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Single cell transcriptomics is rapidly advancing our understanding of the cellular composition of 
complex tissues and organisms. A major limitation in most analysis pipelines is the reliance on 
manual annotations to determine cell identities, which are time-consuming and irreproducible. 
The exponential growth in the number of cells and samples has prompted the adaptation 
and development of supervised classification methods for automatic cell identification. Here, 
we benchmarked 22 classification methods that automatically assign cell identities including 
single cell-specific and general-purpose classifiers. The performance of the methods was 
evaluated using 27 publicly available single cell RNA-sequencing datasets of different sizes, 
technologies, species, and levels of complexity. We used two experimental setups to evaluate 
the performance of each method for within dataset predictions (intra-dataset) and across 
datasets (inter-dataset) based on accuracy, percentage of unclassified cells, and computation 
time. We further evaluated the methods’ sensitivity to the input features, number of cells per 
population, their performance across different annotation levels and datasets. We found that 
most classifiers performed well on a variety of datasets with decreased accuracy for complex 
datasets with overlapping classes or deep annotations. The general-purpose SVM classifier 
has overall the best performance across the different experiments. In conclusion, we present 
a comprehensive evaluation of automatic cell identification methods for single cell RNA-
sequencing data. All the code used for the evaluation is available on GitHub (https://github.
com/tabdelaal/scRNAseq_Benchmark). Additionally, we provide a Snakemake workflow to 
facilitate the benchmarking and to support extension of new methods and new datasets. 

2.1 Background
Single-cell RNA-sequencing (scRNA-seq) provides unprecedented opportunities to identify 
and characterize the cellular composition of complex tissues. Rapid and continuous 
technological advances over the past decade has allowed scRNA-seq technologies to scale 
to thousands of cells per experiment [1]. A common analysis step in analyzing single cell 
data involves the identification of cell populations presented in a given dataset . This task is 
typically solved by unsupervised clustering of cells into groups based on the similarity of their 
gene expression profiles, followed by cell population annotation by assigning labels to each 
cluster. This approach proved very valuable in identifying novel cell populations and resulted 
in cellular maps of entire cell lineages, organs and even whole organisms [2–7]. However, 
the annotation step is cumbersome and time-consuming as it involves manual inspection of 
cluster-specific marker-genes. Additionally, manual annotations, which are often not based 
on standardized ontologies of cell labels, are not reproducible across different experiments 
within and across research groups. These caveats become even more pronounced as the 
number of cells and samples increases, preventing fast and reproducible annotations. 

To overcome these challenges, a growing number of classification approaches are being 
adapted to automatically label cells in scRNA-seq experiments. scRNA-seq classification 
methods predict the identity of each cell by learning these identities from annotated training 
data (e.g. a reference atlas). scRNA-seq classification methods are relatively new compared 
to the plethora of methods addressing different computational aspects of single cell analysis 
(such as normalization, clustering, and trajectory inference). However, the number of 
classification methods is rapidly growing to address the aforementioned challenges [8,9]. 
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While all scRNA-seq classification methods share a common goal, i.e. accurate annotation 
of cells, they differ in terms of their underlying algorithms and the incorporation of prior 
knowledge (e.g. cell type marker gene tables). 

In contrast to the extensive evaluations of clustering, differential expression, and trajectory 
inference methods [10–12], there is currently one single attempt comparing methods to 
assign cell type labels to cell clusters [13]. The lack of a comprehensive comparison of scRNA-
seq classification methods leaves users without indications as to which classification method 
best fits their problem. More importantly, a proper assessment of existing approaches in 
comparison to baseline methods can greatly benefit new developments in the field and 
prevent unnecessary complexity.

Here, we benchmarked 22 classification methods to automatically assign cell identities 
including single cell-specific and general-purpose classifiers. The methods were evaluated 
using 27 publicly available single cell RNA-sequencing datasets of different sizes, technologies, 
species, and complexity. The performance of the methods was evaluated based on their 
accuracy, percentage of unclassified cells, and computation time. We performed several 
experiments to cover different levels of challenge in the classification task, and to test 
specific features or tasks such as the feature selection, scalability and rejection experiments. 
We evaluated the classification performance through two experimental setups, 1) intra-
dataset in which we applied 5-fold cross-validation within each dataset, and 2) inter-dataset 
involving across datasets comparisons. The inter-dataset comparison is more realistic and 
more practical, where a reference dataset (e.g. atlas) is used to train a classifier which can 
then be applied to identify cells in new unannotated datasets. However, in order to perform 
well across datasets, the classifier should also perform well using the intra-dataset setup 
on the reference dataset. The intra-dataset experiments, albeit artificial, provide an ideal 
scenario to evaluate different aspects of the classification process (e.g. feature selection, 
scalability and different annotation levels), regardless of the technical and biological 
variations across datasets. In general, most classifiers perform well across all datasets in 
both experimental setups (inter- and intra-dataset), including the general-purpose classifiers. 
In our experiments, incorporating prior knowledge in the form of marker-genes does not 
improve the performance. We observed large variation across different methods in the 
computation time and classification performance in response to changing the input features 
and the number of cells. Our results highlight the general-purpose support vector machine 
(SVM) classifier as the best performer overall.

2.2 Results
2.2.1 Benchmarking automatic cell identification methods (intra-
dataset evaluation)

We benchmarked the performance and computation time of all 22 classifiers (Table 1) 
across 11 datasets used for intra-dataset evaluation (Table 2). Classifiers were divided into 
two categories: 1) supervised methods which require a training dataset labeled with the 
corresponding cell populations in order to train the classifier, or 2) prior-knowledge methods, 
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Table 1. Automatic cell identification methods included in this study.

Name Version
Lan-
guage Underlying classifier

Prior 
knowledge

Rejection 
option Ref.

Garnett 0.1.4 R Generalized linear model Yes Yes [14]

Moana 0.1.1 Python SVM with linear kernel Yes No [15]
DigitalCell-
Sorter

Github version: 
e369a34 Python

Voting based on cell type 
markers Yes No [16]

SCINA 1.1.0 R
Bimodal distr. fitting for 
marker-genes Yes No [17]

scVI 0.3.0 Python Neural Network No No [18]
Cell-Blast 0.1.2 Python Cell-to-cell similarity No Yes [19]

ACTINN
GitHub version: 
563bcc1 Python Neural Network No No [20]

LAmbDA
GitHub version: 
3891d72 Python Random Forest No No [21]

Scmapcluster 1.5.1 R Nearest median classifier No Yes [22]
Scmapcell 1.5.1 R kNN No Yes [22]
scPred 0.0.0.9000 R SVM with radial kernel No Yes [23]
CHETAH 0.99.5 R Correlation to training set No Yes [24]

CaSTLe
Github version: 
258b278 R Random Forest No No [25]

SingleR 0.2.2 R Correlation to training set No No [26]
scID 0.0.0.9000 R LDA No Yes [27]
singleCellNet 0.1.0 R Random Forest No No [28]
LDA 0.19.2 Python LDA No No [29]
NMC 0.19.2 Python NMC No No [29]
RF 0.19.2 Python RF (50 trees) No No [29]
SVM 0.19.2 Python SVM (linear kernel) No No [29]
SVMrejection 0.19.2 Python SVM (linear kernel) No Yes [29]
kNN 0.19.2 Python kNN (k = 9) No No [29]

Dataset No. of 
cells

No. of 
genes

No. of cell 
populations 

(>10 cells)

Description Protocol Ref.

Baron (Mouse)a 1,886 14,861 13 (9) Mouse Pancreas inDrop [30]
Baron (Human)a,b 8,569 17,499 14 (13) Human Pancreas inDrop [30]
Muraroa,b 2,122 18,915 9 (8) Human Pancreas CEL-Seq2 [31]
Segerstolpea,b 2,133 22,757 13 (9) Human Pancreas SMART-Seq2 [32]
Xina,b 1,449 33,889 4 (4) Human Pancreas SMARTer [33]
CellBench  
10Xa,b 3,803 11,778 5 (5) Mixture of five human 

lung cancer cell lines 10X Chromium [34]

CellBench  
CEL-Seq2a,b 570 12,627 5 (5) Mixture of five human 

lung cancer cell lines CEL-Seq2 [34]

Table 2. Overview of the datasets used during this study.
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TMa 54,865 19,791 55 (55) Whole Mus musculus SMART-Seq2 [6]

AMBa 12,832 42,625 4/22/110 
(3/16/92)

Primary mouse visual 
cortex SMART-Seq v4 [35]

Zheng sorteda 20,000 21,952 10 (10) FACS sorted PBMC 10X Chromium [36]
Zheng 68Ka 65,943 20,387 11 (11) PBMC 10X Chromium [36]
VISpb (Mouse) 12,832 42,625 3/36 (3/34) Primary Visual Cortex SMART-Seq v4 [35]

ALMb (Mouse) 8,758 42,461 3/37 (3/34) Anterior Lateral Motor 
Area  SMART-Seq v4 [35]

MTGb (Human) 14,636 16,161 3/35 (3/34) Middle Temporal Gyrus SMART-Seq v4 [37]
PbmcBench 
pbmc1.10Xv2b 6,444 33,694 9 (9) PBMC 10X version 2 [38]

PbmcBench 
pbmc1.10Xv3b 3,222 33,694 8 (8) PBMC 10X version 3 [38]

PbmcBench 
pbmc1.CLb 253 33,694 7 (7) PBMC CEL-Seq2 [38]

PbmcBench 
pbmc1.DRb 3,222 33,694 9 (9) PBMC Drop-Seq [38]

PbmcBench 
pbmc1.iDb 3,222 33,694 7 (7) PBMC inDrop [38]

PbmcBench 
pbmc1.SM2b 253 33,694 6 (6) PBMC SMART-Seq2 [38]

PbmcBench 
pbmc1.SWb 3,176 33,694 7 (7) PBMC Seq-Well [38]

PbmcBench 
pbmc2.10Xv,b 3,362 33,694 9 (9) PBMC 10X version 2 [38]

PbmcBench 
pbmc2.CLb 273 33,694 5 (5) PBMC CEL-Seq2 [38]

PbmcBench 
pbmc2.DRb 3,362 33,694 6 (6) PBMC Drop-Seq [38]

PbmcBench 
pbmc2.iDb 3,362 33,694 9 (9) PBMC inDrop [38]

PbmcBench 
pbmc2.SM2b 273 33,694 6 (6) PBMC SMART-Seq2 [38]

PbmcBench 
pbmc2.SWb 551 33,694 4 (4) PBMC Seq-Well [38]

for which either a marker-genes file is required as an input or a pre-trained classifier for 
specific cell populations is provided. 

The datasets used in this study vary in the number of cells, genes and cell populations 
(annotation level), in order to represent different levels of challenges in the classification task 
and to evaluate how each classifier performs in each case (Table 2). They include relatively 
typical sized scRNA-seq datasets (1,500–8,500 cells), such as the five pancreatic datasets 
(Baron Mouse and Human, Muraro, Segerstolpe and Xin), which include both mouse and 
human pancreatic cells and vary in the sequencing protocol used. The Allen Mouse Brain 
(AMB) dataset is used to evaluate how the classification performance changes when dealing 

a: used for intra-dataset evaluation 
b: used for inter-dataset evaluation
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with different levels of cell population annotation as the AMB dataset contains three levels 
of annotations for each cell (3, 16 or 92 cell populations), denoted as AMB3, AMB16, and 
AMB92. The Tabula Muris (TM) and Zheng 68K datasets represent relatively large scRNA-
seq datasets (>50,000 cells), and are used to assess how well the classifiers scale with large 
datasets. For all previous datasets, cell populations were obtained through clustering. To 
assess how the classifiers perform when dealing with sorted populations, we included the 
CellBench dataset and the Zheng sorted dataset, representing sorted populations for lung 
cancer cell lines and PBMC, respectively. Including the Zheng sorted and Zheng 68K datasets, 
allows the benchmarking of four prior-knowledge classifiers, since the marker-genes files or 
pre-trained classifiers are available for the four classifiers for peripheral blood mononuclear 
cells (PBMCs).

2.2.2 All classifiers perform well in intra-dataset experiments 

Generally, all classifiers perform well in the intra-dataset experiments, including the general-
purpose classifiers (Figure 1). However, Cell-BLAST performs poorly for the Baron Mouse and 
Segerstople pancreatic datasets. Further, scVI has low performance on the deeply annotated 
datasets TM (55 cell populations) and AMB92 (92 cell populations), and kNN produces low 
performance for the Xin and AMB92 datasets.

For the pancreatic datasets, the best-performing classifiers are SVM, SVMrejection, scPred, 
scmapcell, scmapcluster, scVI, ACTINN, singleCellNet, LDA and NMC. SVM is the only classifier 
to be in the top five list for all five pancreatic datasets, while NMC, for example, appears 
only in the top five list for the Xin dataset. The Xin dataset contains only four pancreatic cell 
types (alpha, beta, delta and gamma) making the classification task relatively easy for all 
classifiers, including NMC. Considering the median F1-score alone to judge the classification 
performance can be misleading since some classifiers incorporate a rejection option (e.g. 
SVMrejection, scmapcell, scPred), by which a cell is assigned as ‘unlabeled’ if the classifier is 
not confident enough. For example, for the Baron Human dataset, the median F1-score for 
SVMrejection, scmapcell, scPred and SVM is 0.991, 0.984, 0.981, and 0.980, respectively (Figure 
1B). However, SVMrejection, scmapcell and scPred assigned 1.5%, 4.2% and 10.8% of the cells, 
respectively, as unlabeled while SVM (without rejection) classified 100% of the cells with a 
median F1-score of 0.98. This shows an overall better performance for SVM and SVMrejection, 
with higher performance and less unlabeled cells.

The CellBench 10X and CEL-Seq2 datasets represent an easy classification task, where the five 
sorted lung cancer cell lines are quite separable [34]. All classifiers have an almost perfect 
performance on both CellBench datasets (median F1-score ≈ 1).

For the TM dataset, the top five performing classifiers are SVMrejection, SVM, scmapcell, Cell-
BLAST and scPred with a median F1-score > 0.96, showing that these classifiers can perform 
well and scale to large scRNA-seq datasets with a deep level of annotation. Furthermore, 
scmapcell and scPred assigned 9.5% and 17.7% of the cells, respectively, as unlabeled, which 
shows a superior performance for SVMrejection and SVM, with a higher median F1-score and 
2.9% and 0% unlabeled cells, respectively.
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Figure 1. Performance comparison of supervised classifiers for cell identification using different scRNA-seq 
datasets. Heatmap of the A) median F1-scores and B) percentage of unlabeled cells across all cell populations per 
classifier (rows) per dataset (columns). Grey boxes indicate that the corresponding method could not be tested on 
the corresponding dataset. Classifiers are ordered based on the mean of the median F1-scores. Asterix (*) indicates 
that the prior-knowledge classifiers, SCINA, DigitalCellSorter, GarnettCV, Garnettpretrained, and Moana, could not be 
tested on all cell populations of the PBMC datasets. SCINADE, GarnettDE, and DigitalCellSorterDE are the versions of 
SCINA, GarnettCV, and DigitalCellSorter were the marker-genes are defined using differential expression from the 
training data. Different numbers of marker-genes, 5, 10, 15, and 20, were tested and the best result is shown here. 
SCINA, Garnett, and DigitalCellSorter produced the best result for the Zheng sorted dataset using 20, 15 and 5 
markers, and for the Zheng 68K dataset using 10, 5 and 5 markers, respectively.
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2.2.3 Performance evaluation across different annotation levels 

We used the AMB dataset with its three different levels of annotations, to evaluate the 
classifiers’ performance behavior with an increasing number of smaller cell populations 
within the same dataset. For AMB3, the classification task is relatively easy, differentiating 
between three major brain cell types (GABAergic, Glutamatergic and Non-Neuronal). All 
classifiers perform almost perfectly with a median F1-score > 0.99 (Figure 1A). For AMB16, 
the classification task becomes slightly more challenging and the performance of some 
classifiers drops, especially kNN. The top five classifiers are SVMrejection, scmapcell, scPred, SVM 
and ACTINN, where SVMrejection, scmapcell and scPred assigned 1.1%, 4.9% and 8.4% of the 
cells as unlabeled, respectively. For the deeply annotated AMB92 dataset, the performance 
of all classifiers drops further, specially for kNN and scVI, where the median F1-score is 
0.130 and zero, respectively. The top five classifiers are SVMrejection, scmapcell, SVM, LDA, 
and scmapcluster, with SVMrejection assigning less cells as unlabeled compared to scmapcell 
(19.8% vs 41.9%) and once more SVMrejection shows improved performance over scmapcell 
(median F1-score of 0.981 vs 0.906). These results show an overall superior performance for 
general-purpose classifiers (SVMrejection, SVM and LDA) compared to other scRNA-seq specific 
classifiers across different levels of cell population annotation.

Instead of only looking at the median F1-score, we also evaluated the F1-score per 
cell population for each classifier (Figure S1). We confirmed previous conclusions, kNN 
performance drops with deep annotations which include smaller cell populations (Figure 
S1B-C), and scVI poorly performs on the deeply annotated AMB92 dataset. Additionally, 
we observed that some cell populations are much harder to classify compared to other 
populations. For example, most classifiers had a low performance on the Serpinf1 cells in the 
AMB16 dataset.

2.2.4 Incorporating marker-genes does not improve intra-dataset 
performance on PBMC data

For the two PBMC datasets (Zheng 68K and Zheng sorted), the prior-knowledge classifiers 
Garnett, Moana, DigitalCellSorter and SCINA could be evaluated and benchmarked with the 
rest of the classifiers. Although the best performing classifier on Zheng 68K is SCINA with a 
median F1-score of 0.998, this performance is based only on 3, out of 11, cell populations 
(Monocytes, B cells and NK cells) for which marker-genes are provided. Table S1 summarizes 
which PBMC cell populations can be classified by the prior-knowledge methods. Interestingly, 
none of the prior-knowledge methods showed superior performance compared to other 
classifiers, despite the advantage these classifiers have over other classifiers given they are 
tested on fewer cell populations due to the limited availability of marker-genes. Garnett, 
Moana, and DigitalCellSorter, could be tested on seven, seven, and five cell populations 
respectively (Table S1). Beside SCINA, the top classifiers for the Zheng 68K dataset are 
CaSTLe, ACTINN, singleCellNet and SVM. SVMrejection and Cell-BLAST show high performance, 
at the expense of high rejection rate of 61.8% and 29%, respectively (Figure 1). Moreover, 
scPred failed when tested on the Zheng 68K dataset. Generally, all classifiers show relatively 
lower performance on the Zheng 68K dataset compared to other datasets, as the Zheng 68K 
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dataset contains 11 immune cell populations which are harder to differentiate, particularly 
the T cell compartment (6 out of 11 cell populations). This difficulty of separating these 
populations was previously noted in the original study [36]. Also, the confusion matrices 
for CaSTLe, ACTINN, singleCellNet and SVM clearly indicate the high similarity between cell 
populations, such as 1) monocytes with dendritic cells, 2) the two CD8+ T populations, and 3) 
the four CD4+ T populations (Figure S2). 

The classification of the Zheng sorted dataset is relatively easier compared to the Zheng 68K 
dataset, as almost all classifiers show improved performance (Figure 1), with the exception 
that LAmbDA failed while being tested on the Zheng sorted dataset. The prior-knowledge 
methods show high performance (median F1-score > 0.93), which is still comparable to other 
classifiers such as SVMrejection, scVI, scPred and SVM. Yet, the supervised classifiers do not 
require any marker-genes, and they can predict more (all) cell populations.

2.2.5 The performance of prior-knowledge classifiers strongly de-
pends on the selected marker-genes

Some prior-knowledge classifiers, SCINA, DigitalCellSorter and GarnettCV, used marker-genes 
to classify the cells. For the PBMC datasets, the number of marker-genes per cell population 
varies across classifiers (2-161 markers) and the marker-genes show very little overlap. Only 
one B cell marker gene, CD79A, is shared by all classifiers while none of the marker-genes 
for the other cell populations is shared by the three classifiers. We analyzed the effect of the 
number of marker-genes, mean expression, dropout rate, and the specificity of each marker 
gene (beta score, see Methods), on the performance of the classifier (Figure S3). The dropout 
rate and marker specificity (beta-score) are strongly correlated with the median F1-score, 
highlighting that the performance does not only depend on biological knowledge, but also 
on technical factors.

The difference between the marker-genes used by each method underscores the challenge 
of marker-genes selection, especially for smaller cell populations. Moreover, public databases 
of cell type markers (e.g. PanglaoDB [39] and CellMarker [40]) often provide different markers 
for the same population. For example, CellMarker provides 33 marker-genes for B cells, 
while PanglaoDB provides 110 markers, with only 11 marker-genes overlap between the two 
databases. 

Given the differences between “expert-defined” markers and the correlation of classification 
performance and technical dataset-specific features (e.g. dropout rate), we tested if the 
performance of prior-knowledge methods can be improved by automatically selecting 
marker-genes based on differential expression. Through the cross-validation scheme, 
we used the training folds to select the marker-genes of each cell population based on 
differential expression (see Methods) and later used these markers to evaluate the classifiers’ 
performance on the testing fold. We tested this approach on the two PBMC datasets, Zheng 
sorted and Zheng 68K for different numbers of marker-genes (5, 10, 15, and 20 markers). 
In Figure 1, the best result across the number of markers for SCINADE, GarnettDE, and 
DigitalCellSorterDE are shown.
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The median F1-score obtained using the differential expression-defined markers is 
significantly lower compared to the original versions of classifiers using the markers defined 
by the authors. This lower performance is in part due to the low performance on challenging 
populations, such as subpopulations of CD4+ and CD8+ T cell populations (F1-score ≤ 0.68) 
(Figure S4). These challenging populations are not identified by the original classifiers since 
the markers provided by the authors only considered annotations at a higher level (Table S1). 
For example, the median F1-score of SCINADE on Zheng sorted is 0.38, compared to a median 
F1-score of 1.0 for SCINA (using the original markers defined by the authors). However, SCINA 
only considers three cell populations: CD14+ monocytes, CD56+ NK cells, and CD19+ B cells. 
If we only consider these cell populations for SCINADE, this results in a median F1-score of 
0.95. 

We observed that the optimal number of marker-genes varies per classifier and dataset. For 
the Zheng sorted dataset the optimal number of markers is 5, 15, and 20 for DigitalCellSorterDE, 
GarnettDE, and, SCINADE respectively, while for Zheng 68K this is 5, 5, and 10. All together, these 
results illustrate the dependence of the classification performance on the careful selection of 
marker genes which is evidently a challenging task. 

2.2.6 Classification performance depends on dataset complexity

A major aspect affecting the classification performance is the complexity of the dataset at 
hand. We described the complexity of each dataset in terms of the pairwise similarity between 
cell populations (see Methods) and compared the complexity to the performance of the 
classifiers and the number of cell populations in a dataset (Figure 2). When the complexity 
and/or the number of cell populations of the dataset increases, the performance generally 
decreases. The performance of all classifiers is relatively low on the Zheng 68K dataset, 
which can be explained by the high pairwise correlations between the mean expression 
profiles of each cell population (Figure S5). These correlations are significantly lower for the 
TM and AMB92 datasets, justifying the higher performance of the classifiers on these two 
datasets (Figure S6-7). While both TM and AMB92 have more cell populations (55 and 92, 
respectively) compared to Zheng 68K (11 populations), these populations are less correlated 
to one another, making the task easier for all the classifiers. 

2.2.7 Evaluation across datasets

While evaluating the classification performance within a dataset (intra-dataset) is important, 
the realistic scenario in which a classifier is useful requires cross-dataset (i.e. inter-dataset) 
classification. We used 22 datasets (Table 2) to test the classifiers’ ability to predict cell identities 
in a dataset that was not used for training. First, we tested the classifiers’ performance across 
different sequencing protocols, applied to the same samples within the same lab using the 
two CellBench datasets. We evaluated the classification performance when training on one 
protocol and testing on the other. Similar to the intra-dataset evaluation result, all classifiers 
performed well in this case (Figure S8). 
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Second, we tested the classification performance on the PbmcBench datasets, which 
represent a more extensive protocol comparison. PbmcBench consists of two samples 
(pbmc1 and pbmc2), sequenced using seven different protocols (Table 2) with the exception 
that 10Xv3 was not applied to the pbmc2 sample. We used the pbmc1 datasets to evaluate 
the classification performance of all pairwise train-test combinations between the seven 
protocols (42 experiments, see Methods). Moreover, we extended the evaluation to include 
comparisons across different samples for the same protocol, using pbmc1 and pbmc2 (6 
experiments, see Methods). All 48 experiments results are summarized in Figure 3. Overall, 
several classifiers performed well including SCINADE using 20 marker-genes, singleCellNet, 
scmapcell, scID and SVM, with an average median F1-score > 0.75 across all 48 experiments 
(Figure 3A, S9A). SCINADE, GarnettDE, and DigitalCellSorterDE were tested using 5, 10, 15 and 
20 marker-genes, Figure 3A shows the best result for each classifier, where SCINADE and 
GarnettDE performed best using 20 and 5 marker-genes, respectively, while DigitalCellSorterDE 
had a median F1-score of zero during all experiments using all different numbers of marker-
genes. DigitalCellSorterDE could only identify B-cells in the test sets, usually with an F1-score 
between 0.8 and 1.0, while the F1-score for all other cell populations was zero.

We also tested the prior-knowledge classifiers on all 13 PbmcBench datasets. The prior-
knowledge classifiers showed lower performance compared to other classifiers (average 

Figure 2. Complexity of the datasets compared 
to the performance of the classifiers. A) Boxplots 
of the median F1-scores of all classifiers for each 
dataset used during the intra-dataset evaluation. B) 
Barplots describing the complexity of the datasets 
(see Methods). Datasets are ordered based on 
complexity. Box- and barplots are colored according 
to the number of cell populations in each dataset.
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median F1-score < 0.6), with the exception of SCINA which was only tested on three cell 
populations (Figure 3B, S9B). These results are inline with our previous conclusions from the 
Zheng sorted and Zheng 68K datasets in the intra-dataset evaluation. 

Comparing the performance of the classifiers across the different protocols, we observed a 
higher performance for all classifiers for specific pairs of protocols. For example, all classifiers 
performed well when trained on 10Xv2 and tested on 10Xv3, and vice versa. On the other 
hand, other pairs of protocols had good performance only in one direction, training on Seq-
Well produced good predictions on 10Xv3, but not the other way around. Compared to all 
other protocols, the performance of all classifiers was low when they were either trained or 
tested on Smart-seq2 data. This can, in part, be due to the fact that Smart-seq2 data does not 
contain Unique Molecular Identifier (UMI), in contrast to all other protocols.

Figure 3. Classification performance across the PbmcBench datasets. A) Heatmap showing the median F1-scores 
of the supervised classifiers for all train-test pairwise combination across different protocols. The training set is 
indicated in the grey box on top of the heatmap, the test set is indicated using the column labels below. Results 
showed to the left of the red line represent the comparison between different protocol using sample pbmc1. Sample 
pbmc2 was used as test set then. Results showed to the right of the red line represent the comparison between 
different samples using the same protocol, with pbmc 1 used for training and pbmc2 used for testing. Boxplots 
on the right side of the heatmap summarize the performance of each classifier across all experiments. The mean 
of the median F1-scores, also used to order the classifiers, is indicated in the boxplots using a red dot. Boxplots 
underneath the heatmap summarize the performance of the classifiers per experiment. For SCINADE, GarnettDE, and 
DigitalCellSorterDE different numbers of marker-genes were tested. Only the best result is shown here. B) Median 
F1-score of the prior-knowledge classifiers on both samples of the different protocols. The protocol is indicated in 
the grey box on top of the heatmap, the sample is indicated with the labels below. Classifiers are ordered based on 
their mean performance across all datasets.
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We also tested the classification performance using the three brain datasets, VISp, ALM 
and MTG (Table 2), which allowed us to compare performances across species (mouse and 
human) as well as single-cell RNA-seq (used in VISp and ALM) versus single-nucleus RNA-seq 
(used for MTG). We tested all possible train-test combinations for both levels of annotation, 
three major brain cell types (inhibitory neurons, excitatory neurons and non-neuronal cells) 
and the deeper annotation level with 34 cell populations (18 experiments, see Methods). 
Prediction of the three major cell types was easy, where almost all classifiers showed high 
performance (Figure 4A) with some exceptions. For example, scPred failed the classification 
task completely when testing on the MTG dataset, producing 100% unlabeled cells (Figure 
S10A). Predicting the 34 cell populations turned out to be a more challenging task, especially 
when the MTG human dataset is included either as training or testing data, resulting in 
significantly lower performance across all classifiers (Figure 4B). Across all nine experiments 
at the deeper annotation, the top performing classifiers were SVM, ACTINN, singleCellNet, 
SingleR and LAmbDA, with almost 0% unlabeled cells (Figure S10B).

Finally, to evaluate the classification performance across different protocols and different 
labs, we used the four human pancreatic datasets: Baron Human, Muraro, Segerstople and 
Xin. We tested four combinations by training on three datasets and test on one dataset, 
in which case the classification performance can be affected by batch differences between 
datasets. We evaluated the performance of the classifiers when trained using the original 
data as well as aligned data using the mutual nearest neighbour (MNN) method [41]. Figure 
S11 shows UMAPs [42] of the combined dataset before and after alignment, demonstrating 
better grouping of pancreatic cell types after alignment. 

For the original (unaligned) data, the best performing classifiers across all four experiments 
are scVI, SVM, ACTINN, scmapcell and SingleR (Figure 5A, S12A). For the aligned data, the 
best performing classifiers are kNN, SVMrejection, singleCellNet, SVM and NMC (Figure 5B, 
S12B). Some classifiers benefit from aligning datasets such as SVMrejection, kNN, NMC and 
singleCellNet, resulting in higher median F1-scores (Figure 5). On the other hand, some other 
classifiers failed the classification task completely, such as scmapcell which labels all cells as 
unlabeled. Some other classifiers failed to run over the aligned datasets, such as ACTINN, 
scVI, Cell-BLAST, scID, scmapcluster and scPred. These classifiers work only with positive gene 
expression data, while the aligned datasets contains positive and negative gene expression 
values.

2.2.8 Rejection option evaluation

Classifiers developed for scRNA-seq data often incorporate a rejection option to identify cell 
populations in the test set that were not seen during training. These populations cannot be 
predicted correctly and therefore should remain unassigned. To test whether the classifiers 
indeed leave these unseen populations unlabeled, we applied two different experiments 
using negative controls of different tissues and using unseen populations of the same tissue. 

First, the classifiers were trained on a data set from one tissue (e.g. pancreas) and used 
to predict cell populations of a completely different tissue (e.g. brain) [22]. The methods 
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Figure 4. Classification performance across brain datasets. Heatmaps show the median F1-scores of the supervised 
classifiers when tested on A) major lineage annotation with three cell populations, and B) deeper level of annotation 
with 34 cell populations. The training set(s) are indicated using the column labels on top of the heatmap. The test 
set is indicated in the grey box. In each heatmap the classifiers are ordered based on their mean performance across 
all experiments. 
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should thus reject all (100%) of the cells in the test dataset. We carried out four different 
negative control experiments (see Methods, Figure 6A). scmapcluster and scPred have an 
almost perfect score for all four combinations, rejecting close 100% of the cells. Other top 
performing methods for this task, SVMrejection and scmapcell, failed when trained on mouse 
pancreatic data and tested on mouse brain data. All labeled cells of the AMB16 dataset are 
predicted to be beta cells in this case. The prior-knowledge classifiers, SCINA, Garnettpretrained, 
and DigitalCellSorter, could only be tested on the Baron Human pancreatic dataset. GarnettCV 
could, on top of that, also be trained on the Baron Human dataset and tested on the Zheng 
68K dataset. During the training phase, GarnettCV tries to find representative cells for the 
cell populations described in the marker-genes file. Being trained on Baron Human using 
the PBMC marker-genes file, it should not be able to find any representatives and therefore 
all cells in the Zheng 68K dataset should be unassigned. Surprisingly, GarnettCV still finds 
representatives for PBMC cells in the pancreatic data and thus the cells in the test set are 
labeled. However, being trained on the PBMC dataset and tested on the pancreatic dataset, 
it does have a perfect performance. 

To test the rejection option in more realistic and challenging scenario, we trained the 
classifiers on some cell populations from one dataset, and used the held out cell populations 
in the test set (see Methods). Since the cell populations in the test set were not seen during 
training, they should remain unlabeled. Here, the difficulty of the task was gradually increased 

Figure 5. Classification performance across pancreatic datasets. Heatmaps showing the median F1-score for 
each classifier for the A) unaligned and B) aligned datasets. The column labels indicate which of the four datasets 
was used as a test set, in which case the other three datasets were used as training. Grey boxes indicate that the 
corresponding method could not be tested on the corresponding dataset. In each heatmap, the classifiers are 
ordered based on their mean performance across all experiments.
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(Table S3). First all the T-cells were removed from the training set. Next, only the CD4+ T cells 
were removed. Finally, only CD4+/CD45RO+ Memory T cells, a subpopulation of the CD4+ T 
cells, were removed. The top performing methods for this task are: scmapcell, scPred, scID, 
SVMrejection, and SCINA (Figure 6B). We expected that rejecting T cells would be a relatively 
easy task as they are quite distinct from all other cell populations in the dataset. It should 
thus be comparable to the negative control experiment. Rejecting CD4+/CD45RO+ Memory 
T cells, on the other hand, would be more difficult as they could easily be confused with all 
other subpopulations of CD4+ T cells. Surprisingly, almost all classifiers, except for scID and 
scmapcluster, show the opposite. 

To better understand this unexpected performance we analyzed the labels assigned by 
SVMrejection. In the first task (T cells removed from the training set), SVMrejection labels almost 
all T cells as B cells. This can be explained by the fact that SVMrejection, and most classifiers 
for that matter, rely on classification posterior probabilities to assign labels but ignores the 
actual similarity between each cell and the assigned population. In task two (CD4+ T cells 
were removed), there were two subpopulations of CD8+ T cells in the training set. In that 
case, two cell populations are equally similar to the cells in the test set, resulting in low 
posterior probabilities for both classes and thus the cells in the test set remain unlabeled. If 

Figure 6. Performance of the classifiers during the rejection experiments. A) Percentage of unlabeled cells during 
the negative control experiment for all the classifiers with a rejection option. The prior-knowledge classifiers could 
not be tested on all datasets, this is indicated with a grey box. The species of the dataset is indicated in the grey 
box on top. Column labels indicate which datasets are used for training and testing respectively. B) Percentage of 
unlabeled cells for all classifiers with a rejection option when a cell population was removed from the training set. 
Column labels indicate which cell population was removed. This cell population was used as a test set. In both A) and 
B) the classifiers are sorted based on their mean performance across all experiments.
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one of these CD8+ T cell populations was removed from the training set, only 10.53% instead 
of 75.57% of the CD4+ T cells were assigned as unlabeled by SVMrejection. All together, our 
results indicate that despite the importance of incorporating a rejection option in cell identity 
classifiers, the implementation of this rejection option remains challenging.

2.2.9 Performance sensitivity to the input features 

During the intra-datasets cross-validation experiment described earlier, we used all features 
(genes) as input to the classifiers. However, some classifiers suffer from overtraining when 
too many features are used. Therefore, we tested the effect of feature selection on the 
performance of the classifiers. While different strategies for feature selection in scRNA-seq 
classification experiments exist, selecting genes with a higher number of dropouts compared 
to the expected number of dropouts has been shown to outperform other methods [22,43]. 
We selected subsets of features from the TM dataset using the dropout method. In the 
experiments, we used the top: 100, 200, 500, 1000, 2000, 5000, and 19791 (all) genes. Some 
classifiers include a built-in feature selection method which is used by default. To ensure that 
all methods use the same set of features, the built-in feature selection was turned off during 
these experiments. 

Some methods are clearly overtrained when the number of features increases (Figure 7A). 
For example, scmapcell shows the highest median F1-score when using less features and 
the performance drops when the number of features increases. On the other hand, the 
performance of other classifiers, such as SVM, keeps improving when the number of features 
increases. These results indicate that the optimal number of features is different for each 
classifier.

Looking at the median F1-score, there are several methods with a high maximal performance. 
Cell-BLAST, ACTINN, scmapcell, scPred, SVMrejection and SVM all have a median F1-score higher 
than 0.97 for one or more of the feature sets. Some of these well-performing methods, 
however, leave many cells unlabeled. scmapcell and scPred, for instance, yield a maximum 
median F1-score of 0.976 and 0.982 respectively, but 10.7% and 15.1% of the cells are 
assigned as unlabeled (Figure 7B). On the other hand, SVMrejection has the highest median F1-
score (0.991) overall with only 2.9% unlabeled. Of the top performing classifiers only ACTINN 
and SVM label all the cells. Overall SVM shows the third highest performance with a score of 
0.979. 

2.2.10 Scalability: performance sensitivity to the number of cells

scRNA-seq datasets vary significantly across studies in terms of the number of cells analyzed. 
To test the influence of the size of the dataset on the performance of the classifier, we 
downsampled the TM dataset in a stratified way (i.e. preserving population frequencies) to 1, 
5, 10, 20, 50, and 100% of the original number of 45,469 cells (see Methods) and compared 
the performance of the methods (Figure 7C, D). Using less than 500 cells in the dataset, most 
classifiers have a relatively high performance. Only scID, LAmbDA, CaSTLe, and Cell-BLAST, 
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Figure 7. Classification performance and computation time evaluation across different numbers of features, 
cells, and annotation levels. Line plots show A) the median F1-score, B) percentage of unlabeled cells, and E) 
computation time of each classifier applied to the TM dataset with the top 100, 200, 500, 1000, 2000, 5000, and 
19791 (all) genes as input feature sets. Genes were ranked based on dropout-based feature selection. C) The median 
F1-score, D) percentage of unlabeled cells, and F) computation time of each classifier applied to the downsampled 
TM datasets containing 463, 2,280, 4,553, 9,099, 22,737, and 45,469 (all) cells. G) The computation time of each 
classifier is plotted against the number of cell populations. Note that the y-axis is 100^x scaled in A,C and log-scaled 
in E-G. The x-axis is log-scaled in A-F
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have a median F1-score below 0.85. Surprisingly, SVMrejection has almost the same median 
F1-score when using 1% of the data as when using all data (0.993 and 0.994 respectively). It 
must be noted here, however, that the percentage of unlabeled cells decreases significantly 
(from 28.9% to 1.3%). Overall, the performance of all classifiers stabilized when tested on ≥ 
20% (9,099 cells) of the original data.

2.2.11 Running time evaluation 

To compare the runtimes of the methods and see how they scale when the number of cells 
increases, we compared the number of cells in each dataset with the computation time of 
the classifiers (Figure S13). Overall, big differences in the computation time can be observed 
when comparing the different methods. SingleR showed the highest computation time overall. 
Running SingleR on the Zheng 68K dataset took more than 39 hours, while scmapcluster was 
finished within 10 seconds on this dataset. Some of the methods have a high runtime for 
the small datasets. On the smallest dataset, Xin, all classifiers have a computation time <5 
minutes, with most classifiers finishing within 60 seconds. Cell-BLAST, however, takes more 
than 75 minutes. In general, all methods show an increase in computation time when the 
number of cells increase. However, when comparing the second largest, TM, and largest, 
Zheng 68K, dataset, not all methods show an increase in computation time. Despite the 
increase in the number of cells between the two datasets, CaSTLe, CHETAH, and SingleR, 
have a decreasing computation time. A possible explanation could be that the runtime of 
these methods also depends on the number of genes or the number of cell populations in 
the dataset. To evaluate the run time of the methods properly, we therefore investigated the 
effect of the number of cells, features, and cell populations separately (Figure 7E-G). 

To assess the effect of the number of genes on the computation time, we compared the 
computation time of the methods during the feature selection experiment (Figure 7E). Most 
methods scale linearly with the number of genes. However, LDA does not scale very well 
when the number of genes increases. If the number of features is higher than the number of 
cells, the complexity of LDA is O(g^3), where g is the number of genes [44]. 

The effect of the number of cells on the timing showed that all methods increase in 
computation time when the number of cells increases (Figure 7F). The differences in runtime 
on the largest dataset are larger. scmapcluster, for instance, takes five seconds to finish, while 
Cell-BLAST takes more than 11 hours.

Finally, to evaluate the effect of the number of cell populations, the runtime of the methods 
on the AMB3, AMB16, and AMB92 datasets were compared (Figure 7G). For most methods 
this shows an increase in runtime when the number of cell populations increases, specially 
singleCellNet. For other methods, such as ACTINN and scmapcell, the runtime remains 
constant. Five classifiers, scmapcell, scmapcluster, SVM, RF, and NMC, have a computation 
time below six minutes on all the datasets. 
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2.3 Discussion
In this study, we evaluated the performance of 22 different methods for automatic cell 
identification using 27 scRNA-seq datasets. We performed several experiments to cover 
different levels of challenges in the classification task, and to test specific aspects of the 
classifiers such as the feature selection, scalability and rejection experiments. We summarize 
our findings across the different experiments (Figure 8) and provide a detailed summary 
of which dataset was used for each experiment (Table S4). This overview can be used as a 
user-guide to choose the most appropriate classifier depending on the experimental setup 
at hand. Overall, several classifiers performed accurately across different datasets and 
experiments, particularly: SVMrejection, SVM, singleCellNet, scmapcell, scPred, ACTINN and 
scVI. We observed relatively lower performance for the inter-dataset setup, likely due to the 
technical and biological differences between datasets, compared to the intra-dataset setup. 
SVMrejection, SVM and singleCellNet performed well for both setups, while scPred and scmapcell 
performed better in the intra-dataset setup, and scVI and ACTINN had better performance 
in the inter-dataset setup (Figure 8). Of note, we evaluated all classifiers using the default 
settings. While adjusting these settings for a specific dataset might improve the performances 
it increases the risk of overtraining.

Considering all three evaluation metrics (median F1-score, percentage of unlabeled cells and 
computation time), SVMrejection and SVM are overall the best performing classifiers for the 
scRNA-seq datasets used. Although SVM has a shorter computation time, the high accuracy 
of the rejection option of SVMrejection, which allows flagging new cells and assigning them as 
unlabeled, results in an improved performance compared to SVM. Our results show that 
SVMrejection and SVM scale well to large datasets as well as deep annotation levels. In addition, 
they did not suffer from the large number of features (genes) present in the data, producing 
the highest performance on the TM dataset using all genes, due to the incorporated L2-
regularization. The comparable or higher overall performance of a general-purpose classier 
such as SVM warrants caution when designing scRNA-seq specific classifiers that they do not 
introduce unnecessary complexity. For example, deep learning methods, such as ACTINN and 
scVI, showed overall lower performance compared to SVM, supporting recent observations 
by Köhler et al. [45].

scPred (which is based on an SVM with radial kernel), LDA, ACTINN, and singleCellNet performed 
well on most datasets, yet the computation time is long for large datasets. singleCellNet also 
becomes slower with a large number of cell populations. In addition, in some cases, scPred 
and scmapcell/cluster reject higher proportions of cells as unlabeled compared to SVMrejection, 
without a substantial improvement in accuracy. In general, incorporating a rejection option 
with classification is a good practice to allow the detection of potentially novel cell populations 
(not present in the training data) and improve the performance for the classified cells with 
high confidence. However, for the datasets used in this study, the performance of classifiers 
with rejection option, except for SVMrejection, did not show substantial improvement compared 
to other classifiers. Furthermore, our results indicate that designing a proper rejection 
option can be challenging for complex datasets (e.g. PBMC) and that relying on the posterior 
probabilities alone might not yield optimal results. 
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Figure 8. Summary of the performance of all classifiers during different experiments. For each experiment, the 
heatmap shows whether a classifier performs good, intermediate, or poor. Light-grey indicates that a classifier could 
not be tested during an experiment. The grey boxes to the right of the heatmap indicate the four different categories 
of experiments: intra-dataset, inter-dataset, rejection and timing. Experiments itself are indicated using the row 
labels. Table S4 shows which datasets were used to score the classifiers exactly for each experiment. Grey boxes next 
to the heatmap indicate the two classifiers categories. Within these two categories, the classifiers are sorted based 
on their mean performance on the intra and inter dataset experiments. 
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For datasets with deep levels of annotation (i.e. large number) of cell populations, the 
classification performance of all classifiers is relatively low, since the classification task is 
more challenging. scVI, in particular, failed to scale with deeply annotated datasets, although 
it works well for datasets with relatively small number of cell populations. Further, applying 
the prior-knowledge classifiers becomes infeasible for deeply annotated datasets, as the task 
of defining the marker-genes becomes even more challenging.

We evaluated the performance of the prior-knowledge methods (marker-based and pre-
trained) on PBMC datasets only, due to the limited availability of author-provided marker 
genes. For all PBMC datasets, the prior-knowledge methods did not improve the classification 
performance over supervised methods, which do not incorporate such prior knowledge. We 
extended some prior-knowledge methods such that the marker-genes were defined in a 
data-driven manner using differential expression which did not improve the performance of 
these classifiers, except for SCINADE (with 20 marker-genes) for the PbmcBench datasets. The 
data-driven selection of markers allows the prediction of more cell populations compared 
to the number of populations for which marker-genes were originally provided. However, 
this data-driven selection violates the fundamental assumption in prior-knowledge methods 
that incorporating expert-defined markers improves classification performance. Further, 
several supervised classifiers which do not require markers to be defined a priori (e.g. scPred 
and scID) already apply a differential expression test to find the best set of genes to use 
while training the model. The fact that prior-knowledge methods do not outperform other 
supervised methods and given the challenges associated with explicit marker definition, 
indicate that incorporating prior knowledge in the form of marker-genes is not beneficial, at 
least for PBMC data.

In the inter-dataset experiments, we tested the ability of the classifiers to identify populations 
across different scRNA-seq protocols. Our results show that some protocols are more 
compatible with one another (e.g. 10Xv2 and 10Xv3), Smart-Seq2 is distinct from the other 
UMI-based methods, and CEL-Seq2 suffers from low replicability of cell populations across 
samples. These results can serve as a guide in order to choose the best set of protocols that 
can be used in studies where more than one protocol is used. 

The intra-dataset evaluation included the Zheng sorted dataset, which consists of 10 FACS 
sorted cell populations based on the expression of surface protein markers. Our results show 
relatively lower classification performance compared to other datasets, except the Zheng 68K 
dataset. The poor correlation between the expression levels of these protein markers and 
their coding genes mRNA levels [46] might explain this low performance. 

Overall, we observed that the performance of almost all methods was relatively high on 
various datasets, while some datasets with overlapping populations (e.g. Zheng 68K dataset) 
remain challenging. The inter-dataset comparison requires extensive development in order 
to deal with technical differences between protocols, batches, and labs, as well as proper 
matching between different cell population annotations. Further, the pancreatic datasets are 
known to project very well across studies and hence using them to evaluate inter-dataset 
performance can be misleading. We recommend considering other challenging tissues and 
cell populations.
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2.4 Conclusions
We present a comprehensive evaluation of automatic cell identification methods for single 
cell RNA-sequencing data. Generally, all classifiers perform well across all datasets, including 
the general-purpose classifiers. In our experiments, incorporating prior knowledge in the 
form of marker-genes does not improve the performance (on PBMC data). We observed large 
differences in the performance between methods in response to changing the input features. 
Furthermore, the tested methods vary considerably in their computation time which also 
varies differently across methods based on the number of cells and features. 

Taken together, we recommend the use of the general-purpose SVMrejection classifier (with 
a linear kernel) since it had better performance compared to the other classifiers tested 
across all datasets. Other high performing classifiers include: SVM with a remarkably fast 
computation time at the expense of losing the rejection option, singleCellNet, scmapcell, 
and scPred. To support future extension of this benchmarking work with new classifiers and 
datasets, we provide a Snakemake workflow to automate the performed benchmarking 
analyses (https://github.com/tabdelaal/scRNAseq_Benchmark/).

2.5 Methods

2.5.1 Classification methods

We evaluated 22 scRNA-seq classifiers, publicly available as R or Python packages or 
scripts (Table 1). This set includes 16 methods developed specifically for scRNA-seq data 
as well as six general-purpose classifiers from the scikit-learn library in Python: linear 
discriminant analysis (LDA), nearest mean classifier (NMC), k-nearest neighbor (kNN), 
support vector machine with linear kernel (SVM), SVM with rejection option (SVMrejection) 
and random forest (RF). The following functions from the scikit-learn library were used 
respectively: LinearDiscriminantAnalysis(), NearestCentroid(), 
KNeighborsClassifier(n_neighbors=9), LinearSVC(), LinearSVC() 
with CalibratedClassifierCV() wrapper, and RandomForestClassifier(n_
estimators=50). For kNN, nine neighbors were chosen. After filtering the datasets, 
only cell populations consisting of ten cells or more remained. Using nine neighbors would 
thus ensure that this classifier could also predict very small populations. For SVMrejection a 
threshold of 0.7 was used on the posterior probabilities to assign cells as ‘unlabeled’. During 
the rejection experiments, also an LDA with rejection was implemented. In contrast to the 
LinearSVC(), the LinearDiscriminantAnalysis() function can output the 
posterior probabilities itself, which was also thresholded at 0.7.

scRNA-seq specific methods were excluded from the evaluation if they did not return the 
predicted labels for each cell. For example, we excluded MetaNeighbor [47] because the 
tool only returns the area under the receiver operator characteristic curve (AUROC). For all 
methods the latest (May 2019) package was installed or scripts were downloaded from their 
GitHub. For scPred it should be noted that it is only compatible with an older version of 
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Seurat (v2.0). For CHETAH it is important that the R version 3.6 or newer is installed. For 
LAmbDA, instead of the predicted label, the posterior probabilities were returned for each 
cell population. Here, we assigned the cells to the cell population with the highest posterior 
probability.

During the benchmark, all methods were run using their default settings and if not available, 
we used the settings provided in the accompanying examples or vignettes. As input, we 
provided each method with the raw count data (after cell and gene filtering as described 
in Section 2.5.3 Data Preprocessing) according to the method documentation. The majority 
of the methods have a built-in normalization step. For the general-purpose classifiers, we 
provided log-transformed counts, log ( )2 1count + .

Some methods required a marker gene file or pre-trained classifier as an input (e.g. Garnett, 
Moana, SCINA, DigitalCellSorter). In this case, we use the marker gene files of pre-trained 
classifiers provided by the authors. We did not attempt to include additional marker gene 
files for all datasets, and hence the evaluation of those methods is restricted to datasets 
where a marker gene file for cell populations is available. 

2.5.2 Datasets 

A total of 27 scRNA-seq datasets were used to evaluate and benchmark all classification 
methods, from which 11 datasets were used for intra-dataset evaluation using a cross-
validation scheme, and 22 datasets were used for inter-dataset evaluation, with six datasets 
overlapping for both tasks as described in Table 2. Datasets vary across species (human and 
mouse), tissue (brain, pancreas, PBMC and whole mouse), as well as the sequencing protocol 
used. The brain datasets, including Allen Mouse Brain (AMB), VISp, ALM (GSE115746) and 
MTG, were downloaded from the Allen Institute Brain Atlas http://celltypes.brain-map.
org/rnaseq. All five pancreatic datasets were obtained from: https://hemberg-lab.github.
io/scRNA.seq.datasets/ (Baron Mouse: GSE84133, Baron Human: GSE84133, Muraro: 
GSE85241, Segerstolpe: E-MTAB-5061, Xin: GSE81608). The CellBench 10X dataset was 
obtained from (GSM3618014), and the CellBench CEL-Seq2 dataset was obtained from 3 
datasets (GSM3618022, GSM3618023, GSM3618024) and concatenated into one dataset. 
The Tabula Muris (TM) dataset was downloaded from https://tabula-muris.ds.czbiohub.org/ 
(GSE109774). For the Zheng sorted datasets, we downloaded the 10 PBMC sorted populations 
(CD14+ Monocytes, CD19+ B Cells, CD34+ Cells, CD4+ Helper T Cells, CD4+/CD25+ Regulatory 
T Cells, CD4+/CD45RA+/CD25- Naive T Cells, CD4+/CD45RO+ Memory T Cells, CD56+ Natural 
Killer Cells, CD8+ Cytotoxic T cells, CD8+/CD45RA+ Naive Cytotoxic T Cells) from: https://
support.10xgenomics.com/single-cell-gene-expression/datasets, next we downsampled 
each population to 2,000 cells obtaining a dataset of 20,000 cells in total. For the Zheng 68K 
dataset, we downloaded the gene-cell count matrix for the ‘Fresh 68k PBMCs’ [36] from: 
https://support.10xgenomics.com/single-cell-gene-expression/datasets (SRP073767). All 13 
PbmcBench datasets, seven different sequencing protocols applied on two PBMC samples, 
were downloaded from the Broad Institute Single Cell portal https://portals.broadinstitute.
org/single_cell/study/SCP424/single-cell-comparison-pbmc-data. The cell population 
annotation for all datasets was provided with the data, except the Zheng 68K dataset, for 
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which we obtained the cell population annotation from https://github.com/10XGenomics/
single-cell-3prime-paper/tree/master/pbmc68k_analysis. These annotations were used as 
‘ground truth’ during the evaluation of the cell population predictions obtained from the 
classification methods.

2.5.3 Data preprocessing 

Based on the manual annotation provided in the datasets, we started by filtering out cells 
that were labeled as doublets, debris or unlabeled cells. Next, we filtered genes with zero 
counts across all cells. For cells, we calculated the median number of detected genes per cell, 
and from that we obtained the median absolute deviation (MAD) across all cells in the log 
scale. We filtered out cells when the total number of detected genes was below three MAD 
from the median number of detected genes per cell. The number of cells and genes in Table 
2 represent the size of each dataset after this stage of preprocessing. 

Moreover, before applying cross validation to evaluate each classifier, we excluded cell 
populations with less than 10 cells across the entire dataset; Table 2 summarizes the number 
of cell populations before and after this filtration step for each dataset.

2.5.4 Intra-dataset classification

For the supervised classifiers, we evaluated the performance by applying a 5-fold cross 
validation across each dataset after filtering genes, cells and small cell populations. The folds 
were divided in a stratified manner in order to keep equal proportions of each cell population 
in each fold. The training and testing folds were exactly the same for all classifiers.

The prior-knowledge classifiers, Garnett, Moana, DigitalCellSorter and SCINA, were only 
evaluated on the Zheng 68K and Zheng sorted datasets, for which the marker-genes files 
or the pre-trained classifiers were available, after filtering genes and cells. Each classifier 
uses the dataset and the marker-genes file as inputs, and outputs the cell population label 
corresponding to each cell. No cross validation is applied in this case, except for Garnett 
where we could either use the pretrained version (Garnettpretrained) provided from the original 
study, or train our own classifier using the marker-genes file along with the training data 
(GarnettCV). In this case, we applied 5-fold cross validation using the same train and test sets 
described earlier. Table S1 shows the mapping of cell populations between the Zheng dataset 
and each of the prior-knowledge classifiers. For Moana a pre-trained classifier was used, this 
classifier also predicted cells to be Memory CD8+ T cells and CD16+ Monocytes, while these 
cell populations were not in the Zheng dataset.

2.5.5 Evaluation of marker-genes

The performance and choice of the marker-genes per cell population per classifier were 
evaluated by comparing the F1-score of each cell population with four different characteristics 
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of the marker-genes across the cells for that particular cell population: 1) the number of 
marker-genes, 2) the mean expression, 3) the average dropout rate, and 4) the average beta 
of the marker-genes [37]. Beta is a score developed to measure how specific a marker gene 
for a certain cell population is based on binary expression.

2.5.6 Selecting marker-genes using differential expression

Using the cross-validation scheme, training data of each fold was used to select sets of 5, 
10, 15, and 20 differentially expressed (DE) marker-genes. First, if the data was not already 
normalized, a CPM read count normalization was applied to the data. Next, the data was 
log-transformed using log ( )2 1count + , and afterwards the DE test could be applied. As 
recommended in [48], MAST was used to find the DE genes [49]. The implementation of 
MAST in the FindAllMarkers() function of Seurat v2.3.0 was used to do a one-vs-all differential 
expression analysis [50]. Genes returned by Seurat were sorted and the top 5, 10, 15, or 20 
significant genes with a positive fold change were selected as marker-genes. These marker-
genes were then used for population prediction of the test data of the corresponding fold. 
These marker-genes lists can be used by prior-knowledge classifiers such as SCINA, GarnettCV 
and DigitalCellSorter, by modifying the cell type marker-genes file required as an input 
to these classifiers. Such modification cannot be applied to the pre-trained classifiers of 
Garnettpretrained and Moana.

2.5.7 Dataset complexity 

To describe the complexity of a dataset, the average expression of all genes for each cell 
population (avgci ) in the dataset was calculated, representing the prototype of each cell 
population in the full genes space. Next, the pairwise Pearson correlation between these 
centroids was calculated corr avg avg∀i j c ci j, ( , ). For each cell population, the highest correlation 
to another cell population was recorded. Finally, the mean of these per cell population 
maximum correlations was taken to describe the complexity of a dataset.

Complexity mean corr avg avg� � � �(max ( ( , ))), ,i i j i j c ci j

2.5.8 Inter-dataset classification

CellBench. Both CellBench datasets, 10X and CEL-Seq2, were used once as training data and 
once as test data, to obtain predictions for the five lung cancer cell lines. The common set of 
detected genes by both datasets was used as features in this experiment.

PbmcBench. Using pbmc1 sample only, we tested all train-test pairwise combinations between 
all seven protocols, resulting in 42 experiments. Using both pbmc1 and pbmc2 samples, for 
the same protocol we used pbmc1 as training data and pbmc2 as test data, resulting in six 
additional experiments (10Xv3 was not applied for pbmc2). As we are now dealing with 
PBMC data, we evaluated all classifiers, including the prior-knowledge classifiers, as well as 
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the modified versions of SCINA, GarnettCV and DigitalCellSorter, in which the marker-genes 
are obtained through differential expression from the training data as previously described. 
Through all these 48 experiments, genes that are not expressed in the training data were 
excluded from the feature space. Also, as these PbmcBench datasets differ in the number of 
cell populations (Table 2), only cell populations provided by the training data were used for 
the test data prediction evaluation.

Brain. We used the three brain datasets, VISp, ALM and MTG with two levels of annotations, 
3 and 34 cell populations. We tested all possible train-test combinations, by either using one 
dataset to train and test on another (6 experiments) or using two concatenated datasets to 
train and test on the third (3 experiments). A total of nine experiments was applied for each 
annotation level. We used the common set of detected genes between the datasets involved 
in each experiment as features.

Pancreas. We selected the four major endocrine pancreatic cell types (alpha, beta, delta and 
gamma) across all four human pancreatic datasets: Baron Human, Muraro, Segerstolpe and 
Xin. Table S2 summarizes the number of cells in each cell type across all datasets. To account 
for batch effects and technical variations between different protocols, datasets were aligned 
using MNN [41] from the scran R package (version 1.1.2.0). Using both the raw data (un-
aligned) and the aligned data, we applied leave-one-dataset-out cross validation where we 
train on three datasets and test on the left out dataset.

2.5.9 Performance evaluation metrics

The performance of the methods on the datasets is evaluated using three different metrics: 1) 
For each cell population in the dataset the F1-score is reported. The median of these F1-scores 
is used as a measure for the performance on the dataset. 2) Some of the methods do not 
label all the cells. These unassigned cells are not considered in the F1-score calculation. The 
percentage of unlabeled cells is also used to evaluate the performance. 3) The computation 
time of the methods is also measured. 

2.5.10 Feature selection

Genes are selected as features based on their dropout rate. The method used here, is based 
on the method described in [22]. During feature selection, a sorted list of the genes is made. 
Based on this list, the top n number of genes can be easily selected during the experiments. 
First, the data is normalized using log ( )2 1count + . Next, for each gene the percentage of 
dropouts, d, and the mean, m, of the normalized data are calculated. Genes that have a 
mean or dropout rate of zero are not considered during the next steps. These genes will be 
at the bottom of the sorted list. For all other genes, a linear model is fitted to the mean and
log ( )2 d . Based on their residuals, the genes are sorted in descending order and added to the 
top of the list.
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2.5.11 Scalability

For the scalability experiment we used the TM dataset. To ensure that the dataset could be 
downsampled without losing cell populations, only the 16 most abundant cell populations 
were considered during this experiment. We downsampled these cell populations in a 
stratified way to 1, 5, 10, 20, 50, and 100% of its original size (45,469 cells). 

2.5.12 Rejection

Negative control. Two human datasets, Zheng 68K and Baron Human, and two mouse 
datasets, AMB16 and Baron Mouse, were used. The Zheng 68K dataset was first stratified 
downsampled to 11% of its original size to reduce computation time. For each species, two 
different experiments were applied by using one dataset as training set and the other as test 
set and vice versa.

Unseen cell populations. Zheng 68K dataset was stratified downsampled to 11% of its original 
size to reduce computation time. Three different experiments were conducted. First, all cell 
populations that are subpopulation of T cells were considered the test set. Next, the test set 
consisted of all subpopulations of CD4+ T cells. Last, only the CD4+/CD45RO+ Memory T cells 
were in the test set. Each time, all cell populations that were not in the test set, were part of 
the training set. Table S3 gives an exact overview of the populations per training and test set.

2.5.13 Benchmarking pipeline

In order to ensure reproducibility and support future extension of this benchmarking work 
with new classification methods and benchmarking datasets, a Snakemake [51] workflow 
for automating the performed benchmarking analyses was developed with an MIT license 
(https://github.com/tabdelaal/scRNAseq_Benchmark/). Each tool (license permitting) is 
packaged in a Docker container (https://hub.docker.com/u/scrnaseqbenchmark) alongside 
the wrapper scripts and their dependencies. These images will be used through snakemake’s 
singularity integration to allow the workflow to be run without the requirement to install 
specific methods and to ensure reproducibility. Documentation is also provided to execute 
and extend this benchmarking workflow to help researchers to further evaluate interested 
methods. 

2.6 Availability of data and material
The filtered datasets analyzed during the current study can be downloaded from Zenodo 
(https://doi.org/10.5281/zenodo.3357167). The source code is available in th e GitHub 
repository, at https://github.com/tabdelaal/scRNAseq_Benchmark [52], and in the Zenodo 
repository, at https://doi.org/10.5281/zenodo.3369158 [53]. The source code is released 
under MIT license. Datasets accession numbers: AMB, VISp, and ALM [35] (GSE115746), MTG 
[31] (phs001790), Baron Mouse [30] (GSE84133), Baron Human [30] (GSE84133), Muraro 
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[31] (GSE85241), Segerstolpe [32] (E-MTAB-5061), Xin [33] (GSE81608), CellBench 10X [34] 
(GSM3618014), CellBench CEL-Seq2 [34] (GSM3618022, GSM3618023, GSM3618024), 
TM [6] (GSE109774), and Zheng sorted and Zheng 68K [36] (SRP073767). The PbmcBench 
datasets [38] are not yet uploaded to any data repository.
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