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abStraCt

Background The validation of objective and easy-to-implement 
biomarkers that can monitor the effects of fast-acting drugs among 
Parkinson’s disease (pd) patients would benefit antiparkinsonian 
drug development. 

Methods We developed composite biomarkers to detect 
levodopa/carbidopa effects and to estimate pd symptom severity. 
For this development, we trained machine learning algorithms to 
select the optimal combination of finger tapping task features to 
predict treatment effects and disease severity. Data were collected 
during a placebo-controlled, crossover study with 20 pd patients. The 
alternate index and middle finger tapping (imft), alternative index 
finger tapping (ift), and thumb–index finger tapping (tift) tasks and 
the Movement Disorder Society-Unified Parkinson’s Disease Rating 
Scale (mds-updrs) iii were performed during treatment. We trained 
classification algorithms to select features consisting of the mds-
updrs iii item scores; the individual imft, ift, and tift; and all three 
tapping tasks collectively to classify treatment effects. Furthermore, 
we trained regression algorithms to estimate the mds-updrs iii total 
score using the tapping task features individually and collectively. 

Results The ift composite biomarker had the best classification 
performance (83.50% accuracy, 93.95% precision) and outperformed 
the mds-updrs iii composite biomarker (75.75% accuracy, 73.93% 
precision). It also achieved the best performance when the mds-
updrs iii total score was estimated (mean absolute error: 7.87, 
Pearson’s correlation: 0.69). 

Conclusion We demonstrated that the ift composite biomarker 
outperformed the combined tapping tasks and the mds-updrs iii 
composite biomarkers in detecting treatment effects. This provides 
evidence for adopting the ift composite biomarker for detecting 
antiparkinsonian treatment effect in clinical trials.

introduCtion

Parkinson’s disease (pd) motor impairments can be characterized 
as slow and rigid and can lead to a gradual reduction in movement 
speed over time.1 The recommended instrument for assessing the 
severity of pd motor symptoms is the Movement Disorder Society’s 
revised version of the Unified Parkinson’s Disease Rating Scale, part iii 
(mds-updrs iii).2 The mds-updrs iii offers a reliable and valid metric 
for evaluating motor manifestations in each body area affected 
by pd.3-5 There are two main limitations of the mds-updrs iii. First, 
the mds-updrs iii requires approximately 15 minutes to complete 
with a trained rater, therefore making it time consuming and labor 
intensive.6 Thus, mds-updrs iii is not ideal for demonstrating the 
time of onset of fast-acting dopaminergic drugs, such as the inhaled 
forms of levodopa/carbidopa and apomorphine.7,8 Second, the 
mds-updrs iii provides only a coarse rating of motor function and 
therefore cannot identify or differentiate between specific kinematics 
of finger movements.3 As fine motor control abnormalities are 
typically the first manifestations of motor impairments in pd patients, 
it is important to develop composite biomarkers that are sensitive to 
these changes.9 To address these limitations, there is a demand for 
biomarkers that detect fine-grained changes in motor function and 
are congruent with the mds-updrs.

Finger tapping tasks provide insights into fine motor activity10,11 
and have been shown to be quick, effective, and simple assessments 
for estimating mds-updrs motor disability12,13 and assessing 
antiparkinsonian drug effects.14-19 These tasks provide insights into 
finger and forearm movement speed, accuracy, amplitude, frequency, 
rhythm, and fatigue.10,14,20,21 pd patients often experience tremors, 
stiffness, and difficulty with movement, which can significantly 
impact their ability to perform daily activities, including buttoning 
a shirt, typing on a keyboard, or using utensils.22,23 As patients want 
treatments that will improve their ability to carry out daily activities, 
measuring motor function through tapping biomarkers can provide 
a more direct and meaningful assessment of the impact of treatments 
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on patients’ lives. Therefore, the tapping tasks could be considered 
of interest to both clinicians and patients.

The complexity of parkinsonism motor impairment manifestations 
cannot be captured by a single biomarker. By exploiting machine 
learning algorithms, we can combine multiple objective biomarkers 
into a single composite biomarker that would represent a 
multidimensional characterization of pd.24 Previous studies have 
demonstrated that composite biomarkers could effectively 
differentiate between pd and healthy controls and estimate mds-
updrs iii symptom severity.25-27 This study investigates the accuracy 
and sensitivity of composite tapping biomarkers to detect drug 
effects and to estimate disease severity among pd patients.

patientS and methodS

This is an extension of a previous study that investigated the reliability 
of tapping tasks to detect the longitudinal effects of levodopa/
carbidopa and to determine the correlation of the tapping features 
with the mds-updrs iii.14 The study was conducted at the Centre for 
Human Drug Research (Chdr) in Leiden, the Netherlands, between 
July and November 2020 and is registered in the Netherlands Trial 
Register (trial NL8617).

Study overview
We conducted a double-blind, placebo-controlled, randomized, 
two-way crossover study with levodopa/carbidopa in 20 pd patients 
that had recognizable off episodes (symptoms not adequately 
controlled by their medication28). Patients received a semi-individual 
dose of the investigational drug. To ensure an off-on transition, 
the patients were given a supramaximal dose that was at least 25% 
higher than their usually administered morning dose.29

Patient criteria
Enrolled patients had a clinical diagnosis of pd, as confirmed by a 
neurologist, and a classification of a Hoehn–Yahr stages i to iii during 

their on state by an investigator. Patients were included if they were 
between ages 20 and 85 years during screening, experienced self-
described motor fluctuations, and were taking oral antiparkinsonian 
medication. Patients were excluded if they had known conditions that 
would affect levodopa/carbidopa treatment or study compliance, 
such as previous intolerance, drug dependence, or psychiatric 
disease.

Assessments
mds-UPdRs iii

We selected the mds-updrs iii as the gold standard for the purposes 
of this study. The mds-updrs iii was conducted by trained raters at 
Chdr. The examination took on average 15 minutes to complete. 
It was performed pre-dose and at 10, 30, 60, and 90 minutes after 
dosing.

finGeR tAPPinG tAsKs

All the tapping tasks were performed twice pre-dose and once at 10, 
25, 45, 60, 75, 90, and 105 minutes after dosing. If the tapping tasks 
and mds-updrs iii were planned simultaneously, then tapping tasks 
were performed first.

AlteRnAte index And middle finGeR tAPPinG And AlteRnAte index 
finGeR tAPPinG

Each patient was provided with a touchscreen laptop equipped with 
the alternate index and middle finger tapping (imft) and alternate 
index finger tapping (ift) tasks.10 The patients were instructed to use 
the hand that was most affected (if both hands were equally affected, 
to use their dominant hand) and to perform each task as fast and 
accurately as possible for 30 seconds. For the imft, patients were 
asked to tap between the two targets (2.5 cm apart) with their index 
and middle fingers. For the ift, patients were asked to tap the targets 
(20 cm apart) with their index finger.

The imft and ift require two different movements; the imft 
and ift are dependent on fine finger and forearm movements, 
respectively.10 Each of the two tasks generated 43 features relating 
to speed (e.g., total number of taps), accuracy (e.g., spatial error), 
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rhythm (e.g., inter-tap interval sd), and fatigue (e.g., change in 
velocity) (Supplemental Table 1).10,14

tHUmB–index finGeR tAPPinG

A wireless goniometer (Biometrics Ltd, Newport, uK) was placed 
on the metacarpal and proximal phalanx of the index finger of the 
most affected hand (if both hands were equally affected, to use 
their dominant hand).10,14,30 Each patient was instructed to sit com-
fortably, hold up the hand, and tap the index finger on the thumb 
as widely and quickly as possible continuously for 15 seconds. The 
thumb–index finger tapping (tift) assesses unilateral sequential fine 
finger movements. The 25 features of the tift include progressive 
changes in amplitude, hesitations, and tapping speed during the 
task (Supplemental Table 1).14

Statistical analysis
All data preprocessing and statistical analyses were conducted using 
Python (version 3.8.0)31 and the Scikit-Learn library (version 1.0.1).32

dAtA PRePRoCessinG

All features were visually and statistically inspected for normality 
using histograms and Shapiro–Wilk tests, respectively. Log or square 
root transformations were applied when the features were not 
normally distributed. Only features that were normally distributed 
were included in the analysis. Missing values were not imputed, and 
only complete cases were considered. 

As the tapping composite biomarker is designed to be a proxy 
for overall motor function, we did not account for laterality of the 
tapping task in the biomarkers. The need for assessing the tapping 
tasks with both hands is therefore avoided, which could streamline 
the assessment process and reduce the burden on patients.

ComPosite BiomARKeRs

We developed 10 composite biomarkers. The composite biomarkers 
represented the baseline-uncorrected or baseline-corrected mds-
updrs iii 18-item scores; all three tapping tasks combined; and the 

ift, imft, and tift tasks individually. From a statistical viewpoint, we 
corrected for baseline to remove any concomitant variability in the 
treatment response, which would therefore improve the precision of 
the treatment detection.33 From a practical viewpoint, we considered 
using the baseline-uncorrected values to reduce the number of 
measurements needed for treatment classification. The baseline-
uncorrected model would require only a single tapping assessment, 
whereas the baseline-corrected model would require two.

CRoss-vAlidAtion

We applied a nested k-fold cross-validation strategy to assess 
the performance and the generalizability of the composite 
biomarkers.34 In nested cross-validation, the outer fold assesses 
the performance of the model, whereas the inner fold performs 
the model and hyperparameter selection. In our study, the outer-
fold step was repeated 100 times, with each iteration containing 
a different combination of training (80% of the data) and test sets 
(20%). Each outer training set was further split into an inner training 
(80% of the data) and validation sets (20%). The inner-fold step was 
repeated 50 times, and the best-performing inner model would be 
evaluated in the outer fold. The final results would be represented 
as the averaged and standard deviation of the models selected by 
each outer fold.34 

For the classification and regression models, we applied a group-
shuffle split (same distribution of placebo and active treatments in 
each split) and a stratified-shuffle split (same distribution of mds-
updrs iii scores in each split), respectively. To stratify the mds-updrs 
iii scores, we assigned each score to one of three binned ranges 
(e.g., the baseline-corrected mds-updrs iii binned ranges were 
[-13, -8.76], [-8.76, -4.53], and [-4.53, 0.3]). Each outer fold had the 
same distribution of binned ranges. Stratification was not applied 
to the inner fold, as the small sample size would limit the number 
of samples available per bin. Within each inner fold, all features 
were standardized by subtracting the mean and scaling to the 
unit variance. To identify the features that were predictive of the 
outcomes, we identified features that were selected at least once by 
all outer-fold models.34
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ClAssifiCAtion of ACtive oR PlACeBo tReAtments

Classification models were trained to classify the active or placebo 
treatments. As we intended to predict the probability of treatment at 
all time points, we chose the last measurements to train the models. 
The mds-updrs iii classification model was trained on the 90-minute 
mds-updrs iii item scores.14 The tapping classification models were 
trained on measurements taken immediately after the mds-updrs iii 
starting at 105 minutes. 

To identify the optimal classification model, we compared three 
classification models: support vector machines, logistic regression, 
and linear discriminant analysis (lda). These classification models 
were selected as they are easy to implement and to interpret.35-37 
Previous studies have also used these algorithms to classify pd 
diagnosis or estimate mds-updrs iii.38-41 Models were compared 
based on their mean accuracy, precision, and F1 scores.40 

In addition, each model selected by the outer folds was used 
to predict the treatment at the other time points, with the 20% of 
patients who were not used for training. This would allow researchers 
to identify at which time point treatment effects are detected. For 
each time point, the mean and standard deviation of the class 
probabilities were based on the predicted log-odd ratios from 
each fold. Additionally, these probabilities were used to estimate 
the repeatability and effect size. The repeatability was assessed 
by calculating the intraclass correlation coefficients (iCC) using 
the placebo results only. Using a random intercept model with the 
intercept and time point as fixed effects, the iCC was calculated by 
dividing the between-subject variance by the sum of the between-
subject and within-subject variances. The effect size was calculated 
using all available data and a random intercept model with intercept, 
time point, treatment, and interaction between time point and 
treatment as fixed effects. In addition, the effect size was calculated 
as the contrast between the probabilities after treatment and the 
averaged baseline probabilities divided by the square root of the 
sum of the between-subject and within-subject variations.

estimAtion of tHe mds-UPdRs iii totAl sCoRe

To assess if the tapping composite biomarkers (baseline uncorrected 
and baseline corrected) could estimate the mds-updrs iii total score, 
linear regression with elastic-net regularization (optimized for α and 
the l1 ratio) was used to predict the mds-updrs iii total score at 90 
minutes using the 105-minute tapping biomarkers. These two time 
points were compared, as it was previously shown that the ift and 
tift showed significant and moderate-to-strong correlations with 
the mds-updrs iii.14 Further, the 90- and 105-minute tapping tasks 
were equally as close to the 90-minute mds-updrs iii in timing and 
therefore we assumed would perform equally well. 

To assess the performance of the models, we estimated the mean 
absolute error (mae) of the outer-fold models. We evaluated the 
correlation between the predicted and true mds-updrs iii scores 
at all time points for each outer-fold model. Like the classification 
models, the mds-updrs iii scores were estimated at other time points 
with the 20% patients who were not used for training. Additionally, as 
for the classification models, those data were also used to estimate 
the repeatability and effect size.

reSultS
Data collected
Twenty pd patients participated in this study. An overview of the 
demographic and disease characteristics of the patients was 
published previously;14 14 patients were male, and their ages ranged 
from 48 to 70 years. Patients received one to four capsules of 100/25 
mg levodopa/carbidopa as they had a supramaximal morning 
levodopa equivalent dose (led) ranging from 47 to 391 milligrams. 
The median mds-updrs iii score (when using regular medication) was 
23 and 22 on their placebo and active treatment days, respectively.14 

We analyzed 31 imft, 31 ift, and 25 tift features. No features 
were excluded due to nonnormal distribution. Due to goniometer 
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damage, we had missing data for 1 patient in the placebo condition 
and 2 patients in the active condition. As 6 patients had difficulties 
performing the imft, this led to missing data. However, the missing 
data were equally distributed across the treatment conditions and 
therefore deemed missing at random.

Classification of placebo and active treatments
We found that the lda classifier consistently yielded the highest 
accuracy for all models (for both baseline uncorrected and baseline 
corrected); thus, we reported only the lda results.

ClAssifiCAtion of tReAtment effeCts

The best-performing baseline-uncorrected composite biomarker, 
the ift, yielded an accuracy, precision, F1 score, and large effect 
size of 68.50%, 70.23%, 68.93%, and 1.60 respectively (Table 1). 
The best-performing baseline-corrected composite biomarker, the 
ift, achieved a higher average accuracy, precision, F1 score, and 
large effect size of 83.50%, 93.95%, 80.09%, and 2.58. Both models 
outperformed the mds-updrs iii classification models across all 
metrics. The ift features that were mutually identified as important 
features for the baseline-uncorrected and baseline-corrected 
classification models were related to accuracy (e.g., spatial errors and 
the bivariate contour ellipse area), fatigue (e.g., velocity changes), 
and velocity (e.g., inter-tap intervals) (Figure 1).

ClAssifiCAtion of tReAtment effeCts At All time Points

In Figure 2, the classification models were applied to all time points, 
showing the mean predicted probability of an active (>0.5) or placebo 
treatment (<0.5). In the baseline-corrected ift, tift, and mds-updrs 
iii models, the mean predicted probability of a patient receiving a 
placebo treatment was consistently less than 0.5. In contrast, when 
active treatment was administered, the baseline-corrected ift and 
mds-updrs iii model had a mean predicted probability above 0.5 
from 60 minutes onward. The baseline-corrected imft and tift 
models crossed the 0.5 thresholds after 45 minutes. We found that 
the baseline-corrected ift biomarker determined a large effect size 

(0.81) at 30 minutes, whereas the baseline-uncorrected ift biomarker 
reached a large effect size of 0.84 at 60 minutes. The mds-updrs iii 
achieved a large effect size at 60 minutes (1.69 and 1.04 for baseline 
corrected and baseline uncorrected, respectively) (Supplemental 
Figure 2). The mds-updrs iii demonstrated higher repeatability than 
the tapping tasks. Whereas the baseline-uncorrected mds-updrs iii 
biomarker obtained an excellent iCC, the ift and tift both achieved 
good iCCs (0.78, 0.80).42 However, the iCCs of the baseline-corrected 
mds-updrs iii and the ift, imft, and tift biomarkers decreased to a 
moderate iCC range between 0.52 and 0.66.42

Estimation of MDS-UPDRS III
The mean mds-updrs iii total scores at 90 minutes for the placebo 
and active treatments were 33.5 and 22.0, respectively. When 
baseline-corrected, the mean mds-updrs iii scores for the placebo 
and active treatments were 0.3 and -13.0, respectively (Figure 3).

estimAtion of mds-UPdRs iii

The best-performing baseline-uncorrected regression models were 
the tift and ift composite biomarkers, which achieved the lowest 
average mae of 10.31 and 10.36, respectively. In addition, the tift 
and ift showed large effect sizes of 1.47 and 2.23, respectively, 
when estimating the mds-updrs iii. The best-performing baseline-
corrected model was the ift composite biomarker, which yielded 
the lowest average mae of 7.87. For both the baseline-uncorrected 
and baseline-corrected models, the best-performing composite 
biomarkers outperformed that of the composite biomarkers of 
the three tasks. For the ift features, the features that were mutually 
selected by both models were similar to that of the ift classification 
features (Figure 2; Supplemental Figure 1).

estimAtion of mds-UPdRs iii At All time Points

The predicted and true mds-updrs iii scores were significantly 
correlated for the baseline-corrected and baseline-uncorrected 
models (Table 2). Once again, the best positive correlations were 
achieved by the tift baseline-uncorrected composite biomarker 
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(r=0.58, p<0.01) and the ift baseline-corrected composite biomarker 
(r=0.69, p <0.01). The greatest difference in the true mds-updrs iii 
scores between the placebo and active treatment interventions was 
at 90 minutes (Figure 3). The tapping tasks achieved a moderate to 
good iCC (Table 2).

diSCuSSion
Detection of treatment effects
The ift biomarker (baseline corrected and baseline uncorrected) 
was, on average, more predictive of and more sensitive to treatment 
effects than the mds-updrs iii biomarker in terms of accuracy, 
precision, and clinical significance (as supported by the effect-
size performances) (Table 1). This is significant as the ability to 
detect changes in aspects of motor function that may be missed 
by traditional assessments allows for a more sensitive measure of 
treatment efficacy. This can be valuable for detecting small and early 
changes in motor function that are indicative of a treatment response. 
The most important ift features used to classify treatment effects are 
in concert with previous studies (Figure 1) that also identified that 
forearm movements relating to velocity, amplitude, and rhythm are 
sensitive to antiparkinsonian drug effects.10, 15, 43, 44

We demonstrated that treatment effects were detected at 45 and 
60 minutes for the tift and ift composite biomarkers, respectively 
(Figure 2). This finding is notable as the mean onset of levodopa/
carbidopa action is about 50 minutes.45 This suggests that tapping 
tasks can detect the onset of oral levodopa/carbidopa. The mds-
updrs iii was not performed at 45 minutes, so it could not be 
determined whether the mds-updrs iii biomarker could detect 
treatment effects at 45 minutes. These findings further propound that 
the tapping tasks are practical and sensitive composite biomarkers 
for detecting motor response changes induced by antiparkinsonian 
drugs.46 Further, the large effect sizes can potentially reduce sample 
size requirements and enhance power for future tapping task trials 
that assess treatment effects.

The performance of the classification models (except for the iCC) 
improved when the features were baseline corrected. Despite this, 
both models provide practical and clinical value. The baseline-
uncorrected models required only a single measurement and 
represent the current motor function status. The baseline-corrected 
models require two measurements and represent the changes in 
motor function over time. The increased performance suggests that 
treatment response is dependent on the patient’s tapping profile 
during their off state and adjusting for baseline removes variation 
in the levodopa/carbidopa response.

Estimation of MDS-UPDRS III
We found that the baseline-corrected ift biomarker, despite 
yielding the best performance among all the biomarkers, achieved a 
prediction error of approximately eight points and was significantly 
moderately correlated using the mds-updrs iii. The prediction error 
is comparable to existing sensor-based composite biomarkers used 
to estimate the mds-updrs iii. Studies using data sourced from 
an Axitvity AX3 (placed on the wrist and back or only the wrist) to 
estimate the gold standard achieved an mae ranging from 4.29 to 
6.29 points.47, 48

The tapping biomarkers predicted a smaller range of mds-updrs 
iii scores compared to that of the true mds-updrs iii scores (Figure 
3). It is likely due to using only hand and forearm motor function 
assessments to predict the mds-updrs iii total scores, which includes 
motor assessments of other regions affected by pd, such as gait, 
facial expression, and speech.4 As the correlations of the true and 
predicted mds-updrs iii scores were moderate (Table 2), the tapping 
biomarkers still showed concurrent validity with the gold standard. 
This suggests that the tapping biomarkers could provide clinicians 
with an understanding of the acute effects of drugs on motor 
fluctuations within a short monitoring period.

Despite the discrepancies between the true and predicted mds-
updrs iii total scores, with the advancements in technology, it is 
not unusual for the performance of new clinical assessments to 
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outperform the current gold standard. However, the discrepancy 
between the two assessments influences the accuracy estimates 
of the new clinical assessments, and as it would be interpreted as 
a prediction error.49 Therefore, we argue that accurate estimation 
of the mds-updrs iii score is not essential for the adoption of the 
composite biomarker as a new complementary assessment for 
estimating symptom severity. Rather, the consequences resulting 
from the disagreement between the gold standard and the tapping 
composite biomarkers should be investigated.

Future work
We demonstrated that the tapping composite biomarkers could 
detect the onset of oral levodopa/carbidopa at 45 minutes. A follow-
up study could investigate if the tapping composite biomarkers could 
detect an earlier onset of an even faster-acting antiparkinsonian drug, 
such as inhaled apomorphine that has an onset as early as 8 minutes.8 
This would further validate the sensitivity of the tapping composite 
biomarker to detect fast-acting dopaminergic drug effects.

Our sample size may limit the generalizability of this study’s 
findings as a small sample size may not be representative of 
the broader population of patients with pd, making it difficult to 
generalize its results to a larger population.50 This is particularly 
relevant for pd studies, where the disease can manifest in different 
ways and progress at different rates in different patients. To mitigate 
the effect of the small sample sizes, we employed cross-validation 
to bootstrap and validate the models against different groups of 
patients. We propose conducting a follow-up trial to implement 
the tapping tasks among more pd patients with more diverse mds-
udprs iii profiles. The data collected from the trial can be used 
as an independent data set to assess the validity, reliability, and 
generalizability of our current methods.

Although composite biomarkers have the advantage of capturing 
multiple aspects of motor function, the effects of individual 
components within the composite biomarker must be carefully 
examined to avoid misleading interpretations of the results. For 
example, a treatment that improves tapping speed but worsens 

tapping rhythm may result in an overall neutral effect, making it 
difficult to interpret the treatment’s efficacy. Like other composite 
measures, such as the mds-updrs iii total score, it is crucial to examine 
the effects of each feature of the composite biomarker separately, 
as well as in conjunction with the overall composite score, to better 
understand the treatment’s impact on finger motor function.

ConCluSion

In conclusion, the ift biomarker was more predictive of and 
sensitive to the detection of treatment effects than the mds-updrs 
iii biomarker; therefore, the tapping biomarkers appear to hold 
promise for evaluating the early and rapid effects of antiparkinsonian 
drugs. Moreover, the tapping task is easy to perform and can be 
done in clinical settings as well as at home by patients themselves, 
making it a practical and convenient method for monitoring disease 
progression and treatment response. Using tapping biomarkers, 
clinicians can obtain accurate and reliable data that can inform 
treatment decisions in real time.
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tabLe	1	 The mean and standard deviations of the accuracy, precision, F1 score, and effect 
size for each biomarker (at 90 minutes for mdS-updrS iii and 105 minutes for the tapping task) 
are based on the 100 outer folds of the nested cross-validation. 

Tasks Accuracy Precision F1 score iCC Effect size

Ba
se

lin
e 

un
co

rre
ct

ed
 

imft  56.90% 
(15.09%) 

61.67% 
(22.53%) 

56.56% 
(18.07%) 

0.60 
(0.25) 

0.64 
(0.57) 

ift  68.50% 
(12.56%) 

70.23% 
(16.31%) 

68.93% 
(14.9%) 

0.78 
(0.21) 

1.60 
(0.82)

tift  67.72% 
(15.84%) 

65.55% 
(21.03%) 

67.51% 
(18.22%) 

0.78 
(0.22) 

1.14 
(0.80)

All three tasks  63.0%  
(16.91%) 

64.35% 
(27.32%) 

59.82% 
(23.16%) 

0.68 
(0.29) 

0.91 
(0.68) 

mds-updrs iii 
item scores 

63.75% 
(11.25%) 

61.20%  
(10.9%) 

68.90% 
(11.52%) 

0.92 
(0.10) 

1.03 
(0.60) 

Ba
se

lin
e 

co
rre

ct
ed

 

imft  66.86% 
(15.23%) 

70.83% 
(17.25%) 

69.01% 
(15.04%) 

0.57 
(0.17) 

1.44 
(0.98) 

ift  83.50% 
(10.74%) 

93.95% 
(11.25%) 

80.09% 
(14.92%) 

0.53 
(0.16) 

2.58 
(0.90) 

tift  77.86% 
(14.97%) 

82.32% 
(21.43%) 

74.72% 
(18.44%) 

0.52 
(0.17) 

1.14 
(0.80) 

All three tasks  77.98% 
(13.26%) 

81.85% 
(21.15%) 

74.66% 
(19.17%) 

0.48 
(0.18) 

0.91 
(0.61) 

mds-updrs iii 
item scores 

75.75% 
(14.45%) 

79.95% 
(17.64%) 

73.93% 
(16.42%) 

0.66 
(0.11) 

2.12 
(1.25) 

The mean iCC and standard deviation are based on all time points for the placebo condition only. The numbers in bold 
font represent the highest mean performance per model per column.   
imft, alternate index and middle finger tapping; ift, alternate index finger tapping; tift, thumb-index finger tapping; 
mds-UPdRs iii, Movement Disorder Society-Unified Parkinson’s Disease Rating Scale part iii; iCC, intraclass correlation 
coefficient.

tabLe	2	 Average correlation and iCC (95% Ci) between the true and predicted mdS-
updrS scores across all time points for the repeated nested cross-validation 100 outer-fold 
predictions. 

Tasks Correlation 
coefficient (r)

P-value iCC Effect size

Ba
se

lin
e 

un
co

rre
ct

ed
 imft 0.10 

(0.03, 0.16)
p<0.05 

(<0.05, 0.05)
0.69 

(0.65, 0.73)
0.67 

(0.53, 0.81)
ift 0.52 

(0.45, 0.59)
p<0.01 

(<0.01, <0.01)
0.80 

(0.76, 0.83)
1.02 

(0.91, 1.14)
tift 0.58 

(0.53, 0.63)
p<0.05 

(<0.01, <0.05)
0.78 

(0.74, 0.82)
1.47 

(1.27, 1.67)
All three tasks 0.11 

(0.04, 0.18)
p<0.05 

(<0.05, 0.05)
0.66 

(0.61, 0.71)
0.75 

(0.62, 0.88)

Ba
se

lin
e 

co
rre

ct
ed

imft 0.34 
(0.27, 0.40)

p<0.05 
(<0.01, 0.06)

0.48 
(0.44, 0.52)

1.10 
(0.92, 1.28)

ift 0.69 
(0.65, 0.73)

p<0.001
(<0.001,<0.005)

0.45 
(0.42, 0.48)

2.23 
(2.01, 2.45)

tift 0.65 
(0.60, 0.69)

p<0.001 
(<0.001, <0.001)

0.50 
(0.46, 0.54)

1.37 
(1.20, 1.54)

All three tasks 0.56 
(0.52, 0.61)

p<0.05 
(<0.001, <0.05)

0.43 
(0.39, 0.47)

1.06 
(0.91, 1.21)

The average effect size (95% Ci) between the baseline and 90 minutes for mds-UPdRs iii and 105 minutes for the 
tapping tasks was also included. The numbers in bold font represent the highest correlation coefficient (r), iCC, and 
effect size for each treatment and task.  
iCC, intraclass correlation coefficient; Ci, confidence interval; mds-UPdRs, Movement Disorder Society-Unified 
Parkinson’s Disease Rating Scale; imft, alternate index and middle finger tapping; ift, alternate index finger tapping; 
tift, thumb-index finger tapping. 
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Figure	1	 The average feature coefficients of the respective features selected by the linear 
discriminant analysis (lda) classifier for each finger tapping task feature and the Movement 
Disorder Society-Unified Parkinson’s Disease Rating Scale (mdS-updrS) part iii item score 
features (baseline-uncorrected and baseline-corrected models). The error bars represent the 
95% confidence interval.

An overview of finger tapping task features is provided in Supplemental Table 1.  
imft, alternate index and middle finger tapping; ift, alternate index finger tapping; tift, thumb-index finger tapping. 

Figure	2	 The mean predicted probability that active treatment was administered in the 
placebo (blue) and active (orange) treatment groups. The green dotted line represents the 0.5 
decision boundary. The bands represent the 95% confidence interval.

imft, alternate index and middle finger tapping; ift, alternate index finger tapping; tift, thumb-index finger tapping, 
mds-UPdRs iii, Movement Disorder Society-Unified Parkinson’s Disease Rating Scale part iii. 
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Figure	3	 Average true and predicted Movement Disorder Society-Unified Parkinson’s 
Disease Rating Scale part iii scores with standard deviation from 0 to 105 minutes post dose for 
the placebo (blue) and active (orange) treatment interventions when corrected for baseline.

mds-UPdRs iii, Movement Disorder Society-Unified Parkinson’s Disease Rating Scale part iii; ift, alternate index finger 
tapping. 

Supplementary material
suppLementaL	tabLe	1 Overview of features for the alternate index and middle finger tap-
ping (imft), alternate index finger tapping (ift), and thumb-index finger tapping (tift) tasks. 

Acronym Description (unit) Task

BCa Bivariate contour ellipse area (represents the area of an ellipse which 
encompasses the fixation points) (mm2)

imft, ift

BCt Angle of the bivariate contour ellipse’s major axis (degree) imft, ift

dBltr Ratio good taps:total taps (a good tap is defined here as a tap on the correct 
side (left/right) of the touchscreen)

imft, ift

dBltt Total number of double/missed taps imft, ift

dtC Change in distance travelled over time, i.e., linear slope over all inter-tap 
distances (mm/min)

imft, ift

dtd Difference in mean distance travelled between the first 10 taps and the last 10 
taps (cm)

imft, ift

dtm Mean distance travelled between two consecutive taps (cm) imft, ift

dts Standard deviation of all distances between consecutive taps (cm) imft, ift

dtt Total distance travelled between consecutive taps (cm) imft, ift

dtv Distance traveled: coefficient of variation (dts/dtm * 100) (%) imft, ift

itC Change in inter-tap interval over time, i.e., linear slope over all inter-tap intervals 
(ms/min)

imft, ift, tift

itd Difference in mean inter-tap interval between the first 10 taps and the last 10 
taps (ms)

imft, ift

itm Mean inter-tap interval (ms) imft, ift, tift

its Standard deviation of all inter-tap intervals (ms) imft, ift, tift

itv Inter-tap interval: coefficient of variation (its/itm * 100) (%) imft, ift, tift

noh Number of halts (taps where the inter-tap interval is larger than 2 * its) imft, ift

seC Change in spatial error over time, i.e., linear slope over all taps’ spatial errors 
(mm/min). (Spatial error is the Euclidean distance of a tap from the targets’ 
center point)

imft, ift

sed Difference in mean spatial error between the first 10 taps and the last 10 taps 
(mm)

imft, ift

sem Mean spatial error (mm) imft, ift

ses Standard deviation of the spatial errors (mm) imft, ift

set Total spatial error (mm) imft, ift

sev Spatial error: coefficient of variation (ses/sem * 100) (%) imft, ift

tit Taps inside the target circle imft, ift
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Acronym Description (unit) Task

tnt Total number of taps imft, ift

tot Taps outside the target circle imft, ift

ttr Ratio taps inside:total taps imft, ift

veC Change in velocity over time, i.e., linear slope over all inter- tap velocities (cm/
min2)

imft, ift

ved Difference in mean volocity between the first 10 taps and the last 10 taps (cm/
min)

imft, ift

vem Mean velocity (cm/min) imft, ift

ves Standard deviation of the velocities (cm/min) imft, ift

vev Velocity: coefficient of variation (ves/vem * 100) (%) imft, ift

aaC Change in maximum angle amplitude over time (degree2/s) tift

aam Mean of the tapping angle amplitude (degree2) tift

afC Change in peak tapping frequency over time (Hz/min) tift

afm Mean peak tapping frequency (Hz) tift

Cvm Mean closing velocity: mean of the amplitude (i.e., angle) travelled per second 
for each tap when moving the index finger towards the thumb (closing); velocity 
extracted from the derivative of the amplitude (degree/s)

tift

fpa Amplitude at peak frequency (degree2/Hz) tift

fpf Peak frequency (Hz) tift

fpp The total power around the peak frequency, i.e., the area under the curve in the 
power spectrum around the peak frequency (measure of amplitude) (degree2)

tift

ovm Mean opening velocity: mean of the amplitude (i.e., angle) travelled per second 
for each tap when moving the index finger away from the thumb (opening); 
velocity extracted from the derivative of the amplitude (degree/s)

tift

taC Change in tapping amplitude over time, i.e., linear slope over all tapping 
amplitudes (degree/s)

tift

tam Mean tapping amplitude (degree) tift

tvm Mean angular tapping velocity (degree/s) tift

vam Mean tapping angle velocity ((degree/s)2) tift

vfC Change in tapping angle velocity frequency over time (Hz/min) tift

[continuation of Supplemental Table 1] suppLementaL	Figure	1 The average feature coefficients selected by the elastic-net linear 
regression models for each of the composite biomarkers under baseline-uncorrected and 
baseline-corrected conditions. The errors represent the 95% confidence intervals.

imft, alternate index and middle finger tapping; ift, alternate index finger tapping; tift, thumb-index finger tapping. 
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suppLementaL	Figure	2 Effect sizes of each of the tapping tasks and the Movement 
Disorder Society-Unified Parkinson’s Disease Rating Scale part iii composite biomarkers at 
each time point.

imft, alternate index and middle finger tapping; ift, alternate index finger tapping; tift, thumb-index finger tapping; 
mds-UPdRs iii, Movement Disorder Society-Unified Parkinson’s Disease Rating Scale part iii.
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