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In the 17th century, Robert Hooke discovered something fascinating when analyzing a piece 
of cork under a microscope: the cork consists of tiny pores. This reminded him of the cells 
in a monastery and therefore he called these pores ‘cells’ [1]. Almost two centuries later, 
Matthias Jakob Schleiden and Theodor Schwann formulated the first concept of cell theory: 
every organism consists of either one or multiple cells, and cells are the building blocks of life 
[2,3]. We estimate that the human body consists of ~3.7e13 cells [4].

Looking at our own human body, we know that cells have different functions. For example, 
immune cells fight against pathogens, skeletal muscle cells help us move, and sensory nerve 
cells receive information from the outside world. How is it possible that all these cells share 
the same DNA yet execute such a variety of functions? To explain this, we must understand 
the central dogma of molecular biology that describes the genetic flow of information in a 
cell (Figure 1) [5,6]. In every cell, there are chromosomes, very long DNA molecules, that 
provide the genetic code for an organism. Some parts of the DNA sequence, called genes, 
are transcribed into RNA molecules. Even though many different types of RNA exist with all 
important functions, we will focus on messenger RNA (mRNA) here. As the name already 
suggests, these mRNA molecules come from protein-coding genes and are translated into 
proteins. The resulting protein has a specific function in a cell. 

Except for some somatic mutations, however, every cell in an organism has the same DNA. 
How could a cell know which genes have to be transcribed? Different control mechanisms 
tightly regulate transcription and translation to ensure the expression of the correct genes 
and proteins in a cell. For instance, transcription of protein-coding genes starts when RNA 
polymerase II and auxiliary factors bind the promotor region, the DNA sequence around the 
transcription start site (TSS) (Figure 2). A group of proteins, transcription factors (TFs), can bind 
parts of the DNA sequence, called enhancers and silencers, and either activate or repress the 
binding of RNA polymerase II or the auxiliary factors. This way, transcription factors control 

Figure 1. The central dogma of molecular biology. DNA is transcribed into mRNA, which is translated into proteins. 
[7]
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which genes are transcribed in a cell and to which extent. Since humans have approximately 
1,400 TFs [9] that can also act combinatorially, the exact regulation mechanisms for each 
gene are incompletely understood. Understanding transcriptional regulation is important 
since a mutation in a TF, aberrant expression of a TF, or a mutation in a TF binding site can 
cause diseases and disorders ranging from cancer, autoimmune diseases, and diabetes to 
neurological disorders [10-14]. 

Humans have approximately 20,000 protein-coding genes [15,16]. Some genes, however, 
can produce different proteins with different functions [17,18]. How can the same mRNA 
molecule encode different proteins? After transcription, the resulting mRNA molecule has 
to be processed and spliced before the mature mRNA is transported to the nucleus and 
translated into a protein (Figure 3A). During the processing, the head and tail are modified to 
promote stability and export to the nucleus. Splicing, on the other hand, can lead to different 
proteins. The pre-mRNA molecule consists of exons, the coding regions, and introns. During 
splicing, the spliceosome, an RNA-protein complex, binds the RNA and catalyzes the removal 
of the introns. Exons from the same gene can be joined in different combinations, which 
we call alternative splicing (Figure 3B). Multiple forms of alternative splicing are recognized 
(Figure 3C). For instance, exons can be included or skipped completely, but alternative splice 
sites can be used as well. In humans, approximately 90-95% of the genes are alternatively 
spliced [19,20], which occurs most often in the brain [21]. 

We can draw a parallel between the regulation of (alternative) splicing and transcription. 
Where TFs binding the DNA sequence regulate transcription, RNA binding proteins (RBPs) 
regulate splicing. RBPs can either activate or repress the binding of the spliceosome and 
thereby control the splicing of exons or introns [22]. Aberrant splicing, for instance, caused by 
mutations in RBP binding sites, is a hallmark of many neurological diseases [23,24].

Figure 2. Transcriptional regulation. RNA polymerase II and co-factors must bind to the promoter region to start 
transcription. Other proteins, called activators, can bind enhancer regions and stimulate this process. The opposite 
can happen as well. Repressors can bind a silencer region and prevent the RNA polymerase II complex from binding 
and thus inhibit transcription. [8]
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Figure 3. mRNA processing and splicing. A) The 5’ cap is added, the tail is polyadenylated, and the introns are spliced 
out. Afterwards, the mRNA can be transported to the nucleus and translated into a protein. [25] B) Alternative 
splicing. The pre-mRNA can be spliced in different ways. Different combinations of exons can be included in the 
mRNA molecule which will result in different proteins after translation. [25,26] C) Overview of different mRNA 
splicing types. [27]
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1.1 Measuring transcription 
To increase our understanding of cells in health and disease, we quantify which genes are 
expressed. RNA sequencing is a high-throughput technique to measure the number of 
mRNA molecules in a sample. This is often done using next-generation sequencing (NGS) 
technologies such as Illumina and Ion Torrent [28]. The general workflow consists of the 
following steps: 1) isolating the RNA from the cells, 2) fragmenting the RNA, 3) converting the 
mRNA into cDNA using reverse transcription, 4) ligating sequence adapters, 5) sequencing 
using a sequencing platform, 6) mapping the reads to the reference transcriptome, 7) 
constructing a count matrix (Figure 4). The final count matrix indicates how often a gene was 
measured in a sample.

NGS technologies generate relatively short reads. For instance, the read length is only 150 
bp for most Illumina platforms. This short read length makes it impossible to study complete 
isoforms since the average length of human protein-coding transcripts is approximately 2.8kb 
[29]. Some reads map to splice junctions, so from such reads, we can extract whether exons 
are skipped or if alternative 3’ or 5’ splice sites are used. 

1.1.1 Single-cell RNA sequencing 

NGS techniques have been developed to measure transcription in groups of cells. This has the 
downside that the signal is evened out. If a gene’s expression differs between two samples, it 
is impossible to know whether the sample consists of the same cells with altered expression 
or whether the cell-type composition changed (Figure 5A). This is especially disadvantageous 
when analyzing heterogeneous tissues, such as the brain. 

In 2009, a new revolution began: single-cell RNA sequencing (scRNA-seq) [30]. Using scRNA-
seq, the tissue is dissociated and the gene expression of individual cells can be measured 

Figure 4. Overview of next-generation sequencing. [36]

Thesis_LM_final.indd   15Thesis_LM_final.indd   15 24-04-2024   18:53:5724-04-2024   18:53:57



CHAPTER 1

16

instead [31-35] (Figure 5B). The process is quite similar to sequencing in bulk, except that 
the cells are physically separated from each other and a barcode is attached to every cDNA 
molecule after reverse transcription. This barcode informs which reads originated from the 
same cell during the mapping step later. After barcoding, all material is pooled and sequenced 
together using an NGS platform. During the mapping step, the reads are split into the barcode 
and cDNA sequence. Based on the barcode, we know which cell the molecule came from, 
and based on the cDNA we know which gene was expressed. 

In general, the data generated by all scRNA-seq protocols is sparse  -around 90% of the 
values in the count matrix are zeros. Furthermore, when more cells are measured during 
an experiment, the sparser the data becomes [38]. Both biological and technical limitations 
explain this sparsity. Even essential genes will not always be expressed in a cell. Transcriptional 
bursting is the phenomenon in which genes are actively transcribed for a short period 
followed by a longer period of silence, which causes temporal fluctuation in gene levels [33]. 
Furthermore, since the mRNA content in a cell is low, it is difficult to capture all molecules. 

Broadly, scRNA-seq methods can be split into two groups: either the full transcript is 
sequenced, which is similar to bulk analysis (e.g., using Smart-Seq2 [34]), or only the 3’ or 

Figure 5. Single-cell RNA sequencing. A) The disadvantage of bulk RNA sequencing. Multiple scenarios can explain 
the decreased expression of gene A in sample 2. For instance, the expression of gene A decreased in the green cell 
type, or the cell-type composition changed which resulted in fewer green cells in sample 2. B) The general pipeline 
of single-cell RNA sequencing. This is similar to bulk RNA sequencing, except that cells are physically separated and 
cellular barcodes are attached to the cDNA. [36,37]
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5’ end of the molecule can be captured and counted (e.g., using 10x Chromium [35]). An 
advantage of Smart-Seq2 is that the cells are sequenced deeper, which results in less sparse 
data. Furthermore -similar to bulk RNA sequencing - the reads can cover splice junctions. On 
the other hand, 10x optimized their pipeline for sequencing many cells simultaneously at a 
low cost. Up to hundreds of thousands of cells can be sequenced per experiment compared 
to thousands with Smart-Seq2. However, 10x only captures the 3’ or 5’ end of the mRNA 
molecule and ~100 nucleotides are measured. This short part of the sequence is enough to 
differentiate between all genes but lacks information about splice sites.

1.1.2 Long-read single-cell sequencing

To study alternative splicing, one would ideally sequence the whole mRNA molecule instead 
of looking at short fragments. Two technologies facilitate this nowadays: Oxford Nanopore 
[39,40] and PacBio [41]. Using Oxford Nanopore either the RNA molecule or the cDNA passes 
through a pore, which creates a changing electrical current. A base caller deciphers the order 
of nucleotides that generated these currents. PacBio uses single-molecule real-time (SMRT) 
sequencing which means that the cDNA molecule of interest is replicated using DNA poly-
merase. The incorporated new nucleotides are all fluorescent, with the four different bases 
each having a different fluorescent tag. When a nucleotide is incorporated, the fluorescent 
tag is cut off and a detector detects the fluorescent signal to decode the order of nucleotides. 

Many different human tissues have been sequenced using such long-read protocols, which 
enhanced the discovery of more than 70.000 new transcripts [42]. This, however, is all 
in bulk. These protocols have been applied to single cells as well, but initially, only up to 
a hundred cells could be sequenced [43,44]. Several protocols have been developed to 
increase the throughput of long-read single-cell sequencing methods [45–47]. For example, 
some protocols combine short- and long-read sequencing (Figure 6) [48,49]. The single cells 
are barcoded using the 10x approach. After amplification, the cDNA is split into two pools. 
One pool is sequenced using Illumina and the other using Oxford Nanopore or PacBio. Due to 

Figure 6. Schematic overview of long-read single-cell sequencing. The pooled barcoded cDNA is split into two pools. 
The first part is sequenced using short-read technologies, which can be used for cell-type identification. The second 
part is sequenced using long-read technologies. Since the barcodes of the short- and long-read data are similar, the 
data can be combined to study cell-type-specific isoforms. Figure adapted from Joglekar et al. (2021) [50].
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the high costs of long-read sequencing, the coverage of the short reads generated by Illumina 
is usually higher, which results in better gene quantification and can be used to group the 
cells into specific cell types (see Section 1.2.1). The short-read barcodes are also present in 
the long-read data and can assign a cell and a cell type to every long-read. The long reads can 
be grouped per cell type and be used to study cell-type-specific isoform usage.

1.2 Cell types
Studying individual cells in scRNA-seq data is challenging since the data is sparse. Therefore, 
cells are grouped into cell types, which greatly reduces the complexity of the analysis, espe-
cially for organisms with as many cells as humans. But what is a cell type? How do we define 
them? The concept of a cell type might seem intuitive, but a clear definition is still missing. 

In the past, cells were mainly studied under the microscope, so cell types were defined 
based on morphology. Camillo Golgi, for instance, developed a staining technique to visualize 
neurons that could later be used to classify them based on their dendritic patterns [51]. 
Nowadays, more and more features are measured, which changes our groupings of cells into 
cell types. With these new techniques, we can define a cell type based on which genes or 
proteins are expressed in a cell [52].

Even though the definition of cell types is dynamic, Cell Ontology [53] attempts to structure 
all identifiable cell types into a hierarchy. Most cells can be classified at different levels. 
For instance, a cell can be a blood cell, a lymphoid cell, a T cell, and so on (Figure 7). This 
hierarchical structure is inherent to cell types since all cells develop from the same cell and 
become gradually more specialized. The hierarchy shows that some cell types are more similar 
to one another. However, the cell-type hierarchy does not always align with development. 

Figure 7. Example of a cell-type hierarchy for blood cells. Figure adapted from Monga et al. (2022) [54]
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1.2.1 Discovering cell types in scRNA-seq data

In scRNA-seq data, the cell type of a cell is defined based on which genes are measured in 
a cell. Because the data is sparse, we cannot determine the cell type of individual cells by 
looking only at the expression of marker genes. As a solution, we first group cells with a 
similar gene expression profile and annotate these groups based on the expression of the 
marker genes (Figure 8A). The standard pipeline from a raw (short-read) scRNA-seq count 
matrix consists of different preprocessing, clustering, and visualization steps to annotate the 
clusters, which we will discuss in more detail below [55,56]. Several computational toolkits, 
such as Scanpy [57] and Seurat [58], have been developed to analyze scRNA-seq data, and all 
steps discussed below can be performed with these tools. After annotating the cells, other 
downstream analysis tasks, such as testing for differentially expressed genes between cell 
types, can be applied. 

1.2.1.1 Preprocessing scRNA-seq data

Preprocessing starts with quality control to ensure that only high-quality, viable cells are 
in the data. Here, for instance, we filter out apoptotic cells based on the high content of 
mitochondrial genes [59,60]. Next, we normalize the data to remove differences in read 
depth between the cells. Most often, the data is normalized using library size normalization 
and log-transformed. After these steps, the dimensionality of the count matrix is still huge 
since ~20.000 genes are measured. Some of these genes are uniformly expressed across all 
the cells and uninformative for downstream tasks. We select 1000-5000 genes that show 

Figure 8. Annotating cell types in single-cell RNA-sequencing data. A) Mystery cells are grouped based on their 
expression pattern and these groups are annotated. B) Clusters are annotated by visualizing the expression of 
marker genes in two dimensions using t-SNE or UMAP.
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the most variance in the dataset. Usually, the genes with the highest variance-to-mean ratio 
are selected. Next, we reduce the dimensions to 30-50 using principal component analysis 
(PCA). PCA is a linear dimensionality reduction method that reduces the data to a new set 
of features that is a linear combination of the old features that explain most of the variance. 
Instead of linear dimensionality reduction methods, non-linear methods can be applied as 
well. For instance, scVI [61], a variational autoencoder, can map the cells to a latent space of 
10-50 dimensions. 

1.2.1.2 Identifying cell types in scRNA-seq data

After preprocessing, the data is ready for downstream analysis such as cell-type identification. 
First, we cluster the data into groups of similar cells. We construct a k-nearest-neighbor graph 
in which every cell is connected to the k cells with the most similar gene expression pattern. 
Next, we detect clusters in this graph using Louvain [62] or Leiden [63] community detection. 
Here, the resolution parameter influences the number of clusters found. The resulting 
clusters can be visualized in two dimensions using t-SNE [64] or UMAP [65] (Figure 8B). To 
annotate the clusters, we visualize the expression of marker genes in, for instance, the two-
dimensional space or a dot plot. However, marker genes might be unknown or not clearly 
expressed in scRNA-seq data, which makes annotating some clusters challenging.

1.3 Supervised learning for scRNA-seq data
In scRNA-seq data, cells are commonly annotated using clustering methods, an example of 
unsupervised learning. Unsupervised learning means that the data itself is unlabeled (i.e., 
the cell types are unknown) and the goal is to find groups in the data. However, unsupervised 
methods have drawbacks: they are subjective and time-consuming. Different parameters 
yield different clusterings, and the number of clusters or cell types discovered in scRNA-seq 
data is even correlated with the number of sequenced cells [66-68]. 

A shift towards supervised methods is needed to overcome this subjectiveness. Supervised 
models learn the relation between input data (e.g., the measured gene expression) and the 
label (e.g., the cell type). The trained model can annotate new, unlabeled data automatically. 
In this example, we predict the cell types that are discrete categories (classification), but 
supervised models can also be used to predict continuous outcomes (regression). 

Many different types of supervised methods exist. Some rely on relatively simple principles 
and try to find a linear decision boundary between different groups, such as linear discriminant 
analysis or the linear support vector machine (SVM) (Figure 9A). Other methods, such as a 
k-nearest neighbor (kNN) or nearest mean classifier, look at which samples of the different 
groups of samples are closest and transfer the closest-group label to the new, unlabeled 
sample (Figure 9B). Deep learning models, such as neural networks, convolutional neural 
networks (CNN), and recurrent neural networks (RNN), can learn more complex relationships 
between the input features and the label (Figure 9C). Deep learning models have the 
disadvantage that much training data is needed and the models are difficult to interpret. 
With the linear models, we can easily see which input features guided the decision while 
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this is impossible to know exactly for deep learning models. Approximation methods, such as 
Shapley values, exist though [69,70].

Automatic cell-type identification is one example of applying supervised models on scRNA-seq 
data. In this thesis, we will focus on two types of models: either we use the measured gene 
expression to predict the cell-type label (Section 1.4), or we know the cell-type label and use 
a generic input (e.g., the DNA sequence) to predict gene expression or splicing (Section 1.5). 

1.4 Part I  - Learning cell identities in scRNA-seq data
Ideally, we want to annotate the cells in a new scRNA-seq dataset automatically and con-
sistently by using a classifier trained on an annotated dataset to transfer the labels to this 
new dataset. Several methods have been developed for this task, each varying considerably 
in their underlying principles. Some rely on relatively simple machine learning techniques 
such as a kNN classifier [71,72], SVM [73,74], or random forest (RF) [75–77], while others 
rely on more complex deep learning architectures [78,79]. We can also categorize methods 
by whether their approach is flat or hierarchical. Hierarchical methods exploit the inherent 
hierarchical structure of cell types; instead of learning the differences between all cell types 
in one go, they split the problem into smaller subproblems. Flat classifiers, on the other hand, 
do not benefit from this advantage. Another notable example of classifiers is methods that 
leverage the Cell Ontology [80,81]. Leveraging this ontology might be beneficial in the future, 
but currently, many newly discovered cell types are still missing in their hierarchy.

1.4.1 Challenges for cell-type identification

Even though many classification methods exist, we still face several challenges when 
automatically annotating cells. 

Figure 9. Supervised learning. A) Linear classifiers learn a linear decision boundary between the class 1 and class 2 
samples. B) The k-nearest neighbor classifier looks at the neighboring samples and classifies new samples, for ex-
ample, using a majority vote. In this case, the gray unlabeled sample would be classified as class 1. C) Deep learning 
models can learn complex decision boundaries. 
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1.4.1.1 Choosing the training dataset

An enormous amount of scRNA-seq datasets is publicly available, but it remains unclear 
which one is most optimal to train the classifier. Even datasets from the same tissue will 
contain different cell types since these datasets are annotated using unsupervised methods. 
Most research groups are interested in different cell compartments. Their cells of interest 
might be annotated at a fine-grained resolution, while the other cells are annotated at a low 
resolution -again relating to the inherent hierarchy of cell types. Comparing the annotations 
of different datasets can be challenging since a naming convention is missing. 

An extra challenge is that most individual studies are incomplete. Rare cell types might be 
missing completely, or more difficult to discover when looking at one study only. Therefore, 
multiple datasets should be combined into a reference atlas, as demonstrated by initiatives 
like the Human Lung Cell Atlas [82]. Here, scRNA-seq data from 14 studies, 107 individuals, 
and different anatomical locations of the respiratory system is combined into one reference 
atlas. The cell-type labels of the datasets were manually harmonized using a group of experts, 
which is very time-consuming. Ideally, annotated datasets from the same tissue could be 
automatically combined to create a reference atlas. 

1.4.1.2 Batch effects between datasets

Unwanted technical variations between datasets pose a second challenge for automatic 
cell-type identification. These batch effects are caused by variations in sequencing depths, 
handling of the cells, protocols, laboratories, etc. Consequently, batch effects between 
datasets should be removed before a classifier can be trained (Figure 10). 

Removing batch effects is a trade-off between removing technical variation and preserving 
biological variation. Methods developed for this task can be categorized into three groups: 
1) methods that correct the original gene space, 2) methods that project the data to a 
corrected latent space, and 3) methods that construct a batch-corrected graph. Methods in 
the second group usually yield the most optimal performance [83,84]. Another grouping of 
the current methods depends on whether they adjust all input datasets or allow users to pick 
one reference and project the query datasets onto it [72,85]. Even though the latter is more 
difficult, it has the advantage that the reference remains unchanged. As such, a classifier 

Figure 10. Schematic showing A) unintegrated and B) integrated scRNA-seq data. In the integrated data, the cells 
from datasets 1 and 2 overlap. 
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trained on this reference dataset can be used to annotate any query dataset. Combining these 
reference mapping methods with an accurate classifier would thus yield a more consistent 
annotation of the query datasets. 

1.4.1.3 Identifying unknown cells

The third challenge for current classifiers is classifying cells as ‘unknown’ when the label 
is uncertain. This can be achieved by implementing a rejection option in the classifier. A 
correctly working rejection option is important for two reasons. First, the border between 
two cell types might not always be very distinct (Figure 11A). If a cell is close to the decision 
boundary, the label might be ambiguous and we prefer to keep it unlabeled. A low posterior 
probability of the classifier is a good indicator of this. Second, some datasets contain new or 
rare cell types that are not in the training data (Figure 11B). Here, the posterior probability 
might not work since this only indicates which cell types look most similar to the new cells, 
but not how similar they are. In this case, a distance metric is required. To correctly identify 
unknown cells in both scenarios, a classifier needs to use both the posterior probability and 
a distance metric to reject cells. 

1.4.2 Learning cell identities across species

Model organisms, such as mice and rats, are often used to provide insights into biological 
mechanisms inside a cell or test the effect of new drugs or treatments. Knowing what aspects 
are similar or different between model organisms and humans is crucial for understanding 
how results translate. Comparing and matching cell types across species is one fundamental 
step in this process. Some cell types might be well conserved, while others might be species-
specific. Matching cell types is thus interesting from an evolutionary point of view as well and 
aids in understanding cell-type evolution. 

Besides the batch effects described in Section 1.4.1.2, an extra challenge during cross-species 
comparisons is that the measured gene sets are different. Throughout evolution, genes have 
been duplicated, deleted, and modified, which results in complex many-to-many relations. 
Relations between genes of different species are established based on their protein sequence 
similarity, with the underlying idea that proteins with a similar amino acid sequence will 
probably execute a similar function [86]. Traditionally, BLAST [87] is used for this task. 
However, a disadvantage of BLAST is that the whole protein sequence is weighed equally, while 
certain domains are more important for a specific function. More recently, large language 

Figure 11. Examples of cells that should remain unlabeled. 
A) The gray cell is close to the decision boundary and 
therefore it is unclear whether it should be labeled a 
green or orange. The posterior probability of, for instance, 
the kNN classifier will be ~0.5, since about half of the 
neighbors are green and half are orange. B) The gray cell 
is far from the other cell types, which could indicate that 
it is a new cell type. The closest cells, however, are all 
orange so the posterior probability will be around one. In 
this case, a distance metric is needed to reject this cell. 
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models, such as SeqVec [88] and ProtBERT [89], have been trained to learn a representation 
of proteins in a lower dimensional space. These embeddings capture functional similarities 
between proteins and could be used to define homologous genes [90-92]. 

After matching the genes across species, only one-to-one orthologous genes, which are genes 
with exactly one match, are commonly used to compare cell types. The scRNA-seq methods 
developed for same-species data can be applied, which eases downstream analysis. A down-
side, however, is that much information is ignored. Some methods have been developed for 
cross-species analysis and use the many-to-many relationships between genes [93,94]. How-
ever, these methods currently all rely on the BLAST similarity. Using many-to-many orthologs 
defined by the protein embeddings would thus greatly enrich the cell type matches made.

1.5 Part II - Using scRNA-seq data to understand (post-) 
transcriptional regulation
(Post-)transcriptional regulation ensures that every cell expresses the correct genes and 
isoforms. Since a cell’s gene expression level determines its cell type, these regulation 
mechanisms must be cell-type specific. Which TF or RBP binding sites are used on the DNA or 
RNA sequence will thus differ per cell type.

Understanding cell-type-specific regulation aids in understanding the underlying fundamental 
biological processes in a cell, which is, amongst others, essential for drug development. 
Furthermore, this enables us to predict the effect of mutations in non-coding regions. 
Mutations in a TF or RBP binding site will only affect gene expression or splicing if that binding 
site is normally used in that cell type. Knowing which mutations affect which cell types and 
how, will help to find new targets for drugs or therapies. 

1.5.1 Genomic feature prediction models

Training genomic feature prediction models can help to unravel (post-)transcriptional 
regulation. These models use a generic input, such as the DNA sequence, to predict genomic 
features, such as gene expression or splicing, that were measured in a sample using RNA-seq. 
Why is it interesting to train these models though? The model cannot be extrapolated to new 
genes, as the expression of all genes was measured in the RNA-seq experiment. However, if 
a model can accurately predict the measured gene expression, interpreting why the model 
makes a high or low prediction for a gene improves our understanding of regulation. Current 
genomic feature prediction models can be divided into two groups: 1) feature-extraction-
based and 2) sequence-based methods. 

1.5.1.1 Feature-extraction-based models

Feature-extraction-based models extract features from the DNA sequence around the TSS 
of a gene or the RNA sequence around the splice site. These extracted features are used to 
train a relatively simple model, such as a linear regressor, to predict expression or splicing 
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(Figure 12A) [95–97]. Examples of extracted features are the gene length, GC content of 
the gene, and measured or predicted TF or RBP binding sites. The coefficients in the linear 
regressor directly inform us which features were most important for the predictions, which 
makes these models easy to interpret. However, we need prior knowledge about extracted 
features to train a model. If the preferred binding motif for a TF or RBP is unknown, we cannot 
incorporate it into our models either. Furthermore, evaluating how individual variants affect 
the prediction is more complicated since the sequence is not directly fed into the model.

1.5.1.2 Sequence-based models

Rapid developments in the deep learning field enabled a shift towards sequence-based 
methods. Sequence-based methods directly use the (one-hot encoded) DNA or RNA 
sequence as input to predict gene expression or splicing (Figure 12B) [98–100]. Depending 
on the task, a window varying from 400bp to 100kb around the TSS or the splice site is 
used as input. This input is unbiased towards known TFs, RBPs, or other extracted features. 
More complex models, such as CNNs, RNNs, or transformers, are used to learn the relation 
between the sequence and expression or splicing. 

Training these deep learning models can be challenging since they tend to have millions of 
free parameters, and the sample size of the training data is limited. The training data size 
cannot be increased since the number of genes per organism is limited. As a solution, models 
can be trained on multiple species simultaneously, assuming that the regulatory mechanisms 
are at least partially conserved [101].

Figure 12. Schematic of A) feature-extraction-based and B) sequence-based models to predict genomic features. In 
this example, the DNA sequence is used to predict gene expression, but the RNA sequence could be used to predict 
splicing similarly. 
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A second challenge is interpreting these black-box models. Model interpretation methods 
can give insights into what the model learned. One example is examining the initial layer 
of a CNN. The weights learned by these convolutional weight matrices are comparable to 
position-weight matrices, which indicate which sequences a TF or RBP prefers to bind [102]. 
Another option is using in-silico saturation mutagenesis (ISM) to systematically predict how 
nucleotide substitutions in the input sequence affect the predicted value [103,104]. Doing 
this for many input sequences can reveal interesting patterns that can be detected using TF-
MoDISco [105]. TF-MoDISco discovers motifs that are predicted to positively or negatively 
affect the prediction.

1.5.1.3 Tissue-specific models

In the past, these models were trained using data from cell lines and only learned the basic 
principles of regulation. The models became more specific by training them, for instance, 
on bulk RNA-seq data from different tissues. In such cases, either a model per tissue or a 
multitask model can be trained. The regulation mechanisms, however, are cell-type-specific. 
Thus, there is a need for training these models on scRNA-seq data instead. 

1.6 Contributions of this thesis
In this thesis, we address several challenges regarding identifying cell types in scRNA-seq data 
(Part I, Chapters 2-5) and using scRNA-seq datasets to improve our understanding of (post-)
transcriptional regulation (Part II, Chapters 6-7). 

Part I - Learning cell identities in scRNA-seq data

Chapter 2: In Chapter 2, we benchmark sixteen cell-type identification methods designed for 
scRNA-seq data and six off-the-shelf Python classifiers. We compare their performance on 27 
scRNA-seq datasets of different sizes, number of cell types, species, and technologies. Almost 
all methods perform well on most datasets, but their performance correlates negatively with 
the complexity of the data. Most classifiers suffer if a dataset contains many or very similar 
cell types. Overall, the linear SVM, one of the off-the-shelf Python classifiers, outperforms 
the methods designed for scRNA-seq data. Furthermore, when benchmarking the rejection 
options of the classifiers, we noticed that designing a proper rejection option is challenging 
and that relying on the posterior probability alone is not optimal. 

Chapter 3: In Chapter 3, we present single-cell Hierarchical Progressive Learning (scHPL). 
scHPL combines multiple labeled scRNA-seq datasets into one classifier. We exploit the 
unharmonized labels of the input datasets to automatically create a cell-type hierarchy 
by matching the cell types of the different datasets. This hierarchy can either be updated 
progressively using new, labeled datasets or used as a classifier to annotate the cells in an 
unlabeled dataset. For every node in the hierarchy, we train a linear SVM since this performed 
best in the benchmark in Chapter 2. Furthermore, we implemented two rejection options 
using the posterior probability to reject cells between two cell types and the reconstruction 
error of the PCA to identify new cell types. We show that scHPL can accurately construct the 
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cell-type hierarchy for PBMC and brain datasets and that scHPL outperforms the flat linear 
SVM when annotating an unlabeled dataset.

Chapter 4: In Chapter 4, we combine scHPL and scArches [84] into a computational pipeline 
called treeArches. Before running scHPL, we require datasets to be batch-corrected. A 
downside of most batch-correction tools is that the complete alignment has to be repeated 
when adding a new dataset to update the hierarchy. Consequently, the complete hierarchy 
has to be rebuilt in the new integrated space. Since scArches is a reference-mapping 
method, it projects a new dataset on top of the reference, which ensures that the reference 
and corresponding hierarchy do not change. treeArches thus facilitates easy building and 
extending of reference atlases and the corresponding cell-type hierarchy.
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Chapter 5: In Chapter 5, we propose a model to transfer and align cell types in cross-species 
analysis (TACTiCS). TACTiCS matches genes of different species using protBERT [89], an NLP 
model, while allowing for many-to-many matches. Next, it employs a neural network to train 
species-specific cell-type classifiers. Afterwards, it cross-predicts the other species’ labels and 
compares the predicted to the original labels. TACTiCS outperforms state-of-the-art methods 
when matching human, mouse, and marmoset cell types in the primary motor cortex. 

Part II - Using scRNA-seq data to understand (post-)transcriptional regulation

Chapter 6: In Chapter 6, we extend Xpresso, a tool to predict gene expression in bulk RNA-
seq samples, to scXpresso which is a multitask model trained on scRNA-seq data to predict 
cell-type-specific gene expression. We show that cell-type-specific predictions are especially 
useful in heterogeneous tissues. In all experiments, cell-type-specific models outperform the 
tissue-specific models. The difference becomes most apparent when the gene expression of 
a cell type and the corresponding tissue are dissimilar. Furthermore, we show that scXpresso 
learns TF binding sites and envision that it will be useful for unraveling cell-type-specific 
transcriptional regulation mechanisms. 

Chapter 7: In Chapter 7, we leverage long-read single-cell data to predict exon inclusion in 
glia and neurons in the human hippocampus and frontal cortex. We show that splicing is 
more difficult to predict in neurons than glia. Comparing RBP binding sites for exons with high 
and low exon inclusion between variable and non-variable exons, we found that these differ 
more in neurons than in glia, indicating that splicing mechanisms in variable exons in neurons 
diverged more from the standard mechanisms. Furthermore, we could pinpoint interesting 
RBPs regulating alternative splicing between glia and neurons. 

Chapter 8: Finally, we discuss the contribution of our work in both research directions. First, 
we discuss how consistent cell-type classification can be improved. Next, we discuss the 
limitations of current genomic feature prediction models and suggest how these could be 
tackled. 
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