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Single	cell	transcriptomics	is	rapidly	advancing	our	understanding	of	the	cellular	composition	of	
complex	tissues	and	organisms.	A	major	limitation	in	most	analysis	pipelines	is	the	reliance	on	
manual	annotations	to	determine	cell	identities,	which	are	time-consuming	and	irreproducible.	
The	exponential	growth	 in	the	number	of	cells	and	samples	has	prompted	the	adaptation	
and	development	of	supervised	classification	methods	for	automatic	cell	identification.	Here,	
we	benchmarked	22	classification	methods	that	automatically	assign	cell	identities	including	
single	 cell-specific	 and	 general-purpose	 classifiers.	 The	 performance	 of	 the	methods	was	
evaluated	using	27	publicly	available	single	cell	RNA-sequencing	datasets	of	different	sizes,	
technologies,	species,	and	levels	of	complexity.	We	used	two	experimental	setups	to	evaluate	
the	performance	of	each	method	for	within	dataset	predictions	 (intra-dataset)	and	across	
datasets	(inter-dataset)	based	on	accuracy,	percentage	of	unclassified	cells,	and	computation	
time.	We	further	evaluated	the	methods’	sensitivity	to	the	input	features,	number	of	cells	per	
population,	their	performance	across	different	annotation	levels	and	datasets.	We	found	that	
most	classifiers	performed	well	on	a	variety	of	datasets	with	decreased	accuracy	for	complex	
datasets	with	overlapping	classes	or	deep	annotations.	The	general-purpose	SVM classifier	
has	overall	the	best	performance	across	the	different	experiments.	In	conclusion,	we	present	
a	 comprehensive	 evaluation	 of	 automatic	 cell	 identification	methods	 for	 single	 cell	 RNA-
sequencing	data.	All	the	code	used	for	the	evaluation	is	available	on	GitHub	(https://github.
com/tabdelaal/scRNAseq_Benchmark).	 Additionally,	we	provide	 a	 Snakemake	workflow	 to	
facilitate the benchmarking and to support extension of new methods and new datasets. 

2.1 Background
Single-cell	 RNA-sequencing	 (scRNA-seq)	 provides	unprecedented	opportunities	 to	 identify	
and	 characterize	 the	 cellular	 composition	 of	 complex	 tissues.	 Rapid	 and	 continuous	
technological advances over the past decade has allowed scRNA-seq technologies to scale 
to thousands of cells per experiment [1]. A common analysis step in analyzing single cell 
data	involves	the	identification	of	cell	populations	presented	in	a	given	dataset	.	This	task	is	
typically solved by unsupervised clustering of cells into groups based on the similarity of their 
gene	expression	profiles,	followed	by	cell	population	annotation	by	assigning	labels	to	each	
cluster.	This	approach	proved	very	valuable	in	identifying	novel	cell	populations	and	resulted	
in	cellular	maps	of	entire	cell	 lineages,	organs	and	even	whole	organisms	 [2–7].	However,	
the	annotation	step	is	cumbersome	and	time-consuming	as	it	involves	manual	inspection	of	
cluster-specific	marker-genes.	Additionally,	manual	annotations,	which	are	often	not	based	
on	standardized	ontologies	of	cell	labels,	are	not	reproducible	across	different	experiments	
within and across research groups. These caveats become even more pronounced as the 
number	of	cells	and	samples	increases,	preventing	fast	and	reproducible	annotations.	

To	 overcome	 these	 challenges,	 a	 growing	 number	 of	 classification	 approaches	 are	 being	
adapted	 to	 automatically	 label	 cells	 in	 scRNA-seq	 experiments.	 scRNA-seq	 classification	
methods	predict	the	identity	of	each	cell	by	learning	these	identities	from	annotated	training	
data	(e.g.	a	reference	atlas).	scRNA-seq	classification	methods	are	relatively	new	compared	
to	the	plethora	of	methods	addressing	different	computational	aspects	of	single	cell	analysis	
(such	 as	 normalization,	 clustering,	 and	 trajectory	 inference).	 However,	 the	 number	 of	
classification	methods	 is	 rapidly	 growing	 to	 address	 the	 aforementioned	 challenges	 [8,9]. 
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While	all	scRNA-seq	classification	methods	share	a	common	goal,	 i.e.	accurate	annotation	
of	 cells,	 they	differ	 in	 terms	of	 their	underlying	algorithms	and	 the	 incorporation	of	prior	
knowledge	(e.g.	cell	type	marker	gene	tables).	

In	contrast	to	the	extensive	evaluations	of	clustering,	differential	expression,	and	trajectory	
inference methods [10–12],	 there	 is	 currently	 one	 single	 attempt	 comparing	methods	 to	
assign cell type labels to cell clusters [13]. The lack of a comprehensive comparison of scRNA-
seq	classification	methods	leaves	users	without	indications	as	to	which	classification	method	
best	 fits	 their	 problem.	More	 importantly,	 a	 proper	 assessment	 of	 existing	 approaches	 in	
comparison	 to	 baseline	methods	 can	 greatly	 benefit	 new	 developments	 in	 the	 field	 and	
prevent unnecessary complexity.

Here,	 we	 benchmarked	 22	 classification	 methods	 to	 automatically	 assign	 cell	 identities	
including	 single	 cell-specific	and	general-purpose	classifiers.	 The	methods	were	evaluated	
using	27	publicly	available	single	cell	RNA-sequencing	datasets	of	different	sizes,	technologies,	
species, and complexity. The performance of the methods was evaluated based on their 
accuracy,	 percentage	 of	 unclassified	 cells,	 and	 computation	 time.	We	 performed	 several	
experiments	 to	 cover	 different	 levels	 of	 challenge	 in	 the	 classification	 task,	 and	 to	 test	
specific	features	or	tasks	such	as	the	feature	selection,	scalability	and	rejection	experiments.	
We	 evaluated	 the	 classification	 performance	 through	 two	 experimental	 setups,	 1)	 intra-
dataset	in	which	we	applied	5-fold	cross-validation	within	each	dataset,	and	2)	inter-dataset	
involving	across	datasets	 comparisons.	The	 inter-dataset	 comparison	 is	more	 realistic	and	
more	practical,	where	a	reference	dataset	(e.g.	atlas)	is	used	to	train	a	classifier	which	can	
then	be	applied	to	identify	cells	in	new	unannotated	datasets.	However,	in	order	to	perform	
well	 across	 datasets,	 the	 classifier	 should	 also	 perform	well	 using	 the	 intra-dataset	 setup	
on	 the	 reference	dataset.	 The	 intra-dataset	 experiments,	 albeit	 artificial,	 provide	 an	 ideal	
scenario	 to	 evaluate	 different	 aspects	 of	 the	 classification	 process	 (e.g.	 feature	 selection,	
scalability	 and	 different	 annotation	 levels),	 regardless	 of	 the	 technical	 and	 biological	
variations	 across	 datasets.	 In	 general,	most	 classifiers	 perform	well	 across	 all	 datasets	 in	
both	experimental	setups	(inter-	and	intra-dataset),	including	the	general-purpose	classifiers.	
In	our	experiments,	 incorporating	prior	 knowledge	 in	 the	 form	of	marker-genes	does	not	
improve	 the	 performance.	 We	 observed	 large	 variation	 across	 different	 methods	 in	 the	
computation	time	and	classification	performance	in	response	to	changing	the	input	features	
and	the	number	of	cells.	Our	results	highlight	the	general-purpose	support	vector	machine	
(SVM)	classifier	as	the	best	performer	overall.

2.2 Results
2.2.1 Benchmarking automatic cell identification methods (intra-
dataset evaluation)

We	 benchmarked	 the	 performance	 and	 computation	 time	 of	 all	 22	 classifiers	 (Table	 1)	
across	11	datasets	used	for	 intra-dataset	evaluation	(Table	2).	Classifiers	were	divided	into	
two	 categories:	 1)	 supervised	methods	which	 require	 a	 training	 dataset	 labeled	with	 the	
corresponding	cell	populations	in	order	to	train	the	classifier,	or	2)	prior-knowledge	methods,	
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Table 1.	Automatic	cell	identification	methods	included	in	this	study.

Name Version
Lan-
guage Underlying classifier

Prior 
knowledge

Rejection 
option Ref.

Garnett 0.1.4 R Generalized	linear	model Yes Yes [14]

Moana 0.1.1 Python SVM with linear kernel Yes No [15]
DigitalCell-
Sorter

Github	version:	
e369a34 Python

Voting	based	on	cell	type	
markers Yes No [16]

SCINA 1.1.0 R
Bimodal	distr.	fitting	for	
marker-genes Yes No [17]

scVI 0.3.0 Python Neural Network No No [18]
Cell-Blast 0.1.2 Python Cell-to-cell similarity No Yes [19]

ACTINN
GitHub	version:	
563bcc1 Python Neural Network No No [20]

LAmbDA
GitHub	version:	
3891d72 Python Random Forest No No [21]

Scmapcluster 1.5.1 R Nearest	median	classifier No Yes [22]
Scmapcell 1.5.1 R kNN No Yes [22]
scPred 0.0.0.9000 R SVM with radial kernel No Yes [23]
CHETAH 0.99.5 R Correlation	to	training	set No Yes [24]

CaSTLe
Github	version:	
258b278 R Random Forest No No [25]

SingleR 0.2.2 R Correlation	to	training	set No No [26]
scID 0.0.0.9000 R LDA No Yes [27]
singleCellNet 0.1.0 R Random Forest No No [28]
LDA 0.19.2 Python LDA No No [29]
NMC 0.19.2 Python NMC No No [29]
RF 0.19.2 Python RF	(50	trees) No No [29]
SVM 0.19.2 Python SVM	(linear	kernel) No No [29]
SVMrejection 0.19.2 Python SVM	(linear	kernel) No Yes [29]
kNN 0.19.2 Python kNN	(k	=	9) No No [29]

Dataset No. of 
cells

No. of 
genes

No. of cell 
populations 

(>10 cells)

Description Protocol Ref.

Baron	(Mouse)a 1,886 14,861 13	(9) Mouse Pancreas inDrop [30]
Baron	(Human)a,b 8,569 17,499 14	(13) Human	Pancreas inDrop [30]
Muraroa,b 2,122 18,915 9	(8) Human	Pancreas CEL-Seq2 [31]
Segerstolpea,b 2,133 22,757 13	(9) Human	Pancreas SMART-Seq2 [32]
Xina,b 1,449 33,889 4	(4) Human	Pancreas SMARTer [33]
CellBench  
10Xa,b 3,803 11,778 5	(5) Mixture	of	five	human	

lung cancer cell lines 10X Chromium [34]

CellBench  
CEL-Seq2a,b 570 12,627 5	(5) Mixture	of	five	human	

lung cancer cell lines CEL-Seq2 [34]

Table 2.	Overview	of	the	datasets	used	during	this	study.
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TMa 54,865 19,791 55	(55) Whole	Mus	musculus SMART-Seq2 [6]

AMBa 12,832 42,625 4/22/110	
(3/16/92)

Primary mouse visual 
cortex SMART-Seq v4 [35]

Zheng	sorteda 20,000 21,952 10	(10) FACS sorted PBMC 10X Chromium [36]
Zheng	68Ka 65,943 20,387 11	(11) PBMC 10X Chromium [36]
VISpb	(Mouse) 12,832 42,625 3/36	(3/34) Primary Visual Cortex SMART-Seq v4 [35]

ALMb	(Mouse) 8,758 42,461 3/37	(3/34) Anterior Lateral Motor 
Area SMART-Seq v4 [35]

MTGb	(Human) 14,636 16,161 3/35	(3/34) Middle	Temporal	Gyrus SMART-Seq v4 [37]
PbmcBench 
pbmc1.10Xv2b 6,444 33,694 9	(9) PBMC 10X version 2 [38]

PbmcBench 
pbmc1.10Xv3b 3,222 33,694 8	(8) PBMC 10X version 3 [38]

PbmcBench 
pbmc1.CLb 253 33,694 7	(7) PBMC CEL-Seq2 [38]

PbmcBench 
pbmc1.DRb 3,222 33,694 9	(9) PBMC Drop-Seq [38]

PbmcBench 
pbmc1.iDb 3,222 33,694 7	(7) PBMC inDrop [38]

PbmcBench 
pbmc1.SM2b 253 33,694 6	(6) PBMC SMART-Seq2 [38]

PbmcBench 
pbmc1.SWb 3,176 33,694 7	(7) PBMC Seq-Well [38]

PbmcBench 
pbmc2.10Xv,b 3,362 33,694 9	(9) PBMC 10X version 2 [38]

PbmcBench 
pbmc2.CLb 273 33,694 5	(5) PBMC CEL-Seq2 [38]

PbmcBench 
pbmc2.DRb 3,362 33,694 6	(6) PBMC Drop-Seq [38]

PbmcBench 
pbmc2.iDb 3,362 33,694 9	(9) PBMC inDrop [38]

PbmcBench 
pbmc2.SM2b 273 33,694 6	(6) PBMC SMART-Seq2 [38]

PbmcBench 
pbmc2.SWb 551 33,694 4	(4) PBMC Seq-Well [38]

for	which	either	 a	marker-genes	file	 is	 required	 as	 an	 input	or	 a	 pre-trained	 classifier	 for	
specific	cell	populations	is	provided.	

The	 datasets	 used	 in	 this	 study	 vary	 in	 the	 number	 of	 cells,	 genes	 and	 cell	 populations	
(annotation	level),	in	order	to	represent	different	levels	of	challenges	in	the	classification	task	
and	to	evaluate	how	each	classifier	performs	in	each	case	(Table	2).	They	include	relatively	
typical	 sized	 scRNA-seq	 datasets	 (1,500–8,500	 cells),	 such	 as	 the	 five	 pancreatic	 datasets	
(Baron	Mouse	and	Human,	Muraro,	 Segerstolpe	and	Xin),	which	 include	both	mouse	and	
human	pancreatic	cells	and	vary	 in	 the	sequencing	protocol	used.	The	Allen	Mouse	Brain	
(AMB)	dataset	is	used	to	evaluate	how	the	classification	performance	changes	when	dealing	

a:	used	for	intra-dataset	evaluation 
b:	used	for	inter-dataset	evaluation
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with	different	levels	of	cell	population	annotation	as	the	AMB	dataset	contains	three	levels	
of	annotations	for	each	cell	(3,	16	or	92	cell	populations),	denoted	as	AMB3,	AMB16,	and	
AMB92.	The	Tabula	Muris	 (TM)	and	Zheng	68K	datasets	 represent	 relatively	 large	 scRNA-
seq	datasets	(>50,000	cells),	and	are	used	to	assess	how	well	the	classifiers	scale	with	large	
datasets.	 For	 all	 previous	 datasets,	 cell	 populations	were	 obtained	 through	 clustering.	 To	
assess	how	the	classifiers	perform	when	dealing	with	sorted	populations,	we	included	the	
CellBench	dataset	and	the	Zheng	sorted	dataset,	 representing	sorted	populations	for	 lung	
cancer	cell	lines	and	PBMC,	respectively.	Including	the	Zheng	sorted	and	Zheng	68K	datasets,	
allows	the	benchmarking	of	four	prior-knowledge	classifiers,	since	the	marker-genes	files	or	
pre-trained	classifiers	are	available	for	the	four	classifiers	for	peripheral	blood	mononuclear	
cells	(PBMCs).

2.2.2 All classifiers perform well in intra-dataset experiments 

Generally,	all	classifiers	perform	well	in	the	intra-dataset	experiments,	including	the	general-
purpose	classifiers	(Figure	1).	However,	Cell-BLAST performs poorly for the Baron Mouse and 
Segerstople	pancreatic	datasets.	Further,	scVI has low performance on the deeply annotated 
datasets	TM	(55	cell	populations)	and	AMB92	(92	cell	populations),	and	kNN produces low 
performance for the Xin and AMB92 datasets.

For	 the	 pancreatic	 datasets,	 the	 best-performing	 classifiers	 are	 SVM, SVMrejection, scPred, 
scmapcell, scmapcluster, scVI, ACTINN, singleCellNet, LDA and NMC. SVM is	the	only	classifier	
to	be	 in	 the	 top	five	 list	 for	all	five	pancreatic	datasets,	while	NMC, for example, appears 
only	in	the	top	five	list	for	the	Xin	dataset.	The	Xin	dataset	contains	only	four	pancreatic	cell	
types	 (alpha,	 beta,	 delta	 and	 gamma)	making	 the	 classification	 task	 relatively	 easy	 for	 all	
classifiers,	including	NMC.	Considering	the	median	F1-score	alone	to	judge	the	classification	
performance	 can	be	misleading	 since	 some	classifiers	 incorporate	a	 rejection	option	 (e.g.	
SVMrejection, scmapcell, scPred),	 by	which	 a	 cell	 is	 assigned	as	 ‘unlabeled’	 if	 the	 classifier	 is	
not	confident	enough.	For	example,	for	the	Baron	Human	dataset,	the	median	F1-score	for	
SVMrejection, scmapcell, scPred and SVM is	0.991,	0.984,	0.981,	and	0.980,	respectively	(Figure	
1B).	However,	SVMrejection, scmapcell and scPred assigned 1.5%, 4.2% and 10.8% of the cells, 
respectively,	as	unlabeled	while	SVM (without	rejection)	classified	100%	of	the	cells	with	a	
median	F1-score	of	0.98.	This	shows	an	overall	better	performance	for	SVM and SVMrejection, 
with higher performance and less unlabeled cells.

The	CellBench	10X	and	CEL-Seq2	datasets	represent	an	easy	classification	task,	where	the	five	
sorted lung cancer cell lines are quite separable [34].	All	classifiers	have	an	almost	perfect	
performance	on	both	CellBench	datasets	(median	F1-score	≈	1).

For	the	TM	dataset,	the	top	five	performing	classifiers	are	SVMrejection, SVM, scmapcell, Cell-
BLAST and scPred with	a	median	F1-score	>	0.96,	showing	that	these	classifiers	can	perform	
well	and	scale	 to	 large	scRNA-seq	datasets	with	a	deep	 level	of	annotation.	Furthermore,	
scmapcell and scPred assigned	9.5%	and	17.7%	of	the	cells,	respectively,	as	unlabeled,	which	
shows a superior performance for SVMrejection and SVM, with a higher median F1-score and 
2.9%	and	0%	unlabeled	cells,	respectively.
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Figure 1. Performance comparison of supervised classifiers for cell identification using different scRNA-seq 
datasets.	Heatmap	of	the	A) median F1-scores and B)	percentage	of	unlabeled	cells	across	all	cell	populations	per	
classifier	(rows)	per	dataset	(columns).	Grey	boxes	indicate	that	the	corresponding	method	could	not	be	tested	on	
the	corresponding	dataset.	Classifiers	are	ordered	based	on	the	mean	of	the	median	F1-scores.	Asterix	(*)	indicates	
that	 the	prior-knowledge	 classifiers,	SCINA, DigitalCellSorter, GarnettCV, Garnettpretrained, and Moana, could not be 
tested	on	all	cell	populations	of	the	PBMC	datasets.	SCINADE, GarnettDE, and DigitalCellSorterDE are the versions of 
SCINA, GarnettCV, and DigitalCellSorter	were	 the	marker-genes	are	defined	using	differential	expression	 from	the	
training	data.	Different	numbers	of	marker-genes,	5,	10,	15,	and	20,	were	tested	and	the	best	result	is	shown	here.	
SCINA, Garnett, and DigitalCellSorter	 produced	 the	best	 result	 for	 the	 Zheng	 sorted	dataset	 using	 20,	 15	 and	5	
markers,	and	for	the	Zheng	68K	dataset	using	10,	5	and	5	markers,	respectively.
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2.2.3 Performance evaluation across different annotation levels 

We	 used	 the	 AMB	 dataset	 with	 its	 three	 different	 levels	 of	 annotations,	 to	 evaluate	 the	
classifiers’	 performance	 behavior	 with	 an	 increasing	 number	 of	 smaller	 cell	 populations	
within	the	same	dataset.	For	AMB3,	the	classification	task	 is	relatively	easy,	differentiating	
between	 three	 major	 brain	 cell	 types	 (GABAergic,	 Glutamatergic	 and	 Non-Neuronal).	 All	
classifiers	perform	almost	perfectly	with	a	median	F1-score	>	0.99	(Figure	1A).	For	AMB16,	
the	 classification	 task	 becomes	 slightly	 more	 challenging	 and	 the	 performance	 of	 some	
classifiers	drops,	especially	kNN.	The	top	five	classifiers	are	SVMrejection, scmapcell, scPred, SVM 
and ACTINN, where SVMrejection, scmapcell and scPred assigned 1.1%, 4.9% and 8.4% of the 
cells	as	unlabeled,	respectively.	For	the	deeply	annotated	AMB92	dataset,	the	performance	
of	 all	 classifiers	 drops	 further,	 specially	 for	 kNN and scVI, where the median F1-score is 
0.130	 and	 zero,	 respectively.	 The	 top	 five	 classifiers	 are	 SVMrejection, scmapcell, SVM, LDA, 
and scmapcluster, with SVMrejection assigning less cells as unlabeled compared to scmapcell 
(19.8%	vs	41.9%)	and	once	more	SVMrejection shows improved performance over scmapcell 
(median	F1-score	of	0.981	vs	0.906).	These	results	show	an	overall	superior	performance	for	
general-purpose	classifiers	(SVMrejection, SVM and LDA)	compared	to	other	scRNA-seq	specific	
classifiers	across	different	levels	of	cell	population	annotation.

Instead of only looking at the median F1-score, we also evaluated the F1-score per 
cell	 population	 for	 each	 classifier	 (Figure	 S1).	 We	 confirmed	 previous	 conclusions,	 kNN 
performance	 drops	with	 deep	 annotations	which	 include	 smaller	 cell	 populations	 (Figure	
S1B-C),	 and	 scVI poorly	 performs	 on	 the	 deeply	 annotated	 AMB92	 dataset.	 Additionally,	
we	 observed	 that	 some	 cell	 populations	 are	much	 harder	 to	 classify	 compared	 to	 other	
populations.	For	example,	most	classifiers	had	a	low	performance	on	the	Serpinf1	cells	in	the	
AMB16 dataset.

2.2.4 Incorporating marker-genes does not improve intra-dataset 
performance on PBMC data

For	the	two	PBMC	datasets	(Zheng	68K	and	Zheng	sorted),	the	prior-knowledge	classifiers	
Garnett, Moana, DigitalCellSorter and SCINA could be evaluated and benchmarked with the 
rest	of	the	classifiers.	Although	the	best	performing	classifier	on	Zheng	68K	is	SCINA with a 
median	F1-score	of	0.998,	this	performance	is	based	only	on	3,	out	of	11,	cell	populations	
(Monocytes,	B	cells	and	NK	cells)	for	which	marker-genes	are	provided.	Table	S1	summarizes	
which	PBMC	cell	populations	can	be	classified	by	the	prior-knowledge	methods.	Interestingly,	
none of the prior-knowledge methods showed superior performance compared to other 
classifiers,	despite	the	advantage	these	classifiers	have	over	other	classifiers	given	they	are	
tested	 on	 fewer	 cell	 populations	 due	 to	 the	 limited	 availability	 of	marker-genes.	Garnett, 
Moana, and DigitalCellSorter, could	 be	 tested	 on	 seven,	 seven,	 and	 five	 cell	 populations	
respectively	 (Table	 S1).	 Beside	 SCINA,	 the	 top	 classifiers	 for	 the	 Zheng	 68K	 dataset	 are	
CaSTLe, ACTINN, singleCellNet and SVM. SVMrejection and Cell-BLAST show high performance, 
at	the	expense	of	high	rejection	rate	of	61.8%	and	29%,	respectively	(Figure	1).	Moreover,	
scPred failed	when	tested	on	the	Zheng	68K	dataset.	Generally,	all	classifiers	show	relatively	
lower	performance	on	the	Zheng	68K	dataset	compared	to	other	datasets,	as	the	Zheng	68K	
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dataset	contains	11	immune	cell	populations	which	are	harder	to	differentiate,	particularly	
the	 T	 cell	 compartment	 (6	 out	 of	 11	 cell	 populations).	 This	 difficulty	 of	 separating	 these	
populations	was	 previously	 noted	 in	 the	 original	 study	 [36]. Also, the confusion matrices 
for CaSTLe, ACTINN, singleCellNet and SVM clearly indicate the high similarity between cell 
populations,	such	as	1)	monocytes	with	dendritic	cells,	2)	the	two	CD8+	T	populations,	and	3)	
the	four	CD4+	T	populations	(Figure	S2).	

The	classification	of	the	Zheng	sorted	dataset	is	relatively	easier	compared	to	the	Zheng	68K	
dataset,	as	almost	all	classifiers	show	improved	performance	(Figure	1),	with	the	exception	
that LAmbDA failed	while	being	 tested	on	 the	Zheng	sorted	dataset.	The	prior-knowledge	
methods	show	high	performance	(median	F1-score	>	0.93),	which	is	still	comparable	to	other	
classifiers	 such	 as	 SVMrejection, scVI, scPred and SVM.	 Yet,	 the	 supervised	 classifiers	 do	 not	
require	any	marker-genes,	and	they	can	predict	more	(all)	cell	populations.

2.2.5 The performance of prior-knowledge classifiers strongly de-
pends on the selected marker-genes

Some	prior-knowledge	classifiers,	SCINA, DigitalCellSorter and GarnettCV, used marker-genes 
to	classify	the	cells.	For	the	PBMC	datasets,	the	number	of	marker-genes	per	cell	population	
varies	across	classifiers	(2-161	markers)	and	the	marker-genes	show	very	little	overlap.	Only	
one	B	cell	marker	gene,	CD79A,	is	shared	by	all	classifiers	while	none	of	the	marker-genes	
for	the	other	cell	populations	is	shared	by	the	three	classifiers.	We	analyzed	the	effect	of	the	
number	of	marker-genes,	mean	expression,	dropout	rate,	and	the	specificity	of	each	marker	
gene	(beta	score,	see	Methods),	on	the	performance	of	the	classifier	(Figure	S3).	The	dropout	
rate	and	marker	 specificity	 (beta-score)	are	strongly	correlated	with	 the	median	F1-score,	
highlighting	that	the	performance	does	not	only	depend	on	biological	knowledge,	but	also	
on technical factors.

The	difference	between	the	marker-genes	used	by	each	method	underscores	the	challenge	
of	marker-genes	selection,	especially	for	smaller	cell	populations.	Moreover,	public	databases	
of	cell	type	markers	(e.g.	PanglaoDB	[39] and CellMarker [40])	often	provide	different	markers	
for	 the	 same	 population.	 For	 example,	 CellMarker	 provides	 33	marker-genes	 for	 B	 cells,	
while PanglaoDB provides 110 markers, with only 11 marker-genes overlap between the two 
databases. 

Given	the	differences	between	“expert-defined”	markers	and	the	correlation	of	classification	
performance	 and	 technical	 dataset-specific	 features	 (e.g.	 dropout	 rate),	 we	 tested	 if	 the	
performance	 of	 prior-knowledge	 methods	 can	 be	 improved	 by	 automatically	 selecting	
marker-genes	 based	 on	 differential	 expression.	 Through	 the	 cross-validation	 scheme,	
we	 used	 the	 training	 folds	 to	 select	 the	marker-genes	 of	 each	 cell	 population	 based	 on	
differential	expression	(see	Methods)	and	later	used	these	markers	to	evaluate	the	classifiers’	
performance	on	the	testing	fold.	We	tested	this	approach	on	the	two	PBMC	datasets,	Zheng	
sorted	and	Zheng	68K	for	different	numbers	of	marker-genes	(5,	10,	15,	and	20	markers).	
In Figure 1, the best result across the number of markers for SCINADE, GarnettDE, and 
DigitalCellSorterDE are shown.
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The	 median	 F1-score	 obtained	 using	 the	 differential	 expression-defined	 markers	 is	
significantly	lower	compared	to	the	original	versions	of	classifiers	using	the	markers	defined	
by the authors. This lower performance is in part due to the low performance on challenging 
populations,	such	as	subpopulations	of	CD4+	and	CD8+	T	cell	populations	(F1-score	≤	0.68)	
(Figure	S4).	These	challenging	populations	are	not	identified	by	the	original	classifiers	since	
the	markers	provided	by	the	authors	only	considered	annotations	at	a	higher	level	(Table	S1).	
For example, the median F1-score of SCINADE on	Zheng	sorted	is	0.38,	compared	to	a	median	
F1-score of 1.0 for SCINA (using	the	original	markers	defined	by	the	authors). However,	SCINA 
only	considers	three	cell	populations:	CD14+	monocytes,	CD56+	NK	cells,	and	CD19+	B	cells.	
If	we	only	consider	these	cell	populations	for	SCINADE, this results in a median F1-score of 
0.95. 

We	observed	that	the	optimal	number	of	marker-genes	varies	per	classifier	and	dataset.	For	
the	Zheng	sorted	dataset	the	optimal	number	of	markers	is	5,	15,	and	20	for	DigitalCellSorterDE, 
GarnettDE, and, SCINADE respectively,	while	for	Zheng	68K	this	is	5,	5,	and	10.	All	together,	these	
results	illustrate	the	dependence	of	the	classification	performance	on	the	careful	selection	of	
marker genes which is evidently a challenging task. 

2.2.6 Classification performance depends on dataset complexity

A	major	aspect	affecting	the	classification	performance	is	the	complexity	of	the	dataset	at	
hand.	We	described	the	complexity	of	each	dataset	in	terms	of	the	pairwise	similarity	between	
cell	 populations	 (see	Methods)	 and	 compared	 the	 complexity	 to	 the	 performance	 of	 the	
classifiers	and	the	number	of	cell	populations	in	a	dataset	(Figure	2).	When	the	complexity	
and/or	the	number	of	cell	populations	of	the	dataset	increases,	the	performance	generally	
decreases.	 The	 performance	 of	 all	 classifiers	 is	 relatively	 low	 on	 the	 Zheng	 68K	 dataset,	
which	 can	 be	 explained	 by	 the	 high	 pairwise	 correlations	 between	 the	mean	 expression	
profiles	of	each	cell	population	(Figure	S5).	These	correlations	are	significantly	lower	for	the	
TM	and	AMB92	datasets,	justifying	the	higher	performance	of	the	classifiers	on	these	two	
datasets	(Figure	S6-7).	While	both	TM	and	AMB92	have	more	cell	populations	(55	and	92,	
respectively)	compared	to	Zheng	68K	(11	populations),	these	populations	are	less	correlated	
to	one	another,	making	the	task	easier	for	all	the	classifiers.	

2.2.7 Evaluation across datasets

While	evaluating	the	classification	performance	within	a	dataset	(intra-dataset)	is	important,	
the	realistic	scenario	in	which	a	classifier	is	useful	requires	cross-dataset	(i.e.	inter-dataset)	
classification.	We	used	22	datasets	(Table	2)	to	test	the	classifiers’	ability	to	predict	cell	identities	
in	a	dataset	that	was	not	used	for	training.	First,	we	tested	the	classifiers’	performance	across	
different	sequencing	protocols,	applied	to	the	same	samples	within	the	same	lab	using	the	
two	CellBench	datasets.	We	evaluated	the	classification	performance	when	training	on	one	
protocol	and	testing	on	the	other.	Similar	to	the	intra-dataset	evaluation	result,	all	classifiers	
performed	well	in	this	case	(Figure	S8).	
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Second,	 we	 tested	 the	 classification	 performance	 on	 the	 PbmcBench	 datasets,	 which	
represent a more extensive protocol comparison. PbmcBench consists of two samples 
(pbmc1	and	pbmc2),	sequenced	using	seven	different	protocols	(Table	2)	with	the	exception	
that	10Xv3	was	not	applied	to	the	pbmc2	sample.	We	used	the	pbmc1	datasets	to	evaluate	
the	 classification	 performance	 of	 all	 pairwise	 train-test	 combinations	 between	 the	 seven	
protocols	(42	experiments,	see	Methods).	Moreover,	we	extended	the	evaluation	to	include	
comparisons	 across	 different	 samples	 for	 the	 same	protocol,	 using	 pbmc1	 and	 pbmc2	 (6	
experiments,	see	Methods).	All	48	experiments	results	are	summarized	in	Figure	3.	Overall,	
several	 classifiers	 performed	well	 including	 SCINADE using 20 marker-genes, singleCellNet, 
scmapcell, scID and SVM,	with	an	average	median	F1-score	>	0.75	across	all	48	experiments	
(Figure	3A,	S9A).	SCINADE, GarnettDE, and DigitalCellSorterDE were tested using 5, 10, 15 and 
20	marker-genes,	 Figure	 3A	 shows	 the	 best	 result	 for	 each	 classifier,	 where	 SCINADE and 
GarnettDE	performed	best	using	20	and	5	marker-genes,	respectively,	while	DigitalCellSorterDE 
had	a	median	F1-score	of	zero	during	all	experiments	using	all	different	numbers	of	marker-
genes. DigitalCellSorterDE could	only	identify	B-cells	in	the	test	sets,	usually	with	an	F1-score	
between	0.8	and	1.0,	while	the	F1-score	for	all	other	cell	populations	was	zero.

We	 also	 tested	 the	 prior-knowledge	 classifiers	 on	 all	 13	 PbmcBench	 datasets.	 The	 prior-
knowledge	 classifiers	 showed	 lower	 performance	 compared	 to	 other	 classifiers	 (average	

Figure 2. Complexity of the datasets compared 
to the performance of the classifiers. A) Boxplots 
of	 the	 median	 F1-scores	 of	 all	 classifiers	 for	 each	
dataset	used	during	 the	 intra-dataset	evaluation. B) 
Barplots describing the complexity of the datasets 
(see	 Methods).	 Datasets	 are	 ordered	 based	 on	
complexity. Box- and barplots are colored according 
to	the	number	of	cell	populations	in	each	dataset.
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median	F1-score	<	0.6),	with	 the	exception	of	SCINA which was only tested on three cell 
populations	(Figure	3B,	S9B).	These	results	are	inline	with	our	previous	conclusions	from	the	
Zheng	sorted	and	Zheng	68K	datasets	in	the	intra-dataset	evaluation.	

Comparing	the	performance	of	the	classifiers	across	the	different	protocols,	we	observed	a	
higher	performance	for	all	classifiers	for	specific	pairs	of	protocols.	For	example,	all	classifiers	
performed	well	when	trained	on	10Xv2	and	tested	on	10Xv3,	and	vice	versa.	On	the	other	
hand,	other	pairs	of	protocols	had	good	performance	only	in	one	direction,	training	on	Seq-
Well	produced	good	predictions	on	10Xv3,	but	not	the	other	way	around.	Compared	to	all	
other	protocols,	the	performance	of	all	classifiers	was	low	when	they	were	either	trained	or	
tested on Smart-seq2 data. This can, in part, be due to the fact that Smart-seq2 data does not 
contain	Unique	Molecular	Identifier	(UMI),	in	contrast	to	all	other	protocols.

Figure 3. Classification performance across the PbmcBench datasets. A)	Heatmap	showing	the	median	F1-scores	
of	 the	 supervised	 classifiers	 for	 all	 train-test	 pairwise	 combination	across	different	protocols.	 The	 training	 set	 is	
indicated in the grey box on top of the heatmap, the test set is indicated using the column labels below. Results 
showed	to	the	left	of	the	red	line	represent	the	comparison	between	different	protocol	using	sample	pbmc1.	Sample	
pbmc2 was used as test set then. Results showed to the right of the red line represent the comparison between 
different	 samples	using	 the	 same	protocol,	with	pbmc	1	used	 for	 training	and	pbmc2	used	 for	 testing.	Boxplots	
on	the	right	side	of	the	heatmap	summarize	the	performance	of	each	classifier	across	all	experiments.	The	mean	
of	the	median	F1-scores,	also	used	to	order	the	classifiers,	 is	 indicated	 in	the	boxplots	using	a	red	dot.	Boxplots	
underneath	the	heatmap	summarize	the	performance	of	the	classifiers	per	experiment.	For	SCINADE, GarnettDE, and 
DigitalCellSorterDE	different	numbers	of	marker-genes	were	tested.	Only	the	best	result	is	shown	here.	B) Median 
F1-score	of	the	prior-knowledge	classifiers	on	both	samples	of	the	different	protocols.	The	protocol	is	indicated	in	
the	grey	box	on	top	of	the	heatmap,	the	sample	is	indicated	with	the	labels	below.	Classifiers	are	ordered	based	on	
their mean performance across all datasets.
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We	 also	 tested	 the	 classification	 performance	 using	 the	 three	 brain	 datasets,	 VISp,	 ALM	
and	MTG	(Table	2),	which	allowed	us	to	compare	performances	across	species	(mouse	and	
human)	as	well	as	single-cell	RNA-seq	(used	in	VISp	and	ALM)	versus	single-nucleus	RNA-seq	
(used	for	MTG).	We	tested	all	possible	train-test	combinations	for	both	levels	of	annotation,	
three	major	brain	cell	types	(inhibitory	neurons,	excitatory	neurons	and	non-neuronal	cells)	
and	the	deeper	annotation	 level	with	34	cell	populations	 (18	experiments,	 see	Methods).	
Prediction	of	the	three	major	cell	types	was	easy,	where	almost	all	classifiers	showed	high	
performance	(Figure	4A)	with	some	exceptions.	For	example,	scPred	failed	the	classification	
task	completely	when	testing	on	the	MTG	dataset,	producing	100%	unlabeled	cells	(Figure	
S10A).	Predicting	the	34	cell	populations	turned	out	to	be	a	more	challenging	task,	especially	
when	 the	MTG	 human	 dataset	 is	 included	 either	 as	 training	 or	 testing	 data,	 resulting	 in	
significantly	lower	performance	across	all	classifiers	(Figure	4B).	Across	all	nine	experiments	
at	the	deeper	annotation,	the	top	performing	classifiers	were	SVM, ACTINN, singleCellNet, 
SingleR and LAmbDA,	with	almost	0%	unlabeled	cells	(Figure	S10B).

Finally,	 to	 evaluate	 the	 classification	 performance	 across	 different	 protocols	 and	 different	
labs,	we	used	the	four	human	pancreatic	datasets:	Baron	Human,	Muraro,	Segerstople	and	
Xin.	We	 tested	 four	 combinations	 by	 training	 on	 three	 datasets	 and	 test	 on	 one	 dataset,	
in	which	case	the	classification	performance	can	be	affected	by	batch	differences	between	
datasets.	We	evaluated	the	performance	of	 the	classifiers	when	trained	using	the	original	
data	as	well	as	aligned	data	using	the	mutual	nearest	neighbour	(MNN)	method	[41]. Figure 
S11 shows UMAPs [42]	of	the	combined	dataset	before	and	after	alignment,	demonstrating	
better	grouping	of	pancreatic	cell	types	after	alignment.	

For	the	original	(unaligned)	data,	the	best	performing	classifiers	across	all	four	experiments	
are scVI, SVM, ACTINN, scmapcell and SingleR (Figure	5A,	S12A).	For	the	aligned	data,	the	
best	 performing	 classifiers	 are	 kNN, SVMrejection, singleCellNet, SVM and NMC	 (Figure	 5B,	
S12B).	 Some	 classifiers	 benefit	 from	 aligning	 datasets	 such	 as	 SVMrejection, kNN, NMC and 
singleCellNet,	resulting	in	higher	median	F1-scores	(Figure	5).	On	the	other	hand,	some	other	
classifiers	failed	the	classification	task	completely,	such	as	scmapcell which labels all cells as 
unlabeled.	Some	other	classifiers	 failed	to	run	over	 the	aligned	datasets,	 such	as	ACTINN, 
scVI, Cell-BLAST, scID, scmapcluster and scPred.	These	classifiers	work	only	with	positive	gene	
expression	data,	while	the	aligned	datasets	contains	positive	and	negative	gene	expression	
values.

2.2.8 Rejection option evaluation

Classifiers	developed	for	scRNA-seq	data	often	incorporate	a	rejection	option	to	identify	cell	
populations	in	the	test	set	that	were	not	seen	during	training.	These	populations	cannot	be	
predicted	correctly	and	therefore	should	remain	unassigned.	To	test	whether	the	classifiers	
indeed	 leave	 these	 unseen	 populations	 unlabeled,	we	 applied	 two	 different	 experiments	
using	negative	controls	of	different	tissues	and	using	unseen	populations	of	the	same	tissue.	

First,	 the	 classifiers	were	 trained	 on	 a	 data	 set	 from	one	 tissue	 (e.g.	 pancreas)	 and	 used	
to	predict	 cell	 populations	of	 a	 completely	 different	tissue	 (e.g.	 brain)	 [22]. The methods 
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Figure 4. Classification performance across brain datasets. Heatmaps	show	the	median	F1-scores	of	the	supervised	
classifiers	when	tested	on	A)	major	lineage	annotation	with	three	cell	populations,	and	B)	deeper	level	of	annotation	
with	34	cell	populations.	The	training	set(s)	are	indicated	using	the	column	labels	on	top	of	the	heatmap.	The	test	
set	is	indicated	in	the	grey	box.	In	each	heatmap	the	classifiers	are	ordered	based	on	their	mean	performance	across	
all experiments. 
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should	thus	reject	all	 (100%)	of	the	cells	 in	the	test	dataset.	We	carried	out	four	different	
negative	control	experiments	 (see	Methods,	 Figure	6A).	scmapcluster and scPred have an 
almost	perfect	score	for	all	four	combinations,	rejecting	close	100%	of	the	cells.	Other	top	
performing methods for this task, SVMrejection and scmapcell, failed when trained on mouse 
pancreatic	data	and	tested	on	mouse	brain	data.	All	labeled	cells	of	the	AMB16	dataset	are	
predicted	to	be	beta	cells	in	this	case.	The	prior-knowledge	classifiers,	SCINA, Garnettpretrained, 
and DigitalCellSorter,	could	only	be	tested	on	the	Baron	Human	pancreatic	dataset.	GarnettCV 
could,	on	top	of	that,	also	be	trained	on	the	Baron	Human	dataset	and	tested	on	the	Zheng	
68K dataset. During the training phase, GarnettCV tries	 to	find	 representative	 cells	 for	 the	
cell	 populations	described	 in	 the	marker-genes	file.	 Being	 trained	on	Baron	Human	using	
the	PBMC	marker-genes	file,	it	should	not	be	able	to	find	any	representatives	and	therefore	
all	 cells	 in	 the	 Zheng	 68K	 dataset	 should	 be	 unassigned.	 Surprisingly,	GarnettCV still	 finds	
representatives	for	PBMC	cells	 in	the	pancreatic	data	and	thus	the	cells	 in	the	test	set	are	
labeled.	However,	being	trained	on	the	PBMC	dataset	and	tested	on	the	pancreatic	dataset,	
it does have a perfect performance. 

To	 test	 the	 rejection	 option	 in	 more	 realistic	 and	 challenging	 scenario,	 we	 trained	 the	
classifiers	on	some	cell	populations	from	one	dataset,	and	used	the	held	out	cell	populations	
in	the	test	set	(see	Methods).	Since	the	cell	populations	in	the	test	set	were	not	seen	during	
training,	they	should	remain	unlabeled.	Here,	the	difficulty	of	the	task	was	gradually	increased	

Figure 5. Classification performance across pancreatic datasets. Heatmaps	 showing	 the	 median	 F1-score	 for	
each	classifier	for	the	A) unaligned and B) aligned datasets. The column labels indicate which of the four datasets 
was	used	as	a	test	set,	in	which	case	the	other	three	datasets	were	used	as	training.	Grey	boxes	indicate	that	the	
corresponding	method	 could	 not	 be	 tested	 on	 the	 corresponding	 dataset.	 In	 each	 heatmap,	 the	 classifiers	 are	
ordered based on their mean performance across all experiments.
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(Table	S3).	First	all	the	T-cells	were	removed	from	the	training	set.	Next,	only	the	CD4+	T	cells	
were	removed.	Finally,	only	CD4+/CD45RO+	Memory	T	cells,	a	subpopulation	of	the	CD4+	T	
cells, were removed. The top performing methods for this task are: scmapcell, scPred, scID, 
SVMrejection, and SCINA (Figure	6B). We	expected	that	rejecting	T	cells	would	be	a	relatively	
easy	task	as	they	are	quite	distinct	from	all	other	cell	populations	in	the	dataset.	It	should	
thus	be	comparable	to	the	negative	control	experiment.	Rejecting	CD4+/CD45RO+	Memory	
T	cells,	on	the	other	hand,	would	be	more	difficult	as	they	could	easily	be	confused	with	all	
other	subpopulations	of	CD4+	T	cells.	Surprisingly,	almost	all	classifiers,	except	for	scID and 
scmapcluster, show the opposite. 

To	 better	 understand	 this	 unexpected	 performance	 we	 analyzed	 the	 labels	 assigned	 by	
SVMrejection.	 In	the	first	task	(T	cells	removed	from	the	training	set),	SVMrejection labels almost 
all T cells as B cells. This can be explained by the fact that SVMrejection,	and	most	classifiers	
for	that	matter,	rely	on	classification	posterior	probabilities	to	assign	labels	but	ignores	the	
actual	similarity	between	each	cell	and	the	assigned	population.	 In	task	two	(CD4+	T	cells	
were	removed),	there	were	two	subpopulations	of	CD8+	T	cells	 in	the	training	set.	 In	that	
case,	 two	 cell	 populations	 are	 equally	 similar	 to	 the	 cells	 in	 the	 test	 set,	 resulting	 in	 low	
posterior	probabilities	for	both	classes	and	thus	the	cells	in	the	test	set	remain	unlabeled.	If	

Figure 6. Performance of the classifiers during the rejection experiments. A) Percentage of unlabeled cells during 
the	negative	control	experiment	for	all	the	classifiers	with	a	rejection	option.	The	prior-knowledge	classifiers	could	
not be tested on all datasets, this is indicated with a grey box. The species of the dataset is indicated in the grey 
box	on	top.	Column	labels	indicate	which	datasets	are	used	for	training	and	testing	respectively. B) Percentage of 
unlabeled	cells	for	all	classifiers	with	a	rejection	option	when	a	cell	population	was	removed	from	the	training	set.	
Column	labels	indicate	which	cell	population	was	removed.	This	cell	population	was	used	as	a	test	set.	In	both A) and 
B) the	classifiers	are	sorted	based	on	their	mean	performance	across	all	experiments.
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one	of	these	CD8+	T	cell	populations	was	removed	from	the	training	set,	only	10.53%	instead	
of	75.57%	of	 the	CD4+	T	 cells	were	assigned	as	unlabeled	by	SVMrejection. All together, our 
results	indicate	that	despite	the	importance	of	incorporating	a	rejection	option	in	cell	identity	
classifiers,	the	implementation	of	this	rejection	option	remains	challenging.

2.2.9 Performance sensitivity to the input features 

During	the	intra-datasets	cross-validation	experiment	described	earlier,	we	used	all	features	
(genes)	as	input	to	the	classifiers.	However,	some	classifiers	suffer	from	overtraining	when	
too	many	 features	 are	 used.	 Therefore,	 we	 tested	 the	 effect	 of	 feature	 selection	 on	 the	
performance	of	the	classifiers.	While	different	strategies	for	feature	selection	in	scRNA-seq	
classification	experiments	exist,	selecting	genes	with	a	higher	number	of	dropouts	compared	
to the expected number of dropouts has been shown to outperform other methods [22,43]. 
We	 selected	 subsets	 of	 features	 from	 the	 TM	 dataset	 using	 the	 dropout	method.	 In	 the	
experiments,	we	used	the	top:	100,	200,	500,	1000,	2000,	5000,	and	19791	(all)	genes.	Some	
classifiers	include	a	built-in	feature	selection	method	which	is	used	by	default.	To	ensure	that	
all	methods	use	the	same	set	of	features,	the	built-in	feature	selection	was	turned	off	during	
these experiments. 

Some	methods	are	clearly	overtrained	when	the	number	of	features	increases	(Figure	7A).	
For example, scmapcell shows the highest median F1-score when using less features and 
the	 performance	 drops	when	 the	 number	 of	 features	 increases.	 On	 the	 other	 hand,	 the	
performance	of	other	classifiers,	such	as	SVM, keeps improving when the number of features 
increases.	These	results	 indicate	 that	 the	optimal	number	of	 features	 is	different	 for	each	
classifier.

Looking at the median F1-score, there are several methods with a high maximal performance. 
Cell-BLAST, ACTINN, scmapcell, scPred, SVMrejection and SVM all have a median F1-score higher 
than 0.97 for one or more of the feature sets. Some of these well-performing methods, 
however, leave many cells unlabeled. scmapcell and scPred, for instance, yield a maximum 
median	 F1-score	 of	 0.976	 and	 0.982	 respectively,	 but	 10.7%	 and	 15.1%	 of	 the	 cells	 are	
assigned	as	unlabeled	(Figure	7B).	On	the	other	hand,	SVMrejection has the highest median F1-
score	(0.991)	overall	with	only	2.9%	unlabeled.	Of	the	top	performing	classifiers	only	ACTINN 
and SVM	label	all	the	cells.	Overall	SVM shows the third highest performance with a score of 
0.979. 

2.2.10 Scalability: performance sensitivity to the number of cells

scRNA-seq	datasets	vary	significantly	across	studies	in	terms	of	the	number	of	cells	analyzed.	
To	 test	 the	 influence	 of	 the	 size	 of	 the	 dataset	 on	 the	 performance	 of	 the	 classifier,	 we	
downsampled	the	TM	dataset	in	a	stratified	way	(i.e.	preserving	population	frequencies)	to	1,	
5,	10,	20,	50,	and	100%	of	the	original	number	of	45,469	cells	(see	Methods)	and	compared	
the	performance	of	the	methods	(Figure	7C,	D).	Using	less	than	500	cells	in	the	dataset,	most	
classifiers	have	a	relatively	high	performance.	Only	scID, LAmbDA, CaSTLe, and Cell-BLAST, 
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Figure 7. Classification performance and computation time evaluation across different numbers of features, 
cells, and annotation levels. Line plots show A) the median F1-score, B) percentage of unlabeled cells, and E) 
computation	time	of	each	classifier	applied	to	the	TM	dataset	with	the	top	100,	200,	500,	1000,	2000,	5000,	and	
19791	(all)	genes	as	input	feature	sets.	Genes	were	ranked	based	on	dropout-based	feature	selection.	C) The median 
F1-score, D) percentage of unlabeled cells, and F)	computation	time	of	each	classifier	applied	to	the	downsampled	
TM	datasets	containing	463,	2,280,	4,553,	9,099,	22,737,	and	45,469	(all)	cells.	G)	The	computation	time	of	each	
classifier	is	plotted	against	the	number	of	cell	populations.	Note	that	the	y-axis	is	100^x	scaled	in	A,C and log-scaled 
in E-G. The x-axis is log-scaled in A-F
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have a median F1-score below 0.85. Surprisingly, SVMrejection has almost the same median 
F1-score	when	using	1%	of	the	data	as	when	using	all	data	(0.993	and	0.994	respectively).	It	
must	be	noted	here,	however,	that	the	percentage	of	unlabeled	cells	decreases	significantly	
(from	28.9%	to	1.3%).	Overall,	the	performance	of	all	classifiers	stabilized	when	tested	on	≥	
20%	(9,099	cells)	of	the	original	data.

2.2.11 Running time evaluation 

To	compare	the	runtimes	of	the	methods	and	see	how	they	scale	when	the	number	of	cells	
increases,	we	compared	the	number	of	cells	in	each	dataset	with	the	computation	time	of	
the	classifiers	(Figure	S13).	Overall,	big	differences	in	the	computation	time	can	be	observed	
when	comparing	the	different	methods.	SingleR showed	the	highest	computation	time	overall.	
Running SingleR on	the	Zheng	68K	dataset	took	more	than	39	hours,	while	scmapcluster was 
finished	within	10	seconds	on	this	dataset.	Some	of	the	methods	have	a	high	runtime	for	
the	small	datasets.	On	the	smallest	dataset,	Xin,	all	classifiers	have	a	computation	time	<5	
minutes,	with	most	classifiers	finishing	within	60	seconds.	Cell-BLAST, however, takes more 
than	75	minutes.	 In	general,	all	methods	show	an	increase	in	computation	time	when	the	
number	of	 cells	 increase.	However,	when	comparing	 the	 second	 largest,	 TM,	and	 largest,	
Zheng	 68K,	 dataset,	 not	 all	methods	 show	 an	 increase	 in	 computation	 time.	 Despite	 the	
increase in the number of cells between the two datasets, CaSTLe, CHETAH, and SingleR, 
have	a	decreasing	computation	time.	A	possible	explanation	could	be	that	 the	runtime	of	
these	methods	also	depends	on	the	number	of	genes	or	the	number	of	cell	populations	in	
the	dataset.	To	evaluate	the	run	time	of	the	methods	properly,	we	therefore	investigated	the	
effect	of	the	number	of	cells,	features,	and	cell	populations	separately	(Figure	7E-G).	

To	assess	 the	effect	of	 the	number	of	 genes	on	 the	computation	time,	we	compared	 the	
computation	time	of	the	methods	during	the	feature	selection	experiment	(Figure	7E).	Most	
methods	 scale	 linearly	with	 the	number	of	genes.	However,	LDA does not scale very well 
when the number of genes increases. If the number of features is higher than the number of 
cells, the complexity of LDA is	O(g^3),	where	g is the number of genes [44]. 

The	 effect	 of	 the	 number	 of	 cells	 on	 the	 timing	 showed	 that	 all	 methods	 increase	 in	
computation	time	when	the	number	of	cells	increases	(Figure	7F).	The	differences	in	runtime	
on the largest dataset are larger. scmapcluster, for	instance,	takes	five	seconds	to	finish,	while	
Cell-BLAST takes more than 11 hours.

Finally,	to	evaluate	the	effect	of	the	number	of	cell	populations,	the	runtime	of	the	methods	
on	the	AMB3,	AMB16,	and	AMB92	datasets	were	compared	(Figure	7G).	For	most	methods	
this	shows	an	increase	in	runtime	when	the	number	of	cell	populations	increases,	specially	
singleCellNet. For other methods, such as ACTINN and scmapcell,	 the	 runtime	 remains	
constant.	Five	classifiers,	scmapcell, scmapcluster, SVM, RF, and NMC,	have	a	computation	
time	below	six	minutes	on	all	the	datasets.	
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2.3 Discussion
In	 this	 study,	 we	 evaluated	 the	 performance	 of	 22	 different	 methods	 for	 automatic	 cell	
identification	 using	 27	 scRNA-seq	 datasets.	 We	 performed	 several	 experiments	 to	 cover	
different	 levels	 of	 challenges	 in	 the	 classification	 task,	 and	 to	 test	 specific	 aspects	 of	 the	
classifiers	such	as	the	feature	selection,	scalability	and	rejection	experiments.	We	summarize	
our	 findings	 across	 the	 different	 experiments	 (Figure	 8)	 and	 provide	 a	 detailed	 summary	
of	which	dataset	was	used	for	each	experiment	(Table	S4).	This	overview	can	be	used	as	a	
user-guide	to	choose	the	most	appropriate	classifier	depending	on	the	experimental	setup	
at	 hand.	 Overall,	 several	 classifiers	 performed	 accurately	 across	 different	 datasets	 and	
experiments,	 particularly:	 SVMrejection, SVM, singleCellNet, scmapcell, scPred, ACTINN and 
scVI.	We	observed	relatively	lower	performance	for	the	inter-dataset	setup,	likely	due	to	the	
technical	and	biological	differences	between	datasets,	compared	to	the	intra-dataset	setup.	
SVMrejection, SVM and singleCellNet performed well for both setups, while scPred and scmapcell 
performed	better	in	the	intra-dataset	setup,	and	scVI and ACTINN	had	better	performance	
in	the	 inter-dataset	setup	(Figure	8).	Of	note,	we	evaluated	all	classifiers	using	the	default	
settings.	While	adjusting	these	settings	for	a	specific	dataset	might	improve	the	performances	
it increases the risk of overtraining.

Considering	all	three	evaluation	metrics	(median	F1-score,	percentage	of	unlabeled	cells	and	
computation	time),	SVMrejection and SVM are	 overall	 the	 best	 performing	 classifiers	 for	 the	
scRNA-seq datasets used. Although SVM	has	a	shorter	computation	time,	the	high	accuracy	
of	the	rejection	option	of	SVMrejection,	which	allows	flagging	new	cells	and	assigning	them	as	
unlabeled, results in an improved performance compared to SVM.	Our	 results	 show	 that	
SVMrejection and SVM scale	well	to	large	datasets	as	well	as	deep	annotation	levels.	In	addition,	
they	did	not	suffer	from	the	large	number	of	features	(genes)	present	in	the	data,	producing	
the highest performance on the TM dataset using all genes, due to the incorporated L2-
regularization.	The	comparable	or	higher	overall	performance	of	a	general-purpose	classier	
such as SVM warrants	caution	when	designing	scRNA-seq	specific	classifiers	that	they	do	not	
introduce unnecessary complexity. For example, deep learning methods, such as ACTINN and 
scVI, showed overall lower performance compared to SVM, supporting	recent	observations	
by	Köhler	et al. [45].

scPred	(which	is	based	on	an	SVM with	radial	kernel),	LDA, ACTINN, and singleCellNet performed 
well	on	most	datasets,	yet	the	computation	time	is	long	for	large	datasets. singleCellNet also 
becomes	slower	with	a	large	number	of	cell	populations.	In	addition,	in	some	cases,	scPred 
and scmapcell/cluster	reject	higher	proportions	of	cells	as	unlabeled	compared	to	SVMrejection, 
without	a	substantial	improvement	in	accuracy.	In	general,	incorporating	a	rejection	option	
with	classification	is	a	good	practice	to	allow	the	detection	of	potentially	novel	cell	populations	
(not	present	in	the	training	data)	and	improve	the	performance	for	the	classified	cells	with	
high	confidence.	However,	for	the	datasets	used	in	this	study,	the	performance	of	classifiers	
with	rejection	option,	except	for	SVMrejection,	did	not	show	substantial	improvement	compared	
to	 other	 classifiers.	 Furthermore,	 our	 results	 indicate	 that	 designing	 a	 proper	 rejection	
option	can	be	challenging	for	complex	datasets	(e.g.	PBMC)	and	that	relying	on	the	posterior	
probabilities	alone	might	not	yield	optimal	results.	
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Figure 8. Summary of the performance of all classifiers during different experiments. For each experiment, the 
heatmap	shows	whether	a	classifier	performs	good,	intermediate,	or	poor.	Light-grey	indicates	that	a	classifier	could	
not	be	tested	during	an	experiment.	The	grey	boxes	to	the	right	of	the	heatmap	indicate	the	four	different	categories	
of	 experiments:	 intra-dataset,	 inter-dataset,	 rejection	and	timing.	Experiments	 itself	 are	 indicated	using	 the	 row	
labels.	Table	S4	shows	which	datasets	were	used	to	score	the	classifiers	exactly	for	each	experiment.	Grey	boxes	next	
to	the	heatmap	indicate	the	two	classifiers	categories.	Within	these	two	categories,	the	classifiers	are	sorted	based	
on their mean performance on the intra and inter dataset experiments. 
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For	 datasets	 with	 deep	 levels	 of	 annotation	 (i.e.	 large	 number)	 of	 cell	 populations,	 the	
classification	 performance	 of	 all	 classifiers	 is	 relatively	 low,	 since	 the	 classification	 task	 is	
more challenging. scVI,	in	particular,	failed	to	scale	with	deeply	annotated	datasets,	although	
it	works	well	for	datasets	with	relatively	small	number	of	cell	populations.	Further,	applying	
the	prior-knowledge	classifiers	becomes	infeasible	for	deeply	annotated	datasets,	as	the	task	
of	defining	the	marker-genes	becomes	even	more	challenging.

We	 evaluated	 the	 performance	 of	 the	 prior-knowledge	methods	 (marker-based	 and	 pre-
trained)	on	PBMC	datasets	only,	due	 to	 the	 limited	availability	of	author-provided	marker	
genes.	For	all	PBMC	datasets,	the	prior-knowledge	methods	did	not	improve	the	classification	
performance	over	supervised	methods,	which	do	not	incorporate	such	prior	knowledge.	We	
extended	 some	 prior-knowledge	methods	 such	 that	 the	marker-genes	were	 defined	 in	 a	
data-driven	manner	using	differential	expression	which	did	not	improve	the	performance	of	
these	classifiers,	except	for	SCINADE	(with	20	marker-genes)	for	the	PbmcBench	datasets.	The	
data-driven	selection	of	markers	allows	the	prediction	of	more	cell	populations	compared	
to	 the	number	of	populations	 for	which	marker-genes	were	originally	provided.	However,	
this	data-driven	selection	violates	the	fundamental	assumption	in	prior-knowledge	methods	
that	 incorporating	 expert-defined	 markers	 improves	 classification	 performance.	 Further,	
several	supervised	classifiers	which	do	not	require	markers	to	be	defined	a	priori	(e.g.	scPred 
and scID)	 already	 apply	 a	differential	 expression	 test	 to	find	 the	best	 set	of	 genes	 to	use	
while training the model. The fact that prior-knowledge methods do not outperform other 
supervised	 methods	 and	 given	 the	 challenges	 associated	 with	 explicit	 marker	 definition,	
indicate	that	incorporating	prior	knowledge	in	the	form	of	marker-genes	is	not	beneficial,	at	
least for PBMC data.

In	the	inter-dataset	experiments,	we	tested	the	ability	of	the	classifiers	to	identify	populations	
across	 different	 scRNA-seq	 protocols.	 Our	 results	 show	 that	 some	 protocols	 are	 more	
compatible	with	one	another	(e.g.	10Xv2	and	10Xv3),	Smart-Seq2	is	distinct	from	the	other	
UMI-based	methods,	and	CEL-Seq2	suffers	from	low	replicability	of	cell	populations	across	
samples. These results can serve as a guide in order to choose the best set of protocols that 
can be used in studies where more than one protocol is used. 

The	intra-dataset	evaluation	included	the	Zheng	sorted	dataset,	which	consists	of	10	FACS	
sorted	cell	populations	based	on	the	expression	of	surface	protein	markers.	Our	results	show	
relatively	lower	classification	performance	compared	to	other	datasets,	except	the	Zheng	68K	
dataset.	The	poor	correlation	between	the	expression	 levels	of	these	protein	markers	and	
their coding genes mRNA levels [46] might explain this low performance. 

Overall,	we	 observed	 that	 the	 performance	 of	 almost	 all	methods	was	 relatively	 high	 on	
various	datasets,	while	some	datasets	with	overlapping	populations	(e.g.	Zheng	68K	dataset)	
remain challenging. The inter-dataset comparison requires extensive development in order 
to	deal	with	technical	differences	between	protocols,	batches,	and	 labs,	as	well	as	proper	
matching	between	different	cell	population	annotations.	Further,	the	pancreatic	datasets	are	
known to project very well across studies and hence using them to evaluate inter-dataset 
performance	can	be	misleading.	We	recommend	considering	other	challenging	tissues	and	
cell	populations.
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2.4 Conclusions
We	present	a	comprehensive	evaluation	of	automatic	cell	identification	methods	for	single	
cell	RNA-sequencing	data.	Generally,	all	classifiers	perform	well	across	all	datasets,	including	
the	 general-purpose	 classifiers.	 In	 our	 experiments,	 incorporating	 prior	 knowledge	 in	 the	
form	of	marker-genes	does	not	improve	the	performance	(on	PBMC	data).	We	observed	large	
differences	in	the	performance	between	methods	in	response	to	changing	the	input	features.	
Furthermore,	 the	 tested	methods	vary	considerably	 in	 their	 computation	time	which	also	
varies	differently	across	methods	based	on	the	number	of	cells	and	features.	

Taken together, we recommend the use of the general-purpose SVMrejection	 classifier	 (with	
a	 linear	 kernel)	 since	 it	 had	 better	 performance	 compared	 to	 the	 other	 classifiers	 tested	
across	 all	 datasets.	Other	high	performing	 classifiers	 include:	SVM with a remarkably fast 
computation	time	 at	 the	 expense	 of	 losing	 the	 rejection	option,	 singleCellNet, scmapcell, 
and scPred.	To	support	future	extension	of	this	benchmarking	work	with	new	classifiers	and	
datasets,	 we	 provide	 a	 Snakemake	 workflow	 to	 automate	 the	 performed	 benchmarking	
analyses	(https://github.com/tabdelaal/scRNAseq_Benchmark/).

2.5 Methods

2.5.1 Classification methods

We	 evaluated	 22	 scRNA-seq	 classifiers,	 publicly	 available	 as	 R	 or	 Python	 packages	 or	
scripts	 (Table	 1).	 This	 set	 includes	 16	methods	 developed	 specifically	 for	 scRNA-seq	 data	
as	 well	 as	 six	 general-purpose	 classifiers	 from	 the	 scikit-learn	 library	 in	 Python:	 linear	
discriminant	 analysis	 (LDA),	 nearest	 mean	 classifier	 (NMC),	 k-nearest	 neighbor	 (kNN),	
support	 vector	 machine	 with	 linear	 kernel	 (SVM),	 SVM	with	 rejection	 option	 (SVMrejection) 
and	 random	 forest	 (RF).	 The	 following	 functions	 from	 the	 scikit-learn	 library	 were	 used	
respectively:	 LinearDiscriminantAnalysis(), NearestCentroid(), 
KNeighborsClassifier(n_neighbors=9), LinearSVC(), LinearSVC() 
with CalibratedClassifierCV() wrapper, and RandomForestClassifier(n_
estimators=50). For kNN,	 nine	 neighbors	 were	 chosen.	 After	 filtering	 the	 datasets, 
only	cell	populations	consisting	of	ten	cells	or	more	remained.	Using	nine	neighbors	would	
thus	 ensure	 that	 this	 classifier	 could	 also	 predict	 very	 small	 populations.	 For	 SVMrejection a 
threshold	of	0.7	was	used	on	the	posterior	probabilities	to	assign	cells	as	‘unlabeled’.	During	
the	rejection	experiments,	also	an	LDA	with	rejection	was	implemented.	In	contrast	to	the	
LinearSVC(), the LinearDiscriminantAnalysis()	 function	 can	 output	 the	
posterior	probabilities	itself,	which	was	also	thresholded	at	0.7.

scRNA-seq	specific	methods	were	excluded	from	the	evaluation	 if	 they	did	not	 return	the	
predicted labels for each cell. For example, we excluded MetaNeighbor [47] because the 
tool	only	returns	the	area	under	the	receiver	operator	characteristic	curve	(AUROC).	For	all	
methods	the	latest	(May	2019)	package	was	installed	or	scripts	were	downloaded	from	their	
GitHub.	 For	 scPred it	 should	be	noted	 that	 it	 is	 only	 compatible	with	 an	older	 version	of	
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Seurat	 (v2.0).	 For	CHETAH it is important that the R version 3.6 or newer is installed. For 
LAmbDA, instead	of	the	predicted	label,	the	posterior	probabilities	were	returned	for	each	
cell	population.	Here,	we	assigned	the	cells	to	the	cell	population	with	the	highest	posterior	
probability.

During	the	benchmark,	all	methods	were	run	using	their	default	settings	and	if	not	available,	
we	 used	 the	 settings	 provided	 in	 the	 accompanying	 examples	 or	 vignettes.	 As	 input,	 we	
provided	each	method	with	 the	 raw	count	data	 (after	cell	and	gene	filtering	as	described	
in	Section	2.5.3	Data	Preprocessing)	according	to	the	method	documentation.	The	majority	
of	 the	methods	have	a	built-in	normalization	step.	For	 the	general-purpose	classifiers,	we	
provided log-transformed counts, log ( )2 1count + .

Some	methods	required	a	marker	gene	file	or	pre-trained	classifier	as	an	input	(e.g.	Garnett, 
Moana, SCINA, DigitalCellSorter).	 In	this	case,	we	use	the	marker	gene	files	of	pre-trained	
classifiers	provided	by	the	authors.	We	did	not	attempt	to	 include	additional	marker	gene	
files	 for	 all	 datasets,	 and	hence	 the	evaluation	of	 those	methods	 is	 restricted	 to	datasets	
where	a	marker	gene	file	for	cell	populations	is	available.	

2.5.2 Datasets 

A	 total	 of	 27	 scRNA-seq	 datasets	were	 used	 to	 evaluate	 and	 benchmark	 all	 classification	
methods,	 from	 which	 11	 datasets	 were	 used	 for	 intra-dataset	 evaluation	 using	 a	 cross-
validation	scheme,	and	22	datasets	were	used	for	inter-dataset	evaluation,	with	six	datasets	
overlapping	for	both	tasks	as	described	in	Table	2.	Datasets	vary	across	species	(human	and	
mouse),	tissue	(brain,	pancreas,	PBMC	and	whole	mouse),	as	well	as	the	sequencing	protocol	
used.	The	brain	datasets,	 including	Allen	Mouse	Brain	(AMB),	VISp,	ALM	(GSE115746)	and	
MTG,	 were	 downloaded	 from	 the	 Allen	 Institute	 Brain	 Atlas	 http://celltypes.brain-map.
org/rnaseq.	 All	 five	 pancreatic	 datasets	 were	 obtained	 from:	 https://hemberg-lab.github.
io/scRNA.seq.datasets/	 (Baron	 Mouse:	 GSE84133,	 Baron	 Human:	 GSE84133,	 Muraro:	
GSE85241,	 Segerstolpe:	 E-MTAB-5061,	 Xin:	 GSE81608).	 The	 CellBench	 10X	 dataset	 was	
obtained	 from	 (GSM3618014),	 and	 the	 CellBench	CEL-Seq2	 dataset	was	 obtained	 from	3	
datasets	 (GSM3618022,	GSM3618023,	GSM3618024)	and	concatenated	 into	one	dataset.	
The	Tabula	Muris	(TM)	dataset	was	downloaded	from	https://tabula-muris.ds.czbiohub.org/ 
(GSE109774).	For	the	Zheng	sorted	datasets,	we	downloaded	the	10	PBMC	sorted	populations	
(CD14+	Monocytes,	CD19+	B	Cells,	CD34+	Cells,	CD4+	Helper	T	Cells,	CD4+/CD25+	Regulatory	
T	Cells,	CD4+/CD45RA+/CD25-	Naive	T	Cells,	CD4+/CD45RO+	Memory	T	Cells,	CD56+	Natural	
Killer	 Cells,	 CD8+	 Cytotoxic	 T	 cells,	 CD8+/CD45RA+	Naive	 Cytotoxic	 T	 Cells)	 from:	 https://
support.10xgenomics.com/single-cell-gene-expression/datasets, next we downsampled 
each	population	to	2,000	cells	obtaining	a	dataset	of	20,000	cells	in	total.	For	the	Zheng	68K	
dataset, we downloaded the gene-cell count matrix for the ‘Fresh 68k PBMCs’ [36] from: 
https://support.10xgenomics.com/single-cell-gene-expression/datasets	(SRP073767).	All	13	
PbmcBench	datasets,	seven	different	sequencing	protocols	applied	on	two	PBMC	samples,	
were	downloaded	from	the	Broad	Institute	Single	Cell	portal	https://portals.broadinstitute.
org/single_cell/study/SCP424/single-cell-comparison-pbmc-data.	 The	 cell	 population	
annotation	for	all	datasets	was	provided	with	the	data,	except	the	Zheng	68K	dataset,	 for	
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which	we	obtained	the	cell	population	annotation	from	https://github.com/10XGenomics/
single-cell-3prime-paper/tree/master/pbmc68k_analysis.	 These	 annotations	 were	 used	 as	
‘ground	 truth’	during	 the	evaluation	of	 the	 cell	 population	predictions	obtained	 from	 the	
classification	methods.

2.5.3 Data preprocessing 

Based	on	the	manual	annotation	provided	in	the	datasets,	we	started	by	filtering	out	cells	
that	were	labeled	as	doublets,	debris	or	unlabeled	cells.	Next,	we	filtered	genes	with	zero	
counts across all cells. For cells, we calculated the median number of detected genes per cell, 
and	from	that	we	obtained	the	median	absolute	deviation	(MAD)	across	all	cells	in	the	log	
scale.	We	filtered	out	cells	when	the	total	number	of	detected	genes	was	below	three	MAD	
from the median number of detected genes per cell. The number of cells and genes in Table 
2	represent	the	size	of	each	dataset	after	this	stage	of	preprocessing.	

Moreover,	 before	 applying	 cross	 validation	 to	 evaluate	 each	 classifier,	 we	 excluded	 cell	
populations	with	less	than	10	cells	across	the	entire	dataset;	Table	2	summarizes	the	number	
of	cell	populations	before	and	after	this	filtration	step	for	each	dataset.

2.5.4 Intra-dataset classification

For	 the	 supervised	 classifiers,	 we	 evaluated	 the	 performance	 by	 applying	 a	 5-fold	 cross	
validation	across	each	dataset	after	filtering	genes,	cells	and	small	cell	populations.	The	folds	
were	divided	in	a	stratified	manner	in	order	to	keep	equal	proportions	of	each	cell	population	
in	each	fold.	The	training	and	testing	folds	were	exactly	the	same	for	all	classifiers.

The	 prior-knowledge	 classifiers,	 Garnett, Moana, DigitalCellSorter and SCINA, were only 
evaluated	on	 the	Zheng	68K	and	Zheng	 sorted	datasets,	 for	which	 the	marker-genes	files	
or	 the	 pre-trained	 classifiers	were	 available,	 after	 filtering	 genes	 and	 cells.	 Each	 classifier	
uses	the	dataset	and	the	marker-genes	file	as	inputs,	and	outputs	the	cell	population	label	
corresponding	 to	 each	 cell.	No	 cross	 validation	 is	 applied	 in	 this	 case,	 except	 for	Garnett 
where	we	could	either	use	the	pretrained	version	(Garnettpretrained)	provided	from	the	original	
study,	or	 train	our	own	classifier	using	 the	marker-genes	file	 along	with	 the	 training	data	
(GarnettCV).	In	this	case,	we	applied	5-fold	cross	validation	using	the	same	train	and	test	sets	
described	earlier.	Table	S1	shows	the	mapping	of	cell	populations	between	the	Zheng	dataset	
and	each	of	the	prior-knowledge	classifiers.	For	Moana a	pre-trained	classifier	was	used,	this	
classifier	also	predicted	cells	to	be	Memory	CD8+	T	cells	and	CD16+	Monocytes,	while	these	
cell	populations	were	not	in	the	Zheng	dataset.

2.5.5 Evaluation of marker-genes

The	 performance	 and	 choice	 of	 the	marker-genes	 per	 cell	 population	 per	 classifier	were	
evaluated	by	comparing	the	F1-score	of	each	cell	population	with	four	different	characteristics	
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of	 the	marker-genes	across	 the	 cells	 for	 that	particular	 cell	 population:	1)	 the	number	of	
marker-genes,	2)	the	mean	expression,	3)	the	average	dropout	rate,	and	4)	the	average	beta	
of the marker-genes [37].	Beta	is	a	score	developed	to	measure	how	specific	a	marker	gene	
for	a	certain	cell	population	is	based	on	binary	expression.

2.5.6 Selecting marker-genes using differential expression

Using	the	cross-validation	scheme,	training	data	of	each	fold	was	used	to	select	sets	of	5,	
10,	15,	and	20	differentially	expressed	(DE)	marker-genes.	First,	if	the	data	was	not	already	
normalized,	a	CPM	read	count	normalization	was	applied	 to	 the	data.	Next,	 the	data	was	
log-transformed using log ( )2 1count + ,	 and	 afterwards	 the	 DE	 test	 could	 be	 applied.	 As	
recommended in [48],	MAST	was	used	 to	find	 the	DE	genes	 [49].	 The	 implementation	of	
MAST	in	the	FindAllMarkers()	function	of	Seurat	v2.3.0	was	used	to	do	a	one-vs-all	differential	
expression analysis [50].	Genes	returned	by	Seurat	were	sorted	and	the	top	5,	10,	15,	or	20	
significant	genes	with	a	positive	fold	change	were	selected	as	marker-genes.	These	marker-
genes	were	then	used	for	population	prediction	of	the	test	data	of	the	corresponding	fold.	
These	marker-genes	lists	can	be	used	by	prior-knowledge	classifiers	such	as	SCINA, GarnettCV 
and DigitalCellSorter,	 by	 modifying	 the	 cell	 type	 marker-genes	 file	 required	 as	 an	 input	
to	 these	 classifiers.	 Such	modification	 cannot	 be	 applied	 to	 the	 pre-trained	 classifiers	 of	
Garnettpretrained and Moana.

2.5.7 Dataset complexity 

To describe the complexity of a dataset, the average expression of all genes for each cell 
population	 (avgci )	 in	 the	 dataset	 was	 calculated,	 representing	 the	 prototype	 of	 each	 cell	
population	 in	 the	 full	 genes	 space.	Next,	 the	pairwise	Pearson	correlation	between	 these	
centroids was calculated corr avg avg∀i j c ci j, ( , ).	For	each	cell	population,	the	highest	correlation	
to	 another	 cell	 population	 was	 recorded.	 Finally,	 the	 mean	 of	 these	 per	 cell	 population	
maximum	correlations	was	taken	to	describe	the	complexity	of	a	dataset.

Complexity mean corr avg avg� � � �(max ( ( , ))), ,i i j i j c ci j

2.5.8 Inter-dataset classification

CellBench. Both CellBench datasets, 10X and CEL-Seq2, were used once as training data and 
once	as	test	data,	to	obtain	predictions	for	the	five	lung	cancer	cell	lines.	The	common	set	of	
detected genes by both datasets was used as features in this experiment.

PbmcBench.	Using	pbmc1	sample	only,	we	tested	all	train-test	pairwise	combinations	between	
all	seven	protocols,	resulting	in	42	experiments.	Using	both	pbmc1	and	pbmc2	samples,	for	
the	same	protocol	we	used	pbmc1	as	training	data	and	pbmc2	as	test	data,	resulting	in	six	
additional	 experiments	 (10Xv3	was	 not	 applied	 for	 pbmc2).	 As	 we	 are	 now	 dealing	with	
PBMC	data,	we	evaluated	all	classifiers,	including	the	prior-knowledge	classifiers,	as	well	as	
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the	modified	versions	of	SCINA, GarnettCV and DigitalCellSorter, in which the marker-genes 
are	obtained	through	differential	expression	from	the	training	data	as	previously	described.	
Through all these 48 experiments, genes that are not expressed in the training data were 
excluded	from	the	feature	space.	Also,	as	these	PbmcBench	datasets	differ	in	the	number	of	
cell	populations	(Table	2),	only	cell	populations	provided	by	the	training	data	were	used	for	
the	test	data	prediction	evaluation.

Brain.	We	used	the	three	brain	datasets,	VISp,	ALM	and	MTG	with	two	levels	of	annotations,	
3	and	34	cell	populations.	We	tested	all	possible	train-test	combinations,	by	either	using	one	
dataset	to	train	and	test	on	another	(6	experiments)	or	using	two	concatenated	datasets	to	
train	and	test	on	the	third	(3	experiments).	A	total	of	nine	experiments	was	applied	for	each	
annotation	level.	We	used	the	common	set	of	detected	genes	between	the	datasets	involved	
in each experiment as features.

Pancreas. We	selected	the	four	major	endocrine	pancreatic	cell	types	(alpha,	beta,	delta	and	
gamma)	across	all	four	human	pancreatic	datasets:	Baron	Human,	Muraro,	Segerstolpe	and	
Xin. Table S2 summarizes the number of cells in each cell type across all datasets. To account 
for	batch	effects	and	technical	variations	between	different	protocols,	datasets	were	aligned	
using MNN [41]	 from	the	scran	R	package	 (version	1.1.2.0).	Using	both	 the	raw	data	 (un-
aligned)	and	the	aligned	data,	we	applied	leave-one-dataset-out	cross	validation	where	we	
train	on	three	datasets	and	test	on	the	left	out	dataset.

2.5.9 Performance evaluation metrics

The	performance	of	the	methods	on	the	datasets	is	evaluated	using	three	different	metrics:	1)	
For	each	cell	population	in	the	dataset	the	F1-score	is	reported.	The	median	of	these	F1-scores	
is	used	as	a	measure	for	the	performance	on	the	dataset.	2)	Some	of	the	methods	do	not	
label	all	the	cells.	These	unassigned	cells	are	not	considered	in	the	F1-score	calculation.	The	
percentage	of	unlabeled	cells	is	also	used	to	evaluate	the	performance.	3)	The	computation	
time	of	the	methods	is	also	measured.	

2.5.10 Feature selection

Genes	are	selected	as	features	based	on	their	dropout	rate.	The	method	used	here,	is	based	
on the method described in [22].	During	feature	selection,	a	sorted	list	of	the	genes	is	made.	
Based on this list, the top n number of genes can be easily selected during the experiments. 
First, the data is normalized using log ( )2 1count + . Next, for each gene the percentage of 
dropouts, d, and the mean, m,	 of	 the	normalized	data	 are	 calculated.	Genes	 that	 have	 a	
mean or dropout rate of zero are not considered during the next steps. These genes will be 
at	the	bottom	of	the	sorted	list.	For	all	other	genes,	a	linear	model	is	fitted	to	the	mean	and
log ( )2 d . Based on their residuals, the genes are sorted in descending order and added to the 
top of the list.
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2.5.11 Scalability

For the scalability experiment we used the TM dataset. To ensure that the dataset could be 
downsampled	without	losing	cell	populations,	only	the	16	most	abundant	cell	populations	
were	 considered	 during	 this	 experiment.	 We	 downsampled	 these	 cell	 populations	 in	 a	
stratified	way	to	1,	5,	10,	20,	50,	and	100%	of	its	original	size	(45,469	cells).	

2.5.12 Rejection

Negative control.	 Two	 human	 datasets,	 Zheng	 68K	 and	 Baron	 Human,	 and	 two	 mouse	
datasets,	AMB16	and	Baron	Mouse,	were	used.	The	Zheng	68K	dataset	was	first	stratified	
downsampled	to	11%	of	its	original	size	to	reduce	computation	time.	For	each	species,	two	
different	experiments	were	applied	by	using	one	dataset	as	training	set	and	the	other	as	test	
set and vice versa.

Unseen cell populations.	Zheng	68K	dataset	was	stratified	downsampled	to	11%	of	its	original	
size	to	reduce	computation	time.	Three	different	experiments	were	conducted.	First,	all	cell	
populations	that	are	subpopulation	of	T	cells	were	considered	the	test	set.	Next,	the	test	set	
consisted	of	all	subpopulations	of	CD4+	T	cells.	Last,	only	the	CD4+/CD45RO+	Memory	T	cells	
were	in	the	test	set.	Each	time,	all	cell	populations	that	were	not	in	the	test	set,	were	part	of	
the	training	set.	Table	S3	gives	an	exact	overview	of	the	populations	per	training	and	test	set.

2.5.13 Benchmarking pipeline

In order to ensure reproducibility and support future extension of this benchmarking work 
with	 new	 classification	methods	 and	benchmarking	 datasets,	 a	 Snakemake	 [51]	workflow	
for	automating	the	performed	benchmarking	analyses	was	developed	with	an	MIT	 license	
(https://github.com/tabdelaal/scRNAseq_Benchmark/).	 Each	 tool	 (license	 permitting)	 is	
packaged	 in	 a	Docker	 container	 (https://hub.docker.com/u/scrnaseqbenchmark)	 alongside	
the wrapper scripts and their dependencies. These images will be used through snakemake’s 
singularity	 integration	 to	allow	 the	workflow	to	be	 run	without	 the	 requirement	 to	 install	
specific	methods	and	to	ensure	reproducibility.	Documentation	is	also	provided	to	execute	
and	extend	this	benchmarking	workflow	to	help	researchers	to	further	evaluate	interested	
methods. 

2.6 Availability of data and material
The	filtered	datasets	 analyzed	during	 the	 current	 study	 can	be	downloaded	 from	Zenodo	
(https://doi.org/10.5281/zenodo.3357167).	 The	 source	 code	 is	 available	 in	 th	 e	 GitHub	
repository, at https://github.com/tabdelaal/scRNAseq_Benchmark	 [52],	 and	 in	 the	Zenodo	
repository, at https://doi.org/10.5281/zenodo.3369158 [53]. The source code is released 
under	MIT	license.	Datasets	accession	numbers:	AMB,	VISp,	and	ALM	[35]	(GSE115746),	MTG	
[31]	 (phs001790),	Baron	Mouse	 [30]	 (GSE84133),	Baron	Human	 [30]	 (GSE84133),	Muraro	
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[31]	(GSE85241),	Segerstolpe	[32]	(E-MTAB-5061),	Xin	[33]	(GSE81608),	CellBench	10X	[34]	
(GSM3618014),	 CellBench	 CEL-Seq2	 [34]	 (GSM3618022,	 GSM3618023,	 GSM3618024),	
TM	[6]	(GSE109774),	and	Zheng	sorted	and	Zheng	68K	[36]	(SRP073767).	The	PbmcBench	
datasets [38] are not yet uploaded to any data repository.
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