

Motivic invariants of character stacks Vogel, J.T.

Citation

Vogel, J. T. (2024, June 13). *Motivic invariants of character stacks*. Retrieved from https://hdl.handle.net/1887/3762962

Version: Publisher's Version

Licence agreement concerning inclusion of

License: doctoral thesis in the Institutional Repository of

the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3762962

Note: To cite this publication please use the final published version (if applicable).

Stellingen

behorende bij het proefschrift "Motivic invariants of character stacks"

- (i) Characteristically, the Euler characteristic of the G-character stack of a surface of Euler characteristic 2-2g is determined by the characteristics of the character table of G over finite fields.
- (ii) The group of unipotent upper triangular matrices of rank 10 over the finite field of 13 elements has 609233173333356 irreducible complex representations of degree 815730721.

[Theorem 6.3.10]

- (iii) Let X and Y be quasi-projective varieties over a field k of characteristic not equal to 2, both equipped with an action of $G = \mathbb{Z}/2\mathbb{Z}$. If X can be stratified into copies of affine space on which G acts linearly, then $[X \times Y]^+ = [X]^+[Y]^+ + [X]^-[Y]^-$ in the Grothendieck ring $K_0(\mathbf{Var}_k)$, where $[X]^+ = [X \ /\!\!/ G]$ and $[X]^- = [X] [X]^+$. [Theorem 3.6.19]
- (iv) Let G be a connected complex algebraic group, and denote by $\mathfrak{X}_G(\Sigma_g)$ the G-character stack of a closed surface Σ_g of genus g. Then the limit $\lim_{g\to\infty} e(\mathfrak{X}_G(\Sigma_g))/e(G)^{2g-2}$ is equal to the E-polynomial $e(G^{ab})$ of the abelianization of G. When G is a finite group, the limit $\lim_{g\to\infty} |\mathfrak{X}_G(\Sigma_g)|/|G|^{2g-2}$ is equal to the number of 1-dimensional irreducible representations of G.
- (v) For every $r \geq 0$, the sequences of GL_r -representation varieties $X_n = R_{GL_r}(F_n)$ of the free groups F_n , and $Y_n = R_{GL_r}(\mathbb{Z}^n)$ of the free abelian groups \mathbb{Z}_n , with the action of GL_r by conjugation, and the action of S_n by permutation, are motivically representation stable (see Definition 7.3.4).

[Theorems 7.4.1 and 7.4.2]

- (vi) There exists a closed 4-dimensional manifold with non-trivial fundamental group which has no non-trivial G-local system for any complex algebraic group G.
- (vii) Let G be the group $\mathbb{G}_m \rtimes \mathbb{Z}/2\mathbb{Z}$ over a field k of characteristic not equal to 2. The G-character stack $\mathfrak{X}_G(\Sigma_g)$ has virtual class $\frac{1}{2}((\mathbb{L}-1)^{2g-2}(2^{2g+1}+\mathbb{L}-3)+(\mathbb{L}+1)^{2g-2}(2^{2g+1}+\mathbb{L}-1))$, where \mathbb{L} is the class of the affine line. [Corollary 4.11.5]
- (viii) The virtual class of the SL_2 -character stack $\mathfrak{X}_{\operatorname{SL}_2}(\Sigma)$ of a closed surface Σ , in the ring $\operatorname{K}_0^{\mathbb{P}^1}(\operatorname{\mathbf{Stck}}_{\mathbb{C}})$ (see Definition 5.1.3), depends only on the Euler characteristic of Σ .

 [Corollary 5.5.4]
 - (ix) The morphism $K_0(\mathbf{Var}_{\mathbb{A}^1_k}) \otimes K_0(\mathbf{Var}_{\mathbb{A}^1_k}) \to K_0(\mathbf{Var}_{\mathbb{A}^2_k})$ of rings, which sends $[X] \otimes [Y]$ to $[X \times Y]$, is not surjective for any field k. [Corollary of Example 3.2.10]
 - (x) The mathematical community should, when the technology allows it, strive towards a culture where the results of their papers are formalized using proof-assistants.