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Chapter 7

Motivic stability

Let Γn be a sequence of finitely generated groups, and let G be an algebraic

group over a field k. One can wonder whether the invariants of the corresponding

sequence of character stacks XG(Γn) are related. We will mainly focus on the

sequence Γn = Zn of free abelian groups and the sequence Γn = Fn of free groups,

for which the character stacks parametrize (commuting) tuples of elements in G

up to conjugation.

Geometric invariants of these and related spaces have been studied extensively

[Bai07, AC07, PS13, FL14]. For Xn the sequence of G-representation varieties

or G-character varieties of Zn, the homology groups Hk(Xn) were computed in

[RS19], and their mixed Hodge structures in [FS21]. A pattern emerged: fixing

n and varying G through sequences Gr of classical groups (such as GLr or Ur),

the homology groups Hk(Xn) remain constant for sufficiently large r, that is,

they stabilize. This pattern was proved in [RS21], as well as for fixed G and

increasing n, and for many related sequences Xn. Moreover, taking into account

the action of the symmetric group Sn on Zn by permutation, inducing an action

of Sn on Xn and in turn on Hk(Xn), they showed the homology groups stabilize

as Sn-representations. This type of stability, called representation stability, was

formulated in [CF13]: a sequence Vn of Sn-representations is representation sta-

ble, roughly speaking, if the multiplicities of the irreducible representations Vλ,

corresponding to the partitions λ of n, stabilize. Partitions for n and n + 1 are

related by increasing the first number.

In this chapter, we combine the notion of representation stability with that of

motivic stability. Completing the Grothendieck ring of varieties, one can study

the convergence of a sequence of virtual classes. Such convergence was studied

in [VW15] for sequences of symmetric powers SymnX (as an algebraic analogue

of the Dold–Thom theorem) and sequences of configuration spaces ConfnX.

141



142 CHAPTER 7. MOTIVIC STABILITY

Using the theory of Section 3.6, we will generalize the notion of motivic stability,

and introduce the concept of motivic representation stability. As an application,

we will show that the sequence of GLr-character stacks XGLr (Zn), with the action

of Sn, is motivically representation stable.

7.1 Motivic stability

Motivic stability is a property of a sequence of varieties, which amounts to the

convergence (in some sense) of their virtual classes in the topological ring M̂L,

which is the completion of the localization K0(Vark)[L−1] of the Grothendieck

ring of varieties. This topological ring was originally constructed by Kontsevich in

the context of motivic integration [Kon95]. For more information on this object,

we refer to [Bou11, Loo02, VW15].

For our applications, we adapt the standard definitions to the equivariant setting.

Throughout, fix an algebraic group G over k, and denote by L the class [A1
k] ∈

K0(VarGk ) of A1
k on which G acts trivially.

Definition 7.1.1. WriteMG
L for the localization K0(VarGk )[L−1]. Consider the

increasing filtration onMG
L ,

0 ⊆ · · · ⊆ FnMG
L ⊆ Fn+1MG

L ⊆ · · · ⊆ MG
L ,

where FnMG
L is the subgroup of MG

L generated by all elements of the form

[X]/Lm with dimX −m ≤ n. Note that
⋃
n∈Z FnM̂G

L =MG
L . The completion

with respect to this filtration is denoted

M̂G
L = lim←−

n

MG
L /FnMG

L .

An element x ∈ M̂G
L can be represented as a tuple (xn) ∈

∏
n∈ZMG

L /FnMG
L

such that xn ≡ xm mod FnMG
L for all m ≤ n.

The completion M̂G
L inherits, a priori, only the group structure fromMG

L . Mul-

tiplication is defined as follows. Let x = (xn) and y = (yn) be elements of M̂G
L .

Note that there exists a sufficiently large N such that xn = yn = 0 for all n ≥ N .

Now define xy by (xy)n = x′n−Ny
′
n−N mod FnMG

L , where x
′
n−N , y

′
n−N ∈ MG

L
are lifts xn−N and yn−N , respectively. This is independent of the choice of lift

since, for any other lift x′′n−N , we have x′′n−Ny
′
n−N − x′n−Ny

′
n−N = (x′′n−N −

x′n−N )y′n−N ∈ Fn−NMG
L · FNMG

L ⊆ FnMG
L . Similarly, it is independent of the

choice of lift y′n−M . This gives M̂G
L a ring structure.

Definition 7.1.2. Let X be a G-variety over k. For any n ≥ 0, the n-th G-

symmetric power of X, denoted Symn
GX, is the G-variety given by the ordinary
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symmetric power SymnX = Xn�Sn with the action ofG induced by the diagonal

action on Xn.

Definition 7.1.3. Let X be a G-variety over k. The symmetric powers Symn
GX

of X are called motivically stable if the limit

lim
n→∞

[Symn
GX]

Ln dimX

exists in M̂G
L . More generally, a sequence Xn of G-varieties over k is motivically

stable if the limit

lim
n→∞

[Xn]

LdimXn

exists in M̂G
L .

Example 7.1.4. When G = 1 is the trivial group, we simply write M̂L instead

of M̂G
L . In this case, the following sequences are motivically stable.

■ From Example 3.3.5, we see that the sequence Xn = GLn is motivically stable,

with limit limn→∞[GLn]/Ln
2

=
∏
i≥1(1− L−i).

■ Similarly, Xn = SLn is motivically stable with limit limn→∞[SLn]/Ln
2−1 =∏

i≥2(1 − L−i). Since [PGLn] = [SLn], the sequence Xn = PGLn is also mo-

tivically stable, with the same limit.

■ It is still an open conjecture [VW15, Conjecture 1.25] whether the symmetric

powers of all geometrically irreducible varieties are motivically stable. However,

some evidence has been presented against it [Lit14].

Example 7.1.5. Let us give some intuition for what motivic stabilization implies

about the cohomology of Xn. Suppose Xn is a sequence of varieties over k = C.
Note that the E-polynomial descends to a continuous morphism

e : M̂G
L → Z[u, v]J(uv)−1K

where the target is equipped with the (uv)−1-adic topology. Since

e([Xn]/LdimXn) =
∑

k,p,q∈Z
(−1)khk;p,qc (Xn)u

p−dimXnvq−dimXn ,

it follows, if the sequence Xn motivically stabilizes, that, for all p and q, the

numbers hk;dimXn−p,dimXn−q
c (Xn) are eventually constant as n→∞. If the Xn

are smooth projective, then evaluating in u = v = t, it also follows that the

dimensions dimCH
dimXn−k
c (Xn;C) are eventually constant as n → ∞, as well

as the dimensions dimCHk(Xn;C) by Poincaré duality.
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In the context of motivic stability, an important source of sequences of varieties

are the symmetric powers of a variety X. In order to keep track of the virtual

classes of these symmetric powers, we collect them as the coefficients of a power

series, as first done by [Kap00].

Definition 7.1.6. Let X be a G-variety over k. The motivic zeta function of X

is

ZG(X, t) =
∑
n≥0

[Symn
GX] tn ∈ 1 + t ·K0(VarGk )JtK.

Lemma 7.1.7. Let X be a G-variety over k, and Y ⊆ X a G-invariant closed

subvariety with open complement U . Then ZG(X, t) = ZG(Y, t)ZG(U, t), and

hence ZG(−, t) descends to a group morphism

ZG(−, t) : K0(VarGk )→ 1 + t ·K0(VarGk )JtK

with the multiplicative group structure on the right. In particular, Symn
G descends

to a map

Symn
G : K0(VarGk )→ K0(VarGk ).

Proof. From

[Symn
GX] = [Xn � Sn] =

∑
i+j=n

[(Sn · (Y i × U j)) � Sn]

=
∑
i+j=n

[(Y i � Si)× (U j � Sj)] =
∑
i+j=n

[Symi
G Y ][Symj

G U ]

follows that

ZG(X, t) =
∑
n≥0
i+j=n

[Symi
G Y ][Symj

G U ] tn = ZG(Y, t)ZG(U, t).

The following lemma is a variation of [Göt01, Lemma 4.4], adapted to the equiv-

ariant setting.

Proposition 7.1.8. Let G be a finite group, and let X be a G-variety over k.

For any r ≥ 0, we have

ZG(Lr[X], t) = ZG([X],Lrt).

Proof. It suffices to treat the case r = 1. Denote by π : Symn(X×A1
k)→ SymnX

the obvious projection. Note that SymnX is naturally stratified by locally closed
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subvarieties (SymnX)λ according to the partitions λ of n. For every such parti-

tion λ, we consider the cartesian diagram

X
ℓ(λ)
∗ ×

∏n
i=1(Aik � Si)ai(λ) π−1 ((SymnX)λ)

X
ℓ(λ)
∗ (SymnX)λ

πλ

where ai(λ) denotes the number of times i appears in λ, and X
ℓ(λ)
∗ the space of

ℓ(λ) =
∑
i ai(λ) distinct ordered points of X. Since

∏n
i=1(Aik � Si)

ai(λ) ∼= Ank ,
the diagram defines an étale trivialization of πλ. The transition functions are

given by the action of the group Sa1(λ)×· · ·×San(λ), which acts linearly. Hence,

πλ is a vector bundle which is étale-locally trivial, so by Hilbert’s Theorem 90

[Ser58, Theorem 2] also Zariski-locally trivial. However, note that a stratification

of (SymnX)λ trivializing πλ need not necessarily be G-invariant. Nevertheless,

using that G is finite, any such stratification can be intersected with all of its

translations by g ∈ G, in order to obtain a G-invariant stratification. Hence, we

conclude that [Symn
G(X × A1

k)] = Ln[Symn
GX].

From the Chevalley–Shephard–Todd theorem [Che55], it is easy to see that

SymnArk is not isomorphic to Anrk for n, r > 1. Nevertheless, the above proposi-

tion yields the following corollary.

Corollary 7.1.9. For any n, r ≥ 0, we have Symn Lr = Lnr. In particular,

ZG(Lr, t) = 1/(1− Lrt).

Lemma 7.1.10. Let X be a d-dimensional G-variety over k, and suppose that

the symmetric powers Symn
GX are motivically stable. Then

lim
n→∞

[Symn
GX]

Lnd
=
[
(1− t)ZG(X, t/Ld)

]
t=1

.

Proof. As

[
(1− t)ZG(X, t/Ld)

]
t=1

=

1 +∑
n≥1

(
[Symn

GX]

Lnd
− [Symn−1

G X]

L(n−1)d

)
tn


t=1

evaluates to a telescoping series, it is equal to limn→∞[Symn
GX]/Lnd.

Example 7.1.11. Let X be a variety over k such that [X] ∈ K0(Vark) is a

polynomial in L. Then the sequence of symmetric powers Xn = SymnX is mo-

tivically stable if and only if [X] is monic in L. Namely, writing [X] =
∑d
i=0 aiLi
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with ad ̸= 0, it follows from Lemma 7.1.7 and Corollary 7.1.9 that

ZG([X], t) =

d∏
i=0

(
1

1− Lit

)ai
.

Hence, [SymnX]/Lnd is the n-th coefficient of

ZG(X, t/Ld) =
d∏
i=0

(
1

1− Li−dt

)ai
.

Therefore, for ad = 1, we find that

lim
n→∞

[SymnX]

Lnd
=
[
(1− t)ZG(X, t/Ld)

]
t=1

=

d−1∏
i=0

(
1

1− Li−d

)ai
,

and for ad > 1, the limit is easily seen to not exist.

Proposition 7.1.12 ([VW15, Proposition 4.2]). Let X be a G-variety over k,

and Y ⊆ X a G-invariant closed subvariety of dimension dimY < dimX, with

open complement U = X\Y . Then the symmetric powers Symn
GX are motivically

stable if and only if the symmetric powers Symn
G U are motivically stable, and in

this case

lim
n→∞

[Symn
GX]

Ln dimX
= ZG(Y,L− dimX) lim

n→∞

[Symn
G U ]

Ln dimX
.

Proof. Let us prove the result modulo F−mMG
L for allm ≥ 0, by induction onm.

The case m = 0 is trivial as [Symn
GX]/Ln dimX ≡ 0 mod F0MG

L , and similarly

for U . For m > 0 we find, as in Lemma 7.1.7, that, for all n ≥ 1,

[Symn
GX]

Ln dimX
≡
m−1∑
i=0

[Symn−i
G U ]

L(n−i) dimX

[Symi
G Y ]

Li dimX
mod F−mMG

L (∗)

since [Symn−i
G U ][Symi

G Y ]/Ln dimX ∈ F−mMG
L for i ≥ m as dimY < dimX.

Now, if the symmetric powers of U stabilize modulo F−mMG
L , say to ℓ =

limn→∞[Symn
G U ]/LdimX , then the right-hand side of equation (∗) stabilizes

modulo F−mMG
L to ℓ ZG(Y,L− dimX). Conversely, if the symmetric powers of

X stabilize modulo F−mMG
L , then the symmetric powers of U stabilize modulo

F−m+1MG
L (by the induction hypothesis), so every term on the right-hand side

of (∗) with i ≥ 1 stabilizes modulo F−mMG
L . But then also the term with i = 0

must stabilize, which shows that the symmetric powers of U stabilize modulo

F−mMG
L .

Remark 7.1.13. Suppose G is the trivial group, and write Z(−, t) for ZG(−, t).
The definition of Z(−, t) can be extended to the Grothendieck ring of stacks
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K0(Stckk). Since K0(Stckk) ∼= K0(Vark)[L−1, (Ln − 1)−1] by Theorem 3.5.7, it

suffices to recursively define Z(x/L, t) and Z(x/(Ln−1), t) in terms of Z(x, t) for

all elements x ∈ K0(Stckk), using that Z(x, t) is determined for x ∈ K0(Vark).

This is done as follows.

Z(x/L, t) = Z(x,L−1t)

Z(x/(Ln − 1), t) =
∏
i≥0

Z(x,Lint)−1

Note that this gives a well-defined map

Z(−, t) : K0(Stckk)→ 1 + t ·K0(Stckk)JtK

since

Z(xL/L, t) = Z(x, t) and

Z(x(Ln − 1)/(Ln − 1)) =
∏
k≥0

Z(x(Ln − 1),Lknt) =
∏
k≥0

Z(x,Lknt)
Z(x,L(k+1)nt)

= Z(x, t)

which is easily seen to still be group morphism. In particular, looking at the n-th

coefficient of Z(−, t), we find that Symn descends to a map

Symn : K0(Stckk)→ K0(Stckk).

The definition of symmetric powers does not naturally extend from varieties to

stacks. However, as shown in [Eke09b], the class Symn[X] coincides with the

virtual class of the stacky symmetric power [Xn/Sn] for objects X of Stckk when

char(k) = 0 and char(k) > n.

7.2 Equivariant stability

In this section we will show various stability results, for non-trivial algebraic

groups G. Let us start by considering one of the simplest actions.

Proposition 7.2.1. Let G = Gm act on A1
k via α · x = αx. Then

lim
n→∞

Symn
G[A1

k]

Ln
=

[Gm]

L− 1

in M̂G
L , where on the right Gm acts transitively on itself.

Proof. Write X = [A1
k] for the described action of Gm on A1

k. Since Symn A1
k
∼=

Ank has basis of coordinates given by the elementary symmetric polynomials, we

have

Symn
GX =

n∏
i=1

[A1
k] =

n∏
i=1

(1 + Yi),
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where, for any i ≥ 1, we denote Yi = [Gm] for the action α · x = αix. Note that

YiYj = (L − 1)Ygcd(i,j) for any i, j ≥ 1. Indeed, there exist a, b ∈ Z such that

ai+ bj = d := gcd(i, j), so the equality follows from the isomorphism

Gm ×Gm ∼= Gm ×Gm
(x, y) 7→ (xayb, xj/ gcd(i,j)y−i/d)

(zi/dwb, zj/dw−a)←[ (z, w),

where α · (x, y, z, w) = (αix, αjy, αdz, w). Now, it follows that

Symn
GX = 1 +

∑
i≥1

an,iYi with an,i =
∑
S

(L− 1)|S|−1,

where the latter sum runs over all non-empty subsets S ⊆ {1, 2, . . . , n} such that

gcd(S) = i. Now, for any i ≥ 2, we see that any S appearing in this sum must

have |S| ≤ n/i, so that degL(an,i) ≤ n/i− 1. In particular,

lim
n→∞

an,i
Ln

= 0

for i ≥ 2. Furthermore, from the equality 1+
∑n
i=1 an,i(L− 1) = Ln follows that

lim
n→∞

an,1
Ln

= lim
n→∞

1

Ln

(
Ln − 1

L− 1
−

n∑
i=2

an,i

)
=

1

L− 1
,

and therefore

lim
n→∞

Symn
GX

Ln
=

1

L− 1
Y1.

Corollary 7.2.2. The action of G = Gm on A1
k given by α · x = αx extends

to P1
k and restricts to Gm. The symmetric powers of P1

k and Gm are motivically

stable with limits

lim
n→∞

Symn
G[P1]

Ln
=

L
(L− 1)2

[Gm]

lim
n→∞

Symn
G[Gm]

Ln
=

1

L
[Gm].

Proof. This follows from Proposition 7.2.1 together with Proposition 7.1.12 and

the fact that ZG(1, t) = 1/(1− t).

Next, we will generalize this result to the groups G = GLr acting on affine space.

In doing so, the following definition will be useful.

Definition 7.2.3. Let Xn be a sequence of G-varieties over k. A family of G-

invariant subvarieties Yn ⊆ Xn is negligible if limn→∞ dimXn − dimYn =∞. In

particular, Xn is motivically stable with limit ℓ = limn→∞[Xn]/LdimXn if and

only if Zn = Xn \ Yn is motivically stable with the same limit.
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Proposition 7.2.4. Let G = GLr act naturally on Ark for some r ≥ 1. Then

lim
n→∞

Symn
G[Ark]

Lnr
=

[GLr]∏r
i=1(Lr − Li−1)

=

r∏
i=1

[Ark]− Li−1

Lr − Li−1

with GLr acting transitively on itself.

Proof. Let Xn ⊆ Symn
GArk be the strata where GLr acts freely, that is, the strata

of points whose stabilizer is trivial. Then Xn → Xn � GLr is a GLr-torsor, so

[Xn] = [Xn � GLr][GLr] since GLr is a special group. In particular, if we show

that the complement Yn = (Symn
GArk) \Xn of points with non-trivial stabilizer

is negligible, then the result follows as

lim
n→∞

Symn
G[Ark]

Lnr
= lim
n→∞

[Xn]

Lnr
= lim
n→∞

[Xn � GLr]

Lnr
[GLr]

where

lim
n→∞

[Xn � GLr]

Lnr
= lim
n→∞

[Xn]

Lnr
[GLr]

−1 = [GLr]
−1 =

1∏r
i=1(Lr − Li−1)

.

To show that Yn is negligible, suppose (x1, . . . , xn) ∈ (Ark)n is a point which (in

passing to the quotient by Sn) is stabilized by some non-trivial A ∈ GLr. Then

there is a permutation σ ∈ Sn such that Axi = xσ(i) for all i = 1, . . . , n. Hence,

there is a surjection ⊔
σ∈Sn

Zσ → Yn

with Zσ =
{
(A, x1, . . . , xn) ∈ (GLr \ {1})× (Ark)n | Axi = xσ(i)

}
. We claim that

dimZσ ≤ dimGLr + nr − n for all σ ∈ Sn, from which it follows that dimYn ≤
dimGLr +nr−n, which in turn implies Yn is negligible. To prove this claim, fix

some σ ∈ Sn and write σ = τ1τ2 . . . τs in canonical cycle notation (in particular,

we do not omit 1-cycles). Then for every cycle τ = (i1 i2 . . . im), let

Zτ =
{
(A, xi1 , . . . , xim) | Axij = xτ(ij)

}
.

If τ is a 1-cycle, then dimZτ ≤ dimGLr + r− 1 since A is non-trivial. If τ is an

(m ≥ 2)-cycle, then dimZτ ≤ dimGLr + r. Simple combinatorics now yields

dimZσ = dim(Zτ1 ×GLr\{1} · · · ×GLr\{1} Zτs) ≤ dimGLr + nr − n.

Remark 7.2.5. Note that Proposition 7.2.1 is a special case of this proposition,

but with an alternative proof.

Finally, we want to extend this result to any linear algebraic group G acting lin-

early on affine space. In order to relate M̂G
L for various G, consider the following

lemma.
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Lemma 7.2.6. Let G be an algebraic group over k with subgroup H ⊆ G. The

morphisms ResGH and IndGH of Definition 3.6.5 extend to continuous morphisms

ResGH : M̂G
L → M̂H

L and IndGH : M̂H
L → M̂G

L .

In fact, ResGH is defined for any morphism H → G of algebraic groups over k.

Proof. Since ResGH(FmMG
L ) ⊆ FmMH

L and IndGH(FmMH
L ) ⊆ Fm′MG

L , with

m′ = m+ dimG− dimH, both IndGH and ResGH extend to the completions.

Corollary 7.2.7. Let G be an algebraic group over k acting on Ark via some

morphism ρ : G→ GLr of algebraic groups. Then

lim
n→∞

Symn
G[Ark]

Lnr
=

[GLr]∏r
i=1(Lr − Li−1)

where G acts on GLr by multiplication via ρ.

Proof. Use Proposition 7.2.4 and that ResGLr

G ◦ Symn
GLr

= Symn
G ◦Res

GLr

G .

7.3 Motivic representation stability

In the context of motivic stability, it is typical to consider a sequence of symmetric

powers SymnX = Xn�Sn of a varietyX over k. However, one can more generally

consider the whole Xn together with the action of Sn by permutation. One

can then attempt to study the stability of the Sn-virtual class of Xn, as in

Definition 3.6.12.

However, two problems arise. First of all, the group Sn depends on n, so to

talk about stability, we must identify the irreducible representations of Sn for

varying n. Recall that the irreducible representations of Sn are parametrized

by the partitions of n [FH91]. Write Vλ for the irreducible representation of Sn
corresponding to a partition λ of n. For any partition λ = (λ1, λ2, . . .) and any

integer n ≥ |λ|+ λ1, denote by λ[n] the partition of n given by

λ[n] = (n− |λ|, λ1, λ2, . . .).

Then, we think of the family Vλ[n] of irreducible representations of Sn as corre-

sponding to each other.

The second problem is that the Sn-virtual class depends on the choice of a set H
of subgroups of Sn. One could, as in Example 3.6.15, take set of Young subgroups

H = {Sλ1
× · · · × Sλk

| λ is a partition of n}. (7.1)
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This idea will give rise to Definition 7.3.4. However, to get rid of the choice,

we will first consider invariants in K0(A) instead of K0(Vark) for some suitable

category A and functor X : Vark → A. We will assume the following:

■ A is a K-linear idempotent complete tensor triangulated category, with K a

field of characteristic zero.

■ The functor X induces a ring morphism K0(Vark)→ K0(A). For any element

x ∈ K0(Vark), we will denote its image in K0(A) also by x.

■ For any finite group G and G-variety X over k, the coefficient of [X (X)]G ∈
K0(A)⊗RK(G) corresponding to the trivial representation equals [X (X�G)].

Inspired by [CF13, Definition 2.3], we introduce the following definition.

Definition 7.3.1. Let Xn be a sequence of varieties over k with an action of

Sn. The sequence is A-representation stable if, writing

[Xn]
Sn =

∑
λ[n]

[Xn]λ[n] ⊗ [Vλ[n]] ∈ K0(A)⊗RQ(Sn),

the coefficients [Xn]λ[n]/LdimXn are eventually independent of n.

One way to compute the coefficients [Xn]µ, for partitions µ of n, is to look at the

virtual classes of the quotients Xn � Sλ with Sλ ∈ H. This way, one inevitably

encounters the Kostka numbers Kµλ. We will need the following lemma.

Lemma 7.3.2. Let λ and µ be partitions. The Kostka number Kµ[n]λ[n] is inde-

pendent of n for n ≥ |λ|+ µ1.

Proof. Recall that Kµλ is equal to the number of ways to fill the Young diagram

of µ with λ1 1’s, λ2 2’s, etc., such that the resulting tableau is non-decreasing

along rows and strictly increasing along columns [FH91]. Denote by Aµλ the set

of such tableaux. In particular, Kµλ = |Aµλ|.

For |µ| > |λ|, we have µ[n] < λ[n], and hence Kµ[n]λ[n] = 0. Now suppose

|µ| ≤ |λ|. Considering Aµ[n]λ[n], note that all (n− |λ|) 1’s must be placed on the

first row of the Young diagram of µ[n]. Therefore, any Young tableau in Aµ[n]λ[n]
is completely determined by the second through last rows and the last |λ| − |µ|
entries of the first row. Note that, for n ≥ |λ|+ µ1, these last |λ| − |µ| entries do
not put any restrictions on the entries of the second through last rows. Hence,

we obtain a bijection between Aµ[n]λ[n] and Aµ[n′],λ[n′] for all n, n′ ≥ |λ| + µ1,

which shows that Kµ[n]λ[n] = Kµ[n′]λ[n′].

Proposition 7.3.3. Suppose the sequences [Xn �Sλ[n]]/LdimXn ∈ K0(A) stabi-
lize for all partitions λ. Then, the sequence Xn is A-representation stable.
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Proof. Write [Xn]
Sn =

∑
λ[n][Xn]λ[n] ⊗ [Vλ[n]]. For any λ, we have, similar to

Example 3.6.15,

[Xn � Sλ[n]] =
〈
TSλ[n]

,ResSn

Sλ[n]
[Xn]

Sn

〉
=
〈
IndSn

Sλ[n]
TSλ[n]

, [Xn]
Sn

〉
=

∑
µ[n]≥λ[n]

Kµ[n]λ[n][Xn]
µ[n].

Note that there are, independent of n, only finitely many partitions µ such that

µ[n] ≥ λ[n]: those µ with |µ| < |λ|, and those with |µ| = |λ| and µ > λ.

By Lemma 7.3.2, the numbers Kµ[n]λ[n] are, for sufficiently large n, independent

of n. Hence, [Xn]λ[n] can be expressed as a linear combination of [X �Sµ[n]] with
µ[n] ≥ λ[n], where the coefficients do not change for sufficiently large n ≥ 2|λ| ≥
|λ|+ µ1.

This motivates the following definition. Also agrees with stabilization ofG-virtual

class with H given by (7.1).

Definition 7.3.4. Let Xn be a sequence of varieties over k with an action of

Sn. The sequence is said to be motivically representation stable if the sequences

[Xn � Sλ[n]] are motivically stable for all partitions λ. In particular, this implies

Xn is A-representation stable for all A and X : Vark → A as above. Also, in

particular, the sequence [Xn � Sn] is motivically stable.

More generally, a sequence Xn of (G× Sn)-varieties over k is motivically repre-

sentation stable if the sequences [Xn �Sλ[n]] are motivically stable, as sequences

of G-varieties, for all partitions λ.

Example 7.3.5. Let X be a variety over k whose sequence of symmetric powers

SymnX is motivically stable, and let Xn = Xn with Sn acting by permutation.

Then, for any partition λ, the sequence

[Xn � Sλ[n]] = Symn−|λ|X ×
∏
i≥1

Symλi X

is motivically stable. In particular, Xn is motivically representation stable.

7.4 GLr-character stacks

The goal of this section is to show the sequences of character stacks

Xn = XG(Γn) = [RG(Γn)/G]
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of the free groups Γn = Fn and the free abelian groups Γn = Zn are motivic

representation stable for the general linear groups G = GLr of any rank r ≥ 0

over a field k, where the action of Sn is induced from the action of Sn on Γn
by permutation. However, since the notion of motivic representation stability

is only defined for (G-)varieties, we will instead prove that the sequences of

representation varieties Xn = RG(Γn) are motivically representation stable as

sequences of G-varieties. Indeed, note that the action of G by conjugation and

the action of Sn by permutation commute.

The case of Γn = Fn turns out to be a quick consequence of the theory developed

in the previous sections.

Theorem 7.4.1. For every r ≥ 0, the sequence of GLr-representation varieties

Xn = RGLr (Fn)

with the action of GLr by conjugation, and the action of Sn by permutation, is

motivically representation stable.

Proof. For any n ≥ 1, write Xn = RGLr
(Fn) = (GLr)

n. Given any partition λ,

we find

Xn � Sλ[n] = Sym
n−|λ|
GLr

GLr ×
∏
i≥1

Symλi

GLr
GLr,

where GLr acts on itself by conjugation. Viewing GLr as a dense open subset of

Ar2k , the action of GLr on itself is linear, and hence the sequence Xn � Sλ[n] is

motivically stable by Corollary 7.2.7 and Proposition 7.1.12.

For the remainder of this section, we will focus on the case Γn = Zn, and assume

that k is algebraically closed.

Theorem 7.4.2. For every r ≥ 0, the sequence of GLr-representation varieties

Xn = RGLr (Zn)

with the action of GLr by conjugation, and the action of Sn by permutation, is

motivically representation stable.

Notation-wise, we will use the following presentation of Xn, as the closed subva-

riety of (GLr)
n given by commuting tuples of elements Ai ∈ GLr.

Xn =
{
(A1, . . . , An) ∈ (GLr)

n
∣∣ all Ai commute

}
Interestingly, it turns out the cases r ≤ 3 should be treated differently from the

general case r > 3. We will first treat the cases r = 2, 3.
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Proposition 7.4.3. The GL2-representation varieties Xn = RGL2(Zn) are mo-

tivically representation stable.

Proof. Consider the possible Jordan normal forms of an element A ∈ GL2.(
λ 0
0 λ

)
(
λ 1
0 λ

) (
λ 0
0 µ

)
In particular, note that a matrix of the form

(
λ 0
0 µ

)
, with λ ̸= µ, only commutes

with diagonal matrices, and that a matrix of the form
(
λ 1
0 λ

)
only commutes with

matrices of the form ( x y0 x ). Therefore, Xn can be stratified by the subvarieties

Yn = {A ∈ Xn | all Ai are scalar} ,
Jn =

{
A ∈ Xn | some Ai is conjugate to

(
λ 1
0 λ

)}
and Mn =

{
A ∈ Xn | some Ai is conjugate to

(
λ 0
0 µ

)}
.

Simultaneously conjugating the Ai into normal form, we can express Jn as

Jn = IndGL2

H (Jn \ Yn)

where J = {( x y0 x ) | x ̸= 0} and H = {( a b0 c ) | a, c ̸= 0} the stabilizer of J . Simi-

larly, we have

Mn = IndGL2

K (Mn \ Yn)

where M =
{(

x 0
0 y

)
| x, y ̸= 0

}
and K = {( a 0

0 b ) , (
0 a
b 0 ) | a, b ̸= 0} the stabilizer

of M . Clearly dimYn = n while dimJn,dimMn ≥ 2n, implying Yn ⊆ Xn is

negligible. Hence, it suffices to show that the sequences J ′
n and M ′

n, given by

J ′
n = IndGL2

H (Jn) and M ′
n = IndGL2

K (Mn)

are motivically representation stable.

First we consider J ′
n. Note that, for any partition λ, the actions of Sλ[n] and GL2

on Jn commute, so that

J ′
n � Sλ[n] = IndGL2

H

(
Sym

n−|λ|
H J ×

∏
i≥1

Symλi

H J
)
.

Note that the action of H on J is linear, viewing J as an open dense subva-

riety of A2
k. Hence, the sequence J ′

n � Sλ[n] is motivically stable as a result of

Corollary 7.2.7, Proposition 7.1.12 and Lemma 7.2.6.

The argument regarding Mn is analogous: for any partition λ, we have

M ′
n � Sλ[n] = IndGL2

K

(
Sym

n−|λ|
K M ×

∏
i≥1

Symλi

K M
)
.



7.4. GLr-CHARACTER STACKS 155

Again, the action of K on M ⊆ A2
k is linear, so the sequence M ′

n � Sλ[n] is also

motivically stable.

Proposition 7.4.4. The GL3-representation varieties Xn = RGL3
(Zn) are mo-

tivically stable.

Proof. The proof is very similar to that of Proposition 7.4.3. Consider the pos-

sible Jordan normal forms of an element A ∈ GL3.(
λ 0 0
0 λ 0
0 0 λ

)
(
λ 1 0
0 λ 0
0 0 λ

) (
λ 0 0
0 λ 0
0 0 µ

)
(
λ 1 0
0 λ 1
0 0 λ

) (
λ 1 0
0 λ 0
0 0 µ

) (
λ 0 0
0 µ 0
0 0 ρ

)
Having analyzed which matrices commute with each Jordan type, we stratify Xn

by the subvarieties

Y 0
n =

{
A ∈ Xn | all Ai are conjugate to

(
λ 0 0
0 λ 0
0 0 λ

)
,
(
λ 1 0
0 λ 0
0 0 λ

)
or
(
λ 0 0
0 λ 0
0 0 µ

)}
,

Y 1
n =

{
A ∈ Xn | some Ai is conjugate to

(
λ 1 0
0 λ 1
0 0 λ

)}
,

Y 2
n =

{
A ∈ Xn | some Ai is conjugate to

(
λ 1 0
0 λ 0
0 0 µ

)}
,

Y 3
n =

{
A ∈ Xn | some Ai is conjugate to

(
λ 0 0
0 µ 0
0 0 ρ

)}
.

Note that the sequences Y 1
n , Y

2
n and Y 3

n do not intersect since matrices that

have different Jordan type in the bottom row never commute. As in the proof

of Proposition 7.4.3, to show motivic representation stability of the strata Y in, it

suffices to show motivic representation stability of the sequences

Y ′i
n = IndGL3

Hi
(Jni ) for i = 1, 2, 3,

where

J1 =
{( x y z

0 x y
0 0 x

)
| x ̸= 0

}
H1 =

{(
a b c
0 1 d
0 0 1/a

)
| a ̸= 0

}
J2 =

{(
x y 0
0 x 0
0 0 z

)
| x, z ̸= 0

}
H2 =

{(
a b 0
0 c 0
0 0 d

)
| a, c, d ̸= 0

}
J3 =

{(
x 0 0
0 y 0
0 0 z

)
| x, y, z ̸= 0

}
H3 = G3

m ⋊ S3.

More precisely, H3 ⊆ GLr is the subgroup generated by the diagonal matrices

and the permutation matrices.
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Now, for any partition λ, we find

Y ′i
n � Sλ[n] = IndGL3

Hi

(
Sym

n−|λ|
Hi

Ji ×
∏
j≥1

Sym
λj

Hi
Ji

)
.

For all i, the group Hi acts linearly on Ji, a dense open of A3
k, so it fol-

lows from Corollary 7.2.7, Proposition 7.1.12 and Lemma 7.2.6 that the limits

limn→∞ Y in/L3n exist. Knowing that dimXn ≥ 3n, we see that Y 0
n ⊆ Xn is

negligible, and the result follows.

Looking at the proofs of Proposition 7.4.3 and Proposition 7.4.4, it might be

tempting to think that in the general case the non-negligible strata are those

containing matrices with maximal Jordan type. However, this turns out to be

the case only for r ≤ 3.

For the general case we use a result initially proved by Schur [Sch05], and later re-

proved by Jacobson [Jac44], about the maximum number of linearly independent

commuting matrices. This leads to the idea of stratifying the representation va-

rieties RGLr
(Zn) by the dimension of the linear subspace inside Matr×r spanned

by the matrices Ai.

Proof of Theorem 7.4.2. The case r = 0 is obvious, and the case r = 1 fol-

lows from motivic representation stability of Gnm, see Example 7.1.11 and Ex-

ample 7.3.5. The cases r = 2 and r = 3 were treated in Proposition 7.4.3 and

Proposition 7.4.4, so we can assume r > 3.

As usual, write Xn = RGLr (Zn) for all n ≥ 1. For any point A ∈ Xn correspond-

ing to a tuple (A1, . . . , An) of commuting elements in GLr, define

dA = dimk⟨A1, . . . , An⟩

to be the dimension of the linear subspace of Matr×r(k) spanned by the Ai. By

[Jac44, Theorem 1], we have dA ≤ m with

m =

{
r2/4 + 1 if r is even,

(r2 − 1)/4 + 1 if r is odd.

Note that dA is invariant under the actions of Sn and GLr, soXn can be stratified

equivariantly by

Xn,d = {A ∈ Xn | dA = d} for 1 ≤ d ≤ m.

Now, we will show that Xn,d ⊆ Xn is negligible for d < m, so that we solely need

to focus on Xn,m. Note that the dimension of Xn is at least nm, as it contains
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the family of commuting matrices given by

A1 =

(
λ1I M1

0 λ1I

)
, . . . , An =

(
λnI Mn

0 λnI

)
(∗)

with λi ̸= 0, Mi ∈ Mat r
2×

r
2
if r is even, and Mi ∈ Mat r+1

2 × r−1
2

if r is odd. To

see why the strata Xn,d with d < m are negligible, observe that Xn,d can be

covered by a dense open of Xd × (Adk)n, that is, there is a surjective morphism

from a dense open Yn,d ⊆ Xd × (Adk)n given by

Yn,d → Xn,d,
(
(Ai)

d
i=1 , (αij)

n,d
i,j=1

)
7→
( d∑
j=1

αijAj

)n
i=1

.

In particular, dimXn,d ≤ dimYn,d ≤ r2d + nd, and hence limn→∞ dimXn −
dimXn,d =∞ for d < m, so it follows that Xn,d ⊆ Xn is negligible.

By [Jac44, Theorem 3], every A ∈ Xn,m can be conjugated to a tuple of the form

(∗). Hence, to show motivic representation stability of Xn,m it suffices to show

motivic representation stability of

X ′
n,m = IndGLr

H

(
Jn
)

with J =

{(
λI M

0 λI

) ∣∣∣∣∣ λ ̸= 0 and

M ∈ Mat⌈ r2⌉×⌊
r
2⌋

}
,

where the stabilizer

H =

{(
A B

0 C

)}
⊆ GLr

acts trivially on λ, and acts on M via the linear action(
A B

0 C

)
·M = AMC−1.

Now, from Corollary 7.2.7, Proposition 7.1.12 and Lemma 7.2.6, it follows that

limn→∞[Xn,m]/LdimXn,m exists. Moreover, as all Xn,d with d < m are negligible,

this limit is equal to limn→∞[Xn]/LdimXn .




