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Chapter 5

SL2-character stacks

In this chapter, we apply the theory of Chapter 4 to compute the virtual classes of

theG-character stacks XG(M), forM equal to both orientable and non-orientable

closed surfaces, and G equal to

SL2 =

{(
a b

c d

) ∣∣∣∣∣ ad− bc = 1

}
.

Even though G = SL2 is one of the simplest non-trivial groups, the resulting

computations are quite intricate. Throughout this chapter, we work over an al-

gebraically closed field k with char(k) ̸= 2.

Similar computations were performed by [LMN13, MM16] to compute the corre-

sponding E-polynomials. While the scissor relation (3.3) is the main ingredient

in these computations, they cannot simply be lifted to the Grothendieck ring of

varieties. Instead, many subtle points arise and have to be dealt with, such as

the study of P1-fibrations, equivariant motivic invariants (as in Section 3.6), and

non-zero elements in the Grothendieck ring of varieties whose E-polynomial is

zero.

As G = SL2 is a special group, the virtual class of the G-character stack XG(M)

is equal to that of the G-representation variety RG(M) divided by [SL2] = L(L−
1)(L + 1). Hence, we can apply the theory of Section 4.12, allowing us to make

non-equivariant stratifications. In order to use (4.10), (4.11), (4.12) and (4.13),

we will compute

Zrep
G

( )
◦ Zrep

G

( )
and Zrep

G

( )
◦ Zrep

G

( )
(5.1)

in Section 5.2 and Section 5.3, respectively, and in Section 5.4 we compute

Zrep
G

( )
. (5.2)
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90 CHAPTER 5. SL2-CHARACTER STACKS

It is not necessary to compute these maps in full. Rather it suffices to compute

their restriction to a certain finitely generated submodule of K0(VarG). The

generators for this submodule are described in Section 5.1. For the computation

of some of these maps, we need an extra relation in the Grothendieck ring of

varieties regarding P1-fibrations. This will also be discussed in Section 5.1.

Finally, in Section 5.5 we collect and discuss the results.

5.1 Generators, relations and P1-fibrations

Let us introduce some notation. The following varieties are all considered natu-

rally as varieties over G = SL2.

I+ = {( 1 0
0 1 )},

I− = {
(−1 0

0 −1

)
},

J+ = {A ∈ G | A conjugate to ( 1 1
0 1 )} ,

J− =
{
A ∈ G | A conjugate to

(−1 1
0 −1

)}
,

M = {A ∈ G | tr(A) ̸= ±2},
X2 = {(A, ℓ) ∈M × A1

k | ℓ2 = tr(A)− 2},
X−2 = {(A, ℓ) ∈M × A1

k | ℓ2 = tr(A) + 2},
X2,−2 = {(A, ℓ) ∈M × A1

k | ℓ2 = tr(A)2 − 4},
Y = {(A,ω) ∈M × A1

k \ {0} | tr(A) = ω2 + ω−2},

(5.3)

By the same symbols, we will also denote their virtual class in K0(VarG). These

elements will be the generators of the K0(Vark)-submodule of K0(VarG) on

which (5.1) and (5.2) will be computed. A useful alternative presentation of the

last five generators is as follows:

M ∼= (GL2/D × A1
k \ {0,±1}) � S2 → G, (P, λ) 7→ P

(
λ 0
0 λ−1

)
P−1

X2
∼= (GL2/D × A1

k \ {0,±1,±i}) � S2 → G, (P, ω) 7→ P
(

−ω2 0
0 −ω−2

)
P−1

X−2
∼= (GL2/D × A1

k \ {0,±1,±i}) � S2 → G, (P, ω) 7→ P
(
ω2 0
0 ω−2

)
P−1

X2,−2
∼= GL2/D × A1

k \ {0,±1} → G, (P, λ) 7→ P
(
λ 0
0 λ

)
P−1

Y ∼= GL2/D × A1
k \ {0,±1,±i} → G, (P, ω) 7→ P

(
ω2 0
0 ω−2

)
P−1

where D ⊆ GL2 is the subgroup of diagonal matrices, and where S2 acts on the

left coset space GL2/D by P 7→ P ( 0 1
1 0 ), and acts on the coordinates λ and ω

by λ 7→ λ−1 and ω 7→ ω−1. The following lemma gives a better understanding of

the relation between these generators.
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Lemma 5.1.1. The following relations hold in K0(VarG):

X2
2 = 2X2, X2

−2 = 2X−2, X2
2,−2 = 2X2,−2

and Y = X2X−2 = X2X2,−2 = X−2X2,−2.

Proof. The first equality follows from

X2 ×M X2 = {(A, ℓ1, ℓ2) ∈M × A2
k | ℓ21 = tr(A)− 2 and ℓ2 = ±ℓ1} ∼= X2 ⊔X2,

and similarly for the second and third. The final two equalities follow from the

fact that, if ℓ21 = tr(A)−2 and ℓ22 = tr(A)+2, then (ℓ1ℓ2)
2 = tr(A)2−4. Finally,

the fourth equality follows from the isomorphism

Y
∼−→ X2 ×M X−2 = {(A, ℓ1, ℓ2) ∈M × A2

k | ℓ21 = tr(A)− 2 and ℓ22 = tr(A) + 2}

which is given by (A,ω) 7→ (A,ω − ω−1, ω + ω−1) with inverse (A, ℓ1, ℓ2) 7→
(A, 12 (ℓ1 + ℓ2)).

Remark 5.1.2. The symbols X2, X−2 and X2,−2 were adopted from [Gon20]

and reflect the monodromy action of these spaces as covering spaces over M .

They are double covers of M , and have non-trivial monodromy for loops around

trA = 2 or trA = −2 as indicated by the subscript of the symbol. More precisely,

write T for the trivial representation of π1(M, ∗) and N2 (resp. N−2) for the 1-

dimensional representation that sends a loop around trA = 2 (resp. trA = −2)
to −1. Then the monodromy representations of X2, X−2 and X2,−2 are T ⊕N2,

T⊕N−2 and T⊕N2⊗N−2, respectively. Since Y ∼= X2×MX−2, it follows that Y

is a 4-to-1 cover ofM with monodromy representation T ⊕N2⊕N−2⊕N2⊗N−2.

In particular, the monodromy representation of M ⊔M ⊔ Y is equal to that of

X2⊔X−2⊔X2,−2. This is also the case for their Hodge monodromy representation

[LMN13, (5)], and for this reason, the generator Y is not needed in the E-

polynomial computations of [LMN13, MM16]. However, the analogous equality

does not (necessarily) hold in K0(VarG) as M ⊔M ⊔ Y is not isomorphic to

X2⊔X−2⊔X2,−2 overM : the former has two sections overM whereas the latter

has none.

Finally, when computing the images of the generators (5.3) under the maps

(5.1) and (5.2), we will encounter some non-trivial P1-fibrations. Recall, a P1-

fibration is a morphism P → X which is étale-locally of the form X×P1
k
πX−−→ X,

where πX denotes the projection to X. However, as many motivic invariants

χ : K0(Vark) → R satisfy χ(P ) = χ(P1
k)χ(X) for all P1-fibrations P → X, we

will impose this relation as well. This includes the point-count over finite fields,

and the E-polynomial and Euler characteristic over C [MOV09, Lemma 2.4].



92 CHAPTER 5. SL2-CHARACTER STACKS

Definition 5.1.3. Let S be a variety over k. Denote by KP1

0 (VarS) the quotient

of K0(VarS) by relations of the form

[P ]S = [P1
k] · [X]S (5.4)

for all P1-fibrations P → X over S. Similarly, denote by KP1

0 (StckS) the quotient

of K0(StckS) by the same relations. Furthermore, if G is a finite group, denote by

KP1

0 (VarGS ) the quotient of K0(VarGS ) by the same relations, for all G-equivariant

P1-fibrations P → X over S.

We will need the G-equivariant version when dealing with varieties of the form

X �G, and we want to stratify X in a G-equivariant manner. In that case, it is

important that taking the quotient with respect to G respects the relation (5.4).

Proposition 5.1.4. Let S be variety over k, and let G be a finite group. The

morphism K0(VarGS ) → K0(VarS) given by [X]S 7→ [X � G]S descends to a

morphism

KP1

0 (VarGS )→ KP1

0 (VarS).

Proof. It must be shown that for every G-equivariant P1-fibration P → X over

S, we have [P �G]S = [P1
k] · [X �G]S in KP1

0 (VarS).

If G does not act faithfully on X, then N = {g ∈ G | g · x = x for all x ∈ X} is
a normal subgroup of G which acts trivially on X. Since X � G = X � (G/N)

and P �G = (P �N)� (G/N), we may replace G by G/N and P by P ′ = P �N
(still a P1-fibration over X) and assume that G does act faithfully on X.

Next, let H be a set of representatives for the conjugacy classes of subgroups of

G. Stratify X =
⊔
H∈HXH , where XH = {x ∈ X | Stab(x) is conjugate to H}.

Note that the action of G restricts to XH since Stab(g · x) = g Stab(x)g−1 for

all g ∈ G and x ∈ X. Furthermore, we have XH � G = YH � NG(H), where

YH = {x ∈ X | Stab(x) = H} and NG(H) is the normalizer of H in G, and

similarly (P ×X XH)�G = (P ×X YH)�NG(H). Hence, replacing G by NG(H)

and X by YH , we may assume Stab(x) is constant and normal in G. Moreover,

since we could assume G to act faithfully on X, we can assume the action of G

on X to be free.

After stratifying X into smooth strata, the quotient map X → X � G is étale

[Dré04, Proposition 4.11], so from the cartesian diagram

P P �G

X X �G



5.2. ORIENTABLE SURFACES 93

it follows that P � G → X � G is a P1-fibration over S as well. Therefore,

[P �G]S = [P1
k] · [X �G]S , as desired.

5.2 Orientable surfaces

The goal of this section is to prove the following proposition, which completely

characterizes the first map of (5.1). The stratifications used are similar to those

in [LMN13], but adapted to the setting of KP1

0 (VarG).

Proposition 5.2.1. The virtual class of G2 → G given by (A,B) 7→ [A,B] in

KP1

0 (VarG) is equal to(
Zrep
G

( )
◦ Zrep

G

( ) )
(1)

= L(L− 1)(L+ 1)(L+ 4)I+ + L(L− 1)(L+ 1)I−

+ L(L− 3)(L+ 1)J+ + L2(L+ 3)J− + (L− 1)2(L+ 1)M

+ 2L(L+ 1)X2 − L(L+ 1)X−2 − (L− 1)2X2,−2 + L(L− 2)Y.

Proof. Write A =
(
a b
c d

)
and B = ( x y

z w ) and stratify based on the conjugacy

class of [A,B].

■ If [A,B] = 1, we consider the following cases.

– Case A = ±1. Since any B commutes with A, this stratum has a virtual

class equal to 2[G]I+ = 2L(L− 1)(L+ 1)I+.

– Case A ∈ J±. Conjugate A to
(±1 1

0 ±1

)
to find that B must be of the form(±1 x

0 ±1

)
. Hence, we obtain 4L[J+]I+ = 4L(L− 1)(L+ 1)I+.

– Case A ∈M . Note that A can be conjugated to
(
λ 0
0 λ−1

)
for some λ ̸= 0,±1,

after which B must be diagonal. Hence, this stratum can be identified with({
(P, λ, µ) ∈ GL2/D × (A1

k \ {0,±1})× (A1
k \ {0})

})
� S2

where A = P
(
λ 0
0 λ−1

)
P−1 and B = P

(
µ 0

0 µ−1

)
P−1, and where S2 acts

via (P, λ, µ) 7→
(
P ( 0 1

1 0 ) , λ
−1, µ−1

)
. To compute the virtual class of this

quotient, we apply Section 3.6 with the finite (cyclic) group S2 = Z/2Z.
Using notation as in (3.12), we find

[A1
k \ {0,±1}]S2 = (L− 2)⊗ T − 1⊗N,
[A1
k \ {0}]S2 = L⊗ T − 1⊗N,

[GL2/D]S2 = L2 ⊗ T + L⊗N.

Therefore, we obtain L(L− 2)(L− 1)(L+ 1)I+.
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Together, these cases add up to L(L− 1)(L+ 1)(L+ 4)I+.

■ Suppose [A,B] = −1. From the equivalent expressions ABA−1 = −B and

B−1AB = −A follows that trA = trB = 0. In particular, we can conjugate

A to
(
i 0
0 −i

)
, after which B must be of the form

(
0 y

−1/y 0

)
. Hence, we obtain

L(L− 1)(L+ 1)I−.

■ Suppose [A,B] ∈ J+. Conjugate [A,B] to ( 1 1
0 1 ). From AB = ( 1 1

0 1 )BA follows

that trB = tr(ABA−1) = tr
(
( 1 1
0 1 )B

)
and hence z = 0. Similarly, trA =

tr
(
BAB−1

)
= tr

(
( 1 1
0 1 )

−1
A
)
implies c = 0. Now detA = detB = 1 yields

d = a−1 and w = x−1, and the only remaining equation is y(a− a−1)− b(x−
x−1) = 1/ax. Consider the following cases.

– If a ̸= ±1, we can solve for y = (1/ax+ b(x− x−1))/(a− a−1), and obtain

L(L− 3)(L− 1)J+.

– If a = ±1, we must have x ̸= ±1 and can solve for b = a/(1−x2). We obtain

2L(L− 3)J+.

Together, these cases add up to L(L− 3)(L+ 1)J+.

■ Suppose [A,B] ∈ J−. Conjugate [A,B] to
(−1 1

0 −1

)
. From trB = tr(ABA−1) =

tr
( (−1 1

0 −1

)
B
)
follows that z = 2(x + w), and from trA = tr(BAB−1) =

tr
( (−1 1

0 −1

)−1
A
)
follows that c = −2(a+ d). The only remaining equation is

ay − bw − bx− dw + dy = 0. Consider the following cases.

– Case w = −x. From detB = 1 follows that x = ±i. The action of conjugation

by {( 1 α0 1 )} ∼= Ga turns this stratum into a Ga-torsor over the stratum with

y = 0. On this stratum with y = 0, we can solve for d = 0, and detA = 1

implies a ̸= 0 and b = 1/2a. Hence, we obtain 2L(L− 1)J−.

– Case w ̸= −x. The action of conjugation by {( 1 α0 1 )} ∼= Ga turns this stratum
into a Ga-torsor over the stratum with w = 0. On this stratum with w = 0,

it follows from detB = 1 that x ̸= 0 and y = −1/2x. We can solve for

b = −(a+ d)/2x2. Finally, detA = 1 translates to ad− (a+ d)2/x2 = 1.

∗ Case d = −a. Solve for a = ±i to obtain 2L(L− 1)J−.

∗ Case d ̸= −a. Make a substitution x′ = (a+ d)/x to rewrite the equation

as ad− (x′)2 = 1. This is easily seen to give L(L2 − L+ 4)J−.

Together, these cases add up to L2(L+ 3)J−.

■ Suppose [A,B] ∈M . Diagonalizing [A,B], this stratum can be expressed as{
(P,A,B, λ) ∈ GL2/D ×G2 × (A1

k \ {0,±1})
∣∣ [A,B] =

(
λ 0
0 λ−1

)}
� S2
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where S2 acts via λ 7→ λ−1 and P 7→ P ( 0 1
1 0 ), and on A and B via conjugation

by ( 0 1
1 0 ). From trA = tr(BAB−1) = tr

( (
λ−1 0
0 λ

)
A
)
follows that d = a/λ,

and from trB = tr(ABA−1) = tr
( (

λ 0
0 λ−1

)
B
)
that w = λx. The relevant

equations are now ax+ bz − λ(ax+ cy) = 0 and detA = a2λ−1 − bc = 1 and

detB = λx2 − yz = 1. Consider the following cases.

– Case b = c = 0. It follows that a2 = λ, x = 0 and z = −y−1. Note that S2

acts via a 7→ d = a/λ = a−1 and y 7→ z = −y−1. Therefore, we obtain the

following S2-virtual classes

[{y ̸= 0}]S2 = L⊗ T − 1⊗N
[GL2/D × {a2 = λ}]S2

M = X−2 ⊗ T + (Y −X−2)⊗N.

Multiplying these and taking the quotient by S2, we obtain (L+1)X−2−Y .

– Case y = z = 0. Similarly, we obtain (L+ 1)X−2 − Y .

– Case b = 0 or c = 0, but not both. The action of S2 swaps b and c, so

we can identify the S2-quotient with the stratum where b = 0 and c ̸= 0.

The action of conjugation by
{(

α 0
0 α−1

)} ∼= Gm turns this stratum into a

Gm-torsor over the stratum with c = 1. On this stratum with c = 1, we find

that a2 = λ, y = ax(λ−1 − 1) with x ̸= 0, and z = (λx2 − 1)/y. Hence, we

obtain (L− 1)2Y .

– Case y = 0 or z = 0, but not both. Similarly, we obtain (L− 1)2Y .

– In the above cases, we have counted twice the stratum given by b = z = 0

or c = y = 0, so we need to subtract it once. Note that these conditions

cannot be satisfied simultaneously, and moreover, the action of S2 swaps

them. Therefore, we can identify the S2-quotient with the stratum where

b = z = 0 (and c, y ̸= 0). The action of conjugation by
{(

α 0
0 α−1

)} ∼= Gm
turns this stratum into a Gm-torsor over the stratum with c = 1. On this

stratum with c = 1, we find a2 = λ and solve for (x, y) = ±
(
a−1, a−1 − a

)
.

Hence, we obtain −2(L − 1)Y , where the minus sign signifies this stratum

must be subtracted from the total.

– Case bcyz ̸= 0. Solve for c = (a2/λ−1)/b and z = (λx2−1)/y. The conditions
c, z ̸= 0 translate to a2 ̸= λ and x−2 ̸= λ. The remaining equation is

x2 − a′(λ− 1)

(λ+ 1)
xy′ +

(
1− (a′)2

λ+ λ−1 + 2

)
(y′)2 = λ−1,

where we made substitutions y′ = y/b and a′ = a(1 + λ−1). The condition

a2 ̸= λ translates to (a′)2 ̸= λ + λ−1 + 2. This equation describes a family

of conics over the plane {(a′, λ) | (a′)2 ̸= λ + λ−1 + 2} with discriminant

D = (a′ − 2)(a′ + 2). To compute its virtual class, the idea is to complete
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this family of conics to a P1-fibration over the (a′, λ)-plane, for D ̸= 0, so

that relation (5.4) can be used. The stratum at infinity will be computed

separately, and must be subtracted from the total.

Note that the variable b ̸= 0 is independent of a′, x and y′, except through

the action of S2 given by b 7→ c = (a′λ/(λ+1)2−1)/b. Extending b to be P1-

valued, we can regard this stratum as a P1-fibration minus the stratum with

b = 0 or b = ∞. Note that the cases b = 0 and b = ∞ are interchanged by

the action of S2. Hence, for the sake of the computation, we can effectively

act as if b is completely independent of a′, x and y′, with S2-virtual class

[{b ̸= 0}]S2 = L⊗ T − 1⊗N .

∗ Case D = 0. Solve for a′ = ±2. Suppose a′ = 2. Then
(
x − λ−1

λ+1y
′)2 =

λ−1. Write ω = x − λ−1
λ+1y

′ so that ω2 = λ−1 and note that S2 acts via

ω 7→ −ω−1. The condition x2 ̸= λ−1 translates to x ̸= ±ω. Substituting
x′ = x/ω yields x′ ̸= ±1 and S2 acts via x′ 7→ −x′. From the S2-virtual

classes

[{b ̸= 0}]S2 = L⊗ T − 1⊗N
[{x′ ̸= ±1}]S2 = (L− 1)⊗ T − 1⊗N

[GL2/D × {ω2 = λ−1}]S2

M = X2 ⊗ T + (Y −X2)⊗N

we obtain L(L+1)X2−(2L−1)Y . The case a′ = −2 is completely similar,

so we double this virtual class to obtain 2L(L+ 1)X2 − (4L− 2)Y .

∗ Case D ̸= 0. Complete the family of conics to a P1-fibration given by

X2 − a′(λ− 1)

(λ+ 1)
XY +

(
1− (a′)2

λ+ λ−1 + 2

)
Y 2 = λ−1Z2, (5.5)

over the base B = GL2/D × {(a′, λ) | a′ ̸= ±2 and (a′)2 ̸= λ+ λ−1 + 2}.
Regarding B as the open complement of (a′)2 = λ+λ−1+2, we compute

its S2-virtual class as

[B]S2

M = (L− 2)(M ⊗ T + (X2,−2 −M)⊗N)

− (X−2 ⊗ T + (Y −X−2)⊗N).

Multiplying by [P1
k] = L + 1 and by [{b ̸= 0}]S2 = L ⊗ T − 1 ⊗ N , and

taking the quotient by S2, we obtain

(L− 2)(L+ 1)2M − (L+ 1)2X−2 − (L− 2)(L+ 1)X2,−2 + (L+ 1)Y.

∗ Now we must subtract the stratum of points at infinity, that is, the points

given by Z = 0. Since there are no solutions with X = 0, we can work
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with the dehomogenized coordinate Y/X. In fact, writing u = Y/X ·(
1− (a′)2λ

(λ+1)2

)
, equation (5.5) reduces to

(
2u− a′(λ− 1)

(λ+ 1)

)2

= (a′ − 2)(a′ + 2).

Substituting u′ = 2u− a′(λ−1)
λ+1 , we find that u′ is invariant under S2, and

the equation simplifies to

(u′)2 = (a′)2 − 4.

Regarding this stratum as the open complement of (a′)2 = λ + λ−1 + 2,

we compute its S2-virtual class as[
GL2/D ×

{
(u′)2=(a′)2−4̸=0

(a′)2 ̸=λ+λ−1+2

}]S2

M
= (L− 3)(M ⊗ T − (X2,−2 −M)⊗N)

− Y ⊗ (T +N).

Multiplying by [{b ̸= 0}]S2 = L ⊗ T − 1 ⊗N and taking the quotient by

S2, we obtain

−
(
(L− 3)(L+ 1)M − (L− 3)X2,−2 − (L− 1)Y

)
,

where the overall minus sign signifies this stratum should be subtracted

from the total.

∗ Finally, we must subtract the stratum where x−2 = λ. In this case, we

solve for y′ = 0 or y′ = a′x(λ−1)(λ+1)
(λ+1)2−(a′)2λ . When a′ = 0, these values coincide,

so from the S2-virtual classes

[{b ̸= 0}]S2 = L⊗ T − 1⊗N
[GL2/D × {x−2 = λ}]S2

M = X−2 ⊗ T + (Y −X−2)⊗N

we obtain

−
(
(L+ 1)X−2 − Y

)
.

When a′ ̸= 0, the values for y′ are interchanged by the action of S2.

Hence, we can identify the S2-quotient with the stratum where y′ = 0.

The condition (a′)2 ̸= λ + λ−1 + 2 translates to a′ ̸= ±(x + x−1). This

gives

−
(
(L− 5)(L− 1)Y

)
.

Together, these cases add up to (L − 1)2(L + 1)M + 2L(L + 1)X2 − L(L +

1)X−2 − (L− 1)2X2,−2 + L(L− 2)Y .
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5.3 Non-orientable surfaces

Analogous to the previous section, we prove the following proposition, charac-

terizing the second map of (5.1).

Proposition 5.3.1. The virtual class of G→ G given by A 7→ A2 in K0(VarG)

is equal to(
Zrep
G

( )
◦ Zrep

G

( ))
(1) = 2I+ + L(L+ 1)I− + 2J+ +X−2.

Proof. Write A =
(
a b
c d

)
and stratify based on the conjugacy class of A2.

■ If A2 = 1, then A = ±1, so we obtain 2I+.

■ Suppose A2 = −1. If b = 0, then d = a−1 with a = ±i, contributing 2LI−.
If b ̸= 0 and c = 0, then d = a−1 with a ̸= ±i, contributing 2(L − 1)I−. If

b, c ̸= 0, then d = −a and a2 + bc = −1, contributing (L − 2)(L − 1)I−. In

total, we obtain L(L+ 1)I−.

■ Suppose A2 ∈ J+. By conjugating we can assume A2 = ( 1 1
0 1 ). There are no

solutions for c ̸= 0, and c = 0 yields a = d = b/2 = ±1, so we obtain 2J+.

■ There are no solutions with A2 ∈ J−.

■ Suppose A2 ∈M . This stratum is given by

(
GL2/D × (A1

k \ {0,±1,±i})
)

� S2 → G, (P, ω) 7→ P
(
ω2 0
0 ω−2

)
P−1,

where S2 acts on ω via ω 7→ ω−1. Hence, this is equal to X−2.

5.4 Multiplication in SL2

In this section, we compute the images Zrep
G

( )
(X ⊗ Y ) for all pairs (X,Y )

of generators in (5.3), in a series of lemmas. For conciseness, we will omit some

cases, but those can be obtained directly from the cases we do compute. For

example, the cases with X = I− are straightforward, and the cases with X = J−
and X = X−2 can be derived from those with X = J+ and X2.

First, let us fix some notation. When computing Zrep
G

( )
(X ⊗ Y ) for a pair

(X,Y ), we write A for a point of X and B = ( x y
z w ) for a point of Y . When Y

is of the form (GL2/D × Λ) � S2 for some S2-variety Λ over A1
k \ {0,±1}, we

also write B = P
(
µ 0

0 µ−1

)
P−1 with P =

(
α β
γ δ

)
∈ GL2/D and µ ∈ A1

k \ {0,±1}.
Recall that S2 acts on (P, µ) via (P, µ) 7→

(
P ( 0 1

1 0 ) , µ
−1
)
. More specifically, when

Λ = A1
k \ {0,±1,±i}, we write µ = ω2 with ω ∈ Λ. Similarly, when X is of the
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form (GL2/D×Λ)�S2 for such Λ, we write A = Q
(
ρ 0

0 ρ−1

)
Q−1 with Q ∈ GL2/D

and ρ ∈ A1
k \ {0,±1}, and write ρ = ν2 when Λ = A1

k \ {0,±1,±i}.

When dealing with the strata where AB ∈ M , we usually want to diagonalize

AB. This can be done once we base change along the double cover (GL2/D ×
A1
k \ {0,±1}) → M . We write λ for the coordinate on A1

k \ {0,±1}. The group

S2 acts on this double cover via (P, λ) 7→
(
P ( 0 1

1 0 ) , λ
−1
)
.

Strata often admit symmetry by the action of conjugation with some subgroup of

SL2. When this happens for the subgroups {( 1 α0 1 )} ∼= Ga or
{(

α 0
0 α−1

)} ∼= Gm,

we will speak of Ga-symmetry or Gm-symmetry, respectively. In these cases,

such a stratum turns into a (Zariski-locally trivial) Ga-torsor or Gm-torsor, so

to compute its virtual class it suffices to compute that of the base.

Finally, to avoid confusion between the various S2-actions, we write Sλ2 , S
µ
2 and

Sρ2 to differentiate between them.

Lemma 5.4.1.

Zrep
G

( )
(J+ ⊗ J+) = (L+ 1)(L− 1)I+ + (L− 2)J+ + LJ−

+ (L+ 1)M −X2,−2

Proof. Stratify based on the conjugacy class of the product AB.

■ If AB = 1, then A = B−1, so we obtain [J+]I+ = (L+ 1)(L− 1)I+.

■ If AB = −1, there are no solutions as trA = 2 ̸= −2 = − trB−1.

■ If AB ∈ J+, then conjugate to AB = ( 1 1
0 1 ) and solve for A =

(
w−z x−y
−z x

)
.

From trA = trB = 2 follows that z = 0 and (using detB = 1) also x = w = 1.

Furthermore, y ̸= 0, 1 as A,B ̸= 1, so we obtain (L− 2)J+.

■ If AB ∈ J−, then conjugate to AB =
(−1 1

0 −1

)
and solve for A =

(−w−z x+y
z −x

)
.

From trA = trB = 2 follows that z = −4. Fix x = 0 using Ga-symmetry, and

solve for w = 2 and y = 1/4. We obtain LJ−.

■ If AB ∈ M , then conjugate to AB =
(
λ 0
0 λ−1

)
and solve for A =

(
λw −λy

−z/λ x/λ

)
.

From trB = 2 follows that w = 2−x. From trA = 2 and detA = 1 and λ ̸= 1

follows that z ̸= 0. From detB = 1 follows that y = (xw−1)/z. From trA = 2

follows that x = 2λ
λ+1 . Make a substituting z′ = z λ+1

λ−1 , and note that Sλ2 acts

via z′ 7→ 1/z′. Now, from the Sλ2 -virtual classes

[{z′ ̸= 0}]S
λ
2 = L⊗ T − 1⊗N

[GL2/D × {λ ̸= 0,±1}]S
λ
2

M =M ⊗ T − (X2,−2 −M)⊗N

follows that the quotient by Sλ2 is (L+ 1)M −X2,−2.
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Lemma 5.4.2.

Zrep
G

( )
(J+ ⊗M) = L(L− 2)(J+ + J−) + (L− 3)(L+ 1)M + 2X2,−2

Proof. Note that Zrep
G

( )
(X ⊗ G) = [X] · G for all X ∈ K0(VarG). Since

G = I++I−+J++J−+M , the result can be derived from the above lemma.

Lemma 5.4.3.

Zrep
G

( )
(J+ ⊗X2) = L(L− 3)(J+ + J−) + (L− 3)(L+ 1)M

− (L+ 1)X2 − (L− 3)X2,−2 + LY

Proof. Stratify based on the conjugacy class of the product AB.

■ If AB = ±1, there are no solutions.

■ If AB ∈ J+, then conjugate to AB = ( 1 1
0 1 ) and solve for A =

(
w−z x−y
−z x

)
. From

trA = 2 follows that z = x+ w − 2 and from detB = 1 that y = (xw − 1)/z.

Furthermore, we can solve for w = ℓ2−x+2 with ℓ ̸= 0,±2i. Hence, we obtain

L(L− 3)J+.

■ If AB ∈ J−, then similarly we obtain L(L− 3)J−.

■ If AB ∈ M , then conjugate to AB =
(
λ 0
0 λ−1

)
and solve for A =

(
λw −λy

−z/λ x/λ

)
.

Consider the following cases.

– Case y = z = 0. There are no solutions.

– Case y = 0 or z = 0, but not both. Since the action of Sλ2 swaps y and z, we

can identify the Sλ2 -quotient with the stratum where z = 0. From trA = 2

and detA = 1 follows that x = w−1 = λ, so in particular ℓ2 = λ+ λ−1 − 2.

Since A ̸= 1, we have y ̸= 0, so we obtain (L− 1)Y .

– Case yz ̸= 0. From trA = 2 follows that w = (2−x/λ)/λ and from detB = 1

that y = (xw − 1)/z. We substitute z′ = zλ/(x − λ) so that Sλ2 acts via

z′ 7→ 1/z′. Using ℓ2 = trB−2, we can solve for x = λ(ℓ2λ+2λ−2)/(λ2−1).

The conditions y ̸= 0 and trB ̸= ±2 translate to ℓ2 ̸= λ + λ−1 − 2 and

ℓ2 ̸= 0,−4. From the Sλ2 -virtual classes

[{z′ ̸= 0}]S
λ
2 = L⊗ T − 1⊗N[

GL2/D ×
{
ℓ2 ̸=λ+λ−1−2
ℓ ̸=0,±2i

}]Sλ
2

M
= (L− 3)(M ⊗ T + (X2,−2 −M)⊗N)

− (X2 ⊗ T + (Y −X2)⊗N)

we obtain (L− 3)(L+ 1)M − (L+ 1)X2 − (L− 3)X2,−2 + Y .
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Lemma 5.4.4.

Zrep
G

( )
(J+ ⊗X2,−2) = L(L− 3)(J+ + J−) + (L− 3)(L+ 1)M + 2X2,−2

Proof. Stratify based on the conjugacy class of the product AB.

■ If AB = ±1, there are no solutions.

■ If AB ∈ J+, then conjugate to AB = ( 1 1
0 1 ) and solve for A = ( 1 1

0 1 )B
−1. We

have γ ̸= 0 since trA = 2 and µ ̸= ±1. Hence, we can fix γ = 1, α = 0 and

β = 1 by lifting P to GL2 and using Ga-symmetry. Now trA = 2 implies

δ = −µ−1
µ+1 with µ ̸= 0,±1, so we obtain L(L− 3)J+.

■ If AB ∈ J+, then similarly we obtain L(L− 3)J−.

■ If AB ∈M , then conjugate to AB =
(
λ 0
0 λ−1

)
and solve for A =

(
λ 0
0 λ−1

)
B−1.

Consider the following cases.

– Case αγ = 0. The action of Sλ2 swaps α and γ, so we can break the Sλ2 -action

and consider only the stratum with γ = 0. Fix α = δ = 1 by lifting P to

GL2. From trA = 2 follows that µ = λ. Furthermore, we must have β ̸= 0

to ensure A ̸= 1, so we obtain (L− 1)X2,−2.

– Case αγ ̸= 0 and βδ = 0. The action of Sλ2 swaps β and δ, so we can identify

the Sλ2 -quotient with the stratum where δ = 0. Fix β = γ = 1 by lifting

P to GL2. From trA = 2 follows that µ = λ−1. Furthermore, there are no

conditions on α other than α ̸= 0, so we obtain another (L− 1)X2,−2.

– Case αβγδ ̸= 0. Fix γ = δ = 1 by lifting P to GL2. Note that there are no

solutions with µ = λ±1, and use trA = 2 to solve for β = α (λ−µ)2
(λµ−1)2 . Note

that Sλ2 acts via α 7→ α−1. From the Sλ2 -virtual classes

[{α ̸= 0}]S
λ
2 = L⊗ T − 1⊗N[

GL2/D ×
{

λ̸=0,±1
µ̸=0,±1,λ±1

}]Sλ
2

M
= (L− 3)(M ⊗ T + (X2,−2 −M)⊗N)

−X2,−2 ⊗ (T +N)

we obtain (L− 3)(L+ 1)M − 2(L− 2)X2,−2.

Lemma 5.4.5.

Zrep
G

( )
(J+ ⊗ Y ) = L(L− 5)(J+ + J−) + (L− 5)(L+ 1)M

− (L− 5)X2,−2 + (L− 1)Y

Proof. Stratify based on the conjugacy class of the product AB.
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■ If AB = ±1, there are no solutions.

■ If AB ∈ J+, the computation is the same as for A ∈ J+ and B ∈ X2,−2, but

with µ = ω2 and ω ̸= 0,±1,±i. Hence, we obtain L(L− 5)J+.

■ If AB ∈ J−, then similarly we obtain L(L− 5)J−.

■ If AB ∈M , then conjugate to AB =
(
λ 0
0 λ−1

)
and solve for A =

(
λ 0
0 λ−1

)
B−1.

Consider the following cases.

– Case αγ = 0. Identify the Sλ2 -quotient with the stratum where γ = 0.

Fix α = δ = 1 by lifting P to GL2. From trA = 2 follows that ω2 = λ.

Furthermore, we must have β ̸= 0 to ensure A ̸= 1, so we obtain (L− 1)Y .

– Case αγ ̸= 0 and βδ = 0. Identify the Sλ2 -quotient with the stratum where

δ = 0. Fix β = γ = 1 by lifting P to GL2. From trA = 2 follows that

ω2 = λ−1. Furthermore, there are no conditions on α other than α ̸= 0, so

we obtain another (L− 1)Y .

– Case αβγδ ̸= 0. Fix γ = δ = 1 by lifting P to GL2. Note that there are no

solutions with µ = λ±1, and use trA = 2 to solve for β = α (λ−µ)2
(λµ−1)2 . Note

that Sλ2 acts via α 7→ α−1. From the Sλ2 -virtual classes

[{α ̸= 0}]S
λ
2 = L⊗ T − 1⊗N[

GL2/D ×
{

λ ̸=0,±1
ω2 ̸=0,±1,λ±1

}]Sλ
2

M
= (L− 5)(M ⊗ T + (X2,−2 −M)⊗N)

− Y ⊗ (T +N)

we obtain (L− 5)(L+ 1)M − (L− 5)X2,−2 − (L− 1)Y .

Lemma 5.4.6.

Zrep
G

( )
(M ⊗M) = L(L2 − 2L− 1)(I+ + I−)

+ L(L− 3)(L− 1)(J+ + J−)

+ (L3 − 4L2 + 3L+ 4)M − 4X2,−2

Zrep
G

( )
(M ⊗X2) = L(L2 − 3L− 2)(I+ + I−)

+ L(L− 4)(L− 1)(J+ + J−)

+ (L3 − 5L2 + 2L+ 6)M + L(X2 +X−2)

+ 2(L− 3)X2,−2 − 2LY

Zrep
G

( )
(M ⊗X2,−2) = L(L− 3)(L+ 1)(I+ + I−)

+ L(L− 3)(L− 1)(J+ + J−)

+ (L− 3)(L− 2)(L+ 1)M − 6X2,−2
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Zrep
G

( )
(M ⊗ Y ) = L(L− 5)(L+ 1)(I+ + I−)

+ L(L− 5)(L− 1)(J+ + J−)

+ (L− 5)(L− 2)(L+ 1)M + 2(L− 5)X2,−2 − 2LY

Proof. Note that Zrep
G

( )
(G ⊗ X) = [X] · G for all X ∈ K0(VarG). Since

G = I+ + I− + J+ + J− +M , the result follows from the earlier lemmas.

Lemma 5.4.7.

Zrep
G

( )
(X2,−2 ⊗X2,−2) = 2L(L− 3)(L+ 1)(I+ + I−)

+ L(L− 3)(L− 1)(J+ + J−)

+ (L− 3)2(L+ 1)M + (L2 − 4L− 9)X2,−2

Proof. Stratify based on the conjugacy class of the product AB.

■ IfAB = 1, then solve forA = B−1 to obtain [X2,−2×MX2,−2]I+ = 2[X2,−2]I+ =

2L(L− 3)(L+ 1)I+.

■ If AB = −1, then solve for A = −B−1 to obtain [X2,−2 ×M X2,−2]I− =

2[X2,−2] = 2L(L− 3)(L+ 1)I−.

■ If AB ∈ J+, then conjugate to AB = ( 1 1
0 1 ) and solve for A = ( 1 1

0 1 )B
−1.

Consider the following cases.

– Case γ = 0. Fix α = δ = 1 by lifting P to GL2, and fix β = 0 using

Ga-symmetry. Solving for ρ = µ±1 ̸= 0,±1, we obtain 2L(L− 3)J+.

– Case γ ̸= 0. Fix γ = 1, α = 0 and β = 1 by lifting P to GL2 and using

Ga-symmetry. Using trA = ρ + ρ−1, solve for δ = − (µ−ρ)(µρ−1)
ρ(µ−1)(µ+1) . Since

µ, ρ ̸= 0,±1, we obtain L(L− 3)2J+.

■ If AB ∈ J−, then similarly we obtain L(L− 3)(L− 1)J−.

■ If AB ∈M , then conjugate to AB =
(
λ 0
0 λ−1

)
and solve for A =

(
λ 0
0 λ−1

)
B−1.

Consider the following cases.

– Case αγ = 0. Identify the Sλ2 -quotient with the stratum where γ = 0. Fix

α = δ = 1 by lifting P to GL2. Solve for ρ = (λµ−1)±1. In both cases

µ ̸= 0,±1,±λ, so we obtain 2L(L− 5)X2,−2.

– Case αγ ̸= 0 and βδ = 0. Identify the Sλ2 -quotient with the stratum where

β = 0. Fix α = δ = 1 by lifting P to GL2. Solve for ρ = (λµ−1)±1. In both

cases µ ̸= 0,±1,±λ, so we obtain 2(L− 1)(L− 5)X2,−2.
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– Case αβγδ ̸= 0. Fix γ = δ = 1 by lifting P to GL2. Solve for β =
α(λ−µρ)(λρ−µ)
(λµ−ρ)(λµρ−1) . Note that α ̸= β is automatically satisfied as there are no

solutions with ρ = λ±1µ±1. Note that Sλ2 acts via α 7→ α−1. From the

Sλ2 -virtual classes

[{α ̸= 0}]S
λ
2 = L⊗ T − 1⊗N[

GL2/D ×
{

λ,µ ̸=0,±1
ρ̸=0,±1,λ±1µ±1

}]Sλ
2

M
= (L− 3)2(M ⊗ T + (X2,−2 −M)⊗N)

− 2(L− 5)X2,−2 ⊗ (T +N)

we obtain (L− 3)2(L+ 1)M − (3L2 − 18L+ 19)X2,−2.

Lemma 5.4.8.

Zrep
G

( )
(X2,−2 ⊗ Y ) = 2L(L− 5)(L+ 1)(I+ + I−)

+ L(L− 5)(L− 1)(J+ + J−)

+ (L− 5)(L− 3)(L+ 1)M

+ (L− 5)(L+ 3)X2,−2 − 4LY

Proof. Stratify based on the conjugacy class of the product AB.

■ If AB = 1, then solve for A = B−1 to obtain [X2,−2 ×M Y ]I+ = 2[Y ]I+ =

2L(L− 5)(L+ 1)I+.

■ If AB = −1, then solve for A = −B−1 to obtain [X2,−2 ×M Y ]I− = 2[Y ]I+ =

2L(L− 5)(L+ 1)I−.

■ If AB ∈ J+, the computation is the same as for A ∈ X2,−2 and B ∈ X2,−2,

but with µ = ω2 and ω ̸= 0,±1,±i. Hence, we obtain L(L− 5)(L− 1)J+.

■ If AB ∈ J−, then similarly we obtain L(L− 5)(L− 1)J−.

■ If AB ∈M , then conjugate to AB =
(
λ 0
0 λ−1

)
and solve for A =

(
λ 0
0 λ−1

)
B−1.

Consider the following cases.

– Case αγ = 0. Identify the Sλ2 -quotient with the stratum where γ = 0. Fix

α = δ = 1 by lifting P to GL2. Solve for ρ = (λµ−1)±1. In both cases

µ = ω2 ̸= 0,±1,±λ, so we obtain 2L(L− 5)X2,−2 − 4LY .

– Case αγ ̸= 0 and βδ = 0. Identify the Sλ2 -quotient with the stratum where

β = 0. Fix α = δ = 1 by lifting P to GL2. Solve for ρ = (λµ−1)±1. In both

cases µ = ω2 ̸= 0,±1,±λ, so we obtain 2(L− 1)(L− 5)X2,−2 − 4(L− 1)Y .

– Case αβγδ ̸= 0. Fix γ = δ = 1 by lifting P to GL2. Note that there are no

solutions with ρ = λ±1µ±1, and solve for β = α(λ−µρ)(λρ−µ)
(λµ−ρ)(λµρ−1) . Furthermore,
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note that Sλ2 acts via α 7→ α−1. From the Sλ2 -virtual classes

[{α ̸= 0}]S
λ
2 = L⊗ T − 1⊗N[

GL2/D ×
{
λ,ω2,ρ ̸=0,±1
ρ̸=λ±1ω±2

}]Sλ
2

M
= (L− 5)(L− 3)(M ⊗ T + (X2,−2 −M)⊗N)

− (2(L− 5)X2,−2 − 4Y )⊗ (T +N)

we obtain (L− 5)(L− 3)(L+1)M − (L− 5)(3L− 5)X2,−2 +4(L− 1)Y .

Lemma 5.4.9.

Zrep
G

( )
(Y ⊗ Y ) = 4L(L− 5)(L+ 1)(I+ + I−)

+ L(L− 5)(L− 1)(J+ + J−)

+ (L− 5)2(L+ 1)M − (L− 5)2X2,−2 + 2L(L− 9)Y

Proof. Stratify based on the conjugacy class of the product AB.

■ If AB = 1, then solve for A = B−1 to obtain [Y ×M Y ]I+ = 4[Y ]I+ =

4L(L− 5)(L+ 1)I+.

■ If AB = −1, then solve for A = −B−1 to obtain [Y ×M Y ]I− = 4[Y ]I− =

L(L− 5)(L+ 1)I−.

■ If AB ∈ J+, then conjugate to AB = ( 1 1
0 1 ) and solve for A = ( 1 1

0 1 )B
−1.

Consider the following cases.

– Case γ = 0. Fix α = δ = 1 by lifting P to GL2, and fix β = 0 using Ga-
symmetry. Then ν2 = ω±2, that is, ν = ±ω±1 ̸= 0,±1,±i. Hence, we obtain

4L(L− 5)J+.

– Case γ ̸= 0. Fix γ = 1, α = 0 and β = 1 by lifting P to GL2 and using

Ga-symmetry. Solve for δ = − (µ−ρ)(µρ−1)
ρ(µ−1)(µ+1) . Since ω, ν ̸= 0,±1,±i, we obtain

L(L− 5)2J+.

■ If AB ∈ J−, then similarly we obtain L(L− 5)(L− 1)J−.

■ If AB ∈M , then conjugate to AB =
(
λ 0
0 λ−1

)
and solve for A =

(
λ 0
0 λ−1

)
B−1.

Consider the following cases.

– Case αγ = 0. Identify the Sλ2 -quotient with the stratum where γ = 0. Fix

α = δ = 1 by lifting P to GL2. Solve for ν
2 = (λω−2)±1. If ν2 = λω−2, then

substituting u = νω yields u2 = λ with ω ̸= 0,±1,±i,±u,±iu. The case

ν2 = (λω−2)−1 is similar with u = ν/ω, so we obtain 2L(L− 9)Y .

– Case αγ ̸= 0 and βδ = 0. Identify the Sλ2 -quotient with the stratum where

β = 0. Fix α = δ = 1 by lifting P to GL2. Solve for ν2 = (λω−2)±1. Again,

substituting u = νω±1, respectively, we obtain 2(L− 9)(L− 1)Y .
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– Case αβγδ ̸= 0. Fix γ = δ = 1 by lifting P to GL2. Note that there are no

solutions with ρ = λ±1µ±1, and solve for β = α(λ−µρ)(λρ−µ)
(λµ−ρ)(λµρ−1) . Furthermore,

note that Sλ2 acts via α 7→ α−1. From the Sλ2 -virtual classes

[{α ̸= 0}]S
λ
2 = L⊗ T − 1⊗N[

GL2/D ×
{
λ,ω2,ν2 ̸=0,±1
ν2 ̸=λ±1ω±2

}]Sλ
2

M
= (L− 5)2(M ⊗ T + (X2,−2 −M)⊗N)

− 2(L− 9)Y ⊗ (T +N)

we obtain (L− 5)2(L+ 1)M − (L− 5)2X2,−2 − 2(L− 9)(L− 1)Y .

Lemma 5.4.10.

Zrep
G

( )
(X2,−2 ⊗X2) = L(L− 5)(L+ 1)(I+ + I−)

+ L(L− 4)(L− 1)(J+ + J−)

+ (L− 3)2(L+ 1)M + (L− 9)X2,−2 − 2LY

Proof. Stratify based on the conjugacy class of the product AB.

■ If AB = 1, then solve for A = B−1 to obtain [X2,−2 ×M X2]I+ = [Y ]I+ =

L(L− 5)(L+ 1)I+.

■ If AB = −1, then solve for A = −B−1 to obtain [X2,−2×MX−2]I− = [Y ]I+ =

L(L− 5)(L+ 1)I−.

■ If AB ∈ J+, then conjugate to AB = ( 1 1
0 1 ) and solve for A = ( 1 1

0 1 )B
−1.

Consider the following cases.

– Case γδ = 0. Identify the Sµ2 -quotient with the stratum where γ = 0. Fix

α = δ = 1 by lifting P to GL2, and fix β = 0 using Ga-symmetry. Solve for

ρ = ω±2. Hence, we obtain 2L(L− 5)J+.

– Case γδ ̸= 0. Fix γ = δ = 1 by lifting P to GL2, and fix α = 0 using

Ga-symmetry. Note that there are no solutions with ρ = ω±2, and solve for

β = − ρ(µ−1)(µ+1)
(µ−ρ)(µρ−1) . Since[{

ρ,ω2 ̸=0,±1
ρ ̸=ω±2

}
� Sµ2

]
= (L− 3)2 − (L− 5) = L2 − 7L+ 14,

we obtain L(L2 − 7L+ 14)J+.

■ If AB ∈ J−, then similarly we obtain L(L− 4)(L− 1)J−.

■ If AB ∈M , then conjugate to AB =
(
λ 0
0 λ−1

)
and solve for A =

(
λ 0
0 λ−1

)
B−1.

Consider the following cases.
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– Case P is (anti-)diagonal. Identify the Sµ2 -quotient with the stratum where

P is diagonal. Fix α = δ = 1 by lifting P to GL2 and using Gm-symmetry.

Solve for ρ = (λω−2)±1, and identify the Sλ2 -quotient with the stratum

where ρ = λω−2. From the conditions ω ̸= 0,±1,±i and ω2 ̸= ±λ, we
obtain (L− 5)X2,−2 − 2Y .

– Case P has one zero. Identify the Sµ2 -quotient with the stratum where αγ =

0, and subsequently the Sλ2 -quotient with the stratum where γ = 0. Fix

α = δ = 1 by lifting P to GL2. Solve for ρ = (λω−2)±1. From the conditions

β ̸= 0, ω ̸= 0,±1,±i and ω2 ̸= ±λ, we obtain 2(L− 5)(L− 1)X2,−2− 4(L−
1)Y .

– Case P has no zeros. Fix γ = δ = 1 by lifting P to GL2. Note that there are

no solutions with ρ = λ±1µ±1, and solve for β = α(λ−µρ)(λρ−µ)
(λµ−ρ)(λµρ−1) . Substituting

α′ = αλρ−µλµ−ρ , we find that Sλ2 and Sµ2 act via α′ 7→ 1/α′ and α′ 7→ α′,

respectively. From the Sλ2 × S
µ
2 -virtual classes

[{α′ ̸= 0}]S
λ
2 ×Sµ

2 = (L⊗ Tλ − 1⊗Nλ)⊗ Tµ[
GL2/D ×

{
ρ,ω2 ̸=0,±1
ρ ̸=λ±1ω±2

}]Sλ
2 ×Sµ

2

M
=

(L− 3)((L− 3)⊗ Tµ − 2⊗Nµ)(M ⊗ Tλ + (X2,−2 −M)⊗Nλ)

− ((L− 5)X2,−2 − 2Y )⊗ (Tλ +Nλ)⊗ (Tµ ⊗Nµ)

we obtain (L− 3)2(L+ 1)M − 2(L2 − 6L+ 7)X2,−2 + 2(L− 1)Y .

Lemma 5.4.11.

Zrep
G

( )
(Y ⊗X2) = 2L(L− 5)(L+ 1)(I+ + I−)

+ L(L− 5)(L− 1)(J+ + J−)

+ (L− 5)(L− 3)(L+ 1)M

− (L− 5)(L− 3)X2,−2 + L(L− 9)Y

Proof. Stratify based on the conjugacy class of the product AB.

■ If AB = 1, then solve for A = B−1 to obtain [Y ×M X2]I+ = 2[Y ]I+ =

2L(L− 5)(L+ 1)I+.

■ If AB = −1, then solve for A = −B−1 to obtain [Y ×M X−2]I− = 2[Y ]I− =

2L(L− 5)(L+ 1)I−.

■ If AB ∈ J+, then conjugate to AB = ( 1 1
0 1 ) and solve for A = ( 1 1

0 1 )B
−1.

Consider the following cases.
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– Case γδ = 0. Identify the Sµ2 -quotient with the stratum where γ = 0. Fix

α = δ = 1 by lifting P to GL2, and fix β = 0 using Ga-symmetry. Solve for

ν2 = ω±2, that is, ν = ±ω±1. Since ω ̸= 0,±1,±i, we obtain 4L(L− 5)J+.

– Case γδ ̸= 0. Fix γ = δ = 1 by lifting P to GL2, and fix α = 0 using

Ga-symmetry. Note that there are no solutions with ρ = ω±2, and solve for

β = − ρ(µ−1)(µ+1)
(µ−ρ)(µρ−1) . Since[{

ν,ω ̸=0,±1,±i
ν ̸=±ω±1

}
� Sµ2

]
= (L− 5)(L− 3)− 2(L− 5) = (L− 5)2,

we obtain L(L− 5)2J+.

■ If AB ∈ J−, then similarly we obtain L(L− 5)(L− 1)J−.

■ If AB ∈M , then conjugate to AB =
(
λ 0
0 λ−1

)
and solve for A =

(
λ 0
0 λ−1

)
B−1.

Consider the following cases.

– Case P is (anti-)diagonal. Identify the Sµ2 -quotient with the stratum where

P is diagonal. Fix α = δ = 1 by lifting P to GL2. Solve for ν2 = (λω−2)±1,

and identify the Sλ2 -quotient with the stratum where ν2 = λω−2. Substitute

u = νω so that u2 = λ. From the condition ω ̸= 0,±1,±i,±u,±iu, we
obtain (L− 9)Y .

– Case P has one zero. Identify the Sµ2 -quotient with the stratum where αγ =

0, and subsequently the Sλ2 -quotient with the stratum where γ = 0. Fix

α = δ = 1 by lifting P to GL2. Solve for ν
2 = (λω−2)±1. Again, substituting

u = νω±1, respectively, we obtain 2(L− 9)(L− 1)Y .

– Case P has no zeros. Fix γ = δ = 1 by lifting P to GL2. Note that there are

no solutions with ρ = λ±1µ±1, and solve for β = α(λ−µρ)(λρ−µ)
(λµ−ρ)(λµρ−1) . Substituting

α′ = αλρ−µλµ−ρ , we find that Sλ2 and Sµ2 act via α′ 7→ 1/α′ and α′ 7→ α′,

respectively. From the Sλ2 × S
µ
2 -virtual classes

[{α′ ̸= 0}]S
λ
2 ×Sµ

2 = (L⊗ Tλ − 1⊗Nλ)⊗ Tµ[
GL2/D ×

{
ν,ω ̸=0,±1,±i
ν2 ̸=λ±1ω±2

}]Sλ
2 ×Sµ

2

M
=

(L− 5)((L− 3)⊗ Tµ − 2⊗Nµ)(M ⊗ Tλ + (X2,−2 −M)⊗Nλ)

− (L− 9)Y ⊗ (Tλ +Nλ)⊗ (Tµ ⊗Nµ)

we obtain (L−5)(L−3)(L+1)M−(L−5)(L−3)X2,−2−(L−9)(L−1)Y .
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Lemma 5.4.12.

Zrep
G

( )
(X2 ⊗X2) = 2L(L2 − 3L− 2)I+ + L(L− 5)(L+ 1)I−

+ L(L− 5)(L− 1)J+ + L(L− 4)(L− 1)J−

+ (L− 3)2(L+ 1)M − L(L− 3)X−2

− (L− 3)2X2,−2 + L(L− 6)Y

Proof. Stratify based on the conjugacy class of the product AB.

■ IfAB = 1, then solve forA = B−1. It follows that ν2 = ω±2, that is, ν = ±ω±1,

so identify the Sρ2 -quotient with the stratum where ν = ±ω−1. From the Sµ2 -

virtual classes

[GL2/D]S
µ
2 = L2 ⊗ T + L⊗N[{

ω ̸=0,±1,±i
ν ̸=±ω

}]Sµ
2

= 2((L− 3)⊗ T − 2⊗N)

we obtain 2L(L2 − 3L− 2)I+.

■ If AB = −1, then solve for A = −B−1. It follows that ν2 = −ω±2, that is,

ν = ±iω±1. Identify the Sρ2 -quotient with the stratum where ν = ±iω−1, and

subsequently identify the Sµ2 -quotient with the stratum where ν = iω−1. We

obtain [Y ]I− = L(L− 5)(L+ 1)I−.

■ If AB ∈ J+, then conjugate to AB = ( 1 1
0 1 ) and solve for A = ( 1 1

0 1 )B
−1.

Consider the following cases.

– Case γδ = 0. Identify the Sµ2 -quotient with the stratum where γ = 0. Fix

α = δ = 1 by lifting P to GL2, and fix β = 0 using Ga-symmetry. It follows

that ν2 = ω±2, that is, ν = ±ω±1, so identify the Sρ2 -quotient with the

stratum where ν = ±ω. Since ω ̸= 0,±1,±i, we obtain 2L(L− 5)J+.

– Case γδ ̸= 0. Fix γ = δ = 1 by lifting P to GL2, and fix α = 0 using

Ga-symmetry. Note that there are no solutions with ρ = ω±2, and solve for

β = − ρ(µ−1)(µ+1)
(µ−ρ)(µρ−1) . Since[{
ν,ω ̸=0,±1,±i
ν2 ̸=ω±2

}
� Sµ2 × S

ρ
2

]
= (L− 3)2 − 2(L− 3) = (L− 5)(L− 3)

we obtain L(L− 5)(L− 3)J+.

■ If AB ∈ J−, then conjugate to AB =
(−1 1

0 −1

)
and solve for A =

(−1 1
0 −1

)
B−1.

Consider the following cases.

– Case γδ = 0. Similarly to the above we obtain 2L(L− 5)J−.
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– Case γδ ̸= 0. Fix γ = δ = 1 by lifting P to GL2, and fix α = 0 using

Ga-symmetry. Note that there are no solutions with ρ = −µ±1, and solve

for β = ρ(µ−1)(µ+1)
(µ+ρ)(µρ+1) . Since[{
ν,ω ̸=0,±1,±i
ν ̸=±iω±1

}
� Sµ2 × S

ρ
2

]
= (L− 3)2 − (L− 5) = L2 − 7L+ 14

we obtain L(L2 − 7L+ 14)J−.

■ If AB ∈M , then conjugate to AB =
(
λ 0
0 λ−1

)
and solve for A =

(
λ 0
0 λ−1

)
B−1.

Consider the following cases.

– Case P is (anti)-diagonal. Identify the Sµ2 -quotient with the stratum where P

is diagonal. Fix α = δ = 1 by lifting P to GL2. It follows that ν
2 = (λω−2)±1,

so identify the Sρ2 -quotient with the stratum where ν2 = λω−2. Substitute

u = νω so that u2 = λ. Since ω ̸= 0,±1,±i,±u,±iu, we find[
GL2/D ×

{
u2=λ

ω ̸=0,±1,±i,±u,±iu

}]Sλ
2

M
=

(X−2 ⊗ T + (Y −X−2)⊗N)((L− 6)⊗ T − 3⊗N)

so we obtain (L− 3)X−2 − 3Y .

– Case P has one zero. Identify the Sµ2 -quotient with the stratum where αγ =

0, and subsequently the Sλ2 -quotient with the stratum where γ = 0. Fix α =

δ = 1 by lifting P to GL2. Identify the Sρ2 -quotient with the stratum where

ν2 = λω−2. Substitute u = νω so that u2 = λ and ω ̸= 0,±1,±i,±u,±iu.
Furthermore, β ̸= 0, so we obtain (L− 9)(L− 1)Y .

– Case P has no zeros. Fix γ = δ = 1 by lifting P to GL2. Note that there are

no solutions with ρ = λ±1µ±1, and solve for β = α(λ−µρ)(λρ−µ)
(λµ−ρ)(λµρ−1) . The various

S2-actions on α are given by

α
Sλ
27→ α−1, α

Sµ
27→ β =

α(λ− µρ)(λρ− µ)
(λµ− ρ)(λµρ− 1)

, α
Sρ
27→ α.

Extending α to be P1-valued, we can consider this stratum as a P1-fibration

minus the stratum where α = 0 or α =∞. Since the cases α = 0 or α =∞
are interchanged by Sλ2 but invariant under Sµ2 , we can effectively act as

if α is invariant under Sµ2 and Sρ2 and has Sλ2 -virtual class [{α ̸= 0}]Sλ
2 =

L⊗ T − 1⊗N . Together with the Sλ2 -virtual class[
GL2/D ×

{
ν,ω ̸=0,±1,±i
ν2 ̸=λ±1ω±2

}
� Sµ2 × S

ρ
2

]Sλ
2

M
=

(L− 3)2(M ⊗ T + (X2,−2 −M)⊗N)

− (X−2 ⊗ T + (Y −X−2)⊗N)((L− 6)⊗ T − 3⊗N)

we obtain (L−3)2(L+1)M−(L−3)(L+1)X−2−(L−3)2X2,−2+(4L−6)Y .
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5.5 Results

Using (4.13), Proposition 5.3.1 and the lemmas in Section 5.4, we obtain an

expression for the matrix associated with Zrep
G

( )
with respect to the gen-

erators (5.3).

Zrep
G

( )
=



2 L2 + L 2L2 − 2 0 L3 − 3L2 − 2L
L2 + L 2 0 2L2 − 2 L3 − 3L2 − 2L

2 0 L2 − L− 2 2L2 L3 − 3L2

0 2 2L2 L2 − L− 2 L3 − 3L2

0 0 L2 − 1 L2 − 1 L3 − 2L2 − L+ 2

0 1 0 −L− 1 L
1 0 −L− 1 0 L
0 0 1− L 1− L 2L− 2

0 0 L L −2L

L3 − 4L2 − 5L 2L3 − 6L2 − 4L L3 − 4L2 − 5L 2L3 − 8L2 − 10L
2L3 − 6L2 − 4L L3 − 4L2 − 5L L3 − 4L2 − 5L 2L3 − 8L2 − 10L
L3 − 3L2 − 2L L3 − 4L2 − L L3 − 3L2 − 2L L3 − 4L2 − 5L
L3 − 4L2 − L L3 − 3L2 − 2L L3 − 3L2 − 2L L3 − 4L2 − 5L

L3 − 3L2 − L+ 3 L3 − 3L2 − L+ 3 L3 − 3L2 − L+ 3 L3 − 5L2 − L+ 5

−L2 + L L2 + L 0 0

L2 + L −L2 + L 0 0

−L2 + 4L− 3 −L2 + 4L− 3 L2 + 2L− 3 −L2 + 6L− 5

L2 − 4L L2 − 4L −2L 2L2 − 6L


This matrix can be diagonalized with eigenvalues

0, −L(L− 1), L(L− 1), L(L− 1)(L+ 1), (L− 1)(L+ 1),

−L(L+ 1), 2L(L+ 1), 2L(L− 1), L(L+ 1)

and respective eigenvectors

0

0

0

0

2

−1

−1

−1

1





−L− 1

L+ 1

−1

1

0

0

0

0

0





−L2 + 4L+ 5

−L2 + 4L+ 5

5− L
5− L
0

0

0

0

2





1

1

1

1

1

0

0

0

0





L
L
0

0

−1

0

0

1

0





(L− 1)2

−(L− 1)2

1− L
L− 1

0

−2

2

0

0





1− L
L− 1

1

−1

0

−1

1

0

0





L+ 1

L+ 1

1

1

0

0

0

−1

1





−(L− 1)2

−(L− 1)2

L− 1

L− 1

0

−2

−2

0

2


.

The following theorem now follows from (4.11).

Theorem 5.5.1. For any r ≥ 0, the virtual class of the SL2-character stack of

Nr in KP1

0 (Stckk) is

[XSL2
(Nr)] =

1

4
Lr−2(L+ 1)r−2((L− 1)(1 + (−1)r)− (−2)r+1)

+
1

4
Lr−2(L− 1)r−2((L− 1)(1 + (−1)r) + 2r+1 − 4)

+ (Lr−2 + 1)(L− 1)r−2(L+ 1)r−2.



112 CHAPTER 5. SL2-CHARACTER STACKS

Remark 5.5.2. The first eigenvector, with eigenvalue 0, corresponds to the

element 2M +Y −X2−X−2−X2,−2 ∈ K0(VarG). We encountered this element

already in Remark 5.1.2, where it was shown to be non-zero. On the other hand,

the (Hodge) monodromy representation of M +M +Y agrees with that of X2 +

X−2 + X2,−2, so it is not surprising to encounter this element in the kernel of

Zrep
G

( )
.

Similarly, for the orientable surfaces, using (4.12), Proposition 5.2.1 and the

lemmas in Section 5.4, we obtain an expression for the matrix associated with

Zrep
G

( )
with respect to the same set of generators.

Zrep
G

( )
=



L4 + 4L3 − L2 − 4L L3 − L L5 − 2L4 − 4L3 + 2L2 + 3L
L3 − L L4 + 4L3 − L2 − 4L L5 + 3L4 − L3 − 3L2

L3 − 2L2 − 3L L3 + 3L2 L5 + L4 + 3L2 + 3L
L3 + 3L2 L3 − 2L2 − 3L L5 − 3L3 − 6L2

L3 − L2 − L+ 1 L3 − L2 − L+ 1 L5 − 2L3 + L
2L2 + 2L −L2 − L −2L3 − 4L2 − 2L
−L2 − L 2L2 + 2L L3 + 2L2 + L

−L2 + 2L− 1 −L2 + 2L− 1 −2L3 + 4L2 − 2L
L2 − 2L L2 − 2L 2L3 − 2L2 + 2L

L5 + 3L4 − L3 − 3L2 L6 − 2L5 − 4L4 + 3L2 + 2L L6 − 11L4 − 3L3 + 10L2 + 3L
L5 − 2L4 − 4L3 + 2L2 + 3L L6 − 2L5 − 4L4 + 3L2 + 2L L6 − 3L5 − 8L4 + 7L2 + 3L

L5 − 3L3 − 6L2 L6 − 2L5 − 3L4 + L3 + 3L2 L6 − 3L5 − 4L4 − 3L3 + 9L2

L5 + L4 + 3L2 + 3L L6 − 2L5 − 3L4 + L3 + 3L2 L6 − 3L5 − L4 − 3L3 + 6L2

L5 − 2L3 + L L6 − 2L5 − 2L4 + 2L3 + 3L2 − 2 L6 − 3L5 − 3L4 + 4L3 + 5L2 − L− 3

L3 + 2L2 + L L3 + L2 2L4 + 2L3

−2L3 − 4L2 − 2L L3 + L2 −2L4 + 2L2

−2L3 + 4L2 − 2L 4L3 − 6L2 + 2 −2L4 + 11L3 − 13L2 + L+ 3

2L3 − 2L2 + 2L −4L3 + 2L2 2L4 − 11L3 + 7L2

L6 − 3L5 − 8L4 + 7L2 + 3L L6 − 2L5 − 9L4 − L3 + 8L2 + 3L L6 − L5 − 20L4 − 4L3 + 19L2 + 5L
L6 − 11L4 − 3L3 + 10L2 + 3L L6 − 2L5 − 9L4 − L3 + 8L2 + 3L L6 − L5 − 20L4 − 4L3 + 19L2 + 5L
L6 − 3L5 − L4 − 3L3 + 6L2 L6 − 2L5 − 5L4 + 6L2 L6 − 4L5 − 4L4 − 8L3 + 15L2

L6 − 3L5 − 4L4 − 3L3 + 9L2 L6 − 2L5 − 5L4 + 6L2 L6 − 4L5 − 4L4 − 8L3 + 15L2

(L− 1)2 (L+ 1)
(
L3 − 2L2 − 4L− 3

)
(L− 3) (L− 1)2 (L+ 1)3 (L− 5) (L− 1)2 (L+ 1)3

−2L4 + 2L2 0 0

2L4 + 2L3 0 0

−2L4 + 11L3 − 13L2 + L+ 3 L4 + 6L3 − 12L2 + 2L+ 3 −3L4 + 20L3 − 26L2 + 4L+ 5

2L4 − 11L3 + 7L2 −6L3 + 6L2 4L4 − 20L3 + 16L2


It turns out this matrix can be diagonalized using the same set of eigenvectors.

The corresponding eigenvalues are

0, L2(L− 1)2, L2(L− 1)2, L2(L− 1)2(L+ 1)2, (L− 1)2(L+ 1)2,

L2(L+ 1)2, 4L2(L+ 1)2, 4L2(L− 1)2, L2(L+ 1)2.

The following theorem now follows from (4.10). The corresponding E-polynomi-

als can be seen to agree with [MM16].
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Theorem 5.5.3. For any g ≥ 0, the virtual class of the SL2-character stack of

Σg in KP1

0 (Stckk) is

[XSL2
(Σg)] =

1

2
L2g−2(L+ 1)2g−2(22g + L− 1)

+
1

2
L2g−2(L− 1)2g−2(22g + L− 3)

+ (L2g−2 + 1)(L− 1)2g−2(L+ 1)2g−2.

The fact that both matrices can be simultaneously diagonalized is not too sur-

prising considering the fact that and commute as bordisms. Fur-

thermore, it can be seen that

Zrep
G

( )3
= Zrep

G

( )
◦ Zrep

G

( )
which reflects the equality of bordisms

3
= ◦ .

What is remarkable is that the equality

Zrep
G

( )2
= Zrep

G

( )
holds for G = SL2 (at least on the set of generators (5.3)), even though it does

not for general G. For example, it already fails to hold for G = Gm. Comparing

Theorem 5.5.3 and Theorem 5.5.1, we find the following.

Corollary 5.5.4. [XSL2(Σg)] = [XSL2(N2g)] in KP1

0 (Stckk) for all g ≥ 0.

An explanation for this relation between the orientable and non-orientable case

can be given for the corresponding E-polynomials, from the point of view of the

arithmetic method.

Suppose G is a linear algebraic group over a finitely generated Z-algebra R. Com-

paring Theorem 4.5.3 and Proposition 4.9.12, it follows that, for any morphism

R → Fq, the point counts |RG(Σg)(Fq)| and |RG(N2g)(Fq)| agree whenever the

Frobenius–Schur indicators εχ of all irreducible characters χ of G(Fq) are equal

to ±1. That is, if all irreducible representations of G(Fq) are either real or pseu-

doreal.

Indeed, if we take G = SL2 and R = Z[1/2, i], then a map R → Fq exists if

and only if q ≡ 1 mod 4. For such q, any element of SL2(Fq) is conjugate to its

inverse, and hence

χ(g) = χ(g−1) = χ(g)
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for all g ∈ SL2(Fq) and irreducible characters χ of SL2(Fq). This shows that

all irreducible characters χ of SL2(Fq), with q ≡ 1 mod 4, are either real or

pseudoreal, that is, εχ = ±1, and hence

|RSL2(Σg)(Fq)| = |RSL2(N2g)(Fq)|.

Since these numbers are polynomial in q, it follows from Theorem 4.6.1 (Katz’

theorem) that e(RSL2
(Σg)) = e(RSL2

(N2g)), and in turn that e(XSL2
(Σg)) =

e(XSL2
(N2g)).




