to align the datasets (using
2000 genes). We tested whether changing the number of genes to 1000 and 5000 affects
the performance. When using the one-class SVM, the number of genes does not affect tree
construction. For the linear SVM, we notice one small difference when using 1000 genes: the
CD8+ T-cells from the Bench10Xv2 dataset are a subpopulation of the CD8+ T-cells from the
eQTL dataset instead of a perfect match.

Figure 5. PBMC inter-dataset evaluation. A) Expected and B) learned classification tree when using a linear SVM on
the PBMC datasets. The color of a node represents the agreement between dataset(s) regarding that cell population.
C) Confusion matrix when using the learned classification tree to predict the labels of PBMC-Bench10Xv3. The dark
boundaries indicate the hierarchy of the constructed classification tree.

Thesis_LM_final.indd 77Thesis_LM_final.indd 77 24-04-2024 18:54:1824-04-2024 18:54:18

CHAPTER 3

78

The predicted labels of the Bench10Xv3 dataset change slightly when using a different
number of genes (Figure S17). Whether more genes improves the prediction, differs per cell
population. The labels of the megakaryocytes, for instance, are better predicted when more
genes are used, but for the dendritic cells we observe the reverse pattern.

3.2.7 Mapping brain cell populations using scHPL

Next, we applied scHPL to construct a tree which maps the relationships between brain cell
populations. This is a considerably more challenging task compared to PBMCs given the
large number of cell populations as well as the fact that brain cell types are not consistently
annotated. First, we combined two datasets from the primary visual cortex of the mouse
brain, AMB2016 and AMB2018 [4,5]. AMB2018 contains more cells (12,771 vs. 1,298) and is
clustered at a higher resolution (92 cell populations vs. 41) compared to AMB2016. Before
applying scHPL, we aligned the datasets using Seurat [28]. Using scHPL with a linear SVM
results in an almost perfect tree (Figure 6). We verified these results by comparing our
constructed tree to cluster correspondences in Extended Data Fig. 6 from Tasic et al. [5].
Since AMB2018 is clustered at a higher resolution, most populations are subpopulations of
AMB2016, which are all correctly identified by scHPL. Conversely, three L4 populations from
AMB2016 were merged into one population (L4 IT VISp Rspo1) from AMB2018 [5], forming a
continuous spectrum. This relation was also automatically identified using scHPL (Figure 6).
Compared to the results from Tasic et al. [5], one cell population from AMB2018 is attached
to a different parent node. scHPL assigned ‘L6b VISp Col8a1 Rprm’ as a subpopulation of
‘L6a Sla’ instead of ‘L6b Rgs12’. This population, however, does not express Rgs12, but does
express Sla (Figure S18), supporting the matching identified by scHPL. Three cell populations
could not be added to the tree due to complex scenarios. According to Extended Data Fig. 6
from Tasic et al. [5], these AMB2018 populations are a subpopulation of multiple AMB2016
subpopulations.

The AMB2016 and AMB2018 datasets were generated and analyzed by the same group and
hence the cluster matching is certainly easier than a real-life scenario. Therefore, we tested
scHPL also on a complicated scenario with brain datasets that are sequenced using different
protocols and by different labs (Table S7, Figure S19). We used three datasets (Zeisel, Tabula
Muris, and Saunders) to construct the tree (Figure 7A-D) [2,30,31]. The Zeisel dataset is
annotated at two resolutions. Before applying scHPL, we aligned the datasets using Seurat
[28]. First, we constructed a tree using a linear SVM based on the low resolution of Zeisel. We
started with the Saunders dataset and added Zeisel (Figure 7E). This is a clear illustration of
the possible scenarios scHPL can manage. Some populations are a perfect match between the
two datasets (e.g. neurons), some populations from Saunders are splitted (e.g. astrocytes),
some are merged (e.g. macrophages and microglia), and some populations from Zeisel have
no match (e.g. Ttr). Next, we updated the tree by adding the Tabula Muris dataset (Figure
7F). Here, we found matches that would not have been possible to identify by relying on
the assigned cell type labels to map cell types. For example, mural cells from Saunders are a
perfect match with the brain pericytes from the Tabula Muris. The results of scHPL with the
one-class SVM were almost identical to the linear SVM (Figure S20A).

Thesis_LM_final.indd 78Thesis_LM_final.indd 78 24-04-2024 18:54:1824-04-2024 18:54:18

single-cell Hierarchical Progressive Learning

79

33

Figure 6. Constructed hierarchy for the
AMB datasets. Learned classification tree
after applying scHPL with a linear SVM on
the AMB2016 and AMB2018 datasets. A
green node indicates that a population
from the AMB2016 and AMB2018 dataset
had a perfect match. Three populations
from the AMB2018 dataset are missing
from the tree: ‘Pvalb Sema3e Kank4’, ‘Sst
Hpse Sema3c’, and ‘Sst Tac1 Tacr3’.

Thesis_LM_final.indd 79Thesis_LM_final.indd 79 24-04-2024 18:54:1924-04-2024 18:54:19

CHAPTER 3

80

Next, we used the resulting tree to predict the labels of a fourth independent dataset
(Rosenberg) [32]. The predictions from the linear and the one-class SVM are very similar
(Figure 7G, S20B). The only difference is that the linear SVM correctly predicts some
progenitor or precursor neuronal populations from Rosenberg to be ‘neurogenesis’ while the
one-class SVM rejects these populations.

To assess the effect of the annotation resolution, we repeated the analysis using the higher
resolution annotation from the Zeisel dataset (Figure S21-23). Here, we noticed that the
‘brain pericytes (TM)’ and ‘pericytes (Zeisel)’ - two populations one would easily match based
on the names only - are not in the same subtree. ‘Brain pericyte (TM)’ forms a perfect match

Figure 7. Brain inter-dataset evaluation. A-D) UMAP embeddings of the datasets after alignment using Seurat v3.
E) Learned hierarchy when starting with the Saunders dataset and adding Zeisel with linear SVM. F) Updated tree
when the Tabula Muris dataset is added. G) Confusion matrix when using the learned classification tree to predict
the labels of Rosenberg. The dark boundaries indicate the hierarchy of the classification tree.

Thesis_LM_final.indd 80Thesis_LM_final.indd 80 24-04-2024 18:54:1924-04-2024 18:54:19

single-cell Hierarchical Progressive Learning

81

33

with ‘mural (Saunders)’ and ‘vascular smooth muscle cells (Zeisel)’, while ‘pericytes (Zeisel)’
is a subpopulation of ‘endothelial stalk (Saunders)’ and ‘endothelial cell (TM)’ (Figure S22-23).
In the UMAP embedding of the integrated datasets, the ‘pericytes’ and ‘brain pericyte’ are
at a different location, but they do overlap with the cell populations they were matched with
(Figure S21). This highlights the power of scHPL matching rather than name-based matching.

3.3 Discussion
In this study, we showed that scHPL can learn cell identities progressively from multiple
reference datasets. We showed that using our approach the labels of two AMB datasets can
successfully be matched to create a hierarchy containing mainly neuronal cell populations and
that we can combine three other brain datasets to create a hierarchy containing mainly non-
neuronal cell populations. In both experiments, we discovered new relationships between
cell populations, such as the mapping of ‘L6b VISp Col8a1 Rprm’ as a subpopulation of ‘L6b
Sla’ instead of ‘L6b Rgs12’. This observation would not be possible to make by manually
matching populations based on the assigned labels, highlighting the power of automatically
constructing cellular hierarchies. In this case, the Cell Ontology database could also not
be used to verify this relationship since many brain cell populations are missing. Most of
these populations have recently been annotated using scRNA-seq and there is a wide lack
of consistency in population annotation and matching between studies [18]. scHPL can
potentially be used to map these relations, irrespective of the assigned labels, and improve
the Cell Ontology database.

When combining multiple datasets to construct a tree, we expect that cell populations are
annotated correctly. However, in the PBMC inter-dataset experiment, this was not the case.
At first sight, the constructed tree looked erroneous, but the expression of marker genes
revealed that (parts of) several cell populations were mislabeled. Here, we could use the
constructed tree as a warning that there was something wrong with the original annotations.

In general, scHPL is robust to sampling differences between datasets or varying parameters
such as the matching threshold or the number of genes used. The brain datasets used to
construct the tree, for instance, varied greatly in population sizes, which did not cause any
difficulties. This is mainly because we rely on reciprocal classification. A match between cell
populations that is missed when training a classifier on one dataset to predict labels of the
other, can still be captured by the classifier trained on the other dataset.

Since batch effects are inevitable when combining datasets, we require datasets to be aligned
before running scHPL. In all inter-dataset experiments in this manuscript, we used Seurat
V3 [28] for the alignment, but we would like to emphasize that scHPL is not dependent on
Seurat and can be combined with any batch correction tool, such as more computationally
efficient methods like Harmony [33]. A current limitation of these tools is that when a new
dataset is added, the alignment - and consequently also scHPL - has to be rerun. An interesting
alternative would be to project the new dataset to a latent space learned using reference
dataset(s), using scArches [34] for example. In that case, scHPL does not have to be rerun but
can be progressively updated.

Thesis_LM_final.indd 81Thesis_LM_final.indd 81 24-04-2024 18:54:1924-04-2024 18:54:19

CHAPTER 3

82

The batch effects between the datasets make it more difficult to troubleshoot errors.
Generally, it will be hard to resolve whether mistakes in the constructed tree are caused by
the erroneous alignment of datasets or by mismatches created by scHPL.

We would like to note though that there are inherent limitations to the assumption that cell
populations have hierarchical relationships. While this assumption is widely adopted in single
cell studies as well as the Cell Ontology, there are indeed situations in which a tree is not
adequate. For instance, situations in which cells dedifferentiate into other cell types, such as
beta to alpha cell conversions in type2 diabetes [35,36].

Considering the classification performance, we showed that using a hierarchical approach
outperforms flat classification. On the AMB dataset, the linear SVM outperformed SVMrejection,
which was the best performing classifier on this dataset [23]. In contrast to SVMrejection, the
linear SVM did not reject any of the cells but labeled them as an intermediate cell population.
During this experiment, there were no cells of unknown populations. Correct intermediate
predictions instead of rejection are therefore beneficial since it provides the user with at least
some information. When comparing the linear SVM and one-class SVM, we noticed that the
accuracy of the linear SVM is equal to or higher than the one-class SVM on all datasets. For
both classifiers, we saw a decrease in performance on populations with a small number of
cells, but for the one-class SVM this effect was more apparent.

Since the one-class SVM has a low performance on small cell populations, it also cannot be
used to combine datasets which consist of small populations. If the classification performance
is low, it will also not be possible to construct the correct tree. On the other hand, the
performance of the linear SVM seems to be robust to small populations throughout our
experiments. This classifier can thus better be used when combining multiple datasets with
small populations.

When testing the rejection option, the one-class SVM clearly outperforms the linear SVM by
showing a perfect performance on the simulated dataset. Moreover, when cell populations
are missing from the simulated data, the linear SVM cannot learn the correct tree anymore,
in contrast to the one-class SVM. This suggests that the one-class SVM is preferred when cell
populations are missing, although on the AMB dataset, the rejection option of both classifiers
was not perfect.

In summary, we present a hierarchical progressive learning approach to automatically
identify cell identities based on multiple datasets with various levels of subpopulations. We
show that we can accurately learn cell identities and learn hierarchical relations between
cell populations. Our results indicate that choosing between a one-class and a linear SVM
is a trade-off between achieving a higher accuracy and the ability to discover new cell
populations. Our approach can be beneficial in single-cell studies where a comprehensive
reference atlas is not present, for instance, to annotate datasets consistently during a cohort
study. The first available annotated datasets can be used to build the hierarchical tree, which
could subsequently can be used to annotate cells in the other datasets.

Thesis_LM_final.indd 82Thesis_LM_final.indd 82 24-04-2024 18:54:2024-04-2024 18:54:20

single-cell Hierarchical Progressive Learning

83

33

3.4 Methods

3.4.1 Hierarchical progressive learning

Within scHPL, we use a hierarchical classifier instead of a flat classifier. A flat classifier is a
classifier that doesn’t consider a hierarchy and distinguishes between all cell populations
simultaneously. For the AMB dataset, a flat classifier will have to learn the decision boundaries
between all 92 cell populations in one go. Alternatively, a hierarchical classifier divides the
problem into smaller subproblems. First it learns the difference between the 3 broad classes:
GABAergic neurons, glutamatergic neurons, and non-neuronal cells. Next, it learns the
decision boundaries between the six subtypes of GABAergic neurons and the eight subtypes
of glutamatergic neurons, separately. Finally, it will learn the decision boundaries between
the different cell populations within each subtype separately.

3.4.2 Training the hierarchical classifier

The training procedure of the hierarchical classifier is the same for every tree: we train a
local classifier for each node except the root. This local classifier is either a one-class SVM or
a linear SVM. We used the one-class SVM (svm.OneClassSVM(nu = 0.05)) from the
scikit-learn library in Python [37]. A one-class classifier only uses positive training samples.
Positive training samples include cells from the node itself and all its child nodes. To avoid
overfitting, we select the first 100 principal components (PCs) of the training data. Next, we
select informative PCs for each node separately using a two-sided two-sample t-test between
the positive and negative samples of a node (α < 0.05, Bonferroni corrected). Negative
samples are selected using the siblings policy [38], i.e. sibling nodes include all nodes that
have the same ancestor, excluding the ancestor itself. If a node has no siblings, cells labeled
as the parent node, but not the node itself are considered negative samples. In some rare
cases, the Bonferroni correction was too strict and no PCs were selected. In those cases, the
five PCs with the smallest p-values were selected. For the linear SVM, we used the svm.
LinearSVC() function from the scikit-learn library. This classifier is trained using positive
and negative samples. The linear SVM applies L2-regularization by default, so no extra
measures to prevent overtraining were necessary.

3.4.3 The reconstruction error

The reconstruction error is used to reject unknown cell populations. We use the training
data to learn a suitable threshold which can be used to reject cells by doing a nested 5 fold
cross-validation. A PCA (ncomponents = 100) is learned on the training data. The test data is then
reconstructed by first mapping the data to the selected PCA domain, and then mapping the
data back to the original space using the inverse transformation (hence the data lies within
the plane spanned by the selected PCs). The reconstruction error is the difference between
the original data and the reconstructed data (in other words, the distance of the original data
to the PC plane). The median of the qth (default q = 0.99) percentile of the errors across the

Thesis_LM_final.indd 83Thesis_LM_final.indd 83 24-04-2024 18:54:2024-04-2024 18:54:20

CHAPTER 3

84

test data is used as threshold. By increasing or decreasing this parameter, the number of false
negatives can be controlled. Finally, we apply a PCA (ncomponents = 100) to the whole dataset to
learn the transformation that can be applied to new unlabeled data later.

3.4.4 Predicting the labels

First, we look at the reconstruction error of a new cell to determine whether it should be
rejected. If the reconstruction error is higher than the threshold determined on the training
data, the cell is rejected. If not, we continue with predicting its label. We start at the root
node, which we denote as parent node and use the local classifiers of its children to predict
the label of the cell using the predict() function, and score it using the decision_
function(), both from the scikit-learn package. These scores represent the signed
distance of a cell to the decision boundary. When comparing the results of the local classifiers,
we distinguish three scenarios:

1.	 All child nodes label the cell negative. If the parent node is the root, the new cell is
rejected. Otherwise we have an internal node prediction and the new cell is labeled
with the name of the parent node.

2.	 One child node labels the cell positive. If this child node is a leaf node, the sample is
labeled with the name of this node. Otherwise, this node becomes the new parent
and we continue with its children.

3.	 Multiple child nodes label the cell positive. We only consider the child node with the
highest score and continue as in scenario two.

3.4.5 Reciprocal matching labels and updating the tree

Starting with two datasets, D1 and D2, and the two corresponding classification trees (which
can be either hierarchical or flat), we would like to match the labels of the datasets and merge
the classification trees accordingly into a new classification tree while being consistent with
both input classification trees (Figure 1). We do this in two steps: first matching the labels
between the two dataset and then updating the tree.

Reciprocal matching labels. We first cross-predict the labels of the datasets: we use the classi-
fier trained on D1 to predict the labels of D2 and vice versa. We construct confusion matrices,
C1 and C2, for D1 and D2, respectively. Here, C1ij indicates how many cells of population i of
D1 are predicted to be population j of D2. This prediction can be either a leaf node, internal
node or a rejection. As the values in C1 and C2 are highly dependent on the size of a cell
population, we normalize the rows such that the sum of every row is one, now indicating the
fraction of cells of population i in D1 that have been assigned to population j in D2:

NC
C
Cij
ij

ijj

1
1

1
�

��

Clearly, a high fraction is indicative of matching population i in D1 with population j in D2.
Due to splitting, merging, or new populations between both datasets, multiple relatively high

Thesis_LM_final.indd 84Thesis_LM_final.indd 84 24-04-2024 18:54:2024-04-2024 18:54:20

single-cell Hierarchical Progressive Learning

85

33

fractions can occur (e.g. if a population i is split in two populations j1 and j2 due to D2 being of
a higher resolution, both fractions NCij1 and NCij2 will be approximately 0.5). To accommodate
for these operations, we allow multiple matches per population.

To convert these fractions into matches, NC1 and NC2 are converted into binary confusion
matrices, BC1 and BC2, where a 1 indicates a match between a population in D1 with a
population in D2, and vice versa. To determine a match, we take the value of the fraction
as well as the difference with the other fractions into account. This is done for each row
(population) of NC1 and NC2 separately. When considering row i from NC1, we first rank
all fractions, then the highest fraction will be set to 1 in BC1, after which all fractions for
which the difference with the preceding (higher) fraction is less than a predefined threshold
(default = 0.25) will also be set to 1 in BC1.

To arrive at reciprocal matching between D1 and D2, we combine BC1 and BC2 into matching
matrix X (Figure 2):

X BC BCT� �1 2

The columns in X represent the cell populations of D1 and the rows represent the cell
populations of D2. If Xij = 2, this indicates a reciprocal match between cell population i from
D2 and cell populations j from D1. Xij = 1 indicates a one-sided match, and Xij = 0 represents
no match.

Tree updating. Using the reciprocal matches between D1 and D2 represented in X, we update
the hierarchical tree belonging to D1 to incorporate the labels and tree structure of D2. We
do that by handling the correspondences in X elementwise. For a non-zero value in X, we
check whether there are other non-zero values in the corresponding row and column to
identify which tree operation we need to take (such as split/merge/create). As an example, if
we encounter a split for population i in D1 into j1 and j2, we will create new nodes for j1 and
j2 as child nodes of node i in the hierarchical tree of D1. Figure 2 and Table S1 explain the
four most common scenarios: a perfect match, splitting nodes, merging nodes, and a new
population. All other scenarios are explained in Supplementary Note 1. After an update, the
corresponding values in X are set to zero and we continue with the next non-zero element of
X. If the matching is impossible, the corresponding values in X are thus not set to zero. If we
have evaluated all elements of X, and there are still non-zero values, we will change X into a
strict matrix, i.e. we further only consider reciprocal matches, so all ‘1’s are turned into a ‘0’
with some exceptions (Supplementary Note 2). We then again evaluate X element wise once
more.

3.4.6 Evaluation

Hierarchical F1-score. We use the hierarchical F1-score (HF1-score) to evaluate the
performance of the classifiers [39]. We first calculate the hierarchical precision (hP) and recall
(hR):

hP
P T

P
i ii

ii

� ��
�

 hR
P T

T
i ii

ii

� ��
�

Thesis_LM_final.indd 85Thesis_LM_final.indd 85 24-04-2024 18:54:2124-04-2024 18:54:21

CHAPTER 3

86

Here, Pi is a set that contains the predicted cell population for a cell i and all the ancestors of
that node, Ti contains the true cell population and all its ancestors, and P Ti i∩ is the overlap
between these two sets. The HF1-score is the harmonic mean of hP and hR:

HF1 2 2� �
hP hR
hP hR

*

Median F1-score. We use the median F1-score to compare the classification performance
to other methods. The F1-score is calculated for each cell population in the dataset and
afterwards the median of these scores is taken. Rejected cells and internal predictions are
not considered when calculating this score.

3.4.7 Datasets

Simulated data. We used the R-package Splatter (V1.6.1) to simulate a hierarchical scRNA-
seq dataset that consists of 8,839 cells and 9,000 genes and represents the tree shown in
Figure S1A (Supplementary Note 3) [26]. We chose this low number of genes to speed up
the computation time. In total there are six different cell populations of approximately 1,500
cells each. As a preprocessing step, we log-transformed the count matrix (log ()2 1count +). A
UMAP embedding of the simulated dataset shows it indeed represents the desired hierarchy
(Figure S1C).

Peripheral Blood Mononuclear Cells (PBMC) scRNA-seq datasets. We used four different
PBMC datasets: PBMC-FACS, PBMC-Bench10Xv2, PBMC-Bench10Xv3, and PBMC-eQTL. The
PBMC-FACS dataset is the downsampled FACS-sorted PBMC dataset from Zheng et al. [27].
Cells were first FACS-sorted into ten different cell populations (CD14+ monocytes, CD19+
B cells, CD34+ cells, CD4+ helper T-cells, CD4+/CD25+ regulatory T-cells, CD4+/CD45RA+/
CD25− naive T-cells, CD4+/CD45RO+ memory T-cells, CD56+ natural killer cells, CD8+
cytotoxic T-cells, CD8+/CD45RA+ naive cytotoxic T-cells) and sequenced using 10X Chromium
[27]. Each cell population consists of 2,000 cells. The total dataset consists of 20,000 cells
and 21,952 genes. During the cross-validation on the PBMC-FACS dataset, we tested the
effect of selecting HVG. We used the ‘seurat_v3’ flavor of scanpy to select 500, 1000, 2000,
and 5000 HVG on the training set [28,40]. The PBMC-Bench10Xv2 and PBMC-Bench10Xv3
datasets are the PbmcBench pbmc1.10Xv2 and pbmc1.10Xv3 datasets from Ding et al.
[41]. These datasets consist of 6,444 and 3,222 cells respectively, 22,280 genes, and nine
different cell populations. Originally the PBMC-Bench10Xv2 dataset contained CD14+ and
CD16+ monocytes. We merged these into one population called monocytes to introduce a
different annotation level compared to the other PBMC datasets.The PBMC-eQTL dataset
was sequenced using 10X Chromium and consists of 24,439 cells, 22,229 genes, and eleven
different cell populations [42].

Brain scRNA-seq datasets. We used two datasets from the mouse brain, AMB2016 and
AMB2018, to look at different resolutions of cell populations in the primary mouse visual
cortex. The AMB2016 dataset was sequenced using SMARTer [4], downloaded from https://
portal.brain-map.org/atlases-and-data/rnaseq/data-files-2018. AMB2016 consists of 1,298
cells and 21,413 genes. The AMB2018 dataset, which was sequenced using SMART-Seq V4
[5], downloaded from https://portal.brain-map.org/atlases-and-data/rnaseq/mouse-v1-

Thesis_LM_final.indd 86Thesis_LM_final.indd 86 24-04-2024 18:54:2324-04-2024 18:54:23

single-cell Hierarchical Progressive Learning

87

33

and-alm-smart-seq, consists of 12,771 cells and 42,625 genes. Additionally, we used four
other brain datasets: Zeisel [2], Tabula Muris [30], Rosenberg [32], and Saunders [31]. These
were downloaded from the scArches ‘data’ Google Drive (‘mouse_brain_regions.h5ad’ from
https://drive.google.com/drive/folders/1QQXDuUjKG8CTnwWW_u83MDtdrBXr8Kpq) [34].
We downsampled each dataset such that at the highest resolution each cell population
consisted of up to 5,000 cells to reduce the computational time for the alignment (Table S7).

Preprocessing scRNA-seq datasets. All datasets were preprocessed as described in Abdelaal
et al. [23]. Briefly, we removed cells labeled in the original studies as doublets, debris or
unlabeled cells, cells from cell populations with less than 10 cells, and genes that were not
expressed. Next, we calculated the median number of detected genes per cell, and from
that, we obtained the median absolute deviation (MAD) across all cells in the log scale. We
removed cells when the total number of detected genes was below three MAD from the
median number of detected genes per cell. During the intra-dataset experiments, we log-
transformed the count matrices (log ()2 1count +).

Aligning scRNA-seq datasets. During the inter-dataset experiments, we aligned the datasets
using Seurat V3 [28] based on the joint set of genes expressed in all datasets. In the PBMC,
AMB, and brain inter-dataset experiment respectively 17,573, 19,197, and 14,858 genes
remained. For the PBMC inter-dataset experiment, we also removed cell populations that
consisted of less than 100 cells from the datasets used for constructing and training the
classification tree (PBMC-eQTL, FACS, Bench10Xv2). To test the effect of the number of genes
on scHPL, we integrated this data using 1000, 2000 (default), and 5000 HVGs.

3.5 Code and data availability
The filtered PBMC-FACS and AMB2018 dataset can be downloaded from Zenodo (https://
doi.org/10.5281/zenodo.3357167). The simulated dataset and the aligned datasets
used during the inter-dataset experiment can be downloaded from Zenodo (http://doi.
org/10.5281/zenodo.3736493). Accession numbers or links to the raw data: AMB2016 [4]
(GSE71585, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE71585), AMB2018
[5] (GSE115746, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE115746), PBMC-
FACS [27] (SRP073767, https://support.10xgenomics.com/single-cell-gene-expression/
datasets), PBMC-eQTL [42] (EGAS00001002560, https://ega-archive.org/studies/
EGAS00001002560), PBMC-Bench10Xv2 and PBMC-Bench10Xv3 [41] (GSE132044, https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132044), Rosenberg [32] (GSE110823,
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE110823), Zeisel [2] (http://
mousebrain.org, file name L5_all.loom, downloaded on 9/9/2019), Saunders [31] (http://
dropviz.org, DGE by Region section, downloaded on 30/8/2019), Tabula Muris [30] (https://
figshare.com/projects/Tabula_Muris_Transcriptomic_characterization_of_20_organs_and_
tissues_from_Mus_musculus_at_single_cell_resolution/27733, downloaded on 14/2/2019).
The source code for scHPL is available as a python package that is installable through the PyPI
repository (https://github.com/lcmmichielsen/scHPL) [43].

Thesis_LM_final.indd 87Thesis_LM_final.indd 87 24-04-2024 18:54:2324-04-2024 18:54:23

CHAPTER 3

88

Bibliography
1. 	 van der Wijst MG, de Vries DH, Groot HE, Trynka G, Hon C-C, Bonder M-J, et al. The single-cell eQTLGen consortium. Elife.

2020;9. doi:10.7554/eLife.52155

2. 	 Zeisel A, Hochgerner H, Lönnerberg P, Johnsson A, Memic F, van der Zwan J, et al. Molecular Architecture of the Mouse
Nervous System. Cell. 2018;174: 999–1014.e22. doi:10.1016/j.cell.2018.06.021

3. 	 Svensson V, da Veiga Beltrame E, Pachter L. A curated database reveals trends in single-cell transcriptomics. Database.
2020;2020. doi:10.1093/database/baaa073

4. 	 Tasic B, Menon V, Nguyen TN, Kim TK, Jarsky T, Yao Z, et al. Adult mouse cortical cell taxonomy revealed by single cell
transcriptomics. Nat Neurosci. 2016;19: 335–346. doi:10.1038/nn.4216

5. 	 Tasic B, Yao Z, Graybuck LT, Smith KA, Nguyen TN, Bertagnolli D, et al. Shared and distinct transcriptomic cell types across
neocortical areas. Nature. 2018;563: 72–78. doi:10.1038/s41586-018-0654-5

6. 	 Zhang Z, Luo D, Zhong X, Choi JH, Ma Y, Wang S, et al. SCINA: Semi-Supervised Analysis of Single Cells in Silico. Genes . 2019;10:
531. doi:10.3390/genes10070531

7. 	 Pliner HA, Shendure J, Trapnell C. Supervised classification enables rapid annotation of cell atlases. Nat Methods. 2019; 1–4.
doi:10.1038/s41592-019-0535-3

8. 	 Kiselev VY, Yiu A, Hemberg M. scmap: projection of single-cell RNA-seq data across data sets. Nat Methods. 2018;15: 359.
Available: https://doi.org/10.1038/nmeth.4644

9. 	 Cao Z-J, Wei L, Lu S, Yang D-C, Gao G. Searching large-scale scRNA-seq databases via unbiased cell embedding with Cell BLAST.
Nat Commun. 2020;11: 3458. doi:10.1038/s41467-020-17281-7

10. 	 Alquicira-Hernandez J, Sathe A, Ji HP, Nguyen Q, Powell JE. ScPred: Accurate supervised method for cell-type classification from
single-cell RNA-seq data. Genome Biol. 2019;20: 264. doi:10.1186/s13059-019-1862-5

11. 	 de Kanter JK, Lijnzaad P, Candelli T, Margaritis T, Holstege FCP. CHETAH: a selective, hierarchical cell type identification method
for single-cell RNA sequencing. Nucleic Acids Res. 2019;47: e95–e95. doi:10.1093/nar/gkz543

12. 	 Wang S, Pisco AO, McGeever A, Brbic M, Zitnik M, Darmanis S, et al. Unifying single-cell annotations based on the Cell Ontology.
bioRxiv. 2019; 810234. doi:10.1101/810234

13. 	 Zeisel A, Muñoz-Manchado AB, Codeluppi S, Lönnerberg P, La Manno G, Juréus A, et al. Brain structure. Cell types in the mouse
cortex and hippocampus revealed by single-cell RNA-seq. Science. 2015;347: 1138–1142. doi:10.1126/science.aaa1934

14. 	 Hodge RD, Bakken TE, Miller JA, Smith KA, Barkan ER, Graybuck LT, et al. Conserved cell types with divergent features in human
versus mouse cortex. Nature. 2019; 1–8. doi:10.1038/s41586-019-1506-7

15. 	 Jarvis P. Towards a Comprehensive Theory of Human Learning. Taylor & Francis Ltd; 2006.

16. 	 Yang BH, Asada H. Progressive learning and its application to robot impedance learning. IEEE Trans Neural Netw. 1996;7:
941–952. doi:10.1109/72.508937

17. 	 Fayek HM. Continual Deep Learning via Progressive Learning. RMIT University. 2019.

18. 	 Yuste R, Hawrylycz M, Aalling N, Aguilar-Valles A, Arendt D, Arnedillo RA, et al. A community-based transcriptomics classification
and nomenclature of neocortical cell types. Nature Neuroscience. Nature Research; 2020. doi:10.1038/s41593-020-0685-8

19. 	 Svensson V, Beltrame E da V. A curated database reveals trends in single cell transcriptomics. bioRxiv. 2019; 742304.
doi:10.1101/742304

20. 	 Wagner F, Yanai I. Moana: A robust and scalable cell type classification framework for single-cell RNA-Seq data. bioRxiv. 2018;
456129. doi:10.1101/456129

21. 	 Bakken TE, Hodge RD, Miller JA, Yao Z, Nguyen TN, Aevermann B, et al. Single-nucleus and single-cell transcriptomes compared
in matched cortical cell types. Soriano E, editor. PLoS One. 2018;13: e0209648. doi:10.1371/journal.pone.0209648

22. 	 Aevermann BD, Novotny M, Bakken T, Miller JA, Diehl AD, Osumi-Sutherland D, et al. Cell type discovery using single-cell
transcriptomics: implications for ontological representation. Hum Mol Genet. 2018;27: R40–R47. doi:10.1093/hmg/ddy100

23. 	 Abdelaal T, Michielsen L, Cats D, Hoogduin D, Mei H, Reinders MJT, et al. A comparison of automatic cell identification methods
for single-cell RNA sequencing data. Genome Biol. 2019;20: 194. doi:10.1186/s13059-019-1795-z

24. 	 Boufea K, Seth S, Batada NN. scID Uses Discriminant Analysis to Identify Transcriptionally Equivalent Cell Types across Single-
Cell RNA-Seq Data with Batch Effect. iScience. 2020;23: 100914. doi:10.1016/j.isci.2020.100914

25. 	 Tax D. One-class classification Concept-learning in the absence of counter-examples. TU Delft. 2001.

26. 	 Zappia L, Phipson B, Oshlack A. Splatter: simulation of single-cell RNA sequencing data. Genome Biol. 2017;18: 174.
doi:10.1186/s13059-017-1305-0

27. 	 Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al. Massively parallel digital transcriptional profiling of single
cells. Nat Commun. 2017;8: 14049. doi:10.1038/ncomms14049

28. 	 Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, et al. Comprehensive Integration of Single-Cell Data. Cell.
2019;177: 1888–1902.e21. doi:10.1016/j.cell.2019.05.031

Thesis_LM_final.indd 88Thesis_LM_final.indd 88 24-04-2024 18:54:2324-04-2024 18:54:23

single-cell Hierarchical Progressive Learning

89

33

29. 	 León B, López-Bravo M, Ardavín C. Monocyte-derived dendritic cells. Semin Immunol. 2005;17: 313–318. doi:10.1016/j.
smim.2005.05.013

30. 	 Schaum N, Karkanias J, Neff NF, May AP, Quake SR, Wyss-Coray T, et al. Single-cell transcriptomics of 20 mouse organs creates
a Tabula Muris. Nature. 2018;562: 367–372. doi:10.1038/s41586-018-0590-4

31. 	 Saunders A, Macosko EZ, Wysoker A, Goldman M, Krienen FM, de Rivera H, et al. Molecular Diversity and Specializations among
the Cells of the Adult Mouse Brain. Cell. 2018;174: 1015–1030.e16. doi:10.1016/j.cell.2018.07.028

32. 	 Rosenberg AB, Roco CM, Muscat RA, Kuchina A, Sample P, Yao Z, et al. Single-cell profiling of the developing mouse brain and
spinal cord with split-pool barcoding. Science. 2018;360: 176–182. doi:10.1126/science.aam8999

33. 	 Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, et al. Fast, sensitive and accurate integration of single-cell data with
Harmony. Nat Methods. 2019;16: 1289–1296. doi:10.1038/s41592-019-0619-0

34. 	 Lotfollahi M, Naghipourfar M, Luecken M, Khajavi M, Büttner M, Avsec Z, et al. Query to reference single-cell integration with
transfer learning. bioRxiv. 2020; 2020.07.16.205997. doi:10.1101/2020.07.16.205997

35. 	 Cinti F, Bouchi R, Kim-Muller JY, Ohmura Y, Sandoval PR, Masini M, et al. Evidence of β-Cell Dedifferentiation in Human Type 2
Diabetes. J Clin Endocrinol Metab. 2016;101: 1044–1054. doi:10.1210/jc.2015-2860

36. 	 Hunter CS, Stein RW. Evidence for Loss in Identity, De-Differentiation, and Trans-Differentiation of Islet β-Cells in Type 2
Diabetes. Front Genet. 2017;8: 35. doi:10.3389/fgene.2017.00035

37. 	 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. 2011 pp.
2825–2830. Available: http://scikit-learn.sourceforge.net.

38. 	 Fagni T, Sebastiani F. On the Selection of Negative Examples for Hierarchical Text Categorization. Proceedings of the 3rd
language technology conference. 2007; 24–28.

39. 	 Kiritchenko S, Famili F. Functional Annotation of Genes Using Hierarchical Text Categorization. Proceedings of BioLink SIG,
ISMB. 2005.

40. 	 Wolf FA, Angerer P, Theis FJ. SCANPY: Large-scale single-cell gene expression data analysis. Genome Biol. 2018;19: 15.
doi:10.1186/s13059-017-1382-0

41. 	 Ding J, Adiconis X, Simmons SK, Kowalczyk MS, Hession CC, Marjanovic ND, et al. Systematic comparison of single-cell and
single-nucleus RNA-sequencing methods. Nat Biotechnol. 2020;38: 737–746. doi:10.1038/s41587-020-0465-8

42. 	 Van Der Wijst MGP, Brugge H, De Vries DH, Deelen P, Swertz MA, Franke L. Single-cell RNA sequencing identifies celltype-
specific cis-eQTLs and co-expression QTLs. Nat Genet. 2018;50: 493–497. doi:10.1038/s41588-018-0089-9

43. 	 L.C.M. Michielsen, M.J.T. Reinders, A. Mahfouz. Hierarchical progressive learning of cell identities in single-cell data. 2021.
doi:10.5281/zenodo.4644285

Thesis_LM_final.indd 89Thesis_LM_final.indd 89 24-04-2024 18:54:2324-04-2024 18:54:23

CHAPTER 3

90

Supplementary Materials
Supplementary Note 1
When matching the cell populations from two datasets, we distinguish five options: simple,
multiple columns, multiple rows, complex, and impossible. When describing the different
scenarios within these options, we sometimes make a distinction between leaf nodes and
internal nodes. Here, it is important to remember that only T1 can have internal nodes since
this is the tree that is updated. T2 is always a flat classification tree, so only consists of the
root node and leaf nodes.

Simple. In this scenario, we find a unique match between a cell population, Pi, from dataset
1 and a cell population, Pj, from dataset 2. As as consequence, Xj,I will be 1 or 2 and the rest
of row j and column i in X are zero. Within this scenario, there are three different options:

1.	 Both cell populations are leaf or internal nodes. This indicates a perfect match. The tree
is not updated, but the labels of Pj are renamed to Pi (Figure S24A). This is the same
scenario as the ‘perfect match’ scenario described in the main text.

2.	 Pi is a leaf or internal node, but Pj is the root node of T2. This indicates that Pi is missing
in dataset 2. The node, however, is already in the tree, so it is not updated (Figure S24B).

3.	 Pi is the root of T1, but the Pj is a leaf node. This indicates that Pj is missing in dataset 1.
The cell population is thus also not in the tree yet, so we will add it as a child to the root
(Figure S24C). This is the same scenario as the ‘new population’ scenario described in
the main text.

Multiple rows. In this scenario, a cell population, Pi, from dataset 1 matches multiple
populations from dataset 2. In X there will be multiple non-zero values in column i. Here, we
distinguish two different scenarios:

1.	 Pi matches only cell populations from dataset 2 that are leaf node. We consider the cell
populations from dataset 2 subpopulations of Pi, so we add them as descendants to Pi
(Figure S25A). This is the same scenario as the ‘splitting nodes’ scenario described in the
main text.

2.	 The root node of T2 is also involved. We simple ignore this node and for the rest do the
same as above (Figure S25B-C).

Multiple columns. This scenario is quite similar to the multiple rows scenario. Here, however,
multiples populations from dataset 1 match one cell population, Pj, of dataset 2. In X there
will be multiple non-zero values in row j. This scenario is a little more complex since the
populations from dataset 1 does not have to be leaf nodes or the root node, but there can
also be internal nodes in this tree. Here, we distinguish three different scenarios:

1.	 The root node of T1 and T2 are not involved, so multiple cell populations, which can
be leaf or internal nodes, from dataset 1 match Pj. We consider the cell populations
from dataset 1 subpopulations of Pj, so we need to add Pj as a parent node to these
cell populations (Figure S26A). This is same scenario as the ‘merging nodes’ scenario
described in the main text. It could be, however, that this node already exists in this tree

Thesis_LM_final.indd 90Thesis_LM_final.indd 90 24-04-2024 18:54:2324-04-2024 18:54:23

single-cell Hierarchical Progressive Learning

91

33

(Figure S26B). If this is the case, we have a perfect match between a node from tree 1
and tree 2, so we do not have to update the tree, but we only have to update the labels
of Pj.

2.	 Besides leaf or internal nodes, the root of T1 is involved. This indicates that Pj is ‘bigger’
than the cell populations from dataset 1 as part of it is unlabeled. Therefore, we add Pj
as a descendant to the root of T1. Next, we rewire the involved cell populations from
dataset 1 such that they become descendants of Pj (Figure S26C).

3.	 The root node of T2 is involved. This indicates that multiple cell populations from dataset
1 are missing in dataset 2. These nodes, however, are already in the tree, so the tree can
remain the same (Figure S26D).

Complex. The scenarios described above were all relatively easy. A cell population from one
dataset matches either one or multiple cell populations from another. It could also happen,
however, that multiple cell populations from dataset 1 match multiple cell populations from
dataset 2 (Figure S27). As a consequence, there will a certain place Xj,I which is either 1 or 2
and there are two or more non-zero values in the corresponding row j and column i. Here, we
distinguish three different scenarios:

1.	 The root node of T1 is involved. We just assume that the boundary should be adjusted
and this is automatically done, so we remove this `1’ from the table (Figure S27A). If the
situation is still complex after the one is removed, we continue to scenario 2 or 3. If not,
we treat it as a multiple rows problem as explained above.

2.	 The root node of T2 is involved. Again, we just assume that the boundary should be
adjusted, so we remove this `1’ from the table (Figure S27B). If the situation is still
complex after the one is removed, we continue to scenario 3. If not, we treat it as a
multiple columns problem as explained above.

3.	 Multiple leaf/internal nodes of dataset 1 are involved and multiple leaf nodes of dataset
2. We can only solve this if the ‘complex’ cell population, Pi, of dataset 1 is not a leaf
node. Otherwise we are dealing with an impossible scenario which is described below. If
the complex node is an internal node, we attach the involved cell populations of dataset
2 as descendants to the complex node (splitting scenario) and attach the involved cell
populations of dataset 1, except for Pi, to Pj (Figure S27C).

Impossible. Sometimes, it could be impossible to match the labels from two datasets.
Something could have gone wrong during the clustering, e.g. a population 1 and 2 from
dataset 1 match population A from dataset 2, but population 2 also matches population C
from dataset 2 (Figure S28A). Here, population A and C should be merged into population 2,
but population A should also be split into population 1 and 2. Population 2, however, cannot
be added to the tree twice. It could also be that dataset 2 contains labels at a different
resolution, e.g. that population B is a subpopulation of population A (Figure S28B). This is not
what we assumed and thus impossible to match. Both scenarios occur when a leaf node from
dataset 1 is at a crossing of multiple rows and multiple columns (i.e. a complex situation). An
extra difficulty is that there are thus multiple situations that could explain this. All of these
situation are not what we desired and thus we call it impossible and do nothing.

Thesis_LM_final.indd 91Thesis_LM_final.indd 91 24-04-2024 18:54:2424-04-2024 18:54:24

CHAPTER 3

92

Supplementary Note 2
If there is a complex scenario that cannot be solved immediately, matrix X will be changed
into a strict matrix. In the strict matrix, only reciprocal matches are considered, so all ‘1’s’ are
turned into ‘0’. There are some exceptions to this rule.

-	 A population can never have a reciprocal match with the root, so these ‘1’s’ are
never removed.

-	 If a population from a dataset has only one match, it is also never removed.
Consider the following example: If population P1 of Dataset 1 is only predicted to be
Population Q of Dataset 2, we know that P1 should be a match with Q as it cannot
be matched with any other population or with the root. It could be that this match
is not reciprocal if population Q has many different subpopulations (e.g. P1, P2, P3,
P4). Imagine that population P2 is really big. Almost all cells of population Q will be
predicted to be P2 and so the matches with P1 (and P3 and P4) are missed because
of the matching threshold. In case there is a complex scenario caused by any other
population (maybe P2 or P3 or P4), we still know that P1 is a subpopulation of Q,
since that was super clear and didn’t cause any complexity.

Supplementary Note 3
Current scRNA-seq data simulators cannot simulate hierarchical data, so we simulated this
dataset step by step (Figure S1B).
First, we simulated the expression of 3,000 genes for 9,000 cells. For this simulation, the
cells were divided into three groups. The 3,000 simulated genes represent genes that are
differentially expressed between the cell populations at a low resolution, so for example B
cells vs. T cells. Next, we simulated another 3,000 genes for the same 9,000 cells. Now, the
cells were divided into five groups. Here, the differentially expressed genes represent genes
that distinguish cell populations at a slightly higher resolution, so for example CD4+ T cells
vs. CD8+ T cells. We repeated this step for another set of 3,000 genes, but now there were
six populations. The third dataset represents the highest resolution, so for instance CD4+
memory T cells vs. CD4+ naïve T cells.
Together this resulted in a dataset of 9,000 cells and 9,000 genes. The cells were labeled
at three resolutions. There was some inconsistency between the labels at the different
resolutions (e.g. some cells were labeled as ‘Group12’, ‘Group3’, ‘Group3’). We removed
these cells from the dataset, which resulted in a final dataset of 8,839 cells and 9,000 genes.

Thesis_LM_final.indd 92Thesis_LM_final.indd 92 24-04-2024 18:54:2424-04-2024 18:54:24

single-cell Hierarchical Progressive Learning

93

33

Thesis_LM_final.indd 93Thesis_LM_final.indd 93 24-04-2024 18:54:2424-04-2024 18:54:24

Thesis_LM_final.indd 94Thesis_LM_final.indd 94 24-04-2024 18:54:2424-04-2024 18:54:24

