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Chapter 2

Character stacks

In this chapter we will define, and describe various properties of, character stacks,

which are the main objects of study in this thesis. Roughly speaking, they are

the moduli space of representations of a finitely generated group Γ into a lin-

ear algebraic group G. While Γ can be any finitely generated group, it most

commonly arises as the fundamental group π1(M, ∗) of a compact manifold M .

In fact, every finitely presented group arises in this way. In this case, it is well

known that representations π1(M, ∗) → G correspond to G-local systems on M

[Sza09, Corollary 2.6.2]. Moreover, isomorphic local systems correspond to con-

jugate representations. Therefore, one is interested in the quotient of the space

parametrizing all representations Γ → G (this space will be called the ‘repre-

sentation variety’), by the action of conjugation by G. This quotient will be the

G-character stack of Γ.

2.1 Representation varieties

Fix a base scheme S. Typically, S will be Spec k where k is a field or a finitely

generated Z-algebra. Let G be a linear algebraic group over S, by which we

understand a closed subgroup of the group scheme GLr over S for some r ≥ 0.

Definition 2.1.1. Let Γ be a finitely generated group. The G-representation

variety of Γ is the scheme RG(Γ) over S whose functor of points is given by

RG(Γ)(T ) = Hom(Γ, G(T )).

Let us explain why RG(Γ) is indeed representable. After choosing a presentation

Γ = ⟨γ1, . . . , γn | ri(γ1, . . . , γn) = 1 for i ∈ I⟩,

any representation ρ : Γ → G(T ) can be identified with the image of its gen-

erators, that is, the tuple (ρ(γ1), . . . , ρ(γn)) ∈ G(T )n. However, not all tuples
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16 CHAPTER 2. CHARACTER STACKS

in G(T )n define such a representation because of the relations ri between the

generators. Every such relation ri, which is a word in the symbols γi, defines

a morphism ri : G
n → G given on points by (g1, . . . , gn) 7→ ri(g1, . . . , gn), and

hence a closed subscheme Xi ⊆ Gn as in the pullback diagram

Xi Gn

S G

ri

e

where e is the unit of G, a closed immersion [Stacks, Tag 047G]. Now, the in-

tersection of all Xi over G
n realizes RG(Γ) as a closed subscheme of Gn. This

closed subscheme corresponds to the sheaf of ideals in OGn that is generated by

the sheaves of ideals Ii ⊆ OGn corresponding to the Xi. Indeed, we have

RG(Γ)(T ) =
⋂
i∈I

{
t ∈ G(T )n | ri(t) = 1

}
=
⋂
i∈I

Xi(T ) =
(⋂
i∈I

Xi

)
(T ).

Remark 2.1.2. The G-representation variety RG(Γ) will always be separated

and of finite type over S, as it is a closed subscheme of Gn, which itself is

separated and of finite type over S. Moreover, RG(Γ) is affine over S, as Gn

is affine over S. However, the G-representation variety may be non-reduced.

For example, it was shown in [LM85, (2.10.4)] that for the von Dyck group

Γ = ⟨a, b, c | a3 = b3 = c3 = abc = 1⟩ ∼= Z2 ⋊ S3 and G = GL2 over S = SpecC,
the G-representation variety RG(Γ) is non-reduced.

For us, the main example of a finitely generated group Γ is the fundamental

group of a compact manifold.

Proposition 2.1.3. Let M be a connected compact manifold with a basepoint

x. Then π1(M,x) is finitely presented.

Proof. Every compact manifoldM is homotopy equivalent to a finite CW-complex

[Whi40]. Since M is connected, this finite CW-complex can be chosen to consist

of a single 0-cell corresponding to x. It follows that the fundamental group of

M has a presentation with a generator for every 1-cell and a relation for every

2-cell, and is therefore finitely presented.

When M is a connected compact manifold, we will simply write RG(M) instead

of RG(π1(M,x)) and call it the G-representation variety of M . Note that this

scheme is, up to isomorphism, independent of the chosen basepoint x since the

fundamental group π1(M,x) is, up to isomorphism, independent of x.

Example 2.1.4. ■ The circle S1 has fundamental group π1(S
1, ∗) ∼= Z, from

which follows that RG(S
1) ∼= G.
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■ The fundamental group of a closed orientable surface Σg of genus g can be

presented as π1(Σg, ∗) = ⟨a1, b1, . . . , ag, bg | [a1, b1] · · · [ag, bg] = 1⟩, where

[ai, bi] = aibia
−1
i b−1

i denotes the commutator. Therefore, RG(Σg) is the closed

subscheme of G2g given by
∏g
i=1[Ai, Bi] = 1.

■ Let Nr be the connected sum of r projective planes, that is, the non-orientable

closed surface of demigenus r. Its fundamental group can be presented as

π1(Nr, ∗) = ⟨a1, . . . , ar | a21 · · · a2r = 1⟩. Hence, RG(Nr) is the closed subvariety

of Gr given by
∏r
i=1A

2
i = 1.

While the G-representation variety RG(Γ) is an interesting object on its own,

it cannot quite be regarded as the moduli space of representations of Γ into G.

Namely, two different points of RG(Γ) might represent isomorphic representa-

tions, that is, representations that are related through conjugation. Formulated

differently, the linear algebraic group G acts on the G-representation variety by

conjugation

(g · ρ)(γ) = gρ(γ)g−1

for all g ∈ G(T ) and γ ∈ RG(Γ)(T ). In this sense, the correct moduli space

should be the quotient of RG(Γ) by the action of G. Unfortunately, quotients are

famously hard in algebraic geometry, and it is not always clear which quotient

one wants to take.

One possibility is to take the Geometric Invariant Theory (GIT) quotient as

developed by Mumford [Mum65]. Given an affine variety X = SpecR over a

field k with an action of a linear algebraic group G over k, encoded by a ring

morphism σ̂ : R→ R⊗k OG(G), the (affine) GIT quotient of X by G is

X �G = SpecRG

where RG = {r ∈ R | σ̂(r) = r ⊗ 1} denotes the subring of invariants of R. The

projection X → X � G corresponds to the inclusion RG ⊆ R. Even though the

GIT quotient can be constructed as a scheme, it was shown by Nagata that in

general the resulting scheme need not be of finite type over k [Nag59]. However, he

also showed that if G is reductive, the ring of invariants will be finitely generated

over k [Nag64].

Definition 2.1.5. Let G be a reductive linear algebraic group over a field k, and

Γ a finitely generated group. The G-character variety of Γ is the GIT quotient

XG(Γ) = RG(Γ) �G.

Remark 2.1.6. In the literature, the term ‘G-character variety’ is also used for

a notion which is different, but related, to the above definition. Given a linear
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algebraic group G ⊆ GLn over k = C, one defines

χG(Γ) = SpecC[τγ | γ ∈ Γ]

to be the spectrum of the complex algebra generated by the functions τγ : ρ 7→
tr(ρ(γ)) on RG(Γ). Since the functions τγ are invariant under the action of G,

there is a canonical morphism

XG(Γ)→ χG(Γ).

While this morphism is known to be an isomorphism for various G, such as SLn,

GLn, Sp2n and On, see [FL11, Theorem A.1] and [Pro76], it fails to be so for

other groups, such as SO2n [Sik13].

Besides the GIT quotient, there are other ways to construct quotients. In the

following sections we will apply the theory of quotient stacks, as encountered

in Section 1.5, to take the quotient in the category of stacks, defining the G-

character stack. One advantage to this approach is that the quotient remembers

the automorphisms of the representations. Another advantage is that we do not

need to assume that G is reductive.

2.2 Character groupoids

Before we properly introduce the G-character stack, we will first forget all ge-

ometry, and let G be an ordinary group. Furthermore, we will allow for a more

general setup, with Γ being a groupoid, rather than a group.

Definition 2.2.1. Let G be a group. For any groupoid Γ, the G-character

groupoid of Γ, denoted XG(Γ), is the groupoid whose objects are functors ρ : Γ→
G (where G is seen as a groupoid with a single object), and whose morphisms

ρ1 → ρ2 are given by natural transformations µ : ρ1 ⇒ ρ2.

The map XG can naturally be extended to a 2-functor XG : Grpd → Grpdop.

Explicitly:

■ For any functor f : Γ′ → Γ between groupoids, let XG(f) : XG(Γ) → XG(Γ
′)

be the functor given by precomposition XG(f)(ρ) = ρ ◦ f for any ρ ∈ XG(Γ),

and XG(f)(µ) = µf for any morphism µ : ρ1 → ρ2.

■ For any natural transformation η : f1 ⇒ f2 between functors f1, f2 : Γ
′ → Γ, let

XG(η) : XG(f1)⇒ XG(f2) be the natural transformation given by (XG(η)ρ)x′ =

ρ(ηx′) for all ρ ∈ XG(Γ) and x′ ∈ Γ′. Indeed, this defines a natural transfor-
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mation as the square

ρ(f1(x
′)) ρ(f2(x

′))

ρ(f1(y
′)) ρ(f2(y

′))

ρ(ηx′ )

ρ(f1(γ
′)) ρ(f2(γ

′))

ρ(ηy′ )

commutes for every γ′ : x′ → y′ in Γ′ by naturality of η, and this is natural in

ρ.

Note that XG strictly preserves composition of 1-morphisms and 2-morphisms,

and therefore defines a strict 2-functor.

Corollary 2.2.2. An equivalence between groupoids Γ and Γ′ naturally induces

an equivalence between the G-character groupoids XG(Γ) and XG(Γ
′).

Let us apply the above corollary as follows in the case that G is a finite group.

If Γ is a finitely generated groupoid, then it can easily be seen that the groupoid

XG(Γ) is finite. But now it follows from Corollary 2.2.2 that XG(Γ) is essentially

finite if Γ is essentially finitely generated. Therefore, for G finite, we can restrict

XG to a 2-functor

XG : FGGrpd→ FinGrpdop.

As before, the main example of a finitely generated groupoid Γ for us comes from

a compact manifold.

Definition 2.2.3. Let M be a compact manifold. The fundamental groupoid of

M is the groupoid Π(M) whose objects are the points of M , and morphisms

x→ y are given by homotopy classes of paths from x to y.

For any smooth map of manifolds f : M → N , there is an induced a functor

Π(f) : Π(M)→ Π(N). In particular, one can think of Π as a functor Π: Mnfd→
Grpd from the category of manifolds to the category of groupoids. Moreover,

Π can be promoted to a 2-functor if one considers Mnfd as a 2-category where

2-morphisms are given by smooth homotopies.

Note that the fundamental groupoid Π(M) is essentially finitely generated when

M is a compact manifold. Namely, choosing a basepoint x1, . . . , xn on each of

the finitely many connected component of M , we find that Π(M) is equivalent

to π1(M,x1) ⊔ · · · ⊔ π1(M,xn), which is finitely generated by Proposition 2.1.3.

Definition 2.2.4. Let G be a group and let M be a compact manifold. The

G-character groupoid of M , denoted XG(M), is defined as XG(Π(M)), where

Π(M) is the fundamental groupoid of M . In particular, if G is finite, XG(M) is

essentially finite.
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Let us elaborate a bit more on the groupoid XG(M). Its objects ρ : Π(M) → G

assign to every homotopy class of paths γ an element ρ(γ) of G. A morphism from

ρ1 to ρ2 is a natural transformation µ : ρ1 ⇒ ρ2. Such a natural transformation

can be thought of as a function µ : M → G such that ρ2(γ) = µ(y)ρ1(γ)µ(x)
−1

for any path γ : x → y in Π(M). Such transformations are known in physics as

local gauge transformations.

With this characterization, the G-character groupoid can be defined in an alter-

native way. Let GΓ =
∏
x∈ΓG be the group of local gauge transformations, which

acts on the set X = Hom(Γ, G) via

((gx)x∈Γ · ρ)(γ) = gyρ(γ)g
−1
x

for any ρ ∈ X and γ : x → y in Γ. Now, the G-character groupoid XG(Γ) is

equivalent to the action groupoid [X/GΓ]. This alternative description will be of

crucial importance in defining the G-character stacks.

2.3 Character stacks

The G-character stack will be defined as the geometric analogue of the G-char-

acter groupoid, replacing the action groupoid by the quotient stack. Fix a base

scheme S and let G be a linear algebraic group over S.

Definition 2.3.1. Let Γ be a finitely generated groupoid. The G-representation

variety of Γ is the scheme over S whose functor of points is given by

RG(Γ)(T ) = Hom(Γ, G(T )),

where G(T ) is seen as a groupoid with a single object. Completely analogous

to the discussion below Definition 2.1.1, the G-representation variety is repre-

sentable by a closed subscheme of Gn for some n.

Importantly, note that RG(Γ) is not well-defined up to equivalence of Γ. That is,

RG(Γ) need not be isomorphic to RG(Γ
′) even when Γ is equivalent to Γ′. This

problem will be fixed once we pass to the G-character stack.

Analogous to the previous section, for a finitely generated groupoid Γ, we define

the group of local gauge transformations to be the group scheme

GΓ =
∏
x∈Γ

G

which, as a finite product of linear algebraic groups, is again a linear algebraic

group over S. It acts naturally on RG(Γ), and the action is pointwise given by

((gx)x∈Γ · ρ)(γ) = gyρ(γ)g
−1
x
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for all (gx)x∈Γ ∈ GΓ(T ) and ρ ∈ RG(Γ)(T ) and γ : x→ y in Γ.

Definition 2.3.2. Let Γ be a finitely generated groupoid. The G-character stack

of Γ is the quotient stack

XG(Γ) = [RG(Γ)/GΓ] .

As for the G-character groupoids, we want to extend XG(−) to essentially finitely

generated groupoids, and promote it to a 2-functor FGGrpd→ Stckop
S , where

StckS is the category of algebraic stacks of finite type over S with affine stabi-

lizers, as defined in Definition 1.6.4.

Let f : Γ′ → Γ be a functor between finitely generated groupoids. Such a functor

induces a morphism between the representation varieties, given by pullback

f∗ : RG(Γ)→ RG(Γ
′), ρ 7→ ρ ◦ f for all ρ ∈ RG(Γ)(T ),

and also a morphism of algebraic groups

Gf : GΓ → GΓ′ , (gx)x∈Γ 7→ (gf(x′))x′∈Γ′ .

In particular, as described in Remark 1.5.6, there is an induced map on charac-

ter stacks XG(f) : XG(Γ) → XG(Γ
′) that sends a GΓ-torsor P to the GΓ′ -torsor

GΓ′ ×GΓ P . Note that this construction is functorial in f .

Next, let η : f1 ⇒ f2 be a natural transformation between functors f1, f2 : Γ
′ → Γ.

We want to assign a 2-morphism XG(η) : XG(f1)⇒ XG(f2) to this natural trans-

formation, which amounts to, for every GΓ-torsor P over T with GΓ-equivariant
map ρ : P → RG(Γ), a morphism of GΓ′ -torsors (as indicated by the dashed

arrow) such that the diagram

GΓ′ ×GΓ
P

RG(Γ
′)

GΓ′ ×GΓ
P

(g′,p)7→g′·f∗
1 (ρ(p))

(g′,p)7→g′·f∗
2 (ρ(p))

commutes. Analogous to the case for G-character groupoids, this morphism is

given by (g′, p) 7→ (g′ρ(p)(ηx′), p). One easily sees that this map is well-defined,

that is, respects the GΓ-action on both sides.

Corollary 2.3.3. Any equivalence between finitely generated groupoids Γ and

Γ′ naturally induces an isomorphism between the G-character stacks XG(Γ) and

XG(Γ
′).
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This corollary allows us to extend the definition of the G-character stack to

groupoids Γ which are only essentially finitely generated, but only up to a natural

isomorphism. In particular, we obtain a 2-functor

XG(−) : FGGrpd→ Stckop
S .

We are now able to define the G-character stack of a compact manifold.

Definition 2.3.4. Let M be a compact manifold (possibly with boundary). It

was shown that the fundamental groupoid Π(M) of M is essentially finitely gen-

erated, that is, is equivalent to a finitely generated groupoid Γ. The G-character

stack of M is defined as

XG(M) = XG(Γ).

This definition is, up to isomorphism, independent of the choice of Γ by the above

corollary.

Remark 2.3.5. It might be tempting to define the G-character stack of Γ,

similar to the G-representation variety, as the category fibered in groupoids over

S = SchS whose fiber over an object T is the G-character groupoid XG(T )(Γ).

However, these groupoids are different as explained in Remark 1.5.9.

Lemma 2.3.6. XG(−) sends finite colimits in FGGrpd to limits in StckS.

Proof. Let Γ = colimi∈I Γi be a colimit in FGGrpd. Up to equivalence, we can

assume all Γi and Γ are finitely generated groupoids. A T -point of limi∈I XG(Γi)

is a collection of GΓi
-torsors Pi over T with GΓi

-equivariant morphisms ρi : Pi →
RG(Γi), which are compatible in the sense that there are natural isomorphisms

GΓi
×GΓj

Pj ∼= Pi in XG(Γi) for every i→ j in I. On the other hand, a T -point of

XG(Γ) is a GΓ-torsor P over T with a GΓ-equivariant morphism ρ : P → RG(Γ).

Note that ρ, on T ′-points, is given by

ρ : P (T ′)→ RG(Γ)(T
′) = Hom(colim

i∈I
Γi, G(T

′)) = lim
i∈I

Hom(Γi, G(T
′))

so ρ is equivalently described by compatible morphisms ρi : P → RG(Γi) which

are GΓi
-equivariant, where GΓi

acts on P via GΓ.

These two descriptions are related as follows. From the GΓ-torsor P , one con-

structs the GΓi
-torsors Pi = GΓi

×GΓ
P , which are naturally compatible. Con-

versely, from the Pi one constructs limi∈I Pi, where the limit is taken as schemes

over T , which naturally comes with the structure of a (limi∈I GΓi)-torsor, and

one puts P = GΓ ×(limi∈I GΓi)
limi∈I Pi. This induces the desired isomorphism

between limi∈I XG(Γi) and XG(Γ).




