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In	the	17th	century,	Robert	Hooke	discovered	something	fascinating	when	analyzing	a	piece	
of	cork	under	a	microscope:	the	cork	consists	of	tiny	pores.	This	reminded	him	of	the	cells	
in a monastery and therefore he called these pores ‘cells’ [1]. Almost two centuries later, 
Matthias	Jakob	Schleiden	and	Theodor	Schwann	formulated	the	first	concept	of	cell	theory:	
every	organism	consists	of	either	one	or	multiple	cells,	and	cells	are	the	building	blocks	of	life	
[2,3].	We	estimate	that	the	human	body	consists	of	~3.7e13	cells	[4].

Looking	at	our	own	human	body,	we	know	that	cells	have	different	functions.	For	example,	
immune	cells	fight	against	pathogens,	skeletal	muscle	cells	help	us	move,	and	sensory	nerve	
cells	receive	information	from	the	outside	world.	How	is	it	possible	that	all	these	cells	share	
the	same	DNA	yet	execute	such	a	variety	of	functions?	To	explain	this,	we	must	understand	
the	central	dogma	of	molecular	biology	that	describes	the	genetic	flow	of	information	in	a	
cell	 (Figure	1)	 [5,6]. In every cell, there are chromosomes, very long DNA molecules, that 
provide	the	genetic	code	for	an	organism.	Some	parts	of	the	DNA	sequence,	called	genes,	
are	transcribed	into	RNA	molecules.	Even	though	many	different	types	of	RNA	exist	with	all	
important	 functions,	we	will	 focus	on	messenger	RNA	 (mRNA)	here.	As	 the	name	already	
suggests, these mRNA molecules come from protein-coding genes and are translated into 
proteins.	The	resulting	protein	has	a	specific	function	in	a	cell.	

Except	for	some	somatic	mutations,	however,	every	cell	in	an	organism	has	the	same	DNA.	
How	could	a	cell	know	which	genes	have	to	be	transcribed?	Different	control	mechanisms	
tightly	regulate	transcription	and	translation	to	ensure	the	expression	of	the	correct	genes	
and	proteins	in	a	cell.	For	instance,	transcription	of	protein-coding	genes	starts	when	RNA	
polymerase II and auxiliary factors bind the promotor region, the DNA sequence around the 
transcription	start	site	(TSS)	(Figure	2).	A	group	of	proteins,	transcription	factors	(TFs),	can	bind	
parts	of	the	DNA	sequence,	called	enhancers	and	silencers,	and	either	activate	or	repress	the	
binding	of	RNA	polymerase	II	or	the	auxiliary	factors.	This	way,	transcription	factors	control	

Figure 1. The central dogma of molecular biology. DNA is transcribed into mRNA, which is translated into proteins. 
[7]
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which genes are transcribed in a cell and to which extent. Since humans have approximately 
1,400 TFs [9]	 that	can	also	act	combinatorially,	 the	exact	 regulation	mechanisms	 for	each	
gene	 are	 incompletely	 understood.	 Understanding	 transcriptional	 regulation	 is	 important	
since	a	mutation	in	a	TF,	aberrant	expression	of	a	TF,	or	a	mutation	in	a	TF	binding	site	can	
cause diseases and disorders ranging from cancer, autoimmune diseases, and diabetes to 
neurological disorders [10-14]. 

Humans	 have	 approximately	 20,000	 protein-coding	 genes	 [15,16]. Some genes, however, 
can	produce	different	proteins	with	different	 functions	 [17,18].	How	can	 the	 same	mRNA	
molecule	encode	different	proteins?	After	transcription,	 the	resulting	mRNA	molecule	has	
to be processed and spliced before the mature mRNA is transported to the nucleus and 
translated	into	a	protein	(Figure	3A).	During	the	processing,	the	head	and	tail	are	modified	to	
promote	stability	and	export	to	the	nucleus.	Splicing,	on	the	other	hand,	can	lead	to	different	
proteins. The pre-mRNA molecule consists of exons, the coding regions, and introns. During 
splicing, the spliceosome, an RNA-protein complex, binds the RNA and catalyzes the removal 
of	 the	 introns.	Exons	 from	 the	 same	gene	can	be	 joined	 in	different	 combinations,	which	
we	call	alternative	splicing	(Figure	3B).	Multiple	forms	of	alternative	splicing	are	recognized	
(Figure	3C).	For	instance,	exons	can	be	included	or	skipped	completely,	but	alternative	splice	
sites	can	be	used	as	well.	 In	humans,	approximately	90-95%	of	the	genes	are	alternatively	
spliced [19,20],	which	occurs	most	often	in	the	brain	[21]. 

We	can	draw	a	parallel	 between	 the	 regulation	of	 (alternative)	 splicing	and	 transcription.	
Where	TFs	binding	the	DNA	sequence	regulate	 transcription,	RNA	binding	proteins	 (RBPs)	
regulate	 splicing.	 RBPs	 can	 either	 activate	 or	 repress	 the	 binding	 of	 the	 spliceosome	 and	
thereby control the splicing of exons or introns [22]. Aberrant splicing, for instance, caused by 
mutations	in	RBP	binding	sites,	is	a	hallmark	of	many	neurological	diseases	[23,24].

Figure 2.	Transcriptional	regulation.	RNA	polymerase	 II	and	co-factors	must	bind	to	the	promoter	region	to	start	
transcription.	Other	proteins,	called	activators,	can	bind	enhancer	regions	and	stimulate	this	process.	The	opposite	
can happen as well. Repressors can bind a silencer region and prevent the RNA polymerase II complex from binding 
and	thus	inhibit	transcription.	[8]
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Figure 3. mRNA processing and splicing. A) The 5’ cap is added, the tail is polyadenylated, and the introns are spliced 
out.	Afterwards,	 the	mRNA	can	be	 transported	 to	 the	nucleus	and	 translated	 into	a	protein.	 [25]	B)	 Alternative	
splicing.	The	pre-mRNA	can	be	spliced	 in	different	ways.	Different	combinations	of	exons	can	be	 included	 in	 the	
mRNA	molecule	which	will	 result	 in	 different	 proteins	 after	 translation.	 [25,26]	C) Overview	 of	 different	mRNA	
splicing types. [27]
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1.1 Measuring transcription 
To	increase	our	understanding	of	cells	 in	health	and	disease,	we	quantify	which	genes	are	
expressed. RNA sequencing is a high-throughput technique to measure the number of 
mRNA	molecules	 in	 a	 sample.	 This	 is	often	done	using	next-generation	 sequencing	 (NGS)	
technologies such as Illumina and Ion Torrent [28].	 The	 general	workflow	 consists	 of	 the	
following	steps:	1)	isolating	the	RNA	from	the	cells,	2)	fragmenting	the	RNA,	3)	converting	the	
mRNA	into	cDNA	using	reverse	transcription,	4)	 ligating	sequence	adapters,	5)	sequencing	
using	 a	 sequencing	 platform,	 6)	 mapping	 the	 reads	 to	 the	 reference	 transcriptome,	 7)	
constructing	a	count	matrix	(Figure	4).	The	final	count	matrix	indicates	how	often	a	gene	was	
measured in a sample.

NGS	technologies	generate	relatively	short	reads.	For	instance,	the	read	length	is	only	150	
bp	for	most	Illumina	platforms.	This	short	read	length	makes	it	impossible	to	study	complete	
isoforms since the average length of human protein-coding transcripts is approximately 2.8kb 
[29].	Some	reads	map	to	splice	junctions,	so	from	such	reads,	we	can	extract	whether	exons	
are	skipped	or	if	alternative	3’	or	5’	splice	sites	are	used.	

1.1.1 Single-cell RNA sequencing 

NGS	techniques	have	been	developed	to	measure	transcription	in	groups	of	cells.	This	has	the	
downside	that	the	signal	is	evened	out.	If	a	gene’s	expression	differs	between	two	samples,	it	
is impossible to know whether the sample consists of the same cells with altered expression 
or	whether	the	cell-type	composition	changed	(Figure	5A).	This	is	especially	disadvantageous	
when	analyzing	heterogeneous	tissues,	such	as	the	brain.	

In	2009,	a	new	revolution	began:	single-cell	RNA	sequencing	(scRNA-seq)	[30]. Using scRNA-
seq,	 the	tissue	 is	dissociated	and	the	gene	expression	of	 individual	cells	can	be	measured	

Figure 4.	Overview	of	next-generation	sequencing.	[36]
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instead [31-35]	 (Figure	5B).	The	process	 is	quite	similar	to	sequencing	 in	bulk,	except	that	
the	cells	are	physically	separated	from	each	other	and	a	barcode	is	attached	to	every	cDNA	
molecule	after	reverse	transcription.	This	barcode	informs	which	reads	originated	from	the	
same	cell	during	the	mapping	step	later.	After	barcoding,	all	material	is	pooled	and	sequenced	
together	using	an	NGS	platform.	During	the	mapping	step,	the	reads	are	split	into	the	barcode	
and cDNA sequence. Based on the barcode, we know which cell the molecule came from, 
and based on the cDNA we know which gene was expressed. 

In general, the data generated by all scRNA-seq protocols is sparse  -around 90% of the 
values in the count matrix are zeros. Furthermore, when more cells are measured during 
an experiment, the sparser the data becomes [38].	Both	biological	and	technical	limitations	
explain	this	sparsity.	Even	essential	genes	will	not	always	be	expressed	in	a	cell.	Transcriptional	
bursting	 is	 the	 phenomenon	 in	 which	 genes	 are	 actively	 transcribed	 for	 a	 short	 period	
followed	by	a	longer	period	of	silence,	which	causes	temporal	fluctuation	in	gene	levels	[33]. 
Furthermore,	since	the	mRNA	content	in	a	cell	is	low,	it	is	difficult	to	capture	all	molecules.	

Broadly, scRNA-seq methods can be split into two groups: either the full transcript is 
sequenced,	which	is	similar	to	bulk	analysis	(e.g.,	using	Smart-Seq2	[34]),	or	only	the	3’	or	

Figure 5. Single-cell RNA sequencing. A) The	disadvantage	of	bulk	RNA	sequencing.	Multiple	scenarios	can	explain	
the decreased expression of gene A in sample 2. For instance, the expression of gene A decreased in the green cell 
type,	or	the	cell-type	composition	changed	which	resulted	in	fewer	green	cells	in	sample	2.	B) The general pipeline 
of single-cell RNA sequencing. This is similar to bulk RNA sequencing, except that cells are physically separated and 
cellular	barcodes	are	attached	to	the	cDNA.	[36,37]
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5’	end	of	 the	molecule	can	be	captured	and	counted	(e.g.,	using	10x	Chromium	 [35]).	An	
advantage of Smart-Seq2 is that the cells are sequenced deeper, which results in less sparse 
data.	Furthermore	-similar	to	bulk	RNA	sequencing	-	the	reads	can	cover	splice	junctions.	On	
the	other	hand,	10x	optimized	their	pipeline	for	sequencing	many	cells	simultaneously	at	a	
low cost. Up to hundreds of thousands of cells can be sequenced per experiment compared 
to	 thousands	with	Smart-Seq2.	However,	10x	only	captures	 the	3’	or	5’	end	of	 the	mRNA	
molecule	and	~100	nucleotides	are	measured.	This	short	part	of	the	sequence	is	enough	to	
differentiate	between	all	genes	but	lacks	information	about	splice	sites.

1.1.2 Long-read single-cell sequencing

To	study	alternative	splicing,	one	would	ideally	sequence	the	whole	mRNA	molecule	instead	
of	looking	at	short	fragments.	Two	technologies	facilitate	this	nowadays:	Oxford	Nanopore	
[39,40] and PacBio [41].	Using	Oxford	Nanopore	either	the	RNA	molecule	or	the	cDNA	passes	
through a pore, which creates a changing electrical current. A base caller deciphers the order 
of	nucleotides	that	generated	these	currents.	PacBio	uses	single-molecule	real-time	(SMRT)	
sequencing which means that the cDNA molecule of interest is replicated using DNA poly-
merase.	The	incorporated	new	nucleotides	are	all	fluorescent,	with	the	four	different	bases	
each	having	a	different	fluorescent	tag.	When	a	nucleotide	is	incorporated,	the	fluorescent	
tag	is	cut	off	and	a	detector	detects	the	fluorescent	signal	to	decode	the	order	of	nucleotides.	

Many	different	human	tissues	have	been	sequenced	using	such	long-read	protocols,	which	
enhanced the discovery of more than 70.000 new transcripts [42]. This, however, is all 
in	bulk.	 These	protocols	have	been	applied	 to	 single	 cells	 as	well,	 but	 initially,	 only	up	 to	
a hundred cells could be sequenced [43,44]. Several protocols have been developed to 
increase the throughput of long-read single-cell sequencing methods [45–47]. For example, 
some	protocols	combine	short-	and	long-read	sequencing	(Figure	6)	[48,49].	The	single	cells	
are	barcoded	using	the	10x	approach.	After	amplification,	the	cDNA	is	split	into	two	pools.	
One	pool	is	sequenced	using	Illumina	and	the	other	using	Oxford	Nanopore	or	PacBio.	Due	to	

Figure 6.	Schematic	overview	of	long-read	single-cell	sequencing.	The	pooled	barcoded	cDNA	is	split	into	two	pools.	
The	first	part	is	sequenced	using	short-read	technologies,	which	can	be	used	for	cell-type	identification.	The	second	
part is sequenced using long-read technologies. Since the barcodes of the short- and long-read data are similar, the 
data	can	be	combined	to	study	cell-type-specific	isoforms.	Figure	adapted	from	Joglekar	et	al.	(2021)	[50].

Thesis_LM_final.indd   17Thesis_LM_final.indd   17 24-04-2024   18:53:5924-04-2024   18:53:59



CHAPTER 1

18

the high costs of long-read sequencing, the coverage of the short reads generated by Illumina 
is	usually	higher,	which	results	 in	better	gene	quantification	and	can	be	used	to	group	the	
cells	into	specific	cell	types	(see	Section	1.2.1).	The	short-read	barcodes	are	also	present	in	
the long-read data and can assign a cell and a cell type to every long-read. The long reads can 
be	grouped	per	cell	type	and	be	used	to	study	cell-type-specific	isoform	usage.

1.2 Cell types
Studying individual cells in scRNA-seq data is challenging since the data is sparse. Therefore, 
cells are grouped into cell types, which greatly reduces the complexity of the analysis, espe-
cially	for	organisms	with	as	many	cells	as	humans.	But	what	is	a	cell	type?	How	do	we	define	
them?	The	concept	of	a	cell	type	might	seem	intuitive,	but	a	clear	definition	is	still	missing.	

In	 the	 past,	 cells	 were	mainly	 studied	 under	 the	microscope,	 so	 cell	 types	were	 defined	
based	on	morphology.	Camillo	Golgi,	for	instance,	developed	a	staining	technique	to	visualize	
neurons	 that	 could	 later	 be	 used	 to	 classify	 them	based	on	 their	 dendritic	 patterns	 [51]. 
Nowadays, more and more features are measured, which changes our groupings of cells into 
cell	types.	With	these	new	techniques,	we	can	define	a	cell	type	based	on	which	genes	or	
proteins are expressed in a cell [52].

Even	though	the	definition	of	cell	types	is	dynamic,	Cell	Ontology	[53]	attempts	to	structure	
all	 identifiable	 cell	 types	 into	 a	 hierarchy.	Most	 cells	 can	 be	 classified	 at	 different	 levels.	
For	instance,	a	cell	can	be	a	blood	cell,	a	lymphoid	cell,	a	T	cell,	and	so	on	(Figure	7).	This	
hierarchical structure is inherent to cell types since all cells develop from the same cell and 
become gradually more specialized. The hierarchy shows that some cell types are more similar 
to	one	another.	However,	the	cell-type	hierarchy	does	not	always	align	with	development.	

Figure 7.	Example	of	a	cell-type	hierarchy	for	blood	cells.	Figure	adapted	from	Monga	et	al.	(2022)	[54]
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1.2.1 Discovering cell types in scRNA-seq data

In	scRNA-seq	data,	the	cell	type	of	a	cell	is	defined	based	on	which	genes	are	measured	in	
a cell. Because the data is sparse, we cannot determine the cell type of individual cells by 
looking	only	 at	 the	expression	of	marker	 genes.	As	 a	 solution,	we	first	 group	 cells	with	 a	
similar	gene	expression	profile	and	annotate	these	groups	based	on	the	expression	of	the	
marker	genes	(Figure	8A).	The	standard	pipeline	from	a	raw	(short-read)	scRNA-seq	count	
matrix	consists	of	different	preprocessing,	clustering,	and	visualization	steps	to	annotate	the	
clusters, which we will discuss in more detail below [55,56].	Several	computational	toolkits,	
such as Scanpy [57] and Seurat [58], have been developed to analyze scRNA-seq data, and all 
steps	discussed	below	can	be	performed	with	these	tools.	After	annotating	the	cells,	other	
downstream	analysis	 tasks,	 such	as	 testing	 for	differentially	expressed	genes	between	cell	
types, can be applied. 

1.2.1.1 Preprocessing scRNA-seq data

Preprocessing starts with quality control to ensure that only high-quality, viable cells are 
in	 the	data.	Here,	 for	 instance,	we	filter	out	apoptotic	cells	based	on	 the	high	content	of	
mitochondrial genes [59,60].	 Next,	 we	 normalize	 the	 data	 to	 remove	 differences	 in	 read	
depth	between	the	cells.	Most	often,	the	data	is	normalized	using	library	size	normalization	
and	log-transformed.	After	these	steps,	the	dimensionality	of	the	count	matrix	is	still	huge	
since	~20.000	genes	are	measured.	Some	of	these	genes	are	uniformly	expressed	across	all	
the	cells	and	uninformative	 for	downstream	tasks.	We	select	1000-5000	genes	 that	 show	

Figure 8.	 Annotating	 cell	 types	 in	 single-cell	RNA-sequencing	data.	A) Mystery cells are grouped based on their 
expression	 pattern	 and	 these	 groups	 are	 annotated.	B) Clusters are annotated by visualizing the expression of 
marker genes in two dimensions using t-SNE or UMAP.
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the	most	variance	in	the	dataset.	Usually,	the	genes	with	the	highest	variance-to-mean	ratio	
are selected. Next, we reduce the dimensions to 30-50 using principal component analysis 
(PCA).	PCA	is	a	linear	dimensionality	reduction	method	that	reduces	the	data	to	a	new	set	
of	features	that	is	a	linear	combination	of	the	old	features	that	explain	most	of	the	variance.	
Instead	of	 linear	dimensionality	reduction	methods,	non-linear	methods	can	be	applied	as	
well. For instance, scVI [61],	a	variational	autoencoder,	can	map	the	cells	to	a	latent	space	of	
10-50 dimensions. 

1.2.1.2 Identifying cell types in scRNA-seq data

After	preprocessing,	the	data	is	ready	for	downstream	analysis	such	as	cell-type	identification.	
First,	we	cluster	the	data	into	groups	of	similar	cells.	We	construct	a	k-nearest-neighbor graph 
in which every cell is connected to the k	cells	with	the	most	similar	gene	expression	pattern.	
Next, we detect clusters in this graph using Louvain [62] or Leiden [63]	community	detection.	
Here,	 the	 resolution	 parameter	 influences	 the	 number	 of	 clusters	 found.	 The	 resulting	
clusters can be visualized in two dimensions using t-SNE [64] or UMAP [65]	(Figure	8B).	To	
annotate the clusters, we visualize the expression of marker genes in, for instance, the two-
dimensional	space	or	a	dot	plot.	However,	marker	genes	might	be	unknown	or	not	clearly	
expressed	in	scRNA-seq	data,	which	makes	annotating	some	clusters	challenging.

1.3 Supervised learning for scRNA-seq data
In scRNA-seq data, cells are commonly annotated using clustering methods, an example of 
unsupervised	 learning.	Unsupervised	 learning	means	that	the	data	 itself	 is	unlabeled	(i.e.,	
the	cell	types	are	unknown)	and	the	goal	is	to	find	groups	in	the	data.	However,	unsupervised	
methods	 have	 drawbacks:	 they	 are	 subjective	 and	 time-consuming.	 Different	 parameters	
yield	different	clusterings,	and	the	number	of	clusters	or	cell	types	discovered	in	scRNA-seq	
data is even correlated with the number of sequenced cells [66-68]. 

A	shift	towards	supervised	methods	is	needed	to	overcome	this	subjectiveness.	Supervised	
models	learn	the	relation	between	input	data	(e.g.,	the	measured	gene	expression)	and	the	
label	(e.g.,	the	cell	type).	The	trained	model	can	annotate	new,	unlabeled	data	automatically.	
In	 this	 example,	we	predict	 the	 cell	 types	 that	 are	discrete	 categories	 (classification),	 but	
supervised	models	can	also	be	used	to	predict	continuous	outcomes	(regression).	

Many	different	types	of	supervised	methods	exist.	Some	rely	on	relatively	simple	principles	
and	try	to	find	a	linear	decision	boundary	between	different	groups,	such	as	linear	discriminant	
analysis	or	the	linear	support	vector	machine	(SVM)	(Figure	9A).	Other	methods,	such	as	a	
k-nearest	neighbor	(kNN)	or	nearest	mean	classifier,	look	at	which	samples	of	the	different	
groups of samples are closest and transfer the closest-group label to the new, unlabeled 
sample	 (Figure	9B).	Deep	 learning	models,	 such	 as	 neural	 networks,	 convolutional	 neural	
networks	(CNN),	and	recurrent	neural	networks	(RNN),	can	learn	more	complex	relationships	
between	 the	 input	 features	 and	 the	 label	 (Figure	 9C).	 Deep	 learning	 models	 have	 the	
disadvantage	 that	much	 training	data	 is	needed	and	 the	models	 are	difficult	 to	 interpret.	
With	 the	 linear	models,	we	can	easily	see	which	 input	 features	guided	the	decision	while	
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this	is	impossible	to	know	exactly	for	deep	learning	models.	Approximation	methods,	such	as	
Shapley values, exist though [69,70].

Automatic	cell-type	identification	is	one	example	of	applying	supervised	models	on	scRNA-seq	
data. In this thesis, we will focus on two types of models: either we use the measured gene 
expression	to	predict	the	cell-type	label	(Section	1.4),	or	we	know	the	cell-type	label	and	use	
a	generic	input	(e.g.,	the	DNA	sequence)	to	predict	gene	expression	or	splicing	(Section	1.5).	

1.4 Part I  - Learning cell identities in scRNA-seq data
Ideally,	we	want	 to	annotate	the	cells	 in	a	new	scRNA-seq	dataset	automatically	and	con-
sistently	by	using	a	classifier	trained	on	an	annotated	dataset	to	transfer	the	labels	to	this	
new dataset. Several methods have been developed for this task, each varying considerably 
in	 their	underlying	principles.	Some	rely	on	 relatively	 simple	machine	 learning	 techniques	
such	as	a	kNN	classifier	[71,72], SVM [73,74],	or	random	forest	(RF)	[75–77], while others 
rely on more complex deep learning architectures [78,79].	We	can	also	categorize	methods	
by	whether	their	approach	is	flat	or	hierarchical.	Hierarchical	methods	exploit	the	inherent	
hierarchical	structure	of	cell	types;	instead	of	learning	the	differences	between	all	cell	types	
in	one	go,	they	split	the	problem	into	smaller	subproblems.	Flat	classifiers,	on	the	other	hand,	
do	not	benefit	from	this	advantage.	Another	notable	example	of	classifiers	is	methods	that	
leverage	the	Cell	Ontology	[80,81].	Leveraging	this	ontology	might	be	beneficial	in	the	future,	
but	currently,	many	newly	discovered	cell	types	are	still	missing	in	their	hierarchy.

1.4.1 Challenges for cell-type identification

Even	 though	 many	 classification	 methods	 exist,	 we	 still	 face	 several	 challenges	 when	
automatically	annotating	cells.	

Figure 9. Supervised learning. A)	Linear	classifiers	learn	a	linear	decision	boundary	between	the	class	1	and	class	2	
samples. B) The k-nearest	neighbor	classifier	looks	at	the	neighboring	samples	and	classifies	new	samples,	for	ex-
ample,	using	a	majority	vote.	In	this	case,	the	gray	unlabeled	sample	would	be	classified	as	class	1.	C) Deep learning 
models can learn complex decision boundaries. 
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1.4.1.1 Choosing the training dataset

An enormous amount of scRNA-seq datasets is publicly available, but it remains unclear 
which	one	 is	most	optimal	 to	 train	 the	 classifier.	 Even	datasets	 from	 the	 same	tissue	will	
contain	different	cell	types	since	these	datasets	are	annotated	using	unsupervised	methods.	
Most	research	groups	are	 interested	 in	different	cell	compartments.	Their	cells	of	 interest	
might	be	annotated	at	a	fine-grained	resolution,	while	the	other	cells	are	annotated	at	a	low	
resolution	-again	relating	to	the	inherent	hierarchy	of	cell	types.	Comparing	the	annotations	
of	different	datasets	can	be	challenging	since	a	naming	convention	is	missing.	

An extra challenge is that most individual studies are incomplete. Rare cell types might be 
missing	completely,	or	more	difficult	to	discover	when	looking	at	one	study	only.	Therefore,	
multiple	datasets	should	be	combined	into	a	reference	atlas,	as	demonstrated	by	initiatives	
like	the	Human	Lung	Cell	Atlas	[82].	Here,	scRNA-seq	data	from	14	studies,	107	individuals,	
and	different	anatomical	locations	of	the	respiratory	system	is	combined	into	one	reference	
atlas. The cell-type labels of the datasets were manually harmonized using a group of experts, 
which	 is	 very	time-consuming.	 Ideally,	 annotated	datasets	 from	 the	 same	tissue	 could	be	
automatically	combined	to	create	a	reference	atlas.	

1.4.1.2 Batch effects between datasets

Unwanted	 technical	 variations	 between	 datasets	 pose	 a	 second	 challenge	 for	 automatic	
cell-type	identification.	These	batch	effects	are	caused	by	variations	in	sequencing	depths,	
handling	 of	 the	 cells,	 protocols,	 laboratories,	 etc.	 Consequently,	 batch	 effects	 between	
datasets	should	be	removed	before	a	classifier	can	be	trained	(Figure	10).	

Removing	batch	effects	is	a	trade-off	between	removing	technical	variation	and	preserving	
biological	variation.	Methods	developed	for	this	task	can	be	categorized	into	three	groups:	
1)	 methods	 that	 correct	 the	 original	 gene	 space,	 2)	 methods	 that	 project	 the	 data	 to	 a	
corrected	latent	space,	and	3)	methods	that	construct	a	batch-corrected	graph.	Methods	in	
the	second	group	usually	yield	the	most	optimal	performance	[83,84]. Another grouping of 
the current methods depends on whether they adjust all input datasets or allow users to pick 
one reference and project the query datasets onto it [72,85].	Even	though	the	latter	is	more	
difficult,	 it	 has	 the	advantage	 that	 the	 reference	 remains	unchanged.	As	 such,	 a	 classifier	

Figure 10.	Schematic	showing	A) unintegrated and B) integrated scRNA-seq data. In the integrated data, the cells 
from datasets 1 and 2 overlap. 

Thesis_LM_final.indd   22Thesis_LM_final.indd   22 24-04-2024   18:54:0224-04-2024   18:54:02



11

Introduction

23

trained on this reference dataset can be used to annotate any query dataset. Combining these 
reference	mapping	methods	with	an	accurate	classifier	would	thus	yield	a	more	consistent	
annotation	of	the	query	datasets.	

1.4.1.3 Identifying unknown cells

The	 third	 challenge	 for	 current	 classifiers	 is	 classifying	 cells	 as	 ‘unknown’	when	 the	 label	
is	 uncertain.	 This	 can	 be	 achieved	 by	 implementing	 a	 rejection	 option	 in	 the	 classifier.	 A	
correctly	working	rejection	option	is	 important	for	two	reasons.	First,	the	border	between	
two	cell	types	might	not	always	be	very	distinct	(Figure	11A).	If	a	cell	is	close	to	the	decision	
boundary, the label might be ambiguous and we prefer to keep it unlabeled. A low posterior 
probability	of	the	classifier	is	a	good	indicator	of	this.	Second,	some	datasets	contain	new	or	
rare	cell	types	that	are	not	in	the	training	data	(Figure	11B).	Here,	the	posterior	probability	
might not work since this only indicates which cell types look most similar to the new cells, 
but	not	how	similar	they	are.	In	this	case,	a	distance	metric	is	required.	To	correctly	identify	
unknown	cells	in	both	scenarios,	a	classifier	needs	to	use	both	the	posterior	probability	and	
a distance metric to reject cells. 

1.4.2 Learning cell identities across species

Model	organisms,	such	as	mice	and	rats,	are	often	used	to	provide	 insights	 into	biological	
mechanisms	inside	a	cell	or	test	the	effect	of	new	drugs	or	treatments.	Knowing	what	aspects	
are	similar	or	different	between	model	organisms	and	humans	is	crucial	for	understanding	
how results translate. Comparing and matching cell types across species is one fundamental 
step in this process. Some cell types might be well conserved, while others might be species-
specific.	Matching	cell	types	is	thus	interesting	from	an	evolutionary	point	of	view	as	well	and	
aids	in	understanding	cell-type	evolution.	

Besides	the	batch	effects	described	in	Section	1.4.1.2,	an	extra	challenge	during	cross-species	
comparisons	is	that	the	measured	gene	sets	are	different.	Throughout	evolution,	genes	have	
been	duplicated,	deleted,	and	modified,	which	results	in	complex	many-to-many	relations.	
Relations	between	genes	of	different	species	are	established	based	on	their	protein	sequence	
similarity, with the underlying idea that proteins with a similar amino acid sequence will 
probably	 execute	 a	 similar	 function	 [86].	 Traditionally,	 BLAST	 [87] is used for this task. 
However,	a	disadvantage	of	BLAST	is	that	the	whole	protein	sequence	is	weighed	equally,	while	
certain	domains	are	more	 important	for	a	specific	function.	More	recently,	 large	 language	

Figure 11. Examples of cells that should remain unlabeled. 
A) The gray cell is close to the decision boundary and 
therefore it is unclear whether it should be labeled a 
green or orange. The posterior probability of, for instance, 
the	 kNN	 classifier	 will	 be	 ~0.5,	 since	 about	 half	 of	 the	
neighbors are green and half are orange. B) The gray cell 
is far from the other cell types, which could indicate that 
it is a new cell type. The closest cells, however, are all 
orange so the posterior probability will be around one. In 
this case, a distance metric is needed to reject this cell. 

Thesis_LM_final.indd   23Thesis_LM_final.indd   23 24-04-2024   18:54:0324-04-2024   18:54:03



CHAPTER 1

24

models, such as SeqVec [88] and ProtBERT [89],	have	been	trained	to	learn	a	representation	
of	proteins	in	a	lower	dimensional	space.	These	embeddings	capture	functional	similarities	
between	proteins	and	could	be	used	to	define	homologous	genes	[90-92]. 

After	matching	the	genes	across	species,	only	one-to-one	orthologous	genes,	which	are	genes	
with exactly one match, are commonly used to compare cell types. The scRNA-seq methods 
developed for same-species data can be applied, which eases downstream analysis. A down-
side,	however,	is	that	much	information	is	ignored.	Some	methods	have	been	developed	for	
cross-species	analysis	and	use	the	many-to-many	relationships	between	genes	[93,94].	How-
ever, these methods currently all rely on the BLAST similarity. Using many-to-many orthologs 
defined	by	the	protein	embeddings	would	thus	greatly	enrich	the	cell	type	matches	made.

1.5 Part II - Using scRNA-seq data to understand (post-) 
transcriptional regulation
(Post-)transcriptional	 regulation	 ensures	 that	 every	 cell	 expresses	 the	 correct	 genes	 and	
isoforms.	 Since	 a	 cell’s	 gene	 expression	 level	 determines	 its	 cell	 type,	 these	 regulation	
mechanisms	must	be	cell-type	specific.	Which	TF	or	RBP	binding	sites	are	used	on	the	DNA	or	
RNA	sequence	will	thus	differ	per	cell	type.

Understanding	cell-type-specific	regulation	aids	in	understanding	the	underlying	fundamental	
biological	 processes	 in	 a	 cell,	 which	 is,	 amongst	 others,	 essential	 for	 drug	 development.	
Furthermore,	 this	 enables	 us	 to	 predict	 the	 effect	 of	 mutations	 in	 non-coding	 regions.	
Mutations	in	a	TF	or	RBP	binding	site	will	only	affect	gene	expression	or	splicing	if	that	binding	
site	is	normally	used	in	that	cell	type.	Knowing	which	mutations	affect	which	cell	types	and	
how,	will	help	to	find	new	targets	for	drugs	or	therapies.	

1.5.1 Genomic feature prediction models

Training	 genomic	 feature	 prediction	 models	 can	 help	 to	 unravel	 (post-)transcriptional	
regulation.	These	models	use	a	generic	input,	such	as	the	DNA	sequence,	to	predict	genomic	
features, such as gene expression or splicing, that were measured in a sample using RNA-seq. 
Why	is	it	interesting	to	train	these	models	though?	The	model	cannot	be	extrapolated	to	new	
genes,	as	the	expression	of	all	genes	was	measured	in	the	RNA-seq	experiment.	However,	if	
a	model	can	accurately	predict	the	measured	gene	expression,	interpreting	why	the	model	
makes	a	high	or	low	prediction	for	a	gene	improves	our	understanding	of	regulation.	Current	
genomic	 feature	prediction	models	can	be	divided	 into	 two	groups:	1)	 feature-extraction-
based	and	2)	sequence-based	methods.	

1.5.1.1 Feature-extraction-based models

Feature-extraction-based	models	extract	 features	 from	the	DNA	sequence	around	the	TSS	
of a gene or the RNA sequence around the splice site. These extracted features are used to 
train	a	relatively	simple	model,	such	as	a	 linear	regressor,	to	predict	expression	or	splicing	
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(Figure	 12A)	 [95–97].	 Examples	 of	 extracted	 features	 are	 the	 gene	 length,	GC	 content	 of	
the	gene,	and	measured	or	predicted	TF	or	RBP	binding	sites.	The	coefficients	in	the	linear	
regressor	directly	inform	us	which	features	were	most	important	for	the	predictions,	which	
makes	these	models	easy	to	interpret.	However,	we	need	prior	knowledge	about	extracted	
features	to	train	a	model.	If	the	preferred	binding	motif	for	a	TF	or	RBP	is	unknown,	we	cannot	
incorporate	it	into	our	models	either.	Furthermore,	evaluating	how	individual	variants	affect	
the	prediction	is	more	complicated	since	the	sequence	is	not	directly	fed	into	the	model.

1.5.1.2 Sequence-based models

Rapid	 developments	 in	 the	 deep	 learning	 field	 enabled	 a	 shift	 towards	 sequence-based	
methods.	 Sequence-based	 methods	 directly	 use	 the	 (one-hot	 encoded)	 DNA	 or	 RNA	
sequence	as	input	to	predict	gene	expression	or	splicing	(Figure	12B)	[98–100]. Depending 
on the task, a window varying from 400bp to 100kb around the TSS or the splice site is 
used as input. This input is unbiased towards known TFs, RBPs, or other extracted features. 
More	complex	models,	such	as	CNNs,	RNNs,	or	transformers,	are	used	to	learn	the	relation	
between the sequence and expression or splicing. 

Training these deep learning models can be challenging since they tend to have millions of 
free parameters, and the sample size of the training data is limited. The training data size 
cannot	be	increased	since	the	number	of	genes	per	organism	is	limited.	As	a	solution,	models	
can	be	trained	on	multiple	species	simultaneously,	assuming	that	the	regulatory	mechanisms	
are	at	least	partially	conserved	[101].

Figure 12.	Schematic	of	A)	feature-extraction-based	and	B) sequence-based models to predict genomic features. In 
this example, the DNA sequence is used to predict gene expression, but the RNA sequence could be used to predict 
splicing similarly. 

Thesis_LM_final.indd   25Thesis_LM_final.indd   25 24-04-2024   18:54:0424-04-2024   18:54:04



CHAPTER 1

26

A	second	challenge	 is	 interpreting	 these	black-box	models.	Model	 interpretation	methods	
can	give	 insights	 into	what	 the	model	 learned.	One	example	 is	 examining	 the	 initial	 layer	
of	a	CNN.	The	weights	 learned	by	these	convolutional	weight	matrices	are	comparable	to	
position-weight	matrices,	which	indicate	which	sequences	a	TF	or	RBP	prefers	to	bind	[102]. 
Another	option	is	using	in-silico saturation	mutagenesis	(ISM)	to	systematically	predict	how	
nucleotide	substitutions	in	the	input	sequence	affect	the	predicted	value	[103,104]. Doing 
this	for	many	input	sequences	can	reveal	interesting	patterns	that	can	be	detected	using	TF-
MoDISco [105].	TF-MoDISco	discovers	motifs	that	are	predicted	to	positively	or	negatively	
affect	the	prediction.

1.5.1.3 Tissue-specific models

In the past, these models were trained using data from cell lines and only learned the basic 
principles	of	 regulation.	The	models	became	more	specific	by	 training	 them,	 for	 instance,	
on	bulk	RNA-seq	data	from	different	tissues.	 In	such	cases,	either	a	model	per	tissue	or	a	
multitask	model	can	be	trained.	The	regulation	mechanisms,	however,	are	cell-type-specific.	
Thus, there is a need for training these models on scRNA-seq data instead. 

1.6 Contributions of this thesis
In	this	thesis,	we	address	several	challenges	regarding	identifying	cell	types	in	scRNA-seq	data	
(Part	I,	Chapters	2-5)	and	using	scRNA-seq	datasets	to	improve	our	understanding	of	(post-)
transcriptional	regulation	(Part	II,	Chapters	6-7).	

Part I - Learning cell identities in scRNA-seq data

Chapter 2:	In	Chapter	2,	we	benchmark	sixteen	cell-type	identification	methods	designed	for	
scRNA-seq	data	and	six	off-the-shelf	Python	classifiers.	We	compare	their	performance	on	27	
scRNA-seq	datasets	of	different	sizes,	number	of	cell	types,	species,	and	technologies.	Almost	
all	methods	perform	well	on	most	datasets,	but	their	performance	correlates	negatively	with	
the	complexity	of	the	data.	Most	classifiers	suffer	if	a	dataset	contains	many	or	very	similar	
cell	types.	Overall,	the	linear	SVM,	one	of	the	off-the-shelf	Python	classifiers,	outperforms	
the	methods	designed	for	scRNA-seq	data.	Furthermore,	when	benchmarking	the	rejection	
options	of	the	classifiers,	we	noticed	that	designing	a	proper	rejection	option	is	challenging	
and	that	relying	on	the	posterior	probability	alone	is	not	optimal.	

Chapter 3:	 In	 Chapter	 3,	we	present	 single-cell	Hierarchical	 Progressive	 Learning	 (scHPL).	
scHPL	 combines	 multiple	 labeled	 scRNA-seq	 datasets	 into	 one	 classifier.	 We	 exploit	 the	
unharmonized	 labels	 of	 the	 input	 datasets	 to	 automatically	 create	 a	 cell-type	 hierarchy	
by	matching	 the	cell	 types	of	 the	different	datasets.	This	hierarchy	can	either	be	updated	
progressively	using	new,	labeled	datasets	or	used	as	a	classifier	to	annotate	the	cells	in	an	
unlabeled dataset. For every node in the hierarchy, we train a linear SVM since this performed 
best	 in	the	benchmark	 in	Chapter	2.	Furthermore,	we	 implemented	two	rejection	options	
using	the	posterior	probability	to	reject	cells	between	two	cell	types	and	the	reconstruction	
error	of	the	PCA	to	identify	new	cell	types.	We	show	that	scHPL	can	accurately	construct	the	
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cell-type	hierarchy	for	PBMC	and	brain	datasets	and	that	scHPL	outperforms	the	flat	linear	
SVM	when	annotating	an	unlabeled	dataset.

Chapter 4:	In	Chapter	4,	we	combine	scHPL	and	scArches	[84]	into	a	computational	pipeline	
called	 treeArches.	 Before	 running	 scHPL,	 we	 require	 datasets	 to	 be	 batch-corrected.	 A	
downside	of	most	batch-correction	tools	is	that	the	complete	alignment	has	to	be	repeated	
when adding a new dataset to update the hierarchy. Consequently, the complete hierarchy 
has to be rebuilt in the new integrated space. Since scArches is a reference-mapping 
method, it projects a new dataset on top of the reference, which ensures that the reference 
and corresponding hierarchy do not change. treeArches thus facilitates easy building and 
extending of reference atlases and the corresponding cell-type hierarchy.
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Chapter 5: In Chapter 5, we propose a model to transfer and align cell types in cross-species 
analysis	(TACTiCS).	TACTiCS	matches	genes	of	different	species	using	protBERT	[89],	an	NLP	
model, while allowing for many-to-many matches. Next, it employs a neural network to train 
species-specific	cell-type	classifiers.	Afterwards,	it	cross-predicts	the	other	species’	labels	and	
compares the predicted to the original labels. TACTiCS outperforms state-of-the-art methods 
when matching human, mouse, and marmoset cell types in the primary motor cortex. 

Part II - Using scRNA-seq data to understand (post-)transcriptional regulation

Chapter 6: In Chapter 6, we extend Xpresso, a tool to predict gene expression in bulk RNA-
seq	samples,	to	scXpresso	which	is	a	multitask	model	trained	on	scRNA-seq	data	to	predict	
cell-type-specific	gene	expression.	We	show	that	cell-type-specific	predictions	are	especially	
useful	in	heterogeneous	tissues.	In	all	experiments,	cell-type-specific	models	outperform	the	
tissue-specific	models.	The	difference	becomes	most	apparent	when	the	gene	expression	of	
a	cell	type	and	the	corresponding	tissue	are	dissimilar.	Furthermore,	we	show	that	scXpresso	
learns	 TF	 binding	 sites	 and	 envision	 that	 it	will	 be	 useful	 for	 unraveling	 cell-type-specific	
transcriptional	regulation	mechanisms.	

Chapter 7: In Chapter 7, we leverage long-read single-cell data to predict exon inclusion in 
glia	and	neurons	 in	 the	human	hippocampus	and	 frontal	 cortex.	We	show	 that	 splicing	 is	
more	difficult	to	predict	in	neurons	than	glia.	Comparing	RBP	binding	sites	for	exons	with	high	
and	low	exon	inclusion	between	variable	and	non-variable	exons,	we	found	that	these	differ	
more	in	neurons	than	in	glia,	indicating	that	splicing	mechanisms	in	variable	exons	in	neurons	
diverged	more	from	the	standard	mechanisms.	Furthermore,	we	could	pinpoint	interesting	
RBPs	regulating	alternative	splicing	between	glia	and	neurons.	

Chapter 8:	Finally,	we	discuss	the	contribution	of	our	work	in	both	research	directions.	First,	
we	 discuss	 how	 consistent	 cell-type	 classification	 can	 be	 improved.	 Next,	 we	 discuss	 the	
limitations	of	current	genomic	feature	prediction	models	and	suggest	how	these	could	be	
tackled. 
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