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Chapter 3

Motivic invariants

When studying a geometric object, say a compact manifold X, one can try to

understand X by means of its invariants. One of the simplest invariants is the

Euler characteristic of X, a topological invariant, which is an integer χ(X) ∈ Z
given by the alternating sum of its Betti numbers

χ(X) =
∑
k≥0

(−1)k dimCH
k(X;C).

There are many ways in which the Euler characteristic can be refined. For in-

stance, when X is (the analytification of) a smooth projective complex variety,

the cohomology groups Hk(X;C) admit a Hodge structure by the Hodge decom-

position theorem [PS08, Theorem 1.8]. The Hodge polynomial of X,

PHodge(X) =
∑
p,q≥0

dimCH
p,q(X)upvq ∈ Z[u, v] (3.1)

specializes to the Euler characteristic for u = v = −1. One may replaceHk(X;C)
by the compactly supported cohomology groups Hk

c (X;C) in order to extend the

Euler characteristic to non-compact X. Analogously, as explained in Section 3.1,

by work of Deligne [Del71b, Del74] the Hodge polynomial can be extended to

an invariant for all complex varieties, possibly non-smooth and non-projective,

called the E-polynomial e(X) ∈ Z[u, v], also known as the Hodge–Deligne poly-

nomial or Serre polynomial. This invariant is additive and multiplicative in the

sense that e(X) = e(Z) + e(X \ Z) and e(X × Y ) = e(X) e(Y ) for all complex

varieties X and Y and closed subvarieties Z ⊆ X.

The goal of this chapter is to discuss various such invariants, and to give tools

for computing them. Our main focus will be on the invariant that takes values

in the Grothendieck ring of varieties, defined in Section 3.2, which is universal

among all additive and multiplicative invariants.
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24 CHAPTER 3. MOTIVIC INVARIANTS

3.1 Mixed Hodge structures

Let X be a complex variety. It was shown by Deligne [Del71a, Del71b] that the

singular cohomology groups with compact supportHk
c (X;Q) naturally admit the

structure of a mixed Hodge structure. Let us recall the definition of a (mixed)

Hodge structure.

Definition 3.1.1. A Hodge structure of weight k ∈ Z is a pair (H,F •H) con-

sisting of a finite-dimensional rational vector space H and a decreasing filtration

F •H on HC = H ⊗Q C,

HC ⊇ · · · ⊇ F pH ⊇ F p+1H ⊇ · · · ⊇ 0,

such that HC = F p⊕F q for p+q = k+1. A morphism of Hodge structures of the

same weight (H,F •H)→ (H ′, F •H ′) is a linear map f : H → H ′ which preserves

the filtration, that is, fC(F
pH) ⊆ F pH ′ for all p. A mixed Hodge structure is a

triple (H,W•H,F
•H) consisting of a finite-dimensional rational vector space H,

an increasing filtration W•H on H, called the weight filtration,

0 ⊆ · · · ⊆WkH ⊆Wk+1H ⊆ · · · ⊆ H,

and a decreasing filtration F •H on HC,

HC ⊇ · · · ⊇ F pH ⊇ F p+1H ⊇ · · · ⊇ 0,

such that the induced filtration of F •H on the graded pieces (GrWk H) ⊗Q C =

(WkH/Wk+1H) ⊗Q C are Hodge structures of weight k. A morphism of mixed

Hodge structures is a linear map which preserves both the increasing and decreas-

ing filtration. The categories of Hodge structures and of mixed Hodge structures

are denoted by HS and MHS, respectively.

Now, more precisely, Deligne showed that the cohomology groups Hk
c (X;Q) and

their complexification Hk
c (X;Q) ⊗Q C = Hk

c (X;C) can naturally be equipped

with weight filtrations W• and decreasing filtrations F •, respectively, such that

the triples Hk
c (X) = (Hk

c (X;Q),W•, F
•) are mixed Hodge structures. Moreover,

the construction is functorial in X, agrees with the usual Hodge decomposition

when X is smooth and projective, and is compatible with various classical exact

sequences in cohomology. For the explicit construction and more details, we refer

to [Del71b, Del74, PS08].

There is an exact functor from the category of mixed Hodge structures to the

category of finite-dimensional bigraded complex vector spaces [Del71b, Theorem

1.2.10]:

Gr∗F GrW∗ : MHS→ (VectZ×Z
C )fin, H 7→

⊕
p,q∈Z

GrpF GrWp+qHC (3.2)
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In the case of a mixed Hodge structure on Hk
c (X;Q), we denote its bigraded

pieces by

Hk;p,q
c (X) = GrpF GrWp+qH

k
c (X;C).

In fact, Hk;p,q
c (X) is non-zero only if p, q ≥ 0. The dimensions of these vector

spaces can be collected as the coefficients of a polynomial. This way we obtain

the following definition, as first introduced in [DK86].

Definition 3.1.2. Let X be a complex variety. The E-polynomial of X (also

known as the Hodge–Deligne polynomial or the Serre polynomial) is the polyno-

mial e(X) ∈ Z[u, v] given by

e(X) =
∑

k,p,q∈Z
(−1)k dimCH

k;p,q
c (X)upvq.

In particular, whenX is smooth and projective, the E-polynomial e(X) coincides

with the Hodge polynomial (3.1), up to the change of signs induced by u 7→ −u
and v 7→ −v.

Amazingly, the E-polynomial is additive and multiplicative, in the sense that

e(X) = e(Z) + e(X \ Z) and e(X × Y ) = e(X) e(Y ) (3.3)

for complex varieties X and Y , and Z ⊆ X a closed subvariety. These properties

follow from the long exact sequence

· · · → Hk
c (X \ Z;C)→ Hk

c (X;C)→ Hk
c (Z;C)→ Hk+1

c (X \ Z;C)→ · · · (3.4)

of mixed Hodge structures [PS08, p.138], and the Künneth formula [Del74,

Proposition 8.2.10], respectively, together with the fact that (3.2) is exact.

3.2 Grothendieck ring of varieties

As seen in the previous section, the E-polynomial is an additive and multi-

plicative invariant (3.3). In this section, we will define the Grothendieck ring of

varieties: the ring in which the universal invariant, among all additive and multi-

plicative invariants, takes values. This means, in particular, that when computing

the E-polynomial of some complex variety using only these properties, one might

as well compute the invariant in the Grothendieck ring of varieties, to obtain a

more refined invariant. One of the advantages to the Grothendieck ring of vari-

eties is that, as opposed to other invariants, it can be defined for varieties over

any field k, and also more generally in the relative setting for varieties over a

base variety S.



26 CHAPTER 3. MOTIVIC INVARIANTS

The Grothendieck ring of varieties K0(Vark) was originally introduced in a letter

from Grothendieck to Serre [CS01, 16 Aug. 1964], and came with a hypothetical

morphism

K0(Vark)→ K0(M(k)) (3.5)

to the ‘Grothendieck group of the abelian category of motives’. For this reason,

we refer to these invariants as motivic invariants. To gain some understanding

about this morphism, we first introduce the Grothendieck group of an abelian or

triangulated category.

Definition 3.2.1. The Grothendieck group of an abelian category A, denoted
K0(A), is the free abelian group on isomorphism classes [A] of objects A of A,
modulo the relations

[B] = [A] + [C]

for all short exact sequences 0 → A → B → C → 0 in A. Similarly, the

Grothendieck group of a triangulated category A, also denoted K0(A), is the

free abelian group on isomorphism classes [A] of objects A of A, modulo the

relations

[B] = [A] + [C]

for all distinguished triangles A→ B → C → A[1] in A. When A is a tensor tri-

angulated category, the tensor product ⊗ induces the structure of a commutative

ring on K0(A) given on generators by

[A][B] = [A⊗B].

Remark 3.2.2. The Grothendieck group of an abelian category A is naturally

isomorphic to that of its derived category Db(A) as triangulated category. In

particular, the functor A → Db(A), which assigns to any object A the complex

with A concentrated in degree 0, induces a morphism K0(A) → K0(D
b(A)). It

is an easy exercise in homological algebra to show that an inverse is given by

[A•] 7→
∑
i∈Z(−1)i[Hi(A•)].

Even though the category of varieties is neither abelian nor triangulated (not

even additive), the Grothendieck ring of varieties is defined similarly, where exact

sequences are replaced by closed immersions with open complements. For many

invariants, these notions can be related through a long exact sequence such as

(3.4).

Definition 3.2.3. Let S be a variety over a field k. The Grothendieck ring of

varieties over S, denoted K0(VarS), is the free abelian group on isomorphism

classes [X] of varieties X over S, modulo the relations

[X] = [Z] + [X \ Z]
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for all closed immersions Z → X of varieties over S. It admits the structure of a

commutative ring, where multiplication is given on generators by

[X][Y ] = [(X ×S Y )red].

In particular, the classes [∅] and [S] are the zero and unit of this ring, respectively.

For any variety X over S, the element [X] in K0(VarS) is also known as the

virtual class of X.

Remark 3.2.4. Although the Grothendieck ring is generated by isomorphism

classes of varieties X, one could allow for X to be non-reduced without affecting

the ring. Indeed, Xred ⊆ X is a closed subscheme with complement ∅, so that

[Xred] = [X]. Also, in this case, one can define multiplication simply by [X][Y ] =

[X ×S Y ]. Similarly, we can omit the condition that X be separated since any

scheme X of finite type over S can be partitioned into finitely many separated

subschemes X1, . . . , Xn, so that [X] = [X1] + · · · + [Xn]. However, we cannot

permit any X which is not quasi-compact over S. For example, if X =
⊔

Z S and

Z = S, then X \ Z ∼= X which would imply 1 = [Z] = 0, collapsing the ring

to the trivial ring. Indeed, Grothendieck originally defined his ring allowing for

isomorphism classes of all schemes X of finite type over S [CS01, 16 Aug. 1964].

Notation 3.2.5. To distinguish between virtual classes over different bases, we

sometimes write [X]S to emphasize the virtual class lives in K0(VarS). When

the base S is clear from context, or when S = Spec k, we simply write [X].

Definition 3.2.6. The virtual class of the affine line A1
S over S in K0(VarS) is

called Lefschetz class and is denoted by L.

Example 3.2.7. ■ The virtual class of affine n-space is [AnS ]S = Ln for any

n ≥ 0.

■ Since PnS \ P
n−1
S
∼= AnS , it follows by induction on n that [PnS ]S = Ln +Ln−1 +

· · ·+ 1 for all n ≥ 0.

Example 3.2.8. The following invariants are additive and multiplicative, and

hence factor through the Grothendieck ring of varieties.

■ For S = SpecC, the E-polynomial (see Definition 3.1.2) factors through

K0(VarC), which gives a ring morphism

e : K0(VarC)→ Z[u, v], [X] 7→ e(X). (3.6)

■ For any point SpecFq → S, one can count Fq-rational points

#Fq
: Ob(VarS)→ Z, X 7→ |X(Fq)|.

This map, being additive and multiplicative, factors through K0(VarS).
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■ Let S = Spec k for a field k with char(k) = 0. Then there is a ring morphism

K0(Vark)→ K0(DMeff
gm(k,Q))

to the Grothendieck group of the Q-linearization of Voevodsky’s triangulated

category of effective geometric motives [BD07, Appendix A]. This morphism

sends the virtual class [X] of a variety X over k to the class [M c
gm(X)] of its

motive with compact support. Viewing DMeff
gm(k,Q) as a substitute for the

derived category of the ‘abelian category of motives’, this map would be the

morphism (3.5) that Grothendieck had in mind in his letter.

■ Again, let S = Spec k for a field k with char(k) = 0. Then there is a ring

morphism

K0(Vark)→ K0(CHMotk)

to the Grothendieck group of the category of Chow motives over k with rational

coefficients [GN02, (5.5)].

Let us describe some formal and functorial properties of the Grothendieck ring

of varieties. Given a morphism f : X → Y of varieties over S, there is an induced

ring morphism

f∗ : K0(VarY )→ K0(VarX), [W ]Y 7→ [W ×Y X]X .

Indeed, this map is well-defined since, for any variety W over Y and closed

subvariety Z ⊆W , we have [W×YX]X = [Z×YX]X+[(W \Z)×YX]X . Similarly,

f∗ respects multiplication as (W ×Y W ′) ×Y X ∼= (W ×Y X) ×X (W ′ ×Y X)

for any varieties W and W ′ over Y . The morphism f∗ turns K0(VarX) into a

K0(VarY )-algebra, and in particular K0(VarX) is a K0(VarS)-algebra for every

variety X over S. Moreover, f∗ is a morphism of K0(VarS)-algebras.

Similarly, the morphism f : X → Y induces a map

f! : K0(VarX)→ K0(VarY ), [W ]X 7→ [W ]Y

which is a morphism of K0(VarS)-modules. However, note that f! is generally

not a morphism of rings.

Remark 3.2.9. The maps f∗ and f! can more generally be seen as functors

VarX VarY
f!

f∗

given by pulling back along f and post-composing with f , respectively, forming

an adjoint pair f! ⊣ f∗. Indeed, for any varieties U over X and V over Y there

is a natural bijection

HomY (U, V ) ∼= HomX(U, V ×Y X).



3.3. STRATIFICATIONS AND FIBRATIONS 29

Example 3.2.10. Let X and Y be varieties over S. There is a natural morphism

of K0(VarS)-algebras

K0(VarX)⊗K0(VarS) K0(VarY )→ K0(VarX×SY )

given, on generators, by [U ]X ⊗ [V ]Y 7→ [U ×S V ]X×SY for all varieties U over

X and V over Y . This map is generally not surjective. For example, let X =

Y = A1
k over S = Spec k for a finite field k = Fq. Consider the class [∆A1

k
] of the

diagonal in X×Y = A2
k, and suppose [∆A1

k
] is equal to the image of

∑n
i=1 ui⊗vi

under this map for some ui, vi ∈ K0(VarA1
k
). Note that every Fqm-rational point

x ∈ A1
k(Fqm) induces a ring morphism

#x : K0(VarA1
k
)→ Z, [U

f−→ A1
k] 7→ |f−1(x)|

counting the number of Fqm-rational points in the fiber over x. The same con-

struction works for A2
k, and together they induce the following commutative

diagram.

K0(VarA1
k
)⊗K0(Vark) K0(VarA1

k
) K0(VarA2

k
)

(∏
x∈A1

k(Fqm ) Z
)
⊗
(∏

x∈A1
k(Fqm ) Z

) ∏
x∈A2

k(Fqm ) Z

Zqm ⊗ Zqm Zqm×qm∼

Now, the image of [∆A1
k
] in Zqm×qm corresponds to the qm× qm identity matrix,

which has rank qm, while the image of
∑n
i=1 ui ⊗ vi has rank at most n. This

yields a contradiction for sufficiently large m.

3.3 Stratifications and fibrations

Let S be a variety over a field k.

Definition 3.3.1. Let X be a variety over S. A stratification of X is a collection

of disjoint locally closed subvarieties {Xi}i∈I of X such that X =
⋃
i∈I Xi.

Lemma 3.3.2 ([Bri12, Lemma 2.2]). Let X be a variety over S and {Xi}i∈I
a stratification of X. Then only finitely many of the Xi are non-empty and

[X] =
∑
i∈I [Xi] in K0(VarS).

Proof. Proof by induction on the dimension of X. If dimX = 0, then X is a

finite set of points, and the result is clear. Now assume that dimX > 0 and that

the result holds for all varieties of dimension less than dimX.
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We prove the result for X by induction on the number of irreducible components

of X. If this number is 1, that is, X is irreducible, then some U = Xi contains

the generic point of X and is therefore open. The complement Z = X \ U is of

smaller dimension than X and is stratified by the other Xi. Since [X] = [Z]+[U ],

the result follows from the induction hypothesis (on dimX).

Now suppose that X is reducible. Take an irreducible component and remove the

intersections with the other irreducible components, which gives an irreducible

open subset U ⊆ X. The complement Z = X \ U is a closed subvariety with

fewer irreducible components than X. Note that {Z ∩Xi}i∈I and {U ∩Xi}i∈I
are stratifications of Z and U , respectively, so only finitely many strata are non-

empty, and we have

[U ] =
∑
i∈I

[U ∩Xi] and [Z] =
∑
i∈I

[Z ∩Xi].

This follows, if dimZ (resp. dimU) is less than dimX, from the induction hy-

pothesis on the dimension, or, if dimZ (resp. dimU) is equal to dimX, from

the induction hypothesis on the number of irreducible components. Finally,

[Xi] = [U ∩Xi] + [Z ∩Xi] implies that [X] = [U ] + [Z] =
∑
i∈I [Xi].

Lemma 3.3.3. Let f : Y → X be a fiber bundle of varieties over S with fiber F

which is locally trivial in the Zariski topology. That is, there exists an open cover

Y = ∪i∈IUi such that f−1(Ui) is isomorphic to F × Ui over Ui for each i ∈ I.
Then [Y ]S = [F ] · [X]S in K0(VarS).

Proof. From the given open cover, we construct a stratification of Y as follows.

Let Z0 = Y and inductively construct Zj+1 for j ≥ 0: if Zj ̸= ∅, there exists

some i ∈ I such that Zj ∩ Ui ̸= ∅, and set Zj+1 = Zj \ (Zj ∩ Ui). As Y is

noetherian, this results in a finite descending chain of closed sets

Y = Z0 ⊋ Z1 ⊋ . . . ⊋ Zn ⊋ Zn+1 = ∅

and the locally closed sets Yj = Zj \Zj+1 for j = 0, 1, . . . , n form a stratification

of Y . Moreover, since Yj ⊆ Ui for some i by construction, f is trivial over each

Yj , that is, f
−1(Yj) ∼= F × Yj . Using Lemma 3.3.2 we conclude

[X]S =

n∑
j=0

[
f−1(Yj)

]
S
=

n∑
j=0

[F ] · [Yj ]S = [F ] · [Y ]S .

Example 3.3.4. For any n ≥ 0, the natural morphism An+1
S \ {0} → PnS is a

fiber bundle with fiber Gm which is locally trivial in the Zariski topology. Indeed,

we have

[Gm] · [PnS ]S = (L− 1)(Ln + · · ·+ L+ 1) = Ln+1 − 1 = [An+1
S \ {0}]S .
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Example 3.3.5. Consider the general linear group GLn of rank n over a field

k. The morphism GLn → Spec k factors as

GLn = Yn → Yn−1 → · · · → Y0 = Spec k

where Ym ⊆ Matn×m denotes the locally closed subvariety ofm-linearly indepen-

dent vectors over k, and the morphisms are given by forgetting the last vector.

Now, for any m = 1, . . . , n, the variety Ym can be regarded as the open com-

plement in Ym−1 × Ank of the closed subvariety Ym−1 × Am−1
k . In particular,

[Ym] = (Ln − Lm−1)[Ym−1]. Therefore, by induction on m, we obtain

[GLn] =

n∏
m=1

(Ln − Lm−1).

Proposition 3.3.6. Let S be a variety with stratification {Si}i∈I and write

fi : Si → S for the immersion of Si into S. Then the map

K0(VarS)→
⊕
i∈I

K0(VarSi
), X 7→ (f∗i X)i∈I

is an isomorphism of K0(Vark)-algebras.

Proof. Every f∗i is a morphism of K0(Vark)-algebras, so this map is as well. Its

inverse is given by (Xi)i∈I 7→
∑
i∈I(fi)!Xi, which is well-defined because only

finitely many Si are non-empty by Lemma 3.3.2. Indeed, it is a right inverse to

the given map because

f∗i (fj)! =

{
idK0(VarSi

) if i = j,

0 if i ̸= j.

It is a left inverse because any variety T over S is stratified by {T ×S Si}i∈I , so
that

[T ]S =
∑
i∈I

[T ×S Si]S =
∑
i∈I

(fi)!f
∗
i [T ]S .

Notation 3.3.7. For any X ∈ K0(VarS), we will write X|Si
∈ K0(VarSi

) for

the components of the image of X under this isomorphism.

Inclusion-exclusion matrix

Let X be a variety over S with stratification {Xi}i∈I and let Y be a variety over

X. The goal of this subsection is to show that, in order to compute the virtual

classes [Y ×X Xi] in K0(VarS) for all i, it is sufficient to compute the virtual

classes [Y ×X Xi] for all i instead, where Xi denotes the Zariski closure of Xi in

X, making use of an inclusion-exclusion principle.
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Example 3.3.8. Suppose X is stratified by a closed subvariety X0 ⊆ X and its

open complementX1 = X\X0. If we were to compute [X0] and [X1] in K0(VarS),

computing the latter would likely result in the computation [X]−[X0], so that the

result of the computation of [X0] can be reused. Therefore, instead of computing

[X0] and [X1], one can compute [X0] = [X0] and [X1] = [X], from which formally

follows that [X1] = [X1]− [X0].

Lemma 3.3.9. Let X be a variety over S with stratification {Xi ̸= ∅}i∈I . Then
Xi = Xj if and only if i = j.

Proof. For each i ∈ I, write Xi = Zi ∩ Ui for some closed Zi ⊆ X and open

Ui ⊆ X. Without loss of generality, we may assume Zi = Xi. Now, if Xi = Xj

for some i, j ∈ I, then both Xi and Xj are open and dense in Xi = Xj ̸= ∅,

so they must intersect. But this contradicts the assumption that Xi and Xj are

disjoint, since they are part of the stratification.

Definition 3.3.10. Let X be a variety over S with a finite stratification {Xi ̸=
∅}i∈I . Put a partial order on I where i ≤ j if and only if Xi ⊆ Xj . Reflexivity

and transitivity are clear, and anti-symmetry follows from the above lemma. The

virtual classes [Xi] and [Xi] in K0(VarS) are now linearly related through

[Xi] =
∑
j∈I

Aij [Xj ]

where Aij = 1 for j ≤ i and Aij = 0 for i < j. Hence, the Aij define a linear map

A : ZI → ZI with determinant 1. The inverse C = A−1 is called the inclusion-

exclusion matrix of the stratification, and satisfies

[Xi] =
∑
j∈I

Cij [Xj ].

Corollary 3.3.11. Let X be a variety over S with finite stratification {Xi}i∈I
and corresponding inclusion-exclusion matrix C. Then for any variety Y over

X, we have

[Y ×X Xi]S =
∑
j∈I

Cij [Y ×X Xj ]S .

Special algebraic groups

Special algebraic groups were first introduced by Serre [Ser58]. In this section, we

describe some basic properties of these groups, and show why they are extremely

useful in the context of computing virtual classes.

Definition 3.3.12. An algebraic group G over a field k is special if any G-torsor

in the étale topology is locally trivial in the Zariski topology.



3.3. STRATIFICATIONS AND FIBRATIONS 33

Lemma 3.3.13. Let G be a special algebraic group. Then for every G-torsor

of varieties P → X in the étale topology over S, we have [P ]S = [G] · [X]S in

K0(VarS).

Proof. The G-torsor P → X is Zariski-locally trivial, so the result follows from

Lemma 3.3.3.

Example 3.3.14. In general, the equality [P ]S = [G] · [X]S fails to hold when G

is not special. Consider for instance the cyclic group G = Z/nZ and the G-torsor

P = A1
C \ {0} → A1

C \ {0} = X given by x 7→ xn. Then [P ] = L− 1 ̸= n(L− 1) =

[G][X] for n ≥ 2, showing Z/nZ is not special for n ≥ 2.

Corollary 3.3.15 (Motivic orbit-stabilizer theorem). Let G be an algebraic

group over k acting on a variety X. For any point ξ ∈ X(k), if the stabilizer

Stab(ξ) is special, then

[G] = [Stab(ξ)][Orbit(ξ)]

in K0(Vark).

Proof. Since the map G → Orbit(ξ) given by g 7→ g · ξ is a Stab(ξ)-torsor, the

result follows from Lemma 3.3.13.

Proposition 3.3.16. Let 1 → N ↪→ G
π→ H → 1 be an exact sequence of

algebraic groups.

(i) If N and H are special, then so is G.

(ii) If the sequence splits and G is special, then so is H.

(iii) If the sequence splits and G is special, then so is N .

Proof. (i) Any G-torsor X → S can be written as the composite of the N -torsor

X → X/N and the H-torsor X/N → X/G ∼= S. As H is special, there exist

opens Si ⊆ S such that (X/N) ×S Si ∼= H × Si. Pulling back the N -torsor

X ×S Si → H × Si along Si
(1,id)−−−→ H × Si gives an N -torsor Yi → Si, which is

also Zariski-locally trivial as N is special. Hence, there exist opens Sij ⊆ Si such
that Yi×Si

Sij ∼= N ×Sij . There is now a natural morphism G×Sij → X×S Sij
of G-torsors over Sij , which must be an isomorphism. Therefore, X → S is

Zariski-locally trivial.

(ii) As sequence splits, there exists a section σ : H → G to π, i.e., π◦σ = idH . Let

X → S be an H-torsor, and consider the G-torsor G×H X := (G×X)/H → S,

where H acts on G × X via h · (g, x) = (gσ(h)−1, h · x). This G-torsor factors
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through the N -torsor G ×H X → X given by (g, x) 7→ π(g) · x. Hence, any

trivialization of G×H X induces a trivialization of X, and such a trivialization

exists as G is special.

(iii) Let X → S be an N -torsor, and consider the G-torsor G ×N X := (G ×
X)/N → S, where N acts on G×X via n · (g, x) = (gn−1, n ·x). As G is special,

there exist opens Si ⊆ S and G-equivariant isomorphism φi : (G×N X)×S Si →
G × Si. These induce N -equivariant isomorphisms X ×S Si → N × Si given

by (x, s) 7→ (g σ(π(g−1)), s), where (g, s) = φi((1, x), s), showing the Si also

trivialize X.

Example 3.3.17. ■ By Hilbert’s Theorem 90, the general linear groups GLn
are special over any field k [Mil80, Proposition III.4.9, Lemma III.4.10].

■ The exact sequence 1 → SLn → GLn
det−−→ Gm → 1 splits, so it follows from

Proposition 3.3.16 (iii) that SLn is also special over any field k.

■ The additive group Ga is special over any field k [Mil80, Proposition III.3.7].

■ The projective linear group PGLn is not special for n ≥ 2. In fact, the PGLn-

torsors over a variety X which are not Zariski-locally trivial are classified by

the Brauer group of X, which is in general non-trivial [Mil80, IV §2].

3.4 Algorithmic computations

Let k be a field. In this section, we describe, from a practical and computational

point of view, various strategies for computing the virtual class of varieties in

K0(Vark), in terms of the classes of some simple varieties, such as L = [A1
k].

These strategies are combined in a recursive algorithm, Algorithm 3.4.3. We

remark already that the algorithm will not be a general recipe for computing

virtual classes in K0(Vark): it is allowed to fail. In fact, whenever the algorithm

does not fail, it will return the virtual class of the given variety as a polynomial

in L. Of course, there exist varieties whose virtual class is not of this form, but it

turns out that this algorithm is sufficiently general for the purposes of the later

chapters.

In order to algorithmically manipulate varieties, we will encode them as follows.

While not all varieties can be encoded in such a way, this should not be too much

of a restriction since any variety can be stratified into varieties of this form.

Notation 3.4.1. Let A = {x1, . . . , xn} be a finite set, and let F and G be finite

subsets of k[A]. Then we write

X(A,F,G)
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for the reduced locally closed subvariety of Ank = Spec k[x1, . . . , xn] given by

f = 0 for all f ∈ F and g ̸= 0 for all g ∈ G.

Furthermore, we will introduce a notation for the evaluation of polynomials.

Notation 3.4.2. Given an element x ∈ A and polynomials f ∈ k[A] and u ∈
k[A \ {x}], denote by evalxu(f) the evaluation of f in x = u. For polynomials

u, v ∈ k[A \ {x}], write evalxu/v(f) for the evaluation of f in x = u/v multiplied

by vdegx(f), so that evalxu/v(f) ∈ k[A\{x}]. Similarly, for subsets F ⊆ k[A], write
evalxu(F ) = {eval

x
u(f) : f ∈ F} and evalxu/v(F ) = {eval

x
u/v(f) : f ∈ F}.

An implementation of this algorithm can be found at [Vog22].

Algorithm 3.4.3. Input: Finite sets A,F and G as in Notation 3.4.1.

Output: The virtual class [X] ∈ K0(Vark) of X = X(A,F,G) as a polynomial

in L = [A1
k].

1. If F contains a non-zero constant or if 0 ∈ G, thenX = ∅, so return [X] = 0.

2. If F = G = ∅ or A = ∅, then X = A|A|
k , so return [X] = L|A|.

3. If F,G ⊆ k[A \ {x}] for some x ∈ A, then X ∼= A1
k × X ′ with X ′ =

X(A \ {x}, F,G), so return [X] = L [X ′].

4. If f = un (with n > 1) for some f ∈ F and u ∈ k[A], then we replace f with

u without changing X, that is, X = X(A, (F \ {f}) ∪ {u}, G). Similarly, if

g = un (with n > 1) for some g ∈ G and u ∈ k[A], then X = X(S, F, (G \
{g}) ∪ {u}). Continue with this new presentation.

5. If f ∈ k[x] for some f ∈ F and x ∈ A, and if f factors as f = c(x −
a1) · · · (x − am) for some c ∈ k× and ai ∈ k, then return [X] =

∑m
i=1[Xi]

with

Xi = X
(
A \ {x}, evalxai(F \ {f}), eval

x
ai(G)

)
.

6. Suppose f = uv for some f ∈ F and non-constant u, v ∈ k[A]. Then X is

stratified by its closed subvariety given by u = 0 and its open complement

given by u ̸= 0 and v = 0. Hence, return [X] = [X1] + [X2] with

X1 = X(A, (F \ {f}) ∪ {u}, G),
X2 = X(A, (F \ {f}) ∪ {v}, G ∪ {u}).

7. Suppose f = ux + v for some element x ∈ A and polynomials f ∈ F

and u, v ∈ k[A \ {x}], with u non-zero. Then X is stratified by its closed
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subvariety given by u = v = 0 and its open complement given by u ̸= 0 and

a = −v/u. Hence, return [X] = [X1] + [X2] with

X1 = X(A, (F \ {f}) ∪ {u, v}, G),
X2 = X(A, evala(F \ {f},−v/u), evala(G,−v/u) ∪ {u}).

8. Suppose char(k) ̸= 2 and f = ux2 + vx + w for some element x ∈ A and

polynomials f ∈ F and u, v, w ∈ k[A \ {a}] with u non-zero. Moreover,

suppose that the discriminant D = v2− 4uw is a square, that is, D = d2 for

some d ∈ k[A \ {a}]. Then return [X] = [X1] + [X2] + [X3] + [X4], where X

is stratified by the following varieties:

X1 = X(A, (F \ {f}) ∪ {u, vx+ w}, G),
X2 = X(A, evalx−v/2u(F \ {f}) ∪ {d}, eval

x
−v/2u(G) ∪ {u}),

X3 = X(A, evalx(−v−d)/2u(F \ {f}), eval
x
(−v−d)/2u(G) ∪ {u, d}),

X4 = X(A, evalx(−v+d)/2u(F \ {f}), eval
x
(−v+d)/2u(G) ∪ {u, d}).

9. If G ̸= ∅, pick any g ∈ G, and return [X] = [X1]− [X2] with

X1 = X(A,F,G \ {g}),
X2 = X(A,F ∪ {g}, G).

10. If none of the above rules apply, fail.

Remark 3.4.4. Of course, it is possible to replace Step 10 with:

10’. If none of the above rules apply, create a new symbol for the varietyX(A,F,G)

and return that.

However, this raises the question of what it means to ‘compute the virtual class’

of a variety. For the purpose of computing motivic invariants, an expression for

the virtual class of a variety in terms of the classes of other varieties is only

useful if the motivic invariants of those other varieties are known. As far as the

applications in this thesis go, the varieties to which this algorithm will be applied

all have a virtual class that is a polynomial in L.

3.5 Grothendieck ring of stacks

In order to study motivic invariants of stacks, we would like to have an analogue

of the Grothendieck ring of varieties for stacks. A number of constructions have

been proposed by various authors, such as in [Joy07, Toë05, BD07]. We will
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follow the construction by Ekedahl as in [Eke09a, Eke09b], since its definition

is closest to Definition 3.2.3. As in Definition 1.6.4, we will restrict to algebraic

(Artin) stacks which are of finite type over a field with affine stabilizers.

Definition 3.5.1. Let S be an algebraic stack of finite type over a field k with

affine stabilizers. The Grothendieck ring of stacks over S, denoted K0(StckS),

is the free abelian group on isomorphism classes of algebraic stacks of finite type

over S with affine stabilizers, modulo the relations

(1) [X] = [Z] + [X \ Z] for all closed immersions Z→ X over S,

(2) [E] = Ln[X] for any vector bundle E over X of rank n, where L = [A1
S].

Multiplication is given on generators by [X][Y] = [X×S Y].

Remark 3.5.2. If S is a variety over k, then the inclusion VarS → StckS
induces a ring morphism

K0(VarS)→ K0(StckS).

In particular, any relation that holds in K0(VarS) also holds in K0(StckS).

Example 3.5.3. Consider the classifying stack BGm = [Spec(k)/Gm] over a

field k. The natural morphism [A1
k/Gm]→ BGm is a vector bundle of rank one,

so [A1
k/Gm] = L[BGm] in K0(Stckk). On the other hand, the closed subscheme

BGm ⊆ [A1
k/Gm], given by the origin, yields the relation [A1

k/Gm] = [BGm] +

[Gm/Gm] = [BGm]+1. Therefore, (L−1)[BGm] = 1 and hence [BGm] is invertible

with inverse (L− 1) = [Gm].

The above example can be generalized to other algebraic groups, and more gen-

eral quotient stacks. The following proposition treats the case G = GLn.

Proposition 3.5.4. For any n ≥ 0, the element [GLn] in K0(Stckk) is invert-

ible, and [X/GLn]S = [GLn]
−1 · [X]S in K0(StckS) for any algebraic stack X

over S in StckS with an action of GLn such that the map X→ S is G-invariant.

Proof. As in Example 3.3.5, for any 0 ≤ m ≤ n, let Ym ⊆ Matn×m be the

subscheme of m-linearly independent vectors. The group GLn acts naturally on

each Ym, and we construct Ym = [(Ym × X)/GLn]. Now, the quotient X →
[X/GLn] factors as

X = Yn → Yn−1 → · · · → Y0 = [X/GLn].

For any 1 ≤ m ≤ n, the scheme Ym can be identified with the open complement

of Ym−1×Am−1
k inside Ym−1×Ank . Hence, [Ym]S = (Ln−Lm−1)[Ym−1]S for all
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1 ≤ m ≤ n, and thus [X]S =
(∏n−1

m=0(Ln − Lm)
)
[X/GLn]S = [GLn] · [X/GLn]S.

Specializing to the case X = S = Spec k, we find that [GLn] is invertible with

inverse [BGLn]. Therefore, [X/GLn]S = [GLn]
−1 · [X]S.

Proposition 3.5.5. Let G be a special algebraic group over a field k. Then [G]

is invertible in K0(Stckk), and for any G-torsor of P → X in StckS, one has

[X]S = [G]−1 · [P]S in K0(StckS).

Proof. Using Proposition 1.6.5, we can reduce to the case where X = [X/GLn]

for a quasi-projective scheme X. Now form the following cartesian diagram.

P X

P [X/GLn]

Then P is a GLn-torsor over P, as described in Section 1.5, and a G-torsor over

X. By Proposition 3.5.4 and Lemma 3.3.13, we have [GLn] · [P]S = [P ]S =

[G] · [X]S = [G][GLn] · [X]S, and hence [P]S = [G] · [X]S. In the special case that

P = S = Spec k and X = BG, we find that [G] is invertible with inverse [BG]

and thus [X]S = [G]−1 · [P]S.

Example 3.5.6. In general, it need not be the case that [BG] = [G]−1. For

example, consider the group G = µn of n-th roots of unity. The morphism

Gm → Bµn, corresponding to the µn-torsor Gm → Gm given by x 7→ xn, is a

Gm-torsor itself, so it follows that [Bµn] = [Gm]/[Gm] = 1. It was shown by

Ekedahl that also [BSn] = 1 for the symmetric groups Sn for all n ≥ 0 [Eke09b].

He also showed that there are finite groups G for which [BG] ̸= 1.

From Proposition 3.5.4 and the expression of [GLn] in terms of L, see Exam-

ple 3.3.5, it follows that the elements L and Ln− 1 for all n ≥ 1 are invertible in

K0(StckS). Hence, if S = S is a variety over k, there is a natural map from the

localization K0(VarS)[L−1, (Ln− 1)−1 : n ≥ 1] (where we adjoined inverses of L
and Ln − 1 for all n ≥ 1) to K0(StckS). In fact, this map is an isomorphism.

Theorem 3.5.7 ([Eke09a, Theorem 1.2]). The map K0(VarS)[L−1, (Ln−1)−1 :

n ≥ 1]→ K0(StckS) is an isomorphism of rings.

Remark 3.5.8. The isomorphism of Theorem 3.5.7 allows us to extend any

invariant χ : K0(VarS) → R to K0(StckS), possibly after inverting χ(L) and

χ(Ln − 1) in R, for all n ≥ 1, provided they are not zero-divisors in R. In

particular, this extends the E-polynomial to all algebraic stacks X of finite type

over C with affine stabilizers,

e : K0(StckC)→ ZJu, vK[u−1, v−1]. (3.7)
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This approach is taken for example in [Joy07, Theorem 4.10]. Alternatively, given

a presentation X → X, one can construct a simplicial scheme X• resolving X,

given by Xn = X×X · · ·×XX (n+1 times). Now, Deligne’s construction applies

in fact to simplicial schemes [Del74], so that the cohomology groups Hk
c (X,C)

of the geometric realization of the analytification of X• admit a mixed Hodge

structure, which can be shown to be independent of the presentation X. The

corresponding E-polynomial e(X) agrees with (3.7). For details, see [BD07] or

[Toë05]. In the particular case of a quotient stack X = [X/G] with G a connected

group, one has e(X) = e(X)/e(G).

3.6 Equivariant motivic invariants

Let G be a finite group acting on a complex variety X. The action of G turns the

cohomology groups Hk
c (X;C) into representations of G, by functoriality of co-

homology. Moreover, the action of G, being algebraic, respects the mixed Hodge

structure [PS08, FS21], so the graded pieces Hk;p,q
c (X) = GrpF GrWp+qH

k
c (X;C),

see (3.2), turn into representations of G as well. From this, one constructs the

G-equivariant E-polynomial

eG(X) =
∑
k,p,q

(−1)kupvq ⊗ [Hk;p,q
c (X)] ∈ Z[u, v]⊗RC(G),

whereRC(G) denotes the representation ring ofG. TheG-equivariant E-polynomial

is still additive and multiplicative, that is,

eG(X) = eG(Z) + eG(X \ Z) and eG(X × Y ) = eG(X) eG(Y )

for complex varieties X and Y with a G-action, and Z ⊆ X a G-invariant closed

subvariety [FS21]. The original E-polynomial e(X) can be obtained from eG(X)

via the map dim: RC(G)→ Z.

In this section, we investigate to which extent other invariants can be made G-

equivariant, with a special focus on the virtual class in the Grothendieck ring of

varieties.

Definition 3.6.1. Let G be an algebraic group over a field k, and S a variety

over k. A G-variety over S is a variety X over S with an action of G such that

X → S is G-invariant and X admits a cover by G-invariant affine opens. Denote

by VarGS the category of G-varieties over S and G-equivariant morphisms over S

between them. The Grothendieck ring of G-varieties over S, denoted K0(VarGS ),

is defined, analogous to Definition 3.2.3, as the free abelian group on isomorphism

classes [X] of G-varieties X over S modulo the relations [X] = [Z] + [X \ Z] for
all G-invariant closed subvarieties Z ⊆ X. Multiplication is given on generators

by [X][Y ] = [X ×S Y ], where G acts diagonally on X ×S Y .
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Now, more precisely, we investigate whether an invariant χ : Ob(Vark) → R,

for some commutative ring R, can be promoted to some χG : Ob(VarGk ) →
R⊗RC(G) such that χ is obtained from χG via the map dim: RC(G)→ Z, while
remaining additive or multiplicative. We show this is possible in many cases,

such as for R = K0(MHS) or R = K0(DMeff
gm(k,C)). However, we also show this

is not possible for R = K0(Vark). Nevertheless, under certain assumptions on

G, we will provide a construction which, although far from ideal, provides a new

tool for computations in K0(Vark).

Let us start with a positive result.

Proposition 3.6.2. Let G be a finite group with splitting field K. Let A be an

idempotent complete K-linear tensor category, whose unit object is denoted by

K. Suppose G acts on an object X of A. Then X decomposes in A as

X ∼=
⊕
ρ

Xρ ⊗ [ρ],

for some objects Xρ of A, where ρ ranges over the irreducible representations of

G, and [ρ] := K⊕ dim ρ. Moreover, the isomorphism is G-equivariant when G acts

trivially on Xρ and via ρ on [ρ], and the objects Xρ are uniquely determined up

to isomorphism.

Proof. Denote by ρ1, . . . , ρn the irreducible representations of G over K. The

Artin–Wedderburn theorem gives an isomorphism K[G] ∼=
∏n
i=1 Matdi×di(K),

where di = dim ρi, given by g 7→ (ρi(g))
n
i=1 [Ser77, Proposition 10]. This de-

composition corresponds to a sequence e1, . . . , en ∈ K[G] of pairwise orthogonal

central idempotents such that
∑n
i=1 ei = 1. For every i = 1, . . . , n, the idem-

potents ei induce idempotent morphisms X
ei−→ X which, by assumption, split

as X
ri−→ Yi

si−→ X with si ◦ ri = ei and ri ◦ si = idYi
. Orthogonality of the

idempotents implies, for i ̸= j, that si ◦ ri ◦ sj ◦ rj = 0 and hence ri ◦ sj = 0.

Therefore, we have an isomorphism

⊕n
i=1 Yj X.

∐
i si

∼∏
i ri

Since the ei are central in K[G], the action of G restricts to Yi for every i.

Every idempotent ei corresponds to a factor Matdi×di(K). Write Ejk for the

di×di matrix which is zero everywhere, except at position (j, k), where the entry

is one. Then ei =
∑di
j=1 eij for the pairwise orthogonal idempotents eij = Ejj .

As above, this yields a decomposition

Yi ∼=
di⊕
j=1

Zij .
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Moreover, the Zij are isomorphic for all j since Ejk defines an isomorphism from

Zik to Zij , with inverse Ekj , so Yi ∼= Zi ⊗ K⊕di . Under this isomorphism, G

acts trivially on Zi and on K⊕di via ρi, because of the isomorphism K[G] ∼=∏n
i=1 Matdi×di(K). Therefore, Yi ∼= Zi⊗ [ρi]. Finally, the Xρi := Zi are uniquely

determined up to isomorphism, as they correspond to the idempotents eij .

Remark 3.6.3. Suppose G acts on objectsX and Y in A as in Proposition 3.6.2.

Then it follows from the uniqueness statement that

(X ⊗ Y )ρk
∼=

n⊕
i,j=1

(Xρi ⊗ Yρj )⊕a
k
ij ,

where akij ∈ Z≥0 are the Clebsch–Gordan series, given by ρi ⊗ ρj ∼=
⊕n

k=1 ρ
⊕akij
k .

Now, let A be as in Proposition 3.6.2, and suppose we are given a functor

X : Vark → A. If A is an abelian or triangulated category, we obtain an in-

variant χ : Ob(Vark) → K0(A) which, using Proposition 3.6.2, promotes to an

invariant

χG : Ob(VarGk )→ K0(A)⊗RK(G)

where X (X) ∼=
⊕

ρXρ ⊗ [ρ] is sent to
∑
ρ[Xρ]⊗ [ρ]. One can obtain χ from χG

via dim: RK(G)→ Z as the image of [ρ] = K⊕ dim ρ in K0(A) equals dim ρ.

Furthermore, if G-invariant closed subvarieties Z ⊆ X induce exact sequences

0 → X (X \ Z) → X (X) → X (Z) → 0 (when A is abelian) or distinguished

triangles X (X \ Z) → X (X) → X (Z) → X (X \ Z)[1] (when A is triangulated)

with G-equivariant maps in A, then χG will also be additive, that is, χG(X) =

χG(Z) + χG(X \ Z). In this case, χG descends to a group morphism

χG : K0(VarGk )→ K0(A)⊗RK(G). (3.8)

Moreover, when A is tensor triangulated and there are natural isomorphisms

X (X×Y ) ∼= X (X)⊗X (Y ) for all G-varieties X and Y , where G acts diagonally

on X×Y , it follows from Remark 3.6.3 that χG is multiplicative, that is, χG(X×
Y ) = χG(X)χG(Y ). In this case, (3.8) is a ring morphism.

Example 3.6.4. ■ Let A = Db(MHS) be the derived category of mixed Hodge

structures. The assignment of the mixed Hodge structuresHk
c (X) to a complex

variety X can be promoted to a functor X = RΓ(−,Q) : VarC → A such

that Hk
c (X) is the k-th cohomology group of X (X) [Bĕı86]. The resulting G-

equivariant invariant χG is additive by the G-equivariant long exact sequence

(3.4). It is also multiplicative by the Künneth formula, and hence induces a

ring morphism

χG : K0(VarGC )→ K0(MHS)⊗RC(G).
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■ Extending the previous example, note that the exact functor Gr∗F GrW∗ in (3.2)

induces an exact functor Db(MHS) → Db((VectZ×Z
C )fin), and let X be the

composite

VarC
RΓ(−,Q)−−−−−→ Db(MHS)

Gr∗F GrW∗−−−−−−→ Db((VectZ×Z
C )fin).

The induced invariant χG is still additive and multiplicative, and hence induces

ring morphism

χG : K0(VarGC )→ K0((VectZ×Z
C )fin)⊗RC(G) ∼= Z[u±1, v±1]⊗RC(G)

which is precisely the G-equivariant E-polynomial.

■ Let A = DMeff
gm(k,K) be the K-linearization of Voevodsky’s triangulated cate-

gory of effective geometric motives, with k a field of characteristic zero, and let

X : Vark → A be the motive Mgm or the motive with compact support M c
gm.

The induced invariant χG is multiplicative, and if X =M c
gm also additive.

Grothendieck ring of varieties

Unfortunately, the Grothendieck ring of varieties K0(Vark) is not given by the

Grothendieck group of an abelian (or triangulated) category A. To get an idea of

how an analogous construction could work for K0(Vark), we first consider some

properties of the G-equivariant E-polynomial.

Let G be a finite group and H ⊆ G a subgroup. Denote by

ResGH : RC(G)→ RC(H) and IndGH : RC(H)→ RC(G)

the restriction and induction maps [Ser77, p.28]. Using the same symbols, we

define restriction and induction for G-varieties.

Definition 3.6.5. Let G be an algebraic group over k with a subgroup H ⊆ G,
and S a variety over k. Define the functors

ResGH : VarGS → VarHS and IndGH : VarHS → VarGS

where ResGH restricts the action from G to H (in fact, ResGH is defined for any

morphism H → G of algebraic groups), and IndGH(Y ) = (G× Y ) �H, where H

acts on G× Y via h · (g, y) = (gh−1, h · y) and G acts on the resulting quotient

by left multiplication on the factor of G. Note that, by [PV89, Theorem 4.19],

the quotient (G× Y ) �H is a variety, even when H is non-reductive. It is easy

to see that these functors descend to the Grothendieck ring of varieties

ResGH : K0(VarGS )→ K0(VarHS ) and IndGH : K0(VarHS )→ K0(VarGS ).

When G and H are finite, the underlying variety of IndGH(Y ) is simply
⊔
G/H Y .



3.6. EQUIVARIANT MOTIVIC INVARIANTS 43

Lemma 3.6.6. Let G be a finite group and H ⊆ G a subgroup.

(i) eH(ResGH(X)) = ResGH(eG(X)) for all objects X of VarGk ,

(ii) eG(IndGH(Y )) = IndGH(eH(Y )) for all objects Y of VarHk ,

(iii) e(X � G) = ⟨T, eG(X)⟩, where T ∈ RC(G) corresponds to the trivial repre-

sentation, and ⟨−,−⟩ denotes the inner product of characters.

Proof. (i) and (ii) directly follow from the definitions of ResGH and IndGH for

representations and varieties. (iii) follows from [FS21, Proposition 4.3].

The following example shows how these properties can be used to compute the

G-equivariant E-polynomials in some simple cases.

Example 3.6.7. Consider G = Z/2Z and denote by T,N ∈ RC(G) the trivial

and non-trivial character of G. For any G-variety X, we have

eG(X) = α⊗ T + β ⊗N

for some α, β ∈ Z[u, v]. The properties of Lemma 3.6.6 imply that e(X �G) = α

and e(X) = ResG1 (e
G(X)) = α+ β. Therefore,

eG(X) = e(X �G)⊗ T + (e(X)− e(X �G))⊗N.

Example 3.6.8. Consider G = S3 and denote by T, S,D ∈ RC(G) the trivial,

sign and standard representation. For any G-variety X, we have

eG(X) = α⊗ T + β ⊗ S + γ ⊗D

for some α, β, γ ∈ Z[u, v]. For τ = (1 2) and ρ = (1 2 3) in S3, we find

e(X) = α+ β + 2γ, e(X � ⟨τ⟩) = α+ γ, e(X � ⟨ρ⟩) = α+ β, e(X �G) = α.

In particular, it follows that

α = e(X �G), β = e(X)− 2 · e(X � ⟨τ⟩)+ e(X �G), γ = e(X � ⟨τ⟩)− e(X �G).

Note that, since there are more subgroups than irreducible representations, the

relation

e(X)− 2 · e(X � ⟨τ⟩)− e(X � ⟨ρ⟩) + 2 · e(X �G) = 0 (3.9)

will always hold.
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Let us return to the Grothendieck ring of varieties. Given a G-variety X, we

want to define [X]G ∈ K0(Vark)⊗RC(G) such that

⟨TH ,ResGH [X]G⟩ = [X �H] (3.10)

for every subgroup H ⊆ G. Unfortunately, here we run into trouble trying to

define [X]G. The following example shows that the analogue of (3.9) need not

hold in K0(Vark) in general.

Example 3.6.9 ([Saw22]). Let G = S3 and let X be a complex smooth pro-

jective curve of genus 6g + 1 for some g ≥ 1 with a free action of S3. By the

Riemann–Hurwitz formula, the quotients X�⟨τ⟩, X�⟨ρ⟩ and X�S3 have genera

3g+1, 2g+1 and g+1, respectively. Hence, none of these quotients are stably bi-

rational to X or to each other. Now, the isomorphism K0(VarC)/(L) ∼= Z[SBC]

by Larsen and Lunts [LL03] shows there is no Z-linear relation between their

classes in K0(VarC).

It seems that having too many subgroups results in [X]G being ill-defined. A

possible remedy could be to fix a set of subgroups of G. On the other hand,

having too few subgroups could also be a problem, e.g. for G = Z/3Z, which
has 3 irreducible representations but only 2 subgroups. For this reason, we will

focus only on rational representations of G. This makes sense in analogy with

the G-equivariant E-polynomial, since Hk
c (X;C) = Hk

c (X;Q)⊗QC. Finally, note
that the quotient X �H only depends on the conjugacy class of H.

Definition 3.6.10. Let G be a finite group, and let H be a set of conjugacy

classes of subgroups of G. Define the map

ΨH
G : RQ(G)→

⊕
[H]∈H

Z, V 7→
(
⟨TH ,ResGH V ⟩

)
[H]∈H .

Lemma 3.6.11. If H contains the conjugacy classes of all subgroups of G, then

ΨH
G is injective.

Proof. Take any V ∈ RQ(G) such that ⟨TH ,ResGH V ⟩ = 0 for all H. By Frobenius

reciprocity, this is the same as ⟨IndGH TH , V ⟩ = 0 for all H. Now, by [Ser77,

Theorem 30], the elements IndGH TH generate RQ(G), so V = 0.

Shrinking H appropriately, the map ΨH
G will still be injective, and its image

will have rank equal to |H|. In particular, ΨH
G ⊗ Q will be an isomorphism,

so further tensoring with K0(Vark) shows the existence and uniqueness of an

element [X]G ∈ K0(Vark)⊗RQ(G)⊗Q satisfying (3.10) for all [H] ∈ H. We end

up with the following definition.
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Definition 3.6.12. Let G be a finite group and H a set of conjugacy classes of

subgroups of G such that

ΨH
G ⊗Q : RQ(G)⊗Q→

⊕
H∈H

Q (3.11)

is an isomorphism. In this case we say that H is a good set of conjugacy classes

of subgroups of G. Then for any G-variety X over S, the G-virtual class of X is

the unique element [X]G ∈ K0(VarS)⊗RQ(G)⊗Q such that

⟨TH ,ResGH [X]G⟩ = [X �H]

in K0(VarS) for all [H] ∈ H.

Remark 3.6.13. The G-virtual class is clearly additive, that is, [X]G = [Z]G+

[X \Z]G for all G-invariant closed subvarieties Z ⊆ X. Hence, it induces a group

morphism

[−]G : K0(VarGS )→ K0(VarS)⊗RQ(G)⊗Q.

Example 3.6.14. Let G = Z/nZ for some n ≥ 1 and let H be the set of conju-

gacy classes of all subgroups of G. Then ΨH
G ⊗ Q is injective by Lemma 3.6.11,

and an isomorphism because |H| equals the number of divisors of n, which is

equal to the rank of RQ(G).

Example 3.6.15. Consider the symmetric group G = Sn with the set H =

{Sλ1 × · · · × Sλk
: λ a partition of n} of Young subgroups. From the representa-

tion theory of Sn [FH91, Lecture 4] it can be shown that (3.11) is an isomorphism.

In particular, the irreducible representations of Sn are parametrized by the par-

titions λ of n. Denote by Vλ the irreducible representation of Sn corresponding

to such a partition λ. Now, for any V =
∑
λ aλ[Vλ] ∈ RQ(Sn), we find that

ΨH
G(V ) =

(〈
TSλ

,ResSn

Sλ
V
〉)

Sλ∈H

=
(〈

IndSn

Sλ
TSλ

, V
〉)

Sλ∈H

=
(∑

µ aµKµλ

)
Sλ∈H

whereKµλ are the Kostka numbers, by Young’s rule [FH91, Corollary 4.39]. Since

Kλλ = 1 and Kµλ = 0 for µ < λ (for the lexicographical order on partitions), it

follows that ΨH
G is invertible.

Example 3.6.16. Suppose G1 and G2 are finite groups with good sets of con-

jugacy classes of subgroups H1 and H2, respectively. Then

H = {[H1 ×H2] : [H1] ∈ H1 and [H2] ∈ H2}
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is a good set of conjugacy classes of subgroups of G1 ×G2 if RQ(G1) = RC(G1)

or RQ(G2) = RC(G2). In particular, this provides good sets of conjugacy classes

of subgroups for all Young subgroups Sλ1 × · · · × Sλk
.

Even though the G-virtual class is additive, the following example shows that in

general, already for G = Z/2Z, the G-virtual class is not multiplicative.

Example 3.6.17. Let G = Z/2Z and take A and B elliptic curves over k = C
with [A] ̸= [B] and A × A ∼= B × B as abelian varieties, as in [Poo02, Lemma

3]. Equip the elliptic curves A and B with the G-action of negation, P 7→ −P .
Now suppose that the G-virtual class is multiplicative. Then, using the notation

[X]G = [X]+ ⊗ T + [X]− ⊗N with [X]+ = [X �G] and [X]− = [X]− [X �G],

we find that

[A×A]+ = [A]2+ + [A]2− = [P1
k]

2 + ([A]− [P1
k])

2 = [A]2 + 2[P1
k]

2 − 2[A][P1
k]

[B ×B]+ = [B]2+ + [B]2− = [P1
k]

2 + ([B]− [P1
k])

2 = [B]2 + 2[P1
k]

2 − 2[B][P1
k]

where A � G ∼= B � G ∼= P1
k. Since the isomorphism A × A ∼= B × B is G-

equivariant, we have [A × A]+ = [B × B]+, and hence ([A] − [B])[P1
k] = 0

in K0(Vark). However, the Albanese map K0(Vark) → Z[AVk], described in

[Poo02, Section 4], from the Grothendieck ring of varieties to the monoid ring of

abelian varieties over k sends ([A] − [B])[P1
k] to [A] − [B], which is non-zero in

Z[AVk]. Therefore, the G-virtual class cannot be multiplicative.

Nevertheless, we present the following construction, to measure to which extent

the G-virtual class is multiplicative.

Lemma 3.6.18. Let G be a finite group and H a good set of conjugacy classes

of subgroups of G. Let VH
G ⊆ K0(VarGS ) be the subset of elements X such that

[XY ]G = [X]G[Y ]G for all Y ∈ K0(VarGS ). Then VH
G is a K0(VarS)-subalgebra

of K0(VarGS ).

Proof. Note that VH
G is the left radical of the K0(VarS)-bilinear form

K0(VarGS )×K0(VarGS )→ K0(VarS)⊗RQ(G)⊗Q

(X,Y ) 7→ [XY ]G − [X]G[Y ]G

and is therefore a subgroup of K0(VarS). Furthermore, VH
G is closed under mul-

tiplication, because for all X,Y ∈ VH
G and Z ∈ K0(VarGS ) we have

[(XY )Z]G = [X(Y Z)]G = [X]G[Y Z]G = [X]G[Y ]G[Z]G = [XY ]G[Z]G.

Theorem 3.6.19. Let G be a finite group, H a good set of conjugacy classes of

subgroups of G, and suppose that k is a splitting field for G.
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(i) If G acts linearly on A1
k, then VH

G contains [A1
k].

(ii) If G acts diagonally on Ank , then VH
G contains [Ank ].

(iii) If G acts diagonally on Pnk , then VH
G contains [Pnk ].

(iv) Let [H] ∈ H be such that [H ′ ∩ gHg−1] ∈ H for all [H ′] ∈ H and g ∈ G.
Then the set G/H of cosets with the natural action of G lies in VH

G .

Proof. (i) As [A1
k � H] = L for any finite group H acting linearly on A1

k, we

have [A1
k]
G = L⊗ T where T ∈ RQ(G) corresponds to the trivial representation.

Hence, it suffices to show that [(A1
k × Y ) �H]S = L[Y �H]S for all Y ∈ VarGS

and [H] ∈ H. Take such Y and H, write τ : H → GL1(k) for the representation

via which H acts on A1
k, and let N = ker τ . Since

(A1
k × Y ) �H = (A1

k × (Y �N)) � (H/N)

we may, replacing H by H/N and Y by Y �N , assume that H is a finite cyclic

group, that is, H = Z/nZ for some n ≥ 1.

Also, we may assume Y = SpecR is affine. Write RH ⊆ R for the subring of

H-invariants. Then R is finitely generated as RH -module [Mon80, Corollary 5.9],

so it can be written as

R = RH⟨σ1,1, . . . , σ1,m1
⟩ ⊕ · · · ⊕RH⟨σn−1,1, . . . , σn−1,mn−1

⟩

for some σi,j ∈ R such that H acts via (a mod n) · σi,j 7→ ζain σi,j , where ζn ∈ k
is a primitive n-th root of unity. Note that, for any 1 ≤ i ≤ n − 1, we have

σni,1 = r for some r ∈ RH , and for any 2 ≤ j ≤ mi, we have σn−1
i,1 σi,j = s for

some s ∈ RH . But then, over the closed subvariety of Y given by r = 0, we have

σni,1 = r = 0, so we can omit σi,1 from the generators. Similarly, over the open

complement where r is invertible (so σi,1 is invertible as well), we can remove

σi,j = s
rσi,1 from the generators. Hence, after sufficiently many stratifications,

we may reduce to the case that

R = RH ⊕RH⟨σd⟩ ⊕RH⟨σ2d⟩ ⊕ · · · ⊕RH⟨σn−d⟩

for some d ≥ 1 dividing n, and some σi ∈ R×, such that H acts via (a mod n) ·
σi = ζain · σi. In particular, for any 1 ≤ m ≤ n/d, we have σmd = rmσmd for some

rm ∈ (RH)×, that is, σmd = σmd /rm, and hence

R = RH [σ]/(σn/d − r)

with σ = σd and r = rn/d.
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Note that τ : H → GL1(k) must be of the form τ(a mod n) = ζacn for some

0 ≤ c ≤ n− 1. Stratifying A1
k as {0} ⊔ (A1

k \ {0}), we find that

({0} × Y ) �H = Y �H

and

((A1
k \ {0})× Y ) �H ∼= SpecR[x±1]H

∼= Spec
(
RH [σ, x±1]/(σn/d − r)

)H
∼= SpecRH

〈
xiσj : (i, j) ∈ L

〉
,

where L =
{
(i, j) ∈ Z2 | ci+ dj ≡ 0 mod n

}
is a lattice. Take some (i0, j0) ∈ L

such that i0 > 0 is minimal, and write w = xi0σj0 . Then, for any other (i, j) ∈ L,
we must have i = mi0 for some m ∈ Z, and hence (xiσj)/wm is an element of

RH . Therefore,

((A1
k \ {0})× Y ) �H ∼= SpecRH [w±1] ∼=

(
A1
k \ {0}

)
× (Y �H).

Finally, we find that

[(A1
k × Y ) �H]S = [({0} × Y ) �H]S + [((A1

k \ {0})× Y ) �H]S

= [Y �H]S + (L− 1)[Y �H]S

= L[Y �H]S

as desired.

Since VH
G is closed under multiplication, (ii) follows from (i). For (iii), stratify

PnS as AnS ⊔ Pn−1
S , so that the result follows from (i) and by induction on n.

For (iv), note that [G/H]G = 1⊗ IndGH(TH), where TH ∈ RQ(H) corresponds to

the trivial representation. Now, for any [H ′] ∈ H, we can choose representatives

gH for the points of the quotient (G/H)�H ′. Note that the stabilizer of gH for

the action of H ′ is H ′ ∩ gHg−1, and therefore

((G/H)× Y ) �H ′ =
⊔

[gH]∈(G/H)�H′

Y � (H ′ ∩ gHg−1).

Since [H ′∩gHg−1] ∈ H by assumption, it follows that the coefficients of [(G/H)×
Y ]GS can be written naturally in terms of the coefficients of [Y ]GS , and therefore

[G/H] must be contained in VH
G .

Remark 3.6.20. The condition in (iv) of the above theorem is trivially satisfied

when H contains the conjugacy classes of all subgroups of G. Also, it is satisfied

in the case of Example 3.6.15 with G = Sn. That is, the intersection of conjugates

of Young subgroups is again the conjugate of a Young subgroup.
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We conclude this section with two examples, both for the group G = Z/2Z. Let
T,N ∈ RQ(G) correspond to the trivial and non-trivial irreducible representa-

tion of G, respectively. For any G-variety X, the G-virtual class is, similar to

Example 3.6.7, given by

[X]Z/2Z = [X � (Z/2Z)]⊗ T + ([X]− [X � (Z/2Z)])⊗N. (3.12)

Example 3.6.21. Let k be an algebraically closed field with char(k) ̸= 2. Con-

sider the subvarietyM = {A ∈ SL2 | trA ̸= ±2} of SL2, over k, of diagonalizable

non-scalar matrices. Note that we have a cartesian diagram

GL/D × (A1
k \ {0,±1}) M

A1
k \ {0,±1} A1

k \ {±2}

tr

where D ⊆ GL2 is the subgroup of diagonal matrices, and GL2/D the left coset

space. The bottom morphism is given by λ 7→ λ + λ−1, and the top morphism

by (P, λ) 7→ P
(
λ 0
0 λ−1

)
P−1. The group G = Z/2Z acts both on GL2/D and

A1
k \ {0,±1}, via P 7→ P ( 0 1

1 0 ) and λ 7→ λ−1, respectively, and we can identify

M with (GL2/D × (A1
k \ {0,±1})) � G. Since A1

k \ {0,±1} is a projective line

minus some points, its class lies in VH
G using Theorem 3.6.19, so we can compute

[M ] ∈ K0(Vark) from the G-virtual classes [GL2/D]G and [A1
k \{0,±1}]G. Using

(A1
k \ {0,±1}) �G ∼= A1

k \ {±2} and (3.12), we find that

[A1
k \ {0,±1}]G = (L− 2)⊗ T − 1⊗N.

Similarly, from [(GL2/D) �G] = L2 follows that

[GL2/D]G = L2 ⊗ T + L⊗N

and hence

[GL2/D × (A1
k \ {0,±1})]G = (L3 − 2L2 + L)⊗ T + (2L2 − 2L)⊗N.

Therefore, [M ] = L3 − 2L2 + L.

Example 3.6.22. Consider G = Z/2Z acting on X = Gm via x 7→ x−1, over

any field k. As [X] = L− 1 and [X �G] = L, we obtain [X]G = L⊗ T − 1⊗N .

Since X can be seen as a projective line minus two points, its class lies in VH
G ,

so we find that

[Xn �G] =
(
1 0

)( L −1
−1 L

)n(
1

0

)
=

(L− 1)n + (L+ 1)n

2
.




